高考数学大二轮总复习与增分策略(全国通用,文科)配套课件+配套文档:专题五 立体几何 第2讲
- 格式:docx
- 大小:808.26 KB
- 文档页数:27
第3讲 平面向量1.(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →2.(2015·福建)设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53 D.323.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .94.(2015·江苏)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.1.考查平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,多为选择题、填空题、难度中低档.2.考查平面向量的数量积,以选择题、填空题为主,难度低;向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.热点一 平面向量的线性运算(1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;(2)在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.例1 (1)(2014·陕西)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=______.(2)如图,在△ABC 中,AF =13AB ,D 为BC 的中点,AD 与CF 交于点E .若AB →=a ,AC →=b ,且CE →=x a +y b ,则x +y =________.思维升华 (1)对于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用.(2)运算过程中重视数形结合,结合图形分析向量间的关系.跟踪演练1 (1)(2015·黄冈中学期中)已知向量i 与j 不共线,且AB →=i +m j ,AD →=n i +j ,m ≠1,若A ,B ,D 三点共线,则实数m ,n 满足的条件是( ) A .m +n =1 B .m +n =-1 C .mn =1D .mn =-1(2)(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.热点二 平面向量的数量积(1)数量积的定义:a ·b =|a ||b |cos θ. (2)三个结论①若a =(x ,y ),则|a |=a ·a =x 2+y 2. ②若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.③若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.例2 (1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.(2)在△AOB 中,G 为△AOB 的重心,且∠AOB =60°,若OA →·OB →=6,则|OG →|的最小值是________.思维升华 (1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2)可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算. 跟踪演练2 (1)(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________________________________________________________________________. (2)(2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.热点三 平面向量与三角函数平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件. 例3 已知函数f (x )=2cos 2x +23sin x cos x (x ∈R ). (1)当x ∈[0,π2)时,求函数f (x )的单调递增区间;(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c =3,f (C )=2,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值.思维升华 在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.跟踪演练3 (2014·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.1.如图,在△ABC 中,AD →=13AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N ,设AB →=a ,AC →=b ,用a ,b 表示向量AN →.则AN →等于( ) A.12(a +b ) B.13(a +b ) C.16(a +b ) D.18(a +b ) 2.如图,BC 、DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →等于( ) A .-34B .-89C .-14D .-493.已知向量a =(1,2),b =(cos α,sin α),且a ⊥b ,则tan(2α+π4)=________.4.如图,在半径为1的扇形AOB 中,∠AOB =60°,C 为弧上的动点,AB 与OC 交于点P ,则OP →·BP →最小值是__________________________________________________.提醒:完成作业 专题三 第3讲二轮专题强化练专题三第3讲 平面向量A 组 专题通关1.(2015·佛山月考)在平行四边形ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则DA →等于( ) A .(2,4) B .(3,5) C .(1,1)D .(-1,-1)2.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1D .(4a +b )⊥BC →3.在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 边上的一点,若AP →=mAB →+29AC →,则实数m 的值为( ) A.19 B.13C .1D .3 4.△ABC 外接圆的半径等于1,其圆心O 满足AO →=12(AB →+AC →),|AO →|=|AC →|,则向量BA →在BC→方向上的投影等于( ) A .-32 B.32 C.32D .3 5.(2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.6.若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比值为________.7.(2015·天津)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE →=23BC →,DF →=16DC →,则AE →·AF →的值为________.8.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________. 9.(2015·惠州二调)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2].(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.10.已知向量a =(2sin(ωx +2π3),0),b =(2cos ωx ,3)(ω>0),函数f (x )=a ·b 的图象与直线y =-2+3的相邻两个交点之间的距离为π. (1)求ω的值;(2)求函数f (x )在[0,2π]上的单调递增区间.B 组 能力提高11.已知非零单位向量a 与非零向量b 满足|a +b |=|a -b |,则向量b -a 在向量a 上的投影为( ) A .1 B.22C .-1D .-2212.已知a ,b 是单位向量,a ·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1] B .[2-1,2+2] C .[1,2+1]D .[1,2+2]13.已知点P 是△ABC 所在平面内的一点,CD 是△ABC 的中线,若PD →=1-λ2P A →+12CB →,其中λ∈R ,则点P 一定在( ) A .AB 边所在的直线上 B .AC 边所在的直线上 C .BC 边所在的直线上 D .△ABC 的内部14.(2014·陕西)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上. (1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.学生用书答案精析第3讲 平面向量高考真题体验1.A [∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.]2.A [c =a +k b =(1,2)+k (1,1)=(1+k,2+k ),∵b ⊥c ,∴b ·c =0,b ·c =(1,1)·(1+k,2+k )=1+k +2+k =3+2k =0,∴k =-32,故选A.]3.B [由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴线段AC 为圆的直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ),∴|P A →+PB →+PC →|=-12x +37,∴当x =-1时,此式有最大值49=7,故选B.]4.-3解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.热点分类突破 例1 (1)12 (2)-12解析 (1)因为a ∥b ,所以sin 2θ=cos 2θ,2sin θcos θ=cos 2θ. 因为0<θ<π2,所以cos θ>0,得2sin θ=cos θ,tan θ=12.(2)如图,设FB 的中点为M ,连接MD .因为D 为BC 的中点,M 为FB 的中点, 所以MD ∥CF .因为AF =13AB ,所以F 为AM 的中点,E 为AD 的中点.方法一 因为AB →=a ,AC →=b ,D 为BC 的中点, 所以AD →=12(a +b ).所以AE →=12AD →=14(a +b ).所以CE →=CA →+AE →=-AC →+AE →=-b +14(a +b )=14a -34b . 所以x =14,y =-34,所以x +y =-12.方法二 易得EF =12MD ,MD =12CF ,所以EF =14CF ,所以CE =34CF .因为CF →=CA →+AF →=-AC →+AF →=-b +13a ,所以CE →=34(-b +13a )=14a -34b .所以x =14,y =-34,则x +y =-12.跟踪演练1 (1)C (2)12 -16解析 (1)因为A ,B ,D 三点共线,所以AB →=λAD →⇔i +m j =λ(n i +j ),m ≠1,又向量i 与j 不共线,所以⎩⎪⎨⎪⎧1=λn ,m =λ,所以mn =1. (2)如图,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →) =12AB →-16AC →, ∴x =12,y =-16. 例2 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.(2)如图,在△AOB 中,OG →=23OE →=23×12(OA →+OB →) =13(OA →+OB →), 又OA →·OB →=|OA →||OB →|·cos 60°=6,∴|OA →||OB →|=12,∴|OG →|2=19(OA →+OB →)2=19(|OA →|2+|OB →|2+2OA →·OB →) =19(|OA →|2+|OB →|2+12)≥19×(2|OA →|·|OB →|+12)=19×36=4(当且仅当|OA →|=|OB →|时取等号). ∴|OG →|≥2,故|OG →|的最小值是2.跟踪演练2 (1)32(2)90° 解析 (1)由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴P A ⊥x 轴,P A =PB = 3.∴△POA 为直角三角形,其中OA =1,AP =3,则OP =2,∴∠OP A =30°,∴∠APB =60°.∴P A →·PB →=|P A →||PB →|·cos ∠APB =3×3×cos 60°=32. (2)∵AO →=12(AB →+AC →), ∴点O 是△ABC 中边BC 的中点,∴BC 为直径,根据圆的几何性质有〈AB →,AC →〉=90°.例3 解 (1)f (x )=2cos 2x +3sin 2x=cos 2x +3sin 2x +1=2sin(2x +π6)+1,令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z , 因为x ∈[0,π2), 所以f (x )的单调递增区间为[0,π6]. (2)由f (C )=2sin(2C +π6)+1=2, 得sin(2C +π6)=12, 而C ∈(0,π),所以2C +π6∈(π6,13π6), 所以2C +π6=56π,解得C =π3. 因为向量m =(1,sin A )与向量n =(2,sin B )共线,所以sin A sin B =12. 由正弦定理得a b =12,① 由余弦定理得c 2=a 2+b 2-2ab cos π3, 即a 2+b 2-ab =9.②联立①②,解得a =3,b =2 3.跟踪演练3 解 (1)由BA →·BC →=2得c ·a cos B =2.又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B .又b =3,所以a 2+c 2=9+2×6×13=13. 解⎩⎪⎨⎪⎧ ac =6,a 2+c 2=13, 得⎩⎪⎨⎪⎧ a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B = 1-(13)2=223, 由正弦定理, 得sin C =c b sin B =23×223=429. 因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C = 1-(429)2=79. 于是cos(B -C )=cos B cos C +sin B sin C=13×79+223×429=2327. 高考押题精练1.C [因为DE ∥BC ,所以DN ∥BM , 则△AND ∽△AMB ,所以AN AM =AD AB. 因为AD →=13AB →, 所以AN →=13AM →. 因为M 为BC 的中点,所以AM →=12(AB →+AC →)=12(a +b ), 所以AN →=13AM →=16(a +b ). 故选C.]2.B [∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13, ∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=(13)2+0-1=-89.] 3.-17解析 因为a =(1,2),b =(cos α,sin α),且a ⊥b ,所以cos α+2sin α=0,则tan α=-12. 所以tan 2α=2tan α1-tan 2α=-43. 所以tan(2α+π4)=tan 2α+tan π41-tan 2α·tan π4=-43+11-(-43)×1=-1373=-17. 4.-116解析 因为OP →=OB →+BP →,所以OP →·BP →=(OB →+BP →)·BP →=OB →·BP →+(BP →)2.又因为∠AOB =60°,OA =OB ,∴∠OBA =60°.OB =1.所以OB →·BP →=|BP →|cos 120°=-12|BP →|.所以OP →·BP →=-12|BP →|+|BP →|2=(|BP →|-14)2-116≥-116.故当且仅当|BP →|=14时,OP →·BP →最小值是-116.二轮专题强化练答案精析第3讲 平面向量1.C [DA →=CB →=AB →-AC →=(2,4)-(1,3)=(1,1).]2.D [在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a·b =|a||b |·cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D.]3.B [如图,因为AN →=12NC →,所以AN →=13AC →,AP →=mAB →+29AC →=mAB →+23AN →,因为B ,P ,N 三点共线, 所以m +23=1,所以m =13.] 4.C [由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA →|=|OB →|=|OC →|,又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC=30°,且|AB →|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32,故选C. ] 5.9解析 因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.6.35解析 设AB 的中点为D ,由5AM →=AB →+3AC →,得3AM →-3AC →=2AD →-2AM →,即3CM →=2MD →.如图所示,故C ,M ,D 三点共线,且MD →=35CD →, 也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比值为35. 7.2918解析 在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1,∠ABC =60°,∴CD =1,AE →=AB →+BE →=AB →+23BC →, AF →=AD →+DF →=AD →+16DC →, ∴AE →·AF →=⎝⎛⎭⎫AB →+23BC →·⎝⎛⎭⎫AD →+16DC →=AB →·AD →+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos 60°+2×16+23×1×cos 60°+23×16×cos 120°=2918. 8.[-12,12] 解析 令Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0)=(2x +π3,12sin x ), ∴⎩⎨⎧ c =2x +π3,d =12sin x ,消去x 得d =12sin(12c -π6), ∴y =f (x )=12sin(12x -π6), 易知y =f (x )的值域是[-12,12]. 9.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12, 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1. 所以f (x )的最大值为32. 10.解 (1)因为向量a =(2sin(ωx +2π3),0),b =(2cos ωx ,3)(ω>0),所以函数f (x )=a ·b =4sin(ωx +2π3)cos ωx =4[sin ωx ·(-12)+cos ωx ·32]cos ωx =23·cos 2ωx -2sin ωx cos ωx =3(1+cos 2ωx )-sin 2ωx =2cos(2ωx +π6)+3, 由题意,可知f (x )的最小正周期为T =π,所以2π2ω=π,即ω=1. (2)易知f (x )=2cos(2x +π6)+3,当x ∈[0,2π]时,2x +π6∈[π6,4π+π6], 故2x +π6∈[π,2π]或2x +π6∈[3π,4π]时,函数f (x )单调递增, 所以函数f (x )的单调递增区间为[5π12,11π12]和[17π12,23π12]. 11.C [因为|a +b |=|a -b |,所以(a +b )2=(a -b )2,解得a ·b =0,所以向量b -a 在向量a 上的投影为|b -a |cos 〈a ,b -a 〉=a ·(b -a )|a |=0-|a |2|a |=-|a |=-1.]12.A [∵a ·b =0,且a ,b 是单位向量,∴|a |=|b |=1.又∵|c -a -b |2=c 2-2c ·(a +b )+2a ·b +a 2+b 2=1,∴2c ·(a +b )=c 2+1.∵|a |=|b |=1且a ·b =0,∴|a +b |=2,∴c 2+1=22|c |cos θ(θ是c 与a +b 的夹角).又-1≤cos θ≤1,∴0<c 2+1≤22|c |,∴c 2-22|c |+1≤0, ∴2-1≤|c |≤2+1.]13.B [连接PB ,PC .因为CD 是△ABC 的中线,所以边AB 的中点为D ,所以P A →+PB →=2PD →.因为PD →=1-λ2P A →+12CB →, 所以12(P A →+PB →) =1-λ2P A →+12(PB →-PC →), 所以PC →=-λP A →,所以A ,C ,P 三点共线,因此点P 一定在AC 边所在的直线上.]14.解 (1)方法一 ∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ),∴⎩⎪⎨⎪⎧ 6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2,即OP →=(2,2),故|OP →|=2 2.方法二 ∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0,∴OP →=13(OA →+OB →+OC →)=(2,2), ∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →,∴(x ,y )=(m +2n,2m +n ), ∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m-n=y-x.令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.。
2.函数与导数1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根、被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏.对抽象函数,只要对应关系相同,括号里整体的取值范围就完全相同.[问题1] 函数f (x )=11-x+lg(1+x )的定义域是__________________. 2.用换元法求解析式时,要注意新元的取值范围,即函数的定义域问题.[问题2] 已知f (cos x )=sin 2x ,则f (x )=________.3.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.[问题3] 已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,f (x -1),x >0,那么f (56)的值为________. 4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.[问题4] f (x )=lg (1-x 2)|x -2|-2是________函数(填“奇”“偶”或“非奇非偶”). 5.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.[问题5] 函数f (x )=1x的减区间为________________________________________. 6.弄清函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)若f (x )为偶函数,则f (-x )=f (x )=f (|x |).(3)若奇函数f (x )的定义域中含有0,则必有f (0)=0.“f (0)=0”是“f (x )为奇函数”的既不充分也不必要条件.[问题6] 设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为( )A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数7.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数.(2)图象法:适合于已知或易作出图象的函数.(3)基本不等式法:特别适合于分式结构或两元的函数.(4)导数法:适合于可导函数.(5)换元法(特别注意新元的范围).(6)分离常数法:适合于一次分式.[问题7] 函数y =2x2x +1(x ≥0)的值域为________. 8.函数图象的几种常见变换(1)平移变换:左右平移——“左加右减”(注意是针对x 而言);上下平移——“上加下减”.(2)翻折变换:f (x )→|f (x )|;f (x )→f (|x |).(3)对称变换:①证明函数图象的对称性,即证图象上任意点关于对称中心(轴)的对称点仍在图象上;②函数y =f (x )与y =-f (-x )的图象关于原点成中心对称;③函数y =f (x )与y =f (-x )的图象关于直线x =0 (y 轴)对称;函数y =f (x )与函数y =-f (x )的图象关于直线y =0(x 轴)对称.[问题8] 函数f (x )=2x +1x +1的图象的对称中心是________. 9.有关函数周期的几种情况必须熟记:(1)f (x )=f (x +a )(a >0),则f (x )的周期T =a ;(2)f (x +a )=1f (x )(f (x )≠0)或f (x +a )=-f (x ),则f (x )的周期T =2a . [问题9] 对于函数f (x )定义域内任意的x ,都有f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2 016.5)=________.10.二次函数问题(1)处理二次函数的问题勿忘数形结合.二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.(2)若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[问题10] 若关于x 的方程ax 2-x +1=0至少有一个正根,则a 的取值范围为________.11.(1)对数运算性质已知a >0且a ≠1,b >0且b ≠1,M >0,N >0.则log a (MN )=log a M +log a N ,log a M N=log a M -log a N , log a M n =n log a M ,对数换底公式:log a N =log b N log b a. 推论:=n m log a N ;log a b =1log b a. (2)指数函数与对数函数的图象与性质可从定义域、值域、单调性、函数值的变化情况考虑,特别注意底数的取值对有关性质的影响,另外,指数函数y =a x 的图象恒过定点(0,1),对数函数y =log a x 的图象恒过定点(1,0).[问题11] 函数y =|log 2|x -1||的递增区间是________________.12.幂函数y =x α(α∈R )(1)①若α=1,则y =x ,图象是直线.②当α=0时,y =x 0=1(x ≠0)图象是除点(0,1)外的直线.③当0<α<1时,图象过(0,0)与(1,1)两点,在第一象限内是上凸的.④当α>1时,在第一象限内,图象是下凸的.(2)增减性:①当α>0时,在区间(0,+∞)上,函数y =x α是增函数;②当α<0时,在区间(0,+∞)上,函数y =x α是减函数.[问题12] 函数f (x )=x -⎝⎛⎭⎫12x 的零点个数为________.13.函数与方程(1)对于函数y =f (x ),使f (x )=0的实数x 叫做函数y =f (x )的零点.事实上,函数y =f (x )的零点就是方程f (x )=0的实数根.(2)如果函数y =f (x )在区间[a ,b ]上的图象是一条连续曲线,且有f (a )f (b )<0,那么函数y =f (x )在区间[a ,b ]内有零点,即存在c ∈(a ,b ),使得f (c )=0,此时这个c 就是方程f (x )=0的根.反之不成立.[问题13] 已知定义在R 上的函数f (x )=(x 2-3x +2)·g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个区间内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)14.求导数的方法(1)基本导数公式:c ′=0 (c 为常数);(x m )′=mx m -1 (m ∈Q );(sin x )′=cos x ;(cos x )′=-sin x ;(e x )′=e x ;(a x )′=a x ln a ;(ln x )′=1x ;(log a x )′=1x ln a(a >0且a ≠1). (2)导数的四则运算:(u ±v )′=u ′±v ′;(u v )′=u ′v +u v ′;⎝⎛⎭⎫u v ′=u ′v -u v ′v 2(v ≠0). (3)复合函数的导数:y x ′=y u ′·u x ′.如求f (ax +b )的导数,令u =ax +b ,则(f (ax +b ))′=f ′(u )·a .[问题14] f (x )=e -2x ,则f ′(x )=________.15.利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导,如果f ′(x )>0,那么f (x )在该区间内为增函数;如果f ′(x )<0,那么f (x )在该区间内为减函数;如果在某个区间内恒有f ′(x )=0,那么f (x )在该区间内为常函数.注意:如果已知f (x )为减函数求字母取值范围,那么不等式f ′(x )≤0恒成立,但要验证f ′(x )是否恒等于0.增函数亦如此.[问题15] 函数f (x )=ax 3-2x 2+x -1在R 上是增函数,则a 的取值范围是________.16.导数为零的点并不一定是极值点,例如:函数f (x )=x 3,有f ′(0)=0,但x =0不是极值点.[问题16] 函数f (x )=14x 4-13x 3的极值点是________. 17.定积分运用微积分基本定理求定积分ʃb a f (x )d x 值的关键是用求导公式逆向求出f (x )的原函数,应熟练掌握以下几个公式:ʃb a x n d x =x n +1n +1|b a , ʃb a sin x d x =-cos x |b a ,ʃb a cos x d x =sin x |b a ,ʃb a 1xd x =ln x |b a (b >a >0),ʃb a a x d x =a x ln a |b a. [问题17] 计算定积分ʃ1-1(x 2+sin x )d x =________.易错点1 忽视函数定义域例1 函数y =log (x 2-5x +6)的单调递增区间为_____________.错因分析 忽视对函数定义域的要求,漏掉条件x 2-5x +6>0.解析 由x 2-5x +6>0知{x |x >3或x <2}.令u =x 2-5x +6,则u =x 2-5x +6在(-∞,2)上是减函数,∴y =log (x 2-5x +6)的单调增区间为(-∞,2).答案 (-∞,2)易错点2 分段函数意义理解不准确例2 定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (2 016)的值为( ) A .-1 B .0 C .1 D .2错因分析 不理解分段函数的意义,误认为应将x =2 016,代入log 2(1-x ),或者认为得不到f (2 016)的值.解析 f (2 016)=f (2 015)-f (2 014)=f (2 014)-f (2 013)-f (2 014)=-f (2 013)=f (2 010)=f (0)=0.答案 B例3 函数f (x )=⎩⎪⎨⎪⎧ ax 2+1,x ≥0,(a 2-1)e ax ,x >0在(-∞,+∞)上单调,则a 的取值范围是________________.错因分析 只考虑分段函数各段上函数值变化情况,忽视对定义域的临界点处函数值的要求.解析 若函数在R 上单调递减,则有⎩⎪⎨⎪⎧ a <0,a 2-1>0,(a 2-1)e 0≥1,解之得a ≤-2;若函数在R 上单调递增,则有⎩⎪⎨⎪⎧ a >0,a 2-1>0,(a 2-1)e 0≤1,解得1<a ≤2,故a 的取值范围是(-∞,-2]∪(1,2].答案 (-∞,-2]∪(1,2]易错点3 函数零点求解讨论不全面例4 函数f (x )=mx 2-2x +1有且仅有一个正实数零点,则实数m 的取值范围是( )A .(-∞,1]B .(-∞,0]∪{1}C .(-∞,0)∪{1}D .(-∞,1)错因分析 解本题易出现的错误有分类讨论不全面、函数零点定理使用不当,如忽视对m =0的讨论,就会错选C.解析 当m =0时,x =12为函数的零点;当m ≠0时,若Δ=0,即m =1时,x =1是函数唯一的零点,若Δ≠0,显然x =0不是函数的零点,这样函数有且仅有一个正实数零点等价于方程f (x )=mx 2-2x +1=0有一个正根一个负根,即mf (0)<0,即m <0.故选B.答案 B易错点4 混淆“过点”和“切点”例5 求过曲线y =3x -x 3上的点(2,-2)的切线方程.错因分析 混淆过一点的切线和在一点处切线,错误认为(2,-2)一定是切点.解 设切点为P (x 0,y 0),则点P 处的切线方程是y -y 0=(3-3x 20)(x -x 0).∵点A 在切线上,∴-2-y 0=(3-3x 20)(2-x 0).①又∵点P 在曲线C 上,∴y 0=3x 0-x 30.②由①、②,解得x 0=2或x 0=-1.当x 0=2时,P 点的坐标为(2,-2),切线方程是9x +y -16=0.当x 0=-1时,P 点的坐标为(-1,-2),切线方程是y +2=0.综上,过点A 的曲线C 的切线方程是:9x +y -16=0或y +2=0.易错点5 极值点条件不清例6 已知f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则a +b =________.错因分析 把f ′(x 0)=0作为x 0为极值点的充要条件,没有对a ,b 值进行验证,导致增解. 解析 f ′(x )=3x 2+2ax +b ,由x =1时,函数取得极值10,得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0, ①f (1)=1+a +b +a 2=10, ②联立①②得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3.当a =4,b =-11时,f ′(x )=3x 2+8x -11=(3x +11)(x -1).在x =1两侧的符号相反,符合题意.当a =-3,b =3时,f ′(x )=3(x -1)2在x =1两侧的符号相同,所以a =-3,b =3不符合题意,舍去.综上可知a =4,b =-11,∴a +b =-7.答案 -7 易错点6 函数单调性与导数关系理解不准确例7 函数f (x )=ax 3-x 2+x -5在R 上是增函数,则a 的取值范围是________.错因分析 误认为f ′(x )>0恒成立是f (x )在R 上是增函数的必要条件,漏掉f ′(x )=0的情况.解析 f (x )=ax 3-x 2+x -5的导数f ′(x )=3ax 2-2x +1,由f ′(x )≥0,得⎩⎪⎨⎪⎧a >0,Δ=4-12a ≤0,解得a ≥13. 答案 a ≥13 易错点7 计算定积分忽视细节例8 ʃ421xd x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2 D .ln 2错题分析 本题易出现的问题主要有两个方面:一是混淆求原函数和求导数的运算,误认为原函数为y =(1x)′而找不到答案;二是记错公式,把积分的上、下限颠倒导致计算失误,而错选C.解析 因为(ln x )′=1x ,所以y =1x的一个原函数是y =ln x , 故ʃ421xd x =ln x |42=ln 4-ln 2=ln 2,故选D. 答案 D1.(2014·北京)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)2.(2014·山东)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝⎛⎭⎫0,12 B .(2,+∞)C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) 3.下列各式中错误的是( )A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1D .lg 1.6>lg 1.44.a 是f (x )=2x -log x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定5.(2014·天津)函数f (x )=log (x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )的导函数f ′(x )的图象如图所示,那么函数f (x )的图象最有可能的是( )7.(2014·福建)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( ) A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)8.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.9.已知函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,3x , x ≤0且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.10.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.11.已知函数f (x )=x 2+a x(x ≠0,a ∈R ). (1)判断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.12.已知函数f (x )=ln(ax )(a ≠0,a ∈R ),g (x )=x -1x. (1)当a =1时,记φ(x )=f (x )-x +1x -1,求函数φ(x )的单调区间; (2)若f (x )≥g (x )(x ≥1)恒成立,求实数a 的取值范围.学生用书答案精析2.函数与导数要点回扣[问题1] (-1,1)∪(1,+∞)[问题2] 1-x 2(x ∈[-1,1])[问题3] -12[问题4] 奇解析 由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0得定义域为(-1,0)∪(0,1), f (x )=lg (1-x 2)-(x -2)-2=lg (1-x 2)-x. ∴f (-x )=-f (x ),f (x )为奇函数.[问题5] (-∞,0),(0,+∞)[问题6] D [由题意可知f (0)=0,即lg(2+a )=0,解得a =-1,故f (x )=lg 1+x 1-x,函数f (x )的定义域是(-1,1), 在此定义域内f (x )=lg 1+x 1-x =lg(1+x )-lg(1-x ), 函数y 1=lg(1+x )是增函数,函数y 2=lg(1-x )是减函数,故f (x )=y 1-y 2是增函数.选D.][问题7] ⎣⎡⎭⎫12,1解析 方法一 ∵x ≥0,∴2x ≥1,∴y 1-y≥1, 解得12≤y <1.∴其值域为y ∈⎣⎡⎭⎫12,1. 方法二 y =1-12x +1,∵x ≥0,∴0<12x +1≤12,∴y ∈⎣⎡⎭⎫12,1. [问题8] (-1,2)[问题9] -25[问题10] ⎝⎛⎦⎤-∞,14 [问题11] [0,1),[2,+∞)解析 ∵y =⎩⎪⎨⎪⎧ |log 2(x -1)|(x >1),|log 2(1-x )|(x <1), 作图可知正确答案为[0,1),[2,+∞).[问题12] 1[问题13] B [f (x )=(x -2)(x -1)g (x )+3x -4,∴f (1)=0+3×1-4=-1<0,f (2)=2×3-4=2>0.又函数y =g (x )的图象是一条连续曲线,∴函数f (x )在区间(1,2)内有零点.因此方程f (x )=0在(1,2)内必有实数根.][问题14] -2e -2x[问题15] a ≥43解析 f (x )=ax 3-2x 2+x -1的导数f ′(x )=3ax 2-4x +1.由f ′(x )≥0,得⎩⎪⎨⎪⎧a >0,Δ=16-12a ≤0,解得a ≥43.a =43时,f ′(x )=(2x -1)2≥0, 且只有x =12时,f ′(x )=0, ∴a =43符合题意. [问题16] x =1[问题17] 23解析 ʃ1-1(x 2+sin x )d x = ⎪⎪⎝⎛⎭⎫x 33-cos x 1-1=23. 查缺补漏1.A [A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 项,函数y =2-x =(12)x 在R 上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.]2.C [由题意知⎩⎪⎨⎪⎧ x >0,(log 2x )2>1,解得x >2或0<x <12.故选C.] 3.C [构造相应函数,再利用函数的性质解决,对于A ,构造幂函数y =x 3,为增函数,故A 对;对于B 、D ,构造对数函数y =log 0.5x 为减函数,y =lg x 为增函数,B 、D 都正确;对于C ,构造指数函数y =0.75x ,为减函数,故C 错.]4.B [函数f (x )=2x -log x =2x +log 2x 在(0,+∞)上是单调递增的,这个函数有零点,这个零点是唯一的,根据函数的单调性,知在(0,a )上,这个函数的函数值小于零,即f (x 0)<0.]5.D [因为y =log t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).]6.A [从导函数图象上可以看出函数f (x )的单调递增区间是(-2,0),单调递减区间是(-∞,-2),(0,+∞),故函数图象最有可能是选项A 中的图象.]7.D [函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0的图象如图所示,由图象知只有D 正确.]8.(-2,2)解析 因为f (x )是偶函数,所以f (-x )=f (x )=f (|x |).因为f (x )<0,f (2)=0.所以f (|x |)<f (2).又因为f (x )在(-∞,0]上是减函数,所以f (x )在(0,+∞)上是增函数,所以|x |<2,所以-2<x <2.9.(1,+∞)解析 方程f (x )+x -a =0的实根也就是函数y =f (x )与y =a -x 的图象交点的横坐标,如图所示,作出两个函数图象,显然当a ≤1时,两个函数图象有两个交点,当a >1时,两个函数图象的交点只有一个.所以实数a 的取值范围是(1,+∞).10.(-22,0)解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧ f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0. 11.解 (1)当a =0时,f (x )=x 2为偶函数;当a ≠0时,f (x )既不是奇函数也不是偶函数.(2)要使f (x )在区间[2,+∞)上是增函数,只需当x ≥2时,f ′(x )≥0恒成立,即2x -a x 2≥0,则a ≤2x 3,又因为2x 3≥16. 故当a ≤16时,f (x )在区间[2,+∞)上是增函数.12.解 (1)当a =1时,φ(x )=f (x )-x +1x -1=ln x -x +1x -1,则φ′(x )=1x +2(x -1)2=x 2+1x (x -1)2. 因为x >0且x ≠1,所以φ′(x )>0.故函数φ(x )的单调递增区间为(0,1)和(1,+∞).(2)因为ln(ax )≥x -1x对x ≥1恒成立, 所以ln a +ln x ≥x -1x, 即ln a ≥1-1x-ln x 对x ≥1恒成立. 令h (x )=1-1x -ln x ,则h ′(x )=1x 2-1x,因为x ≥1,故h ′(x )≤0.所以h (x )在区间[1,+∞)上单调递减,由ln a ≥h (x )max =h (1)=0,解得a ≥1.故实数a 的取值范围为[1,+∞).。
6.解析几何1.直线的倾斜角与斜率(1)倾斜角的范围为[0,π).(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y 1-y 2x 1-x 2(x 1≠x 2);③直线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC .[问题1] (1)直线的倾斜角θ越大,斜率k 就越大,这种说法正确吗?(2)直线x cos θ+3y -2=0的倾斜角的范围是____________________.2.直线的方程(1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线.(2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线.(3)两点式:已知直线经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标轴的直线.(4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +y b=1,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式.[问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________________________________________________________________________.3.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B2;(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2. [问题3] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________.4.两直线的平行与垂直(1)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.(2)l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.特别提醒:(1)A 1A 2=B 1B 2≠C 1C 2、A 1A 2≠B 1B 2、A 1A 2=B 1B 2=C 1C 2仅是两直线平行、相交、重合的充分不必要条件;(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线.[问题4] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合.5.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为(-D 2,-E 2),半径为12D 2+E 2-4F 的圆. [问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________.6.直线、圆的位置关系(1)直线与圆的位置关系直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切.可从代数和几何两个方面来判断:①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交;Δ<0⇔相离;Δ=0⇔相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交;d >r ⇔相离;d =r ⇔相切.(2)圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当|O 1O 2|>r 1+r 2时,两圆外离;②当|O 1O 2|=r 1+r 2时,两圆外切;③当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交;④当|O 1O 2|=|r 1-r 2|时,两圆内切;⑤当0≤|O 1O 2|<|r 1-r 2|时,两圆内含.[问题6] 双曲线x 2a 2-y 2b 2=1的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆的位置关系为________.7.对圆锥曲线的定义要做到“咬文嚼字”,抓住关键词,例如椭圆中定长大于定点之间的距离,双曲线定义中是到两定点距离之差的“绝对值”,否则只是双曲线的其中一支.在抛物线的定义中必须注意条件:FD ∈/l ,否则定点的轨迹可能是过点F 且垂直于直线l 的一条直线.[问题7] 已知平面内两定点A (0,1),B (0,-1),动点M 到两定点A 、B 的距离之和为4,则动点M 的轨迹方程是________.8.求椭圆、双曲线及抛物线的标准方程,一般遵循先定位,再定型,后定量的步骤,即先确定焦点的位置,再设出其方程,求出待定系数.(1)椭圆的标准方程:焦点在x 轴上,x 2a 2+y 2b 2=1(a >b >0);焦点在y 轴上,y 2a 2+x 2b 2=1(a >b >0). (2)双曲线的标准方程:焦点在x 轴上,x 2a 2-y 2b 2=1(a >0,b >0);焦点在y 轴上,y 2a 2-x 2b 2=1(a >0,b >0).(3)与双曲线x 2a 2-y 2b 2=1具有共同渐近线的双曲线系为x 2a 2-y 2b 2=λ(λ≠0). (4)抛物线的标准方程焦点在x 轴上:y 2=±2px (p >0);焦点在y 轴上:x 2=±2py (p >0).[问题8] 与双曲线x 29-y 216=1有相同的渐近线,且过点(-3,23)的双曲线方程为________________________________________________________________________.9.(1)在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意二次项的系数是否为零,利用解的情况可判断位置关系:有两解时相交;无解时相离;有唯一解时,在椭圆中相切.在双曲线中需注意直线与渐近线的关系,在抛物线中需注意直线与对称轴的关系,而后判断是否相切.(2)直线与圆锥曲线相交时的弦长问题斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]或|P 1P 2|=(1+1k2)[(y 1+y 2)2-4y 1y 2]. (3)过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于C (x 1,y 1)、D (x 2,y 2),则①焦半径|CF |=x 1+p 2; ②弦长|CD |=x 1+x 2+p ;③x 1x 2=p 24,y 1y 2=-p 2. [问题9] 已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为________.易错点1 直线的倾斜角与斜率关系不清例1 已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是______.错因分析 本题易出现的错误有两个:一是利用导函数的几何意义求出曲线在点P 处的切线的斜率之后,不能利用基本不等式求出斜率的取值范围;二是混淆直线倾斜角的取值范围以及直线的倾斜角和斜率之间的关系,不能求出倾斜角的取值范围.解析 设曲线在点P 处的切线斜率为k ,则k =y ′=-4e x (1+e x )2=-4e x +1e x +2, 因为e x >0,所以由基本不等式,得k ≥-42e x ×1e x +2 又k <0,所以-1≤k <0,即-1≤tan α<0.所以3π4≤α<π. 答案 [3π4,π) 易错点2 忽视直线的特殊位置例2 已知l 1:3x +2ay -5=0,l 2:(3a -1)x -ay -2=0.求使l 1∥l 2的a 的值.错因分析 本题易出现的问题是忽视直线斜率不存在的特殊情况,即忽视a =0的情况. 解 当直线斜率不存在,即a =0时,有l 1:3x -5=0,l 2:-x -2=0,符合l 1∥l 2;当直线斜率存在时,l 1∥l 2⇔-32a =3a -1a ⇔a =-16, 经检验,a =-16符合题意. 故使l 1∥l 2的a 的值为-16或0. 易错点3 焦点位置考虑不全例3 已知椭圆x 24+y 2m =1的离心率等于32,则m =_____________________________. 错因分析 本题易出现的问题就是误以为给出方程的椭圆,其焦点在x 轴上导致漏解.该题虽然给出了椭圆的方程,但并没有确定焦点所在坐标轴,所以应该根据其焦点所在坐标轴进行分类讨论.解析 ①当椭圆的焦点在x 轴上时,则由方程,得a 2=4,即a =2.又e =c a =32, 所以c =3,m =b 2=a 2-c 2=22-(3)2=1.②当椭圆的焦点在y 轴上时,椭圆的方程为y 2m +x 24=1. 则由方程,得b 2=4,即b =2.又e =c a =32,故a 2-b 2a =32, 解得b a =12,即a =2b , 所以a =4.故m =a 2=16.综上,m =1或16.答案 1或16易错点4 忽视“判别式”致误例4 已知双曲线x 2-y 22=1,过点A (1,1)能否作直线l ,使l 与双曲线交于P 、Q 两点,并且A 为线段PQ 的中点?若存在,求出直线l 的方程;若不存在,说明理由.错因分析 只利用根与系数的关系考虑中点坐标,而忽视直线与双曲线相交于两点的条件. 解 设被A (1,1)所平分的弦所在直线方程为y =k (x -1)+1.代入双曲线方程x 2-y 22=1,整理得, (2-k 2)x 2+2k (k -1)x -3+2k -k 2=0,由Δ=4k 2(k -1)2-4(2-k 2)(2k -3-k 2)>0,解得k <32. 设直线与双曲线交点为M (x 1,y 1),N (x 2,y 2),由根与系数的关系,得x 1+x 2=2k (k -1)k 2-2, 点A (1,1)是弦中点,则x 1+x 22=1. ∴k (k -1)k 2-2=1,解得k =2>32, 故不存在被点A (1,1)平分的弦.易错点5 求离心率范围忽视特殊情况例5 双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个焦点为F 1、F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为________.错因分析 忽视P 为双曲线右顶点的情况,导致离心率范围缩小.解析 设|PF 2|=m ,∠F 1PF 2=θ (0<θ≤π),当点P 在右顶点处时,θ=π.e =c a =2c 2a =3m m=3. 当θ≠π时,由条件,得|PF 1|=2m ,|F 1F 2|2=m 2+(2m )2-4m 2cos θ,且||PF 1|-|PF 2||=m =2a .所以e =2c 2a =m 2+(2m )2-4m 2cos θm =5-4cos θ.又-1<cos θ<1,所以e ∈(1,3).综上,e ∈(1,3].答案 (1,3]易错点6 定点问题意义不明例6 已知抛物线y 2=4x 的焦点为F ,过F 作两条相互垂直的弦AB ,CD ,设弦AB ,CD 的中点分别为M ,N .求证:直线MN 恒过定点.错因分析 直线恒过定点是指无论直线如何变动,必有一个定点的坐标适合这条直线的方程,问题就归结为用参数把直线的方程表示出来,无论参数如何变化这个方程必有一组常数解.本题容易出错的地方有两个:一是在用参数表示直线MN 的方程时计算错误;二是在得到了直线系MN 的方程后,对直线恒过定点的意义不明,找错方程的常数解.证明 由题设,知F (1,0),直线AB 的斜率存在且不为0,设l AB :y =k (x -1)(k ≠0),代入y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0,得x M =x A +x B 2=k 2+2k 2,又y M =k (x M -1)=2k, 故M (k 2+2k 2,2k). 因为CD ⊥AB ,所以k CD =-1k .以-1k代k , 同理,可得N (2k 2+1,-2k ).所以直线MN 的方程为(2k 2+1-k 2+2k 2)(y +2k ) =(-2k -2k)(x -2k 2-1), 化简整理,得yk 2+(x -3)k -y =0,该方程对任意k 恒成立,故⎩⎪⎨⎪⎧ y =0,x -3=0,-y =0,解得⎩⎪⎨⎪⎧x =3,y =0. 故不论k 为何值,直线MN 恒过点(3,0).1.(2014·安徽)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3 2.(2014·广东)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( ) A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等3.(2015·天津模拟)已知抛物线C 的方程为y 2=8x ,设抛物线C 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |等于( )A .2B .4C .6D .84.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与圆(x -2)2+y 2=2相交,则此双曲线的离心率的取值范围是( )A .(2,+∞)B .(1,2)C .(1,2)D .(2,+∞)5.已知点F 1、F 2是椭圆x 2+2y 2=2的左、右两个焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 26.(2014·课标全国Ⅰ)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |等于( )A.72B.52C .3D .2 7.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.8.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC |=2|BF |,且|AF |=4,则△AKF 的面积是________.9.(2015·兰州、张掖联考)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 依次交抛物线及其准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是______________.10.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 向其一条渐近线作垂线,垂足为M ,已知∠MFO =30°(O 为坐标原点),则该双曲线的离心率为________.11.已知点A (-2,0),B (2,0),过点A 作直线l 与以A ,B 为焦点的椭圆交于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线l 与圆x 2+y 2=1相切,则该椭圆的标准方程是________.学生用书答案精析6.解析几何要点回扣[问题1] (1)错 (2)[0,π6]∪[5π6,π)[问题2] 5x -y =0或x +y -6=0[问题3] 151326[问题4] -1 12 m ≠3且m ≠-1 3[问题5] -1[问题6] 内切[问题7] x 23+y 24=1[问题8] 4x 29-y 24=1[问题9] 54解析 ∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.查缺补漏1.D [方法一 如图,过点P 作圆的切线P A ,PB ,切点为A ,B . 由题意知|OP |=2,|OA |=1,则sin α=12,所以α=π6,∠BP A =π3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.方法二 设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k2≤1. 解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是[0,π3].] 2.A [因为0<k <9,所以两条曲线都表示双曲线.双曲线x 225-y 29-k =1的实半轴长为5,虚半轴长为9-k ,焦距为225+(9-k )=234-k ,离心率为34-k 5.双曲线x 225-k -y 29=1的实半轴长为25-k ,虚半轴长为3,焦距为2(25-k )+9=234-k ,离心率为34-k 25-k ,故两曲线只有焦距相等.故选A.]3.D [设P (x 0,y 0),直线AF 的倾斜角为α,准线l 与x 轴交于点B ,由题意知,F (2,0),直线l :x =-2.又tan α=-3,∴α=23π,∴∠AFB =π3,∵|BF |=4,∴|AB |=43,即A (-2,43).∵P A ⊥l ,∴P (x 0,43),代入y 2=8x 得x 0=6,∴|PF |=x 0+2=8.]4.C [双曲线的渐近线为bx ±ay =0,因为它与圆(x -2)2+y 2=0相交,所以圆心(2,0)到该直线的距离小于圆的半径,即|2b |a 2+b 2<2,整理得b 2<a 2, 所以c 2-a 2<a 2,得c 2a 2<2, 所以1<e < 2.]5.C [设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0).∴PF 1→+PF 2→=(-2x 0,-2y 0),∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2,∵点P 在椭圆上,∴0≤y 20≤1.∴当y 20=1时,|PF 1→+PF 2→|取最小值为2.]6.C [∵FP →=4FQ →,∴|FP →|=4|FQ →|,∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C.]7.43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2. 整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43. 8.4 3解析 设点A (x 1,y 1),其中y 1>0.过点B 作抛物线的准线的垂线,垂足为B 1,则有 |BF |=|BB 1|;又|CB |=2|FB |,因此有|CB |=2|BB 1|,cos ∠CBB 1=|BB 1||BC |=12,∠CBB 1=π3,即直线AB 与x 轴的夹角为π3. 又|AF |=|AK |=x 1+p 2=4,因此y 1=4sin π3=23,因此△AKF 的面积等于 12|AK |·y 1=12×4×23=4 3. 9.y 2=3x解析 如图,分别过点A ,B 作准线的垂线AE ,BD ,分别交准线于点E ,D ,则|BF |=|BD |,∵|BC |=2|BF |,∴|BC |=2|BD |,∴∠BCD =30°,又|AE |=|AF |=3,∴|AC |=6,即点F 是AC 的中点,根据题意得p =32,∴抛物线的方程是y 2=3x . 10.2解析 由已知得点F 的坐标为(c,0)(c =a 2+b 2), 其中一条渐近线方程为bx -ay =0,则|MF |=bca 2+b 2=b ,由∠MFO =30°可得|MF ||OF |=b c =cos 30°=32, 所以c 2-a 2c =32, 所以e =c a=2. 11.x 28+y 24=1 解析 根据题意,知直线l 的斜率存在,设直线l 的方程为y =k (x +2),①由题意设椭圆方程为x 2a 2+y 2a 2-4=1(a 2>4),② 由直线l 与圆x 2+y 2=1相切,得|2k |1+k 2=1,解得k 2=13. 将①代入②,得(a 2-3)x 2+a 2x -34a 4+4a 2=0,设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2),由根与系数的关系,得x 1+x 2=-a 2a 2-3.又线段MN 的中点到y 轴的距离为45,所以|x 1+x 2|=85,即-a 2a 2-3=-85, 解得a 2=8.2 8+y24=1.所以该椭圆的标准方程为x。
4.数列、不等式1.已知前n 项和S n =a 1+a 2+a 3+…+a n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2).由S n 求a n 时,易忽略n =1的情况.[问题1] 已知数列{a n }的前n 项和S n =n 2+1,则a n =________. 2.等差数列的有关概念及性质(1)等差数列的判断方法:定义法a n +1-a n =d (d 为常数)或a n +1-a n =a n -a n -1(n ≥2). (2)等差数列的通项:a n =a 1+(n -1)d 或a n =a m +(n -m )d . (3)等差数列的前n 项和:S n =n (a 1+a n )2,S n =na 1+n (n -1)2d .(4)等差数列的性质①当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)·d =dn +a 1-d 是关于n 的一次函数,且斜率为公差d ;前n 项和S n =na 1+n (n -1)2d =d 2n 2+(a 1-d2)n 是关于n 的二次函数且常数项为0.②若公差d >0,则为递增等差数列;若公差d <0,则为递减等差数列;若公差d =0,则为常数列.③当m +n =p +q 时,则有a m +a n =a p +a q ,特别地,当m +n =2p 时,则有a m +a n =2a p . ④S n ,S 2n -S n ,S 3n -S 2n 成等差数列.[问题2] 已知等差数列{a n }的前n 项和为S n ,且S 10=12,S 20=17,则S 30为( ) A .15 B .20 C .25 D .30 3.等比数列的有关概念及性质(1)等比数列的判断方法:定义法a n +1a n =q (q 为常数),其中q ≠0,a n ≠0或a n +1a n =a na n -1(n ≥2).如一个等比数列{a n }共有2n +1项,奇数项之积为100,偶数项之积为120,则a n +1=56.(2)等比数列的通项:a n =a 1q n-1或a n =a m q n-m.(3)等比数列的前n 项和:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.易错警示:由于等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分q =1和q ≠1两种情形讨论求解.(4)等比中项:若a ,A ,b 成等比数列,那么A 叫做a 与b 的等比中项.值得注意的是,不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个,即为±ab .如已知两个正数a ,b (a ≠b )的等差中项为A ,等比中项为B ,则A 与B 的大小关系为A >B . (5)等比数列的性质当m +n =p +q 时,则有a m ·a n =a p ·a q ,特别地,当m +n =2p 时,则有a m ·a n =a 2p .[问题3] (1)在等比数列{a n }中,a 3+a 8=124,a 4a 7=-512,公比q 是整数,则a 10=________. (2)各项均为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+…+log 3a 10=________. 4.数列求和的方法(1)公式法:等差数列、等比数列求和公式; (2)分组求和法; (3)倒序相加法; (4)错位相减法; (5)裂项法;如:1n (n +1)=1n -1n +1;1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k .(6)并项法.数列求和时要明确:项数、通项,并注意根据通项的特点选取合适的方法.[问题4] 数列{a n }满足a n +a n +1=12(n ∈N ,n ≥1),若a 2=1,S n 是{a n }的前n 项和,则S 21的值为________.5.在求不等式的解集时,其结果一定要用集合或区间表示,不能直接用不等式表示. [问题5] 不等式-3x 2+5x -2>0的解集为________.6.不等式两端同时乘以一个数或同时除以一个数,必须讨论这个数的正负.两个不等式相乘时,必须注意同向同正时才能进行.[问题6] 已知a ,b ,c ,d 为正实数,且c >d ,则“a >b ”是“ac >bd ”的________条件.7.基本不等式:a +b2≥ab (a ,b >0)(1)推广:a 2+b 22≥a +b 2≥ab ≥21a +1b(a ,b >0). (2)用法:已知x ,y 都是正数,则①若积xy 是定值p ,则当x =y 时,和x +y 有最小值2p ; ②若和x +y 是定值s ,则当x =y 时,积xy 有最大值14s 2.易错警示:利用基本不等式求最值时,要注意验证“一正、二定、三相等”的条件. [问题7] 已知a >0,b >0,a +b =1,则y =1a +4b的最小值是________.8.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.[问题8] 设定点A (0,1),动点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥0,y ≤x ,则|P A |的最小值是________.易错点1 a n 与S n 关系不清例1 已知数列{a n }的前n 项和为S n =n 2+n +1,则数列{a n }的通项公式为________. 错因分析 没有注意到a n =S n -S n -1成立的条件:n ≥2,忽视对n 的分类讨论. 解析 当n =1时,a 1=S 1=3;当n ≥2时,a n =n 2+n +1-(n -1)2-(n -1)-1=2n ,∴a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.答案 a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2易错点2 忽视等比数列中q 的范围例2 设等比数列{a n }的前n 项和为S n ,若S 3+S 6=S 9,则数列{a n }的公比q =________. 错因分析 没有考虑等比数列求和公式S n =a 1(1-q n )1-q中q ≠1的条件,本题中q =1恰好符合题目条件.解析 ①当q =1时,S 3+S 6=9a 1,S 9=9a 1, ∴S 3+S 6=S 9成立.②当q ≠1时,由S 3+S 6=S 9, 得a 1(1-q 3)1-q +a 1(1-q 6)1-q =a 1(1-q 9)1-q .∴q 9-q 6-q 3+1=0,即(q 3-1)(q 6-1)=0. ∵q ≠1,∴q 3-1≠0,∴q 6=1,∴q =-1. 答案 1或-1易错点3 数列最值问题忽略n 的限制例3 已知数列{a n }的通项公式为a n =(n +2)(910)n (n ∈N *),则数列{a n }的最大项是( )A .第6项或第7项B .第7项或第8项C .第8项或第9项D .第7项错因分析 求解数列{a n }的前n 项和S n 的最值,无论是利用S n 还是利用a n 来求,都要注意n 的取值的限制,因为数列中可能出现零项,所以在利用不等式(组)求解时,不能漏掉不等式(组)中的等号,避免造成无解或漏解的失误.解析 因为a n +1-a n =(n +3)(910)n +1-(n +2)(910)n =(910)n ·7-n 10,当n <7时,a n +1-a n >0,即a n +1>a n ;当n =7时,a n +1-a n =0,即a n +1=a n ;当n >7时,a n +1-a n <0,即a n +1<a n .故a 1<a 2<…<a 7=a 8>a 9>a 10…,所以此数列的最大项是第7项或第8项,故选B. 答案 B易错点4 裂项法求和搞错剩余项例4 在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =1a n a n +1,则数列{b n }的前n 项和为( ) A.n2B.n n +1C.2n n +1D.4n n +1错因分析 裂项相消后搞错剩余项,导致求和错误:一般情况下剩余的项是对称的,即前面剩余的项和后面剩余的项是对应的.解析 由已知得a n =1n +1+2n +1+…+n n +1=1n +1(1+2+…+n )=n2,从而b n =1a n a n +1=1n 2·n +12=4(1n -1n +1),所以数列{b n }的前n 项和为S n =4[(1-12)+(12-13)+(13-14) +…+(1n -1n +1)]=4(1-1n +1)=4n n +1.故选D. 答案 D易错点5 解不等式时变形不同解例5 解不等式3x -5x 2+2x -3≥2.错因分析 本题易出现的问题有两个方面:一是错用不等式的性质直接把不等式化为3x -5≥2(x 2+2x -3)求解;二是同解变形过程中忽视分母不为零的限制条件,导致增解. 解 原不等式可化为3x -5x 2+2x -3-2≥0,即-2x 2-x +1x 2+2x -3≥0. 整理得(2x -1)(x +1)(x -1)(x +3)≤0,不等式等价于⎩⎪⎨⎪⎧(2x -1)(x +1)(x -1)(x +3)≤0,(x -1)(x +3)≠0,解得-3<x ≤-1或12≤x <1.所以原不等式的解集为{x |-3<x ≤-1或12≤x <1}.易错点6 忽视基本不等式中等号成立条件例6 函数y =x +1x -1(x ≠1)的值域是______________________________________.错因分析 本题易出现的错误有两个方面:一是不会“凑”,不能根据函数解析式的特征适当变形凑出两式之积为定值;二是利用基本不等式求最值时,忽视式子的取值范围,直接套用基本不等式求最值.如本题易出现:由y =x +1x -1=x -1+1x -1+1≥2(x -1)·1x -1+1=3,得出y ∈[3,+∞)这一错误结果. 解析 当x >1时,y =x +1x -1=x -1+1x -1+1 ≥2(x -1)·1x -1+1=3,当且仅当x -1=1x -1,即x =2时等号成立;当x <1时,-y =-x +11-x =1-x +11-x -1≥2(1-x )·11-x -1=1,即y ≤-1,当且仅当1-x =11-x,即x =0时等号成立.所以原函数的值域为(-∞,-1]∪[3,+∞). 答案 (-∞,-1]∪[3,+∞)1.(2015·重庆)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .62.(2015·武汉适应性训练)已知正项等差数列{a n }的前20项和为100,那么a 6·a 15的最大值是( ) A .25 B .50 C .100D .不存在3.已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,若存在常数u ,v 对任意正整数n 都有a n =3log u b n +v ,则u +v 等于( ) A .3 B .6 C .9D .124.(2015·江南十校联考(二))已知数列{a n }的通项公式为a n =log 3nn +1(n ∈N *),设其前n 项和为S n ,则使S n <-4成立的最小自然数n 为( ) A .83 B .82 C .81 D .805.(2015·湖南)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x -y 的最小值为( )A .-7B .-1C .1D .26.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,…循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为( ) A .195 B .197 C .392D .3967.(2015·福建六校联考)设x ,y ∈R ,且xy ≠0,则(x 2+1y 2)(1x 2+4y 2)的最小值为______.8.已知函数f (x )=⎩⎪⎨⎪⎧(4-a 2)x +4(x ≤6),a x -5(x >6)(a >0,a ≠1).数列{a n }满足a n =f (n )(n ∈N *),且{a n }是单调递增数列,则实数a 的取值范围是________.9.(2015·忻州联考)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________.10.已知函数f (x )=x 2ax +b (a ,b 为常数)且方程f (x )-x +12=0有两实根x 1=3,x 2=4.(1)求函数f (x )的解析式;(2)设k >1,解关于x 的不等式f (x )≤(k +1)x -k2-x .11.等比数列{a n}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+a n>1a1+1a2+…+1a n成立的正整数n的取值范围.学生用书答案精析4.数列、不等式要点回扣[问题1] ⎩⎪⎨⎪⎧2, n =12n -1, n ≥2[问题2] A[问题3] (1)512 (2)10 [问题4] 92[问题5] ⎝⎛⎭⎫23,1 [问题6] 充分不必要 [问题7] 9 [问题8] 22查缺补漏1.B [由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.]2.A [由题意知S 20=a 1+a 202×20=100⇒a 1+a 202=5,故a 6+a 15=a 1+a 20=10,又{a n }为正项数列,所以,a 6>0,a 15>0,所以a 6·a 15≤(a 6+a 152)2=25.]3.B [设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则⎩⎪⎨⎪⎧3+d =q ,3(3+4d )=q 2,解得d=6,q =9,所以a n =6n -3,b n =9n -1,6n -3=3n log u 9+v -3log u 9对任意正整数n 恒成立,所以⎩⎪⎨⎪⎧log u 9=2,v -3log u 9=-3,解得u =v =3,故u +v =6.]4.C [∵a n =log 3n n +1=log 3n -log 3(n +1),∴S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4,解得n >34-1=80.故最小自然数n 的值为81.]5.A[不等式组⎩⎨⎧x +y ≥-1,2x -y ≤1,y ≤1表示的平面区域如图,平移直线y =3x-z ,过M (-2,1)时,z min =3×(-2)-1=-7.故选A.]6.C [将三个括号作为一组,则由50=16×3+2,知第50个括号应为第17组的第二个括号,即第50个括号中应是两个数.又因为每组中含有6个数,所以第48个括号的最末一个数为数列{2n -1}的第16×6=96项,第50个括号的第一个数应为数列{2n -1}的第98项,即为2×98-1=195,第二个数为2×99-1=197,故第50个括号内各数之和为195+197=392.故选C .] 7.9解析 (x 2+1y 2)(1x 2+4y 2)=1+4+4x 2y 2+1x 2y 2≥1+4+24x 2y 2·1x 2y 2=9,当且仅当4x 2y 2=1x 2y2即|xy |=22时等号成立. 8.(4,8)解析 ∵{a n }是单调递增数列,∴⎩⎨⎧4-a2>0,a >1,(4-a 2)×6+4<a 2,⎩⎪⎨⎪⎧a <8,a >1,a <-7或a >4,∴4<a <8.9.[3,+∞)解析 作出不等式组表示的平面区域如图中阴影部分.直线y =kx -1显然经过定点M (0,-1),由图形直接观察知,当直线y =kx -1经过直线y =x +1和直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3, 因此k ≥3.10.解 (1)将x 1=3,x 2=4分别代入方程x 2ax +b-x +12=0, 得⎩⎪⎨⎪⎧ 93a +b =-9,164a +b =-8⇒⎩⎪⎨⎪⎧a =-1,b =2,所以f (x )=x 22-x (x ≠2). (2)不等式即为x 22-x ≤(k +1)x -k 2-x ,可化为x 2-(k +1)x +k 2-x ≤0, 即⎩⎪⎨⎪⎧(x -2)(x -1)(x -k )≥0,x -2≠0.①当1<k <2时,解集为x ∈[1,k ]∪(2,+∞); ②当k =2时,解集为x ∈[1,2)∪(2,+∞);③当k >2时,解集为x ∈[1,2)∪[k ,+∞).11.解 由题意,得(a 1q 16)2=a 1q 23,所以a 1q 9=1.又因为数列{1a n }是以1a 1为首项,以1q为公比的等比数列,要使不等式成立, 则需a 1(q n -1)q -1>1a 1[1-(1q )n ]1-1q ,把a 21=q -18代入上式并整理,得q -18(q n -1)> q (1-1q n ),即q -18(q n -1)>q ·q n -1q n ,所以q n >q 19.因为q >1, 所以n >19.故所求正整数n 的取值范围是n ≥20,n ∈N *.。
【模板特征概述】数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.本节以著名数学家波利亚的《怎样解题》为理论依据,结合具体的题目类型,来谈一谈解答数学解答题的一般思维过程、解题程序和答题格式,即所谓的“答题模板”.“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.典例1 (12分)(2015·天津)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 审题路线图 利用和角公式展开→降幂整理→用辅助角公式化f (x )为y =A sin (ωx +φ)+k 的形式→利用T =2π|ω|求周期→利用单调性或数形结合求最值评分细则 第(1)问得分点:1 无化简过程,直接得到f (x )=12sin(2x -π6),扣5分2 化简结果错误,中间某一步正确,给2分 第(2)问得分点:1 只求f (-π3),f (π4)得出最值,给1分2 若单调性出错,给1分3 单调性正确,计算错误,扣2分4 求出2x -π6范围,利用数形结合求最值,同样得分.跟踪演练1 (2014·福建)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.典例2 (14分)(2014·山东)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.审题路线图 (1)利用同角公式、诱导公式→求得sin A 、sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =12ac sin B方法二用和角正弦公式求sin C →S =12ab sin C评分细则 第(1)问得分点1.没求sin A 而直接求出sin B 的值,不扣分. 2.写出正弦定理,但b 计算错误,得1分. 第(2)问得分点1.写出余弦定理,但c 计算错误,得1分. 2.求出c 的两个值,但没舍去,扣2分. 3.面积公式正确,但计算错误,只给1分. 4.若求出sin C ,利用S =12ab sin C 计算,同样得分.跟踪演练2 (2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.典例3(12分)(2014·浙江)已知数列{a n}和{b n}满足a1a2a3…a n=(2) (n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n;(2)设c n=1a n-1b n(n∈N *).记数列{cn}的前n项和为S n.①求S n;②求正整数k,使得对任意n∈N*,均有S k≥S n.审题路线图a n,b n关系、特殊项→基本量法求a n→代入a n,b n关系求b n→求a n →分组求和求S n→利用数列的单调性、最值确定k评分细则(1)求出a3=8得2分,给出b2,b3的关系得1分;(2)求出q给1分,但q=-2不舍去不得分;(3)裂项得1分,每个求和写出正确结果得1分;(4)验算前4项给2分;(5)验算法给出最后结果得3分.跟踪演练3(2014·山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.典例4 (12分)(2014·山东)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点. (1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.审题路线图 (1)M 是AB 中点,四边形ABCD 是等腰梯形――→AB =2CDCD ∥AM CD =AM ⇒▱AMC 1D 1→C 1M ∥平面A 1ADD 1 (2)CA ,CB ,CD 1两两垂直→建立空间直角坐标系,写各点坐标→求平面ABCD 的法向量→将所求两个平面所成的角转化为两个向量的夹角A 1B 1C 1D 1中,CD =C 1D 1,可得C 1D 1∥D 为平行四边形,3分且CD=AM,AMCD为平行四边形,MC,评分细则(1)得出C1D1∥AM给1分,得出C1D1=MA给1分;(2)线面平行条件不完整扣1分;(3)建系得1分;(4)写正确向量坐标给2分;(5)求出平面C1D1M的一个法向量给2分.跟踪演练4(2015·四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥平面BDH;(3)求二面角AEGM的余弦值.典例5 (12分)甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是23.(1)求甲、乙至少有一人闯关成功的概率;(2)设甲答对题目的个数为ξ,求ξ的分布列及均值. 审题路线图 (1)标记事件→对事件分解→计算概率 (2)确定ξ取值→计算概率→得分布列→求均值评分细则(1)P(A),P(B)计算正确每个给2分;(2)对甲、乙至少有一人闯关成功事件分解、计算正确的参照给分;(3)P(ξ=1),P(ξ=2)计算正确每个给1分,列表给1分.跟踪演练5(2015·安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).典例6 (12分)(2014·课标全国Ⅰ)已知点A (0,-2),椭圆E :x a 2+y b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 审题路线图 待定系数法求E 的方程→设l 方程→联立l 、E 方程→求|PQ |→求S △OPQ→求S△OPQ的最值评分细则(1)列出关于c的方程,结果算错给1分;(2)求出a=2,给2分,得E的方程给1分;(3)没有考虑斜率不存在的情况扣1分; (4)求|PQ |时结果正确没有过程扣1分; (5)没有验证Δ>0扣1分.跟踪演练6 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.典例7 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程(2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0扣1分; (3)没有假设存在点M 不扣分;(4)MA →·MB →没有化简至最后结果,直接下结论扣1分.跟踪演练7 (2014·湖南)如图,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P (233,1),且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形. (1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB →|?证明你的结论.典例8 (12分)(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )符号→证明结论(2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――→结合(1)知f (x )min =f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1f (-1)-f (0)≤e -1→⎩⎪⎨⎪⎧e m-m ≤e -1e -m+m ≤e -1→构造函数g (t )=e t -t -e +1→研究g (t )单调性→寻求⎩⎨⎧g (m )≤0g (-m )≤0的条件→对m 讨论得适合条件的范围评分细则(1)讨论时漏掉m=0扣1分;(2)确定f′(x)符号时只有结论无中间过程扣1分;(3)写出f(x)在x=0处取得最小值给1分;(4)无最后结论扣1分;(5)其他方法构造函数同样给分.跟踪演练8设函数f(x)=a2ln x-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.学生用书答案精析第三篇 建模板,看细则,突破高考拿高分跟踪演练1 解 (1)因为0<α<π2,sin α=22,所以cos α=22. 所以f (α)=22×(22+22)-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin(2x +π4), 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为[k π-3π8,k π+π8],k ∈Z . 跟踪演练2 解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C .所以-cos 2B =sin 2C . 又由A =π4,即B +C =34π,得-cos 2B =sin 2C =2sin C cos C =sin 2C , 解得tan C =2.(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,又因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C ,所以sin B =31010, 由正弦定理得c =223b , 又因为A =π4,12bc sin A =3, 所以bc =62,故b =3.跟踪演练3 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1). 当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n 2n +1. 当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1. 所以T n =⎩⎪⎨⎪⎧ 2n +22n +1,n 为奇数,2n 2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)跟踪演练4 (1)解 点F ,G ,H 的位置如图所示.(2)证明 连接BD ,设O 为BD 的中点,因为M ,N 分别是BC ,GH 的中点,所以OM ∥CD ,且OM =12CD ,HN ∥CD ,且HN =12CD , 所以OM ∥HN ,OM =HN ,所以四边形MNHO 是平行四边形,从而MN ∥OH ,又MN ⊄平面BDH ,OH ⊂平面BDH ,所以MN ∥平面BDH .(3)解 方法一 连接AC ,过M 作MP ⊥AC 于P ,在正方体ABCD-EFGH 中,AC ∥EG ,所以MP ⊥EG ,过P 作PK ⊥EG 于K ,连接KM ,所以EG ⊥平面PKM ,从而KM ⊥EG ,所以∠PKM 是二面角AEGM 的平面角,设AD =2,则CM =1,PK =2,在Rt △CMP 中,PM =CM sin 45°=22, 在Rt △PKM 中,KM =PK 2+PM 2=322,所以cos ∠PKM =PK KM =223, 即二面角AEGM 的余弦值为223.方法二 如图,以D 为坐标原点,分别以DA →,DC →,DH →方向为x ,y ,z轴的正方向,建立空间直角坐标系D-xyz ,设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0),所以GE →=(2,-2,0),MG →=(-1,0,2),设平面EGM 的一个法向量为n 1=(x ,y ,z ),由⎩⎪⎨⎪⎧ n 1·GE →=0,n 1·MG →=0,⎩⎪⎨⎪⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1), 在正方体ABCD-EFGH 中,DO ⊥平面AEGC ,则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0), 所以n 1,n 2=n 1·n 2|n 1|·|n 2|=2+2+04+4+1·1+1+0=223, 故二面角AEGM 的余弦值为223. 跟踪演练5 解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A .P (A )=A 12A 13A 25=310. (2)X 的可能取值为200,300,400.P (X =200)=A 22A 25=110, P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610. 故X 的分布列为E (X )=200×110+300×310+400×610=350. 跟踪演练6 解 (1)由已知有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22,解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c . 因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |= (c +c )2+⎝⎛⎭⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =y x +1,即y =t (x +1)(x ≠-1),与椭圆方程联立. ⎩⎪⎨⎪⎧ y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t = 6-2x 23(x +1)2>2,解得-32<x <-1,或-1<x <0. 设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23. ①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m = 2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 跟踪演练7 解 (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2.从而a 1=1,c 2=1.因为点P (233,1)在双曲线x 2-y 2b 21=1上, 所以(233)2-1b 21=1.故b 21=3. 由椭圆的定义知2a 2= (233)2+(1-1)2+(233)2+(1+1)2=2 3. 于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1. (2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点, 所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以|OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当x =-2时,同理可知,|OA →+OB →|≠|AB →|.②若直线l 不垂直于x 轴,设l 的方程为y =kx +m . 由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km 3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3. 由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)·(m 2-3)=0. 化简,得2k 2=m 2-3,因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0, 于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →, 即|OA →+OB →|2≠|OA →-OB →|2,故|OA →+OB →|≠|AB →|.综合①②可知,不存在符合题设条件的直线. 跟踪演练8 解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x. 由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得f (1)=a -1≥e -1,即a ≥e.由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 只要⎩⎪⎨⎪⎧ f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2,解得a =e.。
第1讲直线与圆1.(2015·安徽)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12 B.2或-12 C.-2或-12 D.2或122.(2015·湖南)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O 为坐标原点),则r=________.3.(2015·重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为________________________________________________________________________.4.(2014·课标全国Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以选择题、填空题的形式出现.热点一直线的方程及应用1.两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.求直线方程要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2. 例1 (1)已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或2(2)已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( )A .0或-12 B.12或-6 C .-12或12 D .0或12思维升华 (1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;(2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.跟踪演练1 过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为______________________________. 热点二 圆的方程及应用1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2.2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以(-D 2,-E 2)为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( )A .(x -2)2+(y ±2)2=3B .(x -2)2+(y ±3)2=3C .(x -2)2+(y ±2)2=4D .(x -2)2+(y ±3)2=4(2)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的方程为( )A .(x -1)2+y 2=4B .(x +1)2+y 2=4C .x 2+(y -1)2=4D .x 2+(y +1)2=4思维升华 解决与圆有关的问题一般有两种方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2015·赣州九校联考)经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上的圆的方程为__________________________.(2)(2015·河北衡水中学三模)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1013B .921C .1023D .911热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法.(1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d <r ⇔直线与圆相交,d =r ⇔直线与圆相切,d >r ⇔直线与圆相离.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,方程组⎩⎪⎨⎪⎧Ax +By +C =0,(x -a )2+(y -b )2=r 2消去y ,得关于x 的一元二次方程根的判别式Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.设圆C 1:(x -a 1)2+(y -b 1)2=r 21,圆C 2:(x -a 2)2+(y-b 2)2=r 22,两圆心之间的距离为d ,则圆与圆的五种位置关系的判断方法如下:(1)d>r1+r2⇔两圆外离;(2)d=r1+r2⇔两圆外切;(3)|r1-r2|<d<r1+r2⇔两圆相交;(4)d=|r1-r2|(r1≠r2)⇔两圆内切;(5)0≤d<|r1-r2|(r1≠r2)⇔两圆内含.例3(1)已知直线2x+(y-3)m-4=0(m∈R)恒过定点P,若点P平分圆x2+y2-2x-4y-4=0的弦MN,则弦MN所在直线的方程是()A.x+y-5=0 B.x+y-3=0C.x-y-1=0 D.x-y+1=0(2)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,P A,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形P ACB的最小面积是2,则k的值为()A.3 B.21 2C.2 2 D.2思维升华(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.跟踪演练3(1)已知在平面直角坐标系xOy中,圆C的方程为x2+y2=-2y+3,直线l过点(1,0)且与直线x-y+1=0垂直.若直线l与圆C交于A、B两点,则△OAB的面积为() A.1 B. 2C.2 D.2 2(2)两个圆C1:x2+y2+2ax+a2-4=0(a∈R)与C2:x2+y2-2by-1+b2=0(b∈R)恰有三条公切线,则a+b的最小值为()A.-6 B.-3 C.-3 2 D.31.已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长比为1∶2,则圆C的方程为()A.(x±33)2+y2=43B.(x±33)2+y2=13C.x2+(y±33)2=43D.x2+(y±33)2=132.已知点A(-2,0),B(0,2),若点C是圆x2-2ax+y2+a2-1=0上的动点,△ABC面积的最小值为3-2,则a的值为()A.1 B.-5 C.1或-5 D.53.若圆x2+y2=4与圆x2+y2+ax+2ay-9=0(a>0)相交,公共弦的长为22,则a=________.提醒:完成作业专题六第1讲二轮专题强化练专题六第1讲直线与圆A组专题通关1.直线l过点(-1,2)且与直线2x-3y-1=0垂直,则l的方程是()A.3x+2y-1=0 B.3x+2y+7=0C.2x-3y+5=0 D.2x-3y+8=02.若直线y=kx+2k与圆x2+y2+mx+4=0至少有一个交点,则m的取值范围是() A.[0,+∞) B.[4,+∞)C.(4,+∞) D.[2,4]3.过P(2,0)的直线l被圆(x-2)2+(y-3)2=9截得的线段长为2时,直线l的斜率为()A.±24B.±22C.±1 D.±334.(2015·肇庆二模)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y +3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x+1)2+y2=8C.(x-1)2+y2=2D.(x-1)2+y2=85.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.52-4 B.17-1C.6-2 2 D.176.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是______.7.(2014·湖北)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=____.8.(2015·湖北)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.(1)圆C 的标准方程为_____________________________________.(2)圆C 在点B 处的切线在x 轴上的截距为________.9.已知点A (3,3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.10.(2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |.B 组 能力提高11.圆心在曲线y =2x(x >0)上,与直线2x +y +1=0相切,则面积最小的圆的方程为( ) A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=512.已知圆面C :(x -a )2+y 2≤a 2-1的面积为S ,平面区域D :2x +y ≤4与圆面C 的公共区域的面积大于12S ,则实数a 的取值范围是( ) A .(-∞,2)B .(-∞,0)∪(0,+∞)C .(-1,1)D .(-∞,-1)∪(1,2)13.(2015·辽宁师范大学附中期中)若圆x 2+y 2-4x -4y -10=0上恰有三个不同的点到直线l :y =kx 的距离为22,则k =________.14.已知以点C (t ,2t)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程.学生用书答案精析专题六 解析几何第1讲 直线与圆高考真题体验1.D [∵圆方程可化为(x -1)2+(y -1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x +4y =b 与该圆相切,∴|3×1+4×1-b |32+42=1, 解得b =2或b =12,故选D.]2.2解析 如图,过O 点作OD ⊥AB 于D 点,在Rt △DOB 中,∠DOB =60°,∴∠DBO =30°,又|OD |=|3×0-4×0+5|5=1, ∴r =2|OD |=2.3.x +2y -5=0解析 点P (1,2)在以坐标原点为圆心的圆上,则圆的方程为x 2+y 2=5,设所求直线为y -2=k (x -1),即kx -y -k +2=0,圆心到直线的距离d =|-k +2|k 2+1=5,解得k =-12,∴直线为-12x -y +52=0,即x +2y -5=0. 4.[-1,1]解析 如图,过点M 作⊙O 的切线, 切点为N ,连接ON .M 点的纵坐标为1,MN 与⊙O 相切于点N .设∠OMN =θ,则θ≥45°,即sin θ≥22, 即ON OM ≥22. 而ON =1,∴OM ≤ 2.∵M 为(x 0,1),∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1,∴x 0的取值范围为[-1,1].热点分类突破例1 (1)C (2)B解析 (1)当k =4时,直线l 1的斜率不存在,直线l 2的斜率存在,则两直线不平行;当k ≠4时,两直线平行的一个必要条件是3-k 4-k =k -3,解得k =3或k =5.但必须满足1k -4≠32(截距不相等)才是充要条件,经检验知满足这个条件.(2)依题意,得|3m +5|m 2+1=|-m +7|m 2+1. 所以|3m +5|=|m -7|.所以(3m +5)2=(m -7)2,所以8m 2+44m -24=0.所以2m 2+11m -6=0.所以m =12或m =-6. 跟踪演练1 x +4y -4=0解析 过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别中(0,103),(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0.由①解得x A =73k -1,由②解得x B =7k +2.因为点M 平分线段AB ,所以x A +x B =2x M ,即73k -1+7k +2=0,解得k =-14.故所求的直线方程为y =-14x +1,即x +4y -4=0.例2 (1)D (2)B解析 (1)因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(2-1)2+b 2=4,b 2=3,b =±3,所以选D.(2)由已知,可设圆M 的圆心坐标为(a,0),a >-2,半径为r ,得⎩⎪⎨⎪⎧(a +2)2+(3)2=r 2,|2a -4|4+5=r ,解得满足条件的一组解为⎩⎪⎨⎪⎧a =-1,r =2,所以圆M 的方程为(x +1)2+y 2=4.故选B. 跟踪演练2 (1)(x -2)2+(y -1)2=10 (2)C 解析 (1)由题意知K AB =2,AB 的中点为(4,0), 设圆心为C (a ,b ),∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.则⎩⎨⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1∴C (2,1),∴r =|CA |=(5-2)2+(2-1)2=10.∴所求圆的方程为(x -2)2+(y -1)2=10.(2)易知最长弦的长为10,PC =2,则最短弦的长为225-2=223,故所求四边形的面积为12×10×223=1023,选C. 例3 (1)A (2)D解析 (1)对于直线方程2x +(y -3)m -4=0(m ∈R ),取y =3,则必有x =2,所以该直线恒过定点P (2,3).设圆心是C ,则易知C (1,2), 所以k CP =3-22-1=1, 由垂径定理知CP ⊥MN ,所以k MN =-1. 又弦MN 过点P (2,3), 故弦MN 所在直线的方程为 y -3=-(x -2), 即x +y -5=0.(2)如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为(0,1),半径为r =1,四边形P ACB 的面积S =2S △PBC ,所以若四边形P ACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ·|PB |,即|PB |的最小值为2,此时|PC |最小,|PC |为圆心到直线kx +y +4=0的距离d ,此时 d =|5|k 2+1=12+22=5,即k 2=4,因为k >0,所以k =2.跟踪演练3 (1)A (2)C解析 (1)因为圆C 的标准方程为x 2+(y +1)2=4,圆心为C (0,-1),半径r =2,直线l 的斜率为-1,其方程为x +y -1=0.圆心C 到直线l 的距离d =|0-1-1|2=2,弦长|AB |=2r 2-d 2=24-2=22,又坐标原点O 到线段AB 的距离为12, 所以S △OAB =12×22×12=1,故选A.(2)两个圆恰有三条公切线,则两圆外切,两圆的标准方程分别为圆C 1:(x +a )2+y 2=4, 圆C 2:x 2+(y -b )2=1, 所以|C 1C 2|=a 2+b 2=2+1=3,即a 2+b 2=9.由(a +b 2)2≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时取“=”.所以选C. 高考押题精练1.C [由已知得圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π.设圆心坐标为(0,a ),半径为r , 则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33, 故圆C 的方程为x 2+(y ±33)2=43.故应选C.]2.C [圆的标准方程为(x -a )2+y 2=1,圆心M (a,0)到直线AB :x -y +2=0的距离为d =|a +2|2,圆上的点到直线AB 的最短距离为d -1=|a +2|2-1,(S △ABC )min =12×22×|a +2|-22=3-2,解得a =1或-5.] 3.102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a 2=5a(a >0). 故222-(5a)2=22, 解得a 2=52,因为a >0,所以a =102.二轮专题强化练答案精析专题六 解析几何第1讲 直线与圆1.A [方法一 由题意可得l 的斜率为-32,所以直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.方法二 设直线l 的方程为3x +2y +C =0,将点(-1,2)代入,得C =-1, 所以l 的方程是3x +2y -1=0.]2.C [由y =k (x +2)得直线恒过定点(-2,0),因此可得点(-2,0)必在圆内或圆上,故有(-2)2+02-2m +4≤0⇒m ≥4.又由方程表示圆的条件,故有m 2-4×4>0⇒m <-4或m >4.综上可知m >4.故选C.]3.A [由题意得直线l 的斜率存在,设为k ,则直线l 的方程为y =k (x -2),即kx -y -2k =0.由点到直线的距离公式得,圆心到直线l 的距离d =|2k -3-2k |k 2+1=3k 2+1,由圆的性质可得d 2+12=r 2, 即(3k 2+1)2+12=9, 解得k 2=18,即k =±24.]4.A [依题意得圆心坐标为(-1,0),由圆C 与直线x +y +3=0相切得r =|-1+0+3|1+1=2,故圆C 的方程为(x +1)2+y 2=2.]5.A [两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(|PC 1|+|PC 2|)min =|C 1′C 2|=52,所以(|PM |+|PN |)min =52-(1+3)=52-4.] 6.相交解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b2<1,所以直线与圆O 相交.7.2解析 依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点, 则∠AOB =90°.如图,此时a =1,b =-1, 满足题意, 所以a 2+b 2=2.8.(1)(x -1)2+(y -2)2=2 (2)-2-1解析 (1)由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝⎛⎭⎫|AB |22+12=2,解得r = 2.所以圆C 的方程为(x -1)2+(y -2)2=2. (2)方法一 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1. 方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x 轴上的截距为-2-1.9.解 解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).①若点A ,B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为 y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点(4,52),由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为 x +2y -5=0或x -6y +11=0.10.解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.11.D [设圆心坐标为C (a ,2a )(a >0),则半径r =2a +2a +15≥22a ×2a+15=5, 当且仅当2a =2a,即a =1时取等号.所以当a =1时圆的半径最小,此时r =5,C (1,2),所以面积最小的圆的方程为(x -1)2+(y -2)2=5,故选D.]12.D [依题意并结合图形分析可知(图略),圆面C :(x -a )2+y 2≤a 2-1的圆心(a,0)应在不等式2x +y ≤4表示的平面区域内,且(a,0)不在直线2x +y =4上,即有⎩⎪⎨⎪⎧a 2-1>0,2a +0<4,由此解得a <-1或1<a <2.因此,实数a 的取值范围是(-∞,-1)∪(1,2).] 13.2±3解析 x 2+y 2-4x -4y -10=0, 即(x -2)2+(y -2)2=18, 其圆心为C (2,2),半径为r =3 2.圆x 2+y 2-4x -4y -10=0上恰有三个不同的点到直线l :y =kx 的距离为22,应满足图中A ,B ,D 到直线l :y =kx 的距离为22,所以,C (2,2)到直线l :y =kx 的距离为32-|2k -2|1+k2=22,整理得k 2-4k +1=0,解得k =2±3.14.(1)证明 由题意知圆C 过原点O , 且|OC |2=t 2+4t2.则圆C 的方程为(x -t )2+(y -2t )2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t .故S △OAB =12|OA |×|OB |=12×|2t |×|4t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12,∴直线OC 的方程为y =12x ,∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时圆心C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点;当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交,∴t =-2不符合题意,应舍去. 综上,圆C 的方程为(x -2)2+(y -1)2=5.。
3.三角函数、解三角形、平面向量1.α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=yx (x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.[问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 2.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限[问题2] cos9π4+tan ⎝⎛⎭⎫-7π6+sin 21π的值为_______________________________. 3.三角函数的图象与性质 (1)五点法作图;(2)对称轴:y =sin x ,x =k π+π2,k ∈Z ;y =cos x ,x =k π,k ∈Z ;对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,⎝⎛⎭⎫k π+π2,0,k ∈Z ;y =tan x ,⎝⎛⎭⎫k π2,0,k ∈Z . (3)单调区间:y =sin x 的增区间:⎣⎡⎦⎤-π2+2k π,π2+2k π (k ∈Z ), 减区间:⎣⎡⎦⎤π2+2k π,3π2+2k π (k ∈Z ); y =cos x 的增区间:[]-π+2k π,2k π (k ∈Z ),减区间:[2k π,π+2k π] (k ∈Z );y =tan x 的增区间:⎝⎛⎭⎫-π2+k π,π2+k π (k ∈Z ). (4)周期性与奇偶性:y =sin x 的最小正周期为2π,为奇函数;y =cos x 的最小正周期为2π,为偶函数;y =tan x 的最小正周期为π,为奇函数.易错警示:求y =A sin(ωx +φ)的单调区间时,容易出现以下错误: (1)不注意ω的符号,把单调性弄反,或把区间左右的值弄反; (2)忘掉写+2k π,或+k π等,忘掉写k ∈Z ;(3)书写单调区间时,错把弧度和角度混在一起.如[0,90°]应写为⎣⎡⎦⎤0,π2. [问题3] 函数y =sin ⎝⎛⎭⎫-2x +π3的递减区间是________________. 4.两角和与差的正弦、余弦、正切公式及倍角公式 sin(α±β)=sin αcos β±cos αsin β――→令α=βsin 2α=2sin αcos α.cos(α±β)=cos αcos β∓sin αsin β――→令α=βcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan(α±β)=tan α±tan β1∓tan αtan β.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,tan 2α=2tan α1-tan 2α.在三角的恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β), α=12[(α+β)+(α-β)].α+π4=(α+β)-⎝⎛⎭⎫β-π4,α=⎝⎛⎭⎫α+π4-π4. [问题4] 已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 5.解三角形(1)正弦定理:a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).注意:①正弦定理的一些变式:(ⅰ)a ∶b ∶c =sin A ∶sin B ∶sin C ;(ⅱ)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(ⅲ)a =2R sin A ,b =2R sin B ,c =2R sin C ;②已知三角形两边及一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解,要结合具体情况进行取舍.在△ABC 中A >B ⇔sin A >sin B .(2)余弦定理:a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc等,常选用余弦定理判定三角形的形状.[问题5] 在△ABC 中,a =3,b =2,A =60°,则B =________. 6.向量的平行与垂直设a =(x 1,y 1),b =(x 2,y 2),且b ≠0,则a ∥b ⇔b =λa ⇔x 1y 2-x 2y 1=0. a ⊥b (a ≠0)⇔a·b =0⇔x 1x 2+y 1y 2=0.0看成与任意向量平行,特别在书写时要注意,否则有质的不同.[问题6] 下列四个命题:①若|a |=0,则a =0;②若|a |=|b |,则a =b 或a =-b ;③若a ∥b ,则|a |=|b |;④若a =0,则-a =0.其中正确命题是________. 7.向量的数量积 |a |2=a 2=a·a ,a·b =|a||b |cos θ=x 1x 2+y 1y 2, cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22,a 在b 上的投影=|a |cos 〈a ,b 〉=a·b |b|=x 1x 2+y 1y 2x 22+y 22. 注意:〈a ,b 〉为锐角⇔a·b >0且a 、b 不同向; 〈a ,b 〉为直角⇔a·b =0且a 、b ≠0; 〈a ,b 〉为钝角⇔a·b <0且a 、b 不反向.易错警示:投影不是“影”,投影是一个实数,可以是正数、负数或零.[问题7] 已知|a |=3,|b |=5,且a ·b =12,则向量a 在向量b 上的投影为________. 8.当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,消去律不成立;(a ·b )c 与a (b ·c )不一定相等,(a ·b )c 与c 平行,而a (b ·c )与a 平行.[问题8] 下列各命题:①若a ·b =0,则a 、b 中至少有一个为0;②若a ≠0,a ·b =a ·c ,则b =c ;③对任意向量a 、b 、c ,有(a ·b )c ≠a (b ·c );④对任一向量a ,有a 2=|a |2.其中正确命题是________.9.几个向量常用结论(1)P A →+PB →+PC →=0⇔P 为△ABC 的重心; (2)P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心;(3)向量λ(AB →|AB →|+AC→|AC →|) (λ≠0)所在直线过△ABC 的内心;(4)|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.易错点1 忽视角的范围例1 已知sin α=55,sin β=1010,且α,β为锐角,则α+β=________. 错因分析 只考虑α,β为锐角. 没有注意到 sin α=55,sin β=1010本身对角的范围的限制,造成错解. 解析 因为α,β为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010=22. 又因为0<α+β<π,所以α+β=π4.答案 π4易错点2 图象平移把握不准例2 已知函数f (x )=sin(2x +π4),为了得到函数g (x )=cos 2x 的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度错因分析 ①没有将f (x ),g (x )化为同名函数;②平移时看2x 变成了什么,而没有认识到平移过程只是对“x ”而言.解析 g (x )=sin(2x +π2)=sin[2(x +π8)+π4],∴y =f (x )的图象向左平移π8个单位长度即可得到y =g (x )的图象.答案 A易错点3 三角函数单调性判断错误例3 求函数y =12sin(π4-2x3)的单调区间.错因分析 由于受思维定势的影响,本题容易出现仍然按照函数y =A sin(ωx +φ)(ω>0)的单调区间的判断方法进行,如认为当x 满足2k π-π2≤π4-23x ≤2k π+π2(k ∈Z )时函数单调递增,就会求错函数的单调区间.解 原函数变形为y =-12sin(2x 3-π4),令u =2x 3-π4,则只需求y =sin u 的单调区间即可,所以y =sin u 在2k π-π2≤2x 3-π4≤2k π+π2(k ∈Z ),即3k π-3π8≤x ≤3k π+9π8(k ∈Z )上单调递增;y=sin u 在2k π+π2≤u =2x 3-π4≤2k π+3π2(k ∈Z ),即3k π+9π8≤x ≤3k π+218π(k ∈Z )上单调递减.故y =12sin(π4-2x 3)=-sin u 的单调递减区间为[3k π-3π8,3k π+9π8](k ∈Z ),单调递增区间为[3k π+9π8,3k π+21π8](k ∈Z ). 易错点4 解三角形忽视检验例4 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c = 3. (1)若角C =π3,则角A =________;(2)若角A =π6,则b =________.错因分析 在用正弦定理解三角形时,易出现漏解或多解的错误,如第(1)问中没有考虑c 边比a 边大,在求得sin A =a sin C c =12后,得出角A =π6或5π6;在第(2)问中没有考虑角C 有两解,由sin C =c sin A a =32,只得出角C =π3,所以角B =π2,解得b =2,这样就出现漏解的错误.解析 (1)由正弦定理a sin A =csin C,得sin A =a sin C c =12,又a <c ,所以A <C .所以A =π6.(2)由a sin A =c sin C, 得sin C =c sin A a =32,得C =π3或2π3,当C =π3时,B =π2,可得b =2;当C =2π3时,B =π6,此时得b =1.答案 (1)π6(2)2或1易错点5 忽视向量共线致误例5 已知a =(2,1),b =(λ,1),λ∈R ,a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是________________________________________________________________________. 错因分析 误认为θ为锐角⇔cos θ>0,没有排除θ=0即两向量同向的情况. 解析 由θ为锐角,有0<cos θ<1. 又∵cos θ=a·b|a|·|b |=2λ+15·λ2+1,∴0<2λ+15·λ2+1<1, ∴⎩⎪⎨⎪⎧ 2λ+1>0,2λ+1<5·λ2+1,解得⎩⎪⎨⎪⎧λ>-12,λ≠2.∴λ的取值范围是⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠2.答案 ⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠21.(2014·大纲全国)已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C .-35 D .-452.设a =sin 33°,b =cos 55°,c =tan 35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b3.(2015·东北三校联考)已知sin αcos α=13,则cos 2(α+π4)的值为( )A.12B.13C.16D.23 4.函数y =2sin(π6-2x )(x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-π3,0]C .[-2π3,-π6]D .[-π3,-π6]5.函数f (x )=A sin(2x +φ)(A ,φ∈R )的部分图象如图所示,那么f (0)等于( ) A .-12B .-1C .-32D .- 36.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( ) A.32 B.22 C.12 D .-127.(2015·陕西省五校第一次联考)如图,平行四边形ABCD 中,AB =2,AD =1,∠A =60°,点M 在AB 边上,且AM =13AB ,则DM →·DB →等于( )A .-32 B.32C .-1D .1 8.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.9.如图是函数y =sin(ωx +φ)图象的一部分,A ,B 是图象上的一个最高点和一个最低点,O 为坐标原点,则OA →·OB →的值为________.10.(2014·天津)已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间[-π4,π4]上的最大值和最小值.学生用书答案精析3.三角函数、解三角形、平面向量要点回扣 [问题1] -15[问题2]22-33[问题3] ⎣⎡⎦⎤k π-π12,k π+512π(k ∈Z ) [问题4] -5665[问题5] 45° [问题6] ④ [问题7]125[问题8] ④ 查缺补漏1.D [因为角α的终边经过点(-4,3),所以x =-4,y =3,r =5, 所以cos α=x r =-45.]2.C [∵a =sin 33°,b =cos 55°=sin 35°, c =tan 35°=sin 35°cos 35°,又0<cos 35°<1, ∴c >b >a .]3.C [∵sin αcos α=13,∴sin 2α=2sin αcos α=23,∴cos 2(α+π4)=1+cos (2α+π2)2=1-sin 2α2=1-232=16.]4.C [因为y =2sin(π6-2x )=-2sin(2x -π6),所以函数y =2sin(π6-2x )的单调递增区间就是函数y =sin(2x -π6)的单调递减区间.由π2+2k π≤2x -π6≤3π2+2k π(k ∈Z ), 解得π3+k π≤x ≤5π6+k π(k ∈Z ),即函数y =2sin(π6-2x )的单调递增区间为[π3+k π,5π6+k π](k ∈Z ) 又x ∈[-π,0],所以k =-1,故函数y =2sin(π6-2x )(x ∈[-π,0])的单调递增区间为[-2π3,-π6].]5.B [由题图可知,函数的最大值为2,因此A =2. 又因为函数经过点⎝⎛⎭⎫π3,2, 则2sin ⎝⎛⎭⎫2×π3+φ=2, 即2×π3+φ=π2+2k π,k ∈Z ,得φ=-π6+2k π,k ∈Z .f (0)=2sin φ=2sin ⎝⎛⎭⎫-π6+2k π=-1.] 6.C [∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2. ∴cos C ≥12.∴cos C 的最小值为12.]7.D [DM →=DA →+AM →=DA →+13AB →,又DB →=DA →+AB →,所以DM →·DB →=(DA →+13AB →)·(DA →+AB →)=DA →2+13AB →2+43DA →·AB →=1+43-43AD →·AB → =73-43|AD →|·|AB →|cos 60°=73-43×1×2×12=1.] 8.27解析 由正弦定理知AB sin C =3sin 60°=BC sin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC=2sin C +4sin(120°-C )=2(sin C +2sin 120°cos C -2cos 120°sin C )=2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α),其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27. 9.19π2-1 解析 由题意可知A (π6,1),B (2π3,-1),OA →·OB →=π6×2π3+1×(-1)=19π2-1. 10.解 (1)由已知,有f (x )=cos x ·(12sin x +32cos x )-3cos 2x +34=12sin x ·cos x -32cos 2x +34=14sin 2x -34(1+cos 2x )+34=14sin 2x -34cos 2x =12sin(2x -π3). 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间[-π4,-π12]上是减函数,在区间[-π12,π4]上是增函数, f (-π4)=-14,f (-π12)=-12, f (π4)=14,所以,函数f (x )在闭区间[-π4,π4]上的最大值为14,最小值为-12.。
第1讲 三角函数的图象与性质1.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位2.(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( ) A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 3.(2015·湖南)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.4.(2015·浙江)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,最小值是________.1.以图象为载体,考查三角函数的最值、单调性、对称性、周期性.2.考查三角函数式的化简、三角函数的图象和性质、角的求值,重点考查分析、处理问题的能力,是高考的必考点.热点一 三角函数的概念、诱导公式及同角关系式(1)三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx .各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦.(2)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(3)诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.例1 (1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ) A .(-12,32)B .(-32,-12) C .(-12,-32)D .(-32,12) (2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值为________.思维升华 (1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关. (2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.跟踪演练1 (1)已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π4(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝⎛⎭⎫-35,45,则sin 2α+cos 2α+11+tan α=________. 热点二 三角函数的图象及应用函数y =A sin(ωx +φ)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图象变换:y =sin x ――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 例2 (1)(2015·河南省实验中学期中)已知函数y =3sin ωx (ω>0)的周期是π,将函数y =3cos(ωx -π2)(ω>0)的图象沿x 轴向右平移π8个单位,得到函数y =f (x )的图象,则函数f (x )等于( ) A .3sin(2x -π8)B .3sin(2x -π4)C .-3sin(2x +π8)D .-3sin(2x +π4)(2)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f (π3)的值为________.思维升华 (1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向. 跟踪演练2 (1)若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小正值为( )A.16B.14C.13D.12(2)(2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( ) A .5 B .6 C .8D .10热点三 三角函数的性质(1)三角函数的单调区间:y =sin x 的单调递增区间是[2k π-π2,2k π+π2](k ∈Z ),单调递减区间是[2k π+π2,2k π+3π2](k ∈Z );y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z ); y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z ).(2)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 例3 (2015·安徽)已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.思维升华 函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.跟踪演练3 设函数f (x )=2cos 2x +sin 2x +a (a ∈R ). (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈[0,π6]时,f (x )的最大值为2,求a 的值,并求出y =f (x )(x ∈R )的对称轴方程.1.已知函数f (x )=sin ωx +cos ωx (ω>0)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12]D .(0,2]2.如图,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|≤π2)与坐标轴的三个交点P 、Q 、R 满足P (2,0),∠PQR =π4,M 为QR 的中点,PM =25,则A 的值为( )A.83 3 B.163 3 C .8D .163.设函数f (x )=sin(2x +π3)+33sin 2x -33cos 2x .(1)求f (x )的最小正周期及其图象的对称轴方程;(2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )的图象,求g (x )在区间[-π6,π3]上的值域.提醒:完成作业 专题三 第1讲二轮专题强化练专题三第1讲 三角函数的图象与性质A 组 专题通关1.若0≤sin α≤22,且α∈[-2π,0],则α的取值范围是( ) A.⎣⎡⎦⎤-2π,-7π4∪⎣⎡⎦⎤-5π4,-π B.⎣⎡⎦⎤-2π+2k π,-7π4+2k π∪⎣⎡⎦⎤-5π4+2k π,-π+2k π(k ∈Z ) C.⎣⎡⎦⎤0,π4∪⎣⎡⎦⎤3π4,π D.⎣⎡⎦⎤2k π,2k π+π4∪⎣⎡⎦⎤2k π+3π4,2k π+π(k ∈Z ) 2.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位B .向右平移5π6个单位C .向左平移5π12个单位D .向右平移5π12个单位3.已知函数f (x )=cos 2π2x +3sin π2x cos π2x -2,则函数f (x )在[-1,1]上的单调递增区间为( )A .[-23,13]B .[-1,12]C .[13,1]D .[-34,23]4.若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8 D.5π45.下图所示的是函数y =A sin(ωx +φ)(A >0,ω>0)图象的一部分,则其函数解析式是( )A .y =sin(x +π3)B .y =sin(x -π3)C .y =sin(2x +π6)D .y =sin(2x -π6)6.函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之差为________.7.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f (x )的取值范围是________.8.将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.9.(2015·重庆)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.10.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.B 组 能力提高11.将函数h (x )=2sin(2x +π4)的图象向右平移π4个单位,再向上平移2个单位,得到函数f (x )的图象,则函数f (x )的图象与函数h (x )的图象( ) A .关于直线x =0对称 B .关于直线x =1对称 C .关于(1,0)点对称 D .关于(0,1)点对称12.已知f (x )=2sin ωx (cos ωx +sin ωx )的图象在x ∈[0,1]上恰有一个对称轴和一个对称中心,则实数ω的取值范围为( ) A .(3π8,5π8)B .[3π8,5π8)C .(3π8,5π8]D .[3π8,5π8]13.函数f (x )=sin ωx (ω>0)的部分图象如图所示,点A ,B 是最高点,点C 是最低点,若△ABC 是直角三角形,则f (12)=________.14.已知函数f (x )=A sin(ωx +π4)(A >0,ω>0),g (x )=tan x ,它们的最小正周期之积为2π2,f (x )的最大值为2g (17π4).(1)求f (x )的单调递增区间;(2)设h (x )=32f 2(x )+23cos 2x .当x ∈[a ,π3)时,h (x )有最小值为3,求a 的值.学生用书答案精析专题三 三角函数、解三角形与平面向量第1讲 三角函数的图象与性质高考真题体验1.B [∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位.] 2.D [由图象知,周期T =2⎝⎛⎭⎫54-14=2,∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z , 不妨取φ=π4, ∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D.] 3.π2解析 由⎩⎪⎨⎪⎧ y =2sin ωx ,y =2cos ωx 得sin ωx =cos ωx , ∴tan ωx =1,ωx =k π+π4(k ∈Z ). ∵ω>0,∴x =k πω+π4ω(k ∈Z ). 设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω, 则|x 2-x 1|=⎪⎪⎪⎪5π4ω-π4ω=πω.又结合图形知|y 2-y 1|=⎪⎪⎪⎪2×⎝⎛⎭⎫-22-2×22=22, 且(x 1,y 1)与(x 2,y 2)间的距离为23,∴(x 2-x 1)2+(y 2-y 1)2=(23)2,∴⎝⎛⎭⎫πω2+(22)2=12,∴ω=π2. 4.π 3-22解析 函数f (x )=sin 2x +sin x cos x +1=1-cos 2x 2+12sin 2x +1 =22sin ⎝⎛⎭⎫2x -π4+32.最小正周期为π.最小值为3-22. 热点分类突破例1 (1)A (2)-34解析 (1)设Q 点的坐标为(x ,y ),则x =cos 2π3=-12,y =sin 2π3=32. ∴Q 点的坐标为(-12,32). (2)原式=-sin α·sin α-sin α·cos α=tan α. 根据三角函数的定义,得tan α=y x =-34, ∴原式=-34. 跟踪演练1 (1)D (2)1825解析 (1)tan θ=cos 34πsin 34π=-cos π4sin π4=-1, 又sin 3π4>0,cos 3π4<0, 所以θ为第四象限角且θ∈[0,2π),所以θ=7π4. (2)由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝⎛⎭⎫-352=1825. 例2 (1)B (2)1解析 (1)由题意可知T =2πω=π,所以ω=2,所以y =3cos(ωx -π2)(ω>0)的解析式为y =3cos(2x -π2)=3sin 2x ,再把图象沿x 轴向右平移π8个单位后得到y =3sin 2(x -π8)=3sin(2x -π4).(2)根据图象可知,A =2,3T 4=11π12-π6,所以周期T =π,由ω=2πT =2.又函数过点(π6,2),所以有sin(2×π6+φ)=1,而0<φ<π,所以φ=π6,则f (x )=2sin(2x +π6),因此f (π3)=2sin(2π3+π6)=1.跟踪演练2 (1)D (2)C解析 (2)由题干图易得y min =k -3=2,则k =5.∴y max =k +3=8.例3 解 (1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x=1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1,所以函数f (x )的最小正周期为T =2π2=π.(2)由(1)的计算结果知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1.当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4,由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1; 当2x +π4=5π4,即x =π2时,f (x )取最小值0. 综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0. 跟踪演练3 解 (1)f (x )=2cos 2x +sin 2x +a =1+cos 2x +sin 2x +a =2sin(2x +π4)+1+a , 则f (x )的最小正周期T =2π2=π, 且当2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),即k π-38π≤x ≤k π+π8(k ∈Z )时, f (x )单调递增.所以[k π-3π8,k π+π8](k ∈Z )为f (x )的单调递增区间. (2)当x ∈[0,π6]时⇒π4≤2x +π4≤7π12, 当2x +π4=π2,即x =π8时sin(2x +π4)=1. 所以f (x )max =2+1+a =2⇒a =1- 2.由2x +π4=k π+π2(k ∈Z ),得x =k π2+π8(k ∈Z ), 故y =f (x )的对称轴方程为x =k π2+π8,k ∈Z . 高考押题精练1.A [f (x )=sin ωx +cos ωx =2sin(ωx +π4),令2k π+π2≤ωx +π4≤2k π+3π2(k ∈Z ),解得2k πω+π4ω≤x ≤2k πω+5π4ω(k ∈Z ). 由题意,函数f (x )在(π2,π)上单调递减,故(π2,π)为函数单调递减区间的一个子区间,故有⎩⎨⎧ 2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得4k +12≤ω≤2k +54(k ∈Z ). 由4k +12<2k +54,解得k <38.由ω>0,可知k ≥0,因为k ∈Z ,所以k =0,故ω的取值范围为[12,54].] 2.B [由题意设Q (a,0),R (0,-a )(a >0).则M (a 2,-a 2),由两点间距离公式得, PM = (2-a 2)2+(a 2)2=25,解得a =8,由此得,T 2=8-2=6,即T =12, 故ω=π6, 由P (2,0)得φ=-π3,代入f (x ) =A sin(ωx +φ)得,f (x )=A sin(π6x -π3), 从而f (0)=A sin(-π3)=-8, 得A =163 3.] 3.解 (1)f (x )=12sin 2x +32cos 2x -33·cos 2x =12sin 2x +36cos 2x =33sin(2x +π6). 所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ). (2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )=33sin[2(x -π3)+π6]=-33cos 2x 的图象,即g (x )=-33cos 2x . 当x ∈[-π6,π3]时,2x ∈[-π3,2π3], 可得cos 2x ∈[-12,1], 所以-33cos 2x ∈[-33,36],即函数g (x )在区间[-π6,π3]上的值域是[-33,36].二轮专题强化练答案精析专题三 三角函数、解三角形与平面向量第1讲 三角函数的图象与性质1.A [根据题意并结合正弦线可知,α满足⎣⎡⎦⎤2k π,2k π+π4∪⎣⎡⎦⎤2k π+3π4,2k π+π(k ∈Z ), ∵α∈[-2π,0],∴α的取值范围是⎣⎡⎦⎤-2π,-7π4∪⎣⎡⎦⎤-5π4,-π. 故选A.]2.C [y =cos(2x +π3)=sin[π2+(2x +π3)] =sin(2x +5π6)=sin[2(x +5π12)], 因此,把y =sin 2x 的图象向左平移5π12个单位得到y =cos(2x +π3)的图象.] 3.A [f (x )=cos 2π2x +3sin π2x cos π2x -2=1+cos πx 2+32sin πx -2 =32sin πx +12cos πx -32=sin(πx +π6)-32, 令-π2≤πx +π6≤π2, 解得x ∈[-23,13].] 4.C [f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 将其图象向右平移φ个单位得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8-φ=2sin ⎝⎛⎭⎫2x +π4-2φ的图象. ∵g (x )=2sin ⎝⎛⎭⎫2x +π4-2φ的图象关于y 轴对称, 即函数g (x )为偶函数,∴π4-2φ=k π+π2,k ∈Z , 即φ=-k π2-π8,k ∈Z , 因此当k =-1时,φ有最小正值3π8.] 5.A [由题中图象可知振幅A =1,T 4=π6-(-π3)=π2,则T =2π. 故ω=2πT=1. ∵(π6,1)可看做“五点法”作图的第二个关键点,∴π6+φ=π2. ∴φ=π3.∴y =sin(x +π3).] 6.2+ 3解析 因为0≤x ≤9,所以-π3≤πx 6-π3≤7π6, 因此当πx 6-π3=π2时, 函数y =2sin(πx 6-π3)取最大值, 即y max =2×1=2,当πx 6-π3=-π3时, 函数y =2sin(πx 6-π3)取最小值, 即y min =2sin(-π3)=-3, 因此y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之差为2+ 3. 7.[-32,3] 解析 由两个三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin(2x -π6),那么当x ∈[0,π2]时,-π6≤2x -π6≤5π6, 所以-12≤sin(2x -π6)≤1, 故f (x )∈[-32,3]. 8.22解析 将y =sin x 的图象向左平移π6个单位长度可得y =sin(x +π6)的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin(12x +π6)的图象,故f (x )=sin(12x +π6). 所以f (π6)=sin(12×π6+π6)=sin π4=22. 9.解 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时, f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时, f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 10.解 (1)∵x ∈⎣⎡⎦⎤0,π2, ∴2x +π6∈⎣⎡⎦⎤π6,7π6. ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1, ∴sin ⎝⎛⎭⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z , 其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时, g (x )单调递增,即k π<x ≤k π+π6,k ∈Z , ∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时, g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z . 11.D [依题意,将h (x )=2sin(2x +π4)的图象向右平移π4个单位,再向上平移2个单位后得y =2sin[2(x -π4)+π4]+2,即f (x )=2sin(2x -π4)+2的图象, 又∵h (-x )+f (x )=2,∴函数f (x )的图象与函数h (x )的图象关于点(0,1)对称.]12.B [因为f (x )=2sin ωx cos ωx +2sin 2ωx =sin 2ωx -cos 2ωx +1=2sin(2ωx -π4)+1, 设g (x )=2ωx -π4, 因为g (0)=-π4,g (1)=2ω-π4, 所以π2≤2ω-π4<π, 解得3π8≤ω<5π8, 故实数ω的取值范围为[3π8,5π8).] 13.22解析 由已知得△ABC 是等腰直角三角形,且∠ACB =90°, 所以12|AB |=f (x )max -f (x )min =1-(-1)=2, 即|AB |=4,而T =|AB |=2πω=4, 解得ω=π2.所以f (x )=sin πx 2, 所以f (12)=sin π4=22. 14.解 (1)由题意,得2πω·π=2π2, 所以ω=1.又A =2g (17π4)=2tan 174π=2tan π4=2, 所以f (x )=2sin(x +π4). 令2k π-π2≤x +π4≤2k π+π2(k ∈Z ), 得2k π-3π4≤x ≤2k π+π4(k ∈Z ). 故f (x )的单调递增区间为[2k π-3π4,2k π+π4](k ∈Z ). (2)因为h (x )=32f 2(x )+23cos 2x =32×4×sin 2(x +π4)+23cos 2x =3(sin x +cos x )2+23cos 2x =3+3sin 2x +3(cos 2x +1)=3+3+23sin(2x +π6), 又h (x )有最小值为3,所以有3+3+23sin(2x +π6)=3, 即sin(2x +π6)=-12. 因为x ∈[a ,π3), 所以2x +π6∈[2a +π6,5π6), 所以2a +π6=-π6,即a =-π6.。
第2讲 填空题的解法技巧题型概述填空题是一种只要求写出结论,不要求解答过程的客观性试题,有小巧灵活、覆盖面广、跨度大等特点,突出考查准确、严谨、灵活运用知识的能力.由于填空题不像选择题那样有备选提示,不像解答题那样有步骤得分,所填结果必须准确、规范,因此得分率较低,解答填空题的第一要求是“准”,然后才是“快”、“巧”,要合理灵活地运用恰当的方法,不可“小题大做”.方法一 直接法直接法就是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的方法解决问题.直接法是求解填空题的基本方法.例1 (1)(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.(2)(2015·北京)在△ABC 中,a =4,b =5,c =6,则sin 2A sin C=________.解析 (1)由题意知,将1~35号分成7组,每组5名运动员,落在区间[139,151]上的运动员共有4组,故由系统抽样法知,共抽取4名. (2)由余弦定理:cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,∴sin A =74,cos C =a 2+b 2-c 22ab =16+25-362×4×5=18,∴sin C =378,∴sin 2Asin C =2×34×74378=1. 答案 (1)4 (2)1思维升华 利用直接法求解填空题要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.跟踪演练1 (1)(2015·韶关联考)已知椭圆x 28+y 2=1的左、右焦点分别为F 1、F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值是________.(2)已知方程x 2+3ax +3a +1=0(a >2)的两根tan α,tan β,且α,β∈(-π2,π2),则α+β=________.方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(特殊函数,特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程.例2 (1)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=_____________________________________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________. 解析 (1)把平行四边形ABCD 看成正方形, 则点P 为对角线的交点,AC =6,则AP →·AC →=18.(2)此题考查抽象函数的奇偶性,周期性,单调性和对称轴方程,条件多,将各种特殊条件结合的最有效方法是把抽象函数具体化.根据函数特点取f (x )=sin π4x ,再由图象可得(x 1+x 2)+(x 3+x 4)=(-6×2)+(2×2)=-8.答案 (1)18 (2)-8思维升华 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.跟踪演练2 (2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.方法三 数形结合法对于一些含有几何背景的填空题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等,求解的关键是明确几何含义,准确规范地作出相应的图形.例3 (1)已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是________________________________________________________________________. (2)已知函数f (x )=x |x -2|,则不等式f (2-x )≤f (1)的解集为________.解析 (1)画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方, ∴d 2min =(|3-0-1|12+(-1)2)2=(2)2=2.最大值为点Q 到点A 的距离的平方,∴d 2max =16.∴取值范围是[2,16].(2)函数y =f (x )的图象如图,由不等式f (2-x )≤f (1)知,2-x ≤2+1,从而得到不等式f (2-x )≤f (1)的解集为[-1,+∞). 答案 (1)[2,16] (2)[-1,+∞)思维升华 数形结合法可直观快捷得到问题的结论,充分应用了图形的直观性,数中思形,以形助数.数形结合法是高考的热点,应用时要准确把握各种数式和几何图形中变量之间的关系.跟踪演练3 (1)(2015·山西大学附中月考)若方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是_________________________________________________________.(2)(2015·兰州一中期中)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决. 例4 (1)如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.(2)e 416,e 525,e 636(其中e 为自然对数的底数)的大小关系是________________.解析 (1)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.(2)由于e 416=e 442,e 525=e 552,e 636=e 662,故可构造函数f (x )=e x x 2,于是f (4)=e 416,f (5)=e 525,f (6)=e 636.而f ′(x )=(e xx 2)′=e x ·x 2-e x ·2x x 4=e x (x 2-2x )x 4,令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增,因此有f (4)<f (5)<f (6),即e 416<e 525<e 636.答案(1)6π(2)e416<e525<e636思维升华构造法解题的关键是由条件和结论的特征构造数学模型.在立体几何中,补形构造是常用的解题技巧,构造法实质上是转化与化归思想在解题中的应用.跟踪演练4已知三个互不重合的平面α、β、γ,α∩β=m,n⊂γ,且直线m、n不重合,由下列三个条件:①m∥γ,n⊂β;②m∥γ,n∥β;③m⊂γ,n∥β.能推得m∥n的条件是________.方法五归纳推理法做关于归纳推理的填空题的时候,一般是由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想.例5(1)(2014·陕西)观察分析下表中的数据:猜想一般凸多面体中F,V,E所满足的等式是_____________________________.(2)用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为________.解析(1)观察F,V,E的变化得F+V-E=2.(2)观察题图①,共有8根火柴,以后依次增加6根火柴,即构成首项为8,公差为6的等差数列,所以,第n个“金鱼”图需要火柴棒的根数为6n+2.答案(1)F+V-E=2(2)6n+2思维升华归纳推理法主要用于与自然数有关的结论,这类问题是近几年高考的热点,解题的关键在于找准归纳对象及其规律,如数列中项与项数之间的对应关系.跟踪演练5观察下列各个等式:13=1;23=3+5;33=7+9+11;43=13+15+17+19;…若某数m3按上述规律展开后,发现等式右边含有“2 016”这个数,则m=________.方法六正反互推法多选型问题给出多个命题或结论,要求从中选出所有满足条件的命题或结论.这类问题要求较高,涉及图形、符号和文字语言,要准确阅读题目,读懂题意,通过推理证明,命题或结论之间互反互推,相互印证,也可举反例判断错误的命题或结论.例6已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:①f(2 013)+f(-2 014)的值为0;②函数f(x)在定义域上为周期是2的周期函数;③直线y=x与函数f(x)的图象有1个交点;④函数f(x)的值域为(-1,1).其中正确的命题序号有________.解析根据题意,可在同一坐标系中画出直线y=x和函数f(x)的图象如下:根据图象可知①f(2 013)+f(-2 014)=0正确,②函数f(x)在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f(x)的值域是(-1,1),正确.答案①③④思维升华正反互推法适用于多选型问题,这类问题一般有两种形式,一是给出总的已知条件,判断多种结论的真假;二是多种知识点的汇总考查,主要覆盖考点功能.两种多选题在处理上不同,前者需要扣住已知条件进行分析,后者需要独立利用知识逐项进行判断.利用正反互推结合可以快速解决这类问题. 跟踪演练6 给出以下命题:①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x≥2”是真命题;③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位; ④设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=0.2,则P (-1<ξ<0)=0.6;⑤已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为nn -4+8-n (8-n )-4=2(n ≠4). 则正确命题的序号为________(写出所有正确命题的序号). 知识方法总结 六招拿下填空题:(一)直接法 (二)特例法 (三)数形结合法 (四)构造法 (五)归纳推理法 (六)正反互推法填空题突破练A 组 专题通关1.已知集合A ={x ,xy ,lg(xy )},B ={0,|x |,y },若A =B ,则x =________,y =________.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,x 2-2x +2,x >1,若关于x 的函数g (x )=f (x )-m 有两个零点,则实数m的取值范围是________.3.已知函数f (x )=sin(π3x +π3)(x >0)的图象与x 轴的交点从左到右依次为(x 1,0),(x 2,0),(x 3,0),…,则数列{x n }的前4项和为________.4.(2015·杭州外国语学校期中)设a >0,在二项式(a -x )10的展开式中,含x 的项的系数与含x 4的项的系数相等,则a 的值为________.5.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是________.6.已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________. 7.观察下列不等式: 1+122<32 1+122+132<53 1+122+132+142<74 ……照此规律,第五个不等式为_____________________________________________.8.若函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.9.(2015·珠海模拟)已知函数f (x )=(12)x -sin x ,则f (x )在[0,2π]上的零点个数为________.10.整数数列{a n }满足a n +2=a n +1-a n (n ∈N *),若此数列的前800项的和是2 013,前813项的和是2 000,则其前2 014项的和为________.11.设命题p :2x -1x -1≤0,命题q :x 2-(2a +1)x +a (a +1)<0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.12.(2015·山东)执行下边的程序框图,输出的T 的值为________.B 组 能力提高13.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f (52)=________.14.已知O 是坐标原点,点M 的坐标为(2,1),若点N (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≤2,x ≥12,y ≥x 上的一个动点,则OM →·ON →的最大值是________.15.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,4x ,x ≤0,则f [f (-1)]=________.若函数g (x )=f (x )-k 存在两个零点,则实数k 的取值范围是________.16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的投影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点. 在上面的结论中,正确结论的序号是________.(写出所有正确结论的序号)学生用书答案精析第2讲 填空题的解法技巧跟踪演练1 (1)8 (2)-34π或π4解析 (1)由椭圆的定义知|PF 1|+|PF 2|=42, ∴|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=8,(当且仅当|PF 1|=|PF 2|时取等号) ∴|PF 1|·|PF 2|的最大值是8.(2)由已知可得tan α+tan β=-3a , tan αtan β=3a +1,tan(α+β)=tan α+tan β1-tan αtan β=-3a 1-(3a +1)=1,因为α,β∈(-π2,π2),所以-π<α+β<π, 所以α+β=-34π或π4.跟踪演练2 1 解析 ∵f (1)=f (-1), ∴ln(1+a +1)+ln(-1+a +1)=0,∴ln a =0,∴a =1. 经验证a =1符合题意. 跟踪演练3 (1)(-2,2) (2)3解析 (1)设f (x )=x 3-3x ,令f ′(x )=3x 2-3=0,得x =±1,当x <-1时,函数f (x )单调递增,当-1<x <1时,函数f (x )单调递减,当x >1时,函数f (x )单调递增,f (-1)=2,f (1)=-2,要有三个不等实根,则直线y =k 与y =f (x )的图象有三个交点,∴-2<k <2.(2)由f (-4)=f (0),得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2.联立两方程解得b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0. 在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,即函数g (x )有3个零点.跟踪演练4 ①③解析 构建长方体模型,如图,观察选项特点,可优先判断条件②:取平面α为平面ADD ′A ′,平面β为平面ABCD ,则直线m 为直线AD .因为m ∥γ,故可取平面γ为平面A ′B ′C ′D ′,因为n ⊂γ且n ∥β,故可取直线n 为直线A ′B ′.则直线AD 与直线A ′B ′为异面直线,故m 与n 不平行.对于①:α、β取②中平面,取平面γ为平面BCC ′B ′,可取直线n 为直线BC ,故可推得m ∥n ; 对于③:α,β取②中平面,取γ为平面AB ′C ′D ,取直线n 为直线B ′C ′,故可推得结论.跟踪演练5 45解析 某数m 3按上述规律展开后,等式右边为m 个连续奇数的和,由于前4行的最后一个数分别为1=12+0,5=22+1,11=32+2,19=42+3,所以m 3的最后一个数为m 2+(m -1),因为当m =44时,m 2+(m -1)=1 979,当m =45时,m 2+(m -1)=2 069,所以要使等式右边含有“2 016”这个数,则m =45.跟踪演练6 ①③⑤解析 ①由y 22-x 2=0可以解得双曲线的渐近线方程为y =±2x ,正确. ②命题不能保证sin x ,1sin x为正,故错误; ③根据线性回归方程的含义正确;④P (ξ>1)=0.2,可得P (ξ<-1)=0.2,所以P (-1<ξ<0)=12P (-1<ξ<1)=0.3,故错误; ⑤根据验证可知得到一般性的等式是正确的.填空题突破练1.-1 -1解析 由A =B 知需分多种情况进行讨论,由lg(xy )有意义,则xy >0.又0∈B =A ,则必有lg(xy )=0,即xy =1.此时,A =B ,即{0,1,x }={0,|x |,y }.∴⎩⎪⎨⎪⎧ x =|x |,xy =1,y =1,或⎩⎪⎨⎪⎧ x =y ,xy =1,|x |=1,解得x =y =1或x =y =-1.当x =y =1时,A =B ={0,1,1}与集合元素的互异性矛盾,应舍去;当x =y =-1时,A =B ={0,-1,1}满足题意,故x =y =-1.2.(1,2]解析 g (x )=f (x )-m 有两个零点等价于函数f (x )与函数y =m 的图象有两个交点,作出函数的图象如图,由图可知m 的取值范围是(1,2].3.26解析 令f (x )=sin(π3x +π3)=0, 则π3x +π3=k π(k ∈N *), ∴x =3k -1(k ∈N *),∴x 1+x 2+x 3+x 4=3(1+2+3+4)-4=26.4.1解析 T k +1=C k 10(-x )k a10-k , 令k =2时,x 的系数为C 210a 8,令k =8时,x 4的系数为C 810a 2,∴C 210a 8=C 810a 2,即a =1,故答案为1. 5.17-1解析 点P 到抛物线的准线距离等于点P 到抛物线焦点F (1,0)的距离.圆心坐标是(0,4),圆心到抛物线焦点的距离为17,即圆上的点Q 到抛物线焦点的距离的最小值是17-1,这个值即为所求.6.a >b >c解析 令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 013 >12 014>12 015>0, ∴a >b >c .7.1+122+132+142+152+162<1168.{x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1].由已知f (x )+f ′(x )>1,可得g ′(x )>0,所以g (x )为R 上的增函数.又g (0)=e 0·f (0)-e 0-1=0,所以e x ·f (x )>e x +1,即g (x )>0的解集为{x |x >0}.9.2解析 因为函数f (x )=(12)x -sin x ,则 f (x )在[0,2π]上的零点个数等于函数y =(12)x 与函数y =sin x 在区间[0,2π]内的交点的个数,在同一坐标系中画出上述两个函数的图象如图所示,由图象可知,两函数在区间[0,2π]内有两个不同的交点,所以函数f (x )在[0,2π]上的零点个数为2.10.987解析 a 3=a 2-a 1,a 4=a 3-a 2,a 5=a 4-a 3,a 6=a 5-a 4,a 7=a 6-a 5,…,∴a 1=a 7,a 2=a 8,a 3=a 9,a 4=a 10,a 5=a 11,…,{a n }是以6为周期的数列,且有a 1+a 2+a 3+a 4+a 5+a 6=0,S 800=a 1+a 2=2 013,S 813=a 1+a 2+a 3=2 000,a 3=-13,∴⎩⎪⎨⎪⎧a 1-a 2=13,a 1+a 2=2 013,∴a 2=1 000,S 2 014=a 1+a 2+a 3+a 4=a 2+a 3=1 000+(-13)=987.11.[0,12) 解析 由2x -1x -1≤0,得12≤x <1; 由x 2-(2a +1)x +a (a +1)<0,得a <x <a +1.因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 12>a ,1≤a +1,解得0≤a <12. 12.116解析 当n =1时,T =1+⎠⎛01x 1d x =1+⎪⎪12x 210=1+12=32; 当n =2时,T =32+⎠⎛01x 2d x =32+⎪⎪13x 310=32+13=116;当n =3时,结束循环,输出T =116. 13.0解析 由题意知f (-12)=f (12). 令x =-12可得-12f (12)=12f (-12),∴f (12)=-f (-12), 故f (12)=0, 又令x =12可得12f (32)=32f (12), ∴f (32)=0,同理可得f (52)=0. 14.3解析 OM →·ON →=2x +y ,如图:当直线2x +y =z 经过点(1,1)时,达到最大值,z max =3.15.-2 (0,1]解析 f [f (-1)]=f (4-1)=f (14)=log 214=-2. 令f (x )-k =0,即f (x )=k ,设y =f (x ),y =k ,画出图象,如图所示,函数g (x )=f (x )-k 存在两个零点,即y =f (x )与y =k 的图象有两个交点,由图象可得实数k 的取值范围为(0,1].16.①②④解析 用正方体ABCD -A 1B 1C 1D 1实例说明A 1D 1与BC 1在平面ABCD 上的投影互相平行,AB 1与BC 1在平面ABCD 上的投影互相垂直,BC 1与DD 1在平面ABCD 上的投影是一条直线及其外一点,故①②④正确.。
审题是解题的基础,深入细致的审题是成功解题的前提,审题不仅存在于解题的开端,还要贯穿于解题思路的全过程和解法后的反思回顾.正确的审题要多角度地观察,由表及里,由条件到结论,由数式到图形,洞察问题实质,选择正确的解题方向.事实上,很多考生往往对审题掉以轻心,或不知从何处入手进行审题,致使解题失误而丢分.本讲结合实例,教你正确的审题方法,给你制订一条“审题路线图”,攻克高考解答题. 一审条件挖隐含任何一个数学问题都是由条件和结论两部分构成的.条件是解题的主要素材,充分利用条件间的内在联系是解题的必经之路.条件有明示的,有隐含的,审视条件更重要的是要充分挖掘每一个条件的内涵和隐含的信息,发挥隐含条件的解题功能.例1 (2014·重庆)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)若f (α2)=34(π6<α<2π3),求cos(α+3π2)的值.审题路线图(1)条件:f (x )图象上相邻两个最高点距离为π ↓挖掘三角函数图象的特征 f (x )的周期为π ↓T =2π|ω|,ω>0(已知)ω=2条件:f (x )图象关于直线x =π3对称↓f (π3)取到最值2×π3+φ=k π+π2(k ∈Z )↓-π2≤φ<π2(已知)φ=-π6↓(2)条件:f (α2)=34↓代入f (x ) sin (α-π6)=14↓条件π6<α<2π3cos (α-π6)=154↓欲求cos(α+3π2)=sin α=sin[(α-π6)+π6]sin α=3+158↓cos (α+3π2)=3+158解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期为T =π,从而ω=2πT=2. 又因为f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2,k ∈Z .由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f (α2)=3sin(2·α2-π6)=34,所以sin(α-π6)=14.由π6<α<2π3, 得0<α-π6<π2,所以cos(α-π6)=1-sin 2(α-π6)=1-(14)2=154.所以cos(α+3π2)=sin α=sin[(α-π6)+π6]=sin(α-π6)cos π6+cos(α-π6)sin π6=14×32+154×12=3+158. 跟踪演练1 (2014·四川)已知函数f (x )=sin(3x +π4).(1)求f (x )的单调递增区间;(2)若α是第二象限角,f (α3)=45cos(α+π4)cos 2α,求cos α-sin α的值.二审结论会转换问题解决的最终目标就是求出结论或说明已给结论正确或错误.因而解决问题时的思维过程大多都是围绕着结论这个目标进行定向思考的.审视结论,就是在结论的启发下,探索已知条件和结论之间的内在联系和转化规律.善于从结论中捕捉解题信息,善于对结论进行转化,使之逐步靠近条件,从而发现和确定解题方向. 例2 (2015·北京)已知函数f (x )=ln 1+x 1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求证:当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x33; (3)设实数k 使得f (x )>k ⎝⎛⎭⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.审题路线图 (2)x ∈(0,1)时f (x )>2(x +x 33)――→转化要证结论f (x )-2(x +x 33)>0在(0,1)上恒成立―――――――→构造函数g (x )=f (x )-2(x +x 33)g (x )>0→研究函数g (x )的单调性求g (x )(3)求k 的最大值 ―――――――→构造函数h (x )=f (x )-k (x +x 33)研究h (x )单调性――――――――――→讨论参数k结合(2)知k ≤2时符合题意k >2时h (x )的单调性解 (1)因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)令g (x )=f (x )-2⎝⎛⎭⎫x +x33, 则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1), 即当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33.(3)由(2)知,当k ≤2时,f (x )>k ⎝⎛⎭⎫x +x 33对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )-k ⎝⎛⎭⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2.所以当0<x <4k -2k 时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0,4k -2k 上单调递减. 当0<x < 4k -2k时,h (x )<h (0)=0,即f (x )<k ⎝⎛⎭⎫x +x 33.所以当k >2时,f (x )>k ⎝⎛⎭⎫x +x33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.跟踪演练2 已知函数f (x )=12x 2+a ln x .(1)若a =-1,求函数f (x )的极值,并指出是极大值还是极小值; (2)若a =1,求函数f (x )在[1,e]上的最大值和最小值;(3)若a =1,求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3的图象的下方.三审图形抓特点在不少数学高考试题中,问题的条件往往是以图形的形式给出,或将条件隐含在图形之中,因此在审题时,要善于观察图形,洞悉图形所隐含的特殊关系、数值的特点、变化的趋势.抓住图形的特征,运用数形结合的数学思想方法,是破解考题的关键.例3如图(1)所示,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB 上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED,如图(2)所示.(1)求证:BD⊥平面POA;(2)当PB取得最小值时,求四棱锥P-BDEF的体积.审题路线图(1)(2)(1)证明因为菱形ABCD的对角线互相垂直,所以BD⊥AC.所以BD⊥AO.因为EF⊥AC,所以PO⊥EF.因为平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO⊂平面PEF,所以PO⊥平面ABFED.因为BD ⊂平面ABFED ,所以PO ⊥BD . 因为AO ∩PO =O ,所以BD ⊥平面POA .(2)解 设AO ∩BD =H . 因为∠DAB =60°, 所以△BDC 为等边三角形. 故BD =4,HB =2, HC =2 3.设PO =x (0<x <23),则OH =23-x ,OA =43-x .连接OB ,由OH ⊥BD ,得OB 2=(23-x )2+22. 又由(1)知PO ⊥平面BFED , 则PO ⊥OB . 所以PB =OB 2+OP 2=(23-x )2+22+x 2=2(x -3)2+10.当x =3时,PB min =10,此时PO =3=OH , 所以V 四棱锥P -BDEF =13×S 梯形BDEF ×PO=13×(34×42-34×22)×3=3. 跟踪演练3 如图,在△ABC 中,AB =3,AC =5,若O 为△ABC 的外心,则AO →·BC →的值为________.四审结构定方案数学问题中的条件和结论,很多都是以数式的结构形式进行搭配和呈现的.在这些问题的数式结构中,往往都隐含着某种特殊关系,认真审视数式的结构特征,对数式结构进行深入分析,加工转化,可以寻找到突破问题的方案.例4 (2015·四川)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.审题路线图解 (1)由已知S n =2a n -a 1, 有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2), 从而a 2=2a 1,a 3=2a 2=4a 1, 又因为a 1,a 2+1,a 3成等差数列, 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列, 故a n =2n . (2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪1-12n -1<11 000, 即2n >1 000,因为29=512<1 000<1 024=210,所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10. 跟踪演练4 (1)(2015·临川一中月考)已知数列{a n }满足a 1=6,a n +1-a n =2n ,记c n =a nn ,且存在正整数M ,使得对一切n ∈N *,c n ≥M 恒成立,则M 的最大值为________.(2)(2014·课标全国Ⅰ)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )·(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________. 五审图表找规律题目中的图表、数据包含着问题的基本信息,往往也暗示着解决问题的目标和方向.在审题时,要认真观察分析图表、数据的特征和规律,常常可以找到解决问题的思路和方法. 例5 下表中的数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为a i ,j (i ,j ∈N *),则 (1)a 9,9=________;(2)表中的数82共出现________次.审题路线图审视图表数据a i ,j ――→每行成等差数列a 1,9=a 1,1+8×1=10 ――→每列成等差数列a 9,9=a 1,9+8×9=72――→一般规律a i ,j =(i +1)+(j -1)·i =ij +1――→82出现次数ij+1=82解的个数解析(1)a9,9表示第9行第9列,第1行的公差为1,第2行的公差为2,……,第9行的公差为9,第9行的首项b1=10,则b9=10+8×9=82;(2)第1行数组成的数列a1,j(j=1,2,…)是以2为首项,公差为1的等差数列,所以a1,j=2+(j-1)·1=j+1;第i行数组成的数列a i,j(j=1,2,…)是以i+1为首项,公差为i的等差数列,所以a i,j=(i+1)+(j-1)i=ij+1,由题意得a i,j=ij+1=82,即ij=81,且i,j∈N*,所以81=81×1=27×3=9×9=1×81=3×27,故表格中82共出现5次.答案(1)82(2)5跟踪演练5为调查企业工人的身体情况,社保局从某企业800名男职工中随机抽取50名测量其身高,据测量,被测职工的身高全部在155 cm到195 cm之间.将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),……,第八组[190,195],频率分布直方图的部分图象如图所示,频数统计表的一部分如下表,已知第一组与第八组的人数相同,第七组与第六组的人数差恰好为第八组与第七组的人数差,则x=________,y=________.六审细节更完善审题不仅要从宏观上、整体上去分析、去把握,还要更加注意审视一些细节上的问题.例如括号内的标注、数据的范围、图象的特点等.因为标注、范围大多是对数学概念、公式、定理中所涉及的一些量或解析式的限制条件.审视细节能适时地利用相关量的约束条件,调整解决问题的方向.所以说重视审视细节,更能体现审题的深刻性. 例6 各项均为正数的数列{a n }的前n 项和为S n ,S n =14a 2n +12a n (n ∈N *). (1)求a n ;(2)令b n =⎩⎪⎨⎪⎧a n, n 为奇数,b 2n , n 为偶数,c n =b (n ∈N *),求{c n }的前n 项和T n .审题路线图 (1)S n =14a 2n +12a n ↓(注意n ∈N *,a n >0) a 1=2↓(下面的变形是有条件的,条件是n ≥2) a n =S n -S n -1=14a 2n +12a n -14a 2n -1-12a n -1 ↓(进行代数式变形) (a n +a n -1)(a n -a n -1-2)=0 ↓(a n +a n -1>0) a n -a n -1=2↓(利用等差数列的定义) a n =2+(n -1)×2=2n↓(注意b n 与a n 的关系,n 是分奇偶的) (2)b 1=a 1=2;b 2=a 1=2;b 3=a 3=6; b 4=b 2=2↓(注意c n 与b n 的关系) c 1=b 6=b 3=6 c 2=b 8=b 4=2↓(注意下面变化的条件是n ≥3)12221242221n n n n n c b b b a ---++++=====2n -1+2.↓T n =c 1+c 2+c 3+…+c n=6+2+(22+2)+(23+2)+…+(2n -1+2)=2n +2n↓(当n =1,n =2时,对T n 的表达式的验证)T n =⎩⎪⎨⎪⎧6, n =1,2n +2n , n ≥2且n ∈N *.解 (1)a 1=S 1=14a 21+12a 1⇒14a 21-12a 1=0,因为a 1>0,故a 1=2; 当n ≥2时,a n =S n -S n -1 =14a 2n +12a n -14a 2n -1-12a n -1, 所以14(a 2n -a 2n -1)-12(a n +a n -1)=0, 即(a n +a n -1)(a n -a n -1-2)=0. 因为a n >0,所以a n -a n -1=2, 即{a n }为等差数列, 所以a n =2n (n ∈N *).(2)c 1=b 6=b 3=a 3=6,c 2=b 8=b 4=b 2=b 1=a 1=2, n ≥3时,221212122n n n b a ---++===+,此时,T n =8+(22+2)+(23+2)+…+(2n -1+2) =2n +2n ;当n =1时,2+2=4≠6,不符合上式,当n =2时,T 2=22+2×2=8=c 1+c 2,符合上式.所以T n =⎩⎪⎨⎪⎧6, n =1,2n +2n , n ≥2且n ∈N *. 跟踪演练6 (2015·惠州市调研)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n-23,n ∈N *. (1)求数列{a n }的通项公式;(2)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.审题突破练A 组 专题通关1.已知点A (-3,0),B (0,3),若点P 在圆x 2+y 2-2x =0上运动,则△P AB 面积的最小值为( ) A .6 B .6 2 C .6+322D .6-3222.如图所示,用K ,A 1,A 2三类不同的元件连接成一个系统,当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作,已知K ,A 1,A 2正常工作的概率依次是0.9,0.8,0.8,则系统正常工作概率为( )A .0.960B .0.864C .0.70D .0.5763.一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476 C .6D .74.(2015·重庆)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34?B .s ≤56?C .s ≤1112?D .s ≤2524?5.(2015·佛山市高三上学期期中试题)已知a >0,函数f (x )=⎩⎪⎨⎪⎧sin π2x ,x ∈[-1,0),ax 2+ax +1,x ∈[0,+∞),若f (t -13)>-12,则实数t 的取值范围为________.6.(2015·福建)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________. 7.已知在△ABC 中,sin A +cos A =15.(1)求sin(3π2-A )cos(π2+A );(2)求tan A 值.8.数列{a n },{b n }的通项公式分别为a n =ln(1+1n ),b n =1n -1n 2(n ∈N *),证明:a n >b n .B 组 能力提高9.已知a ∈R ,函数f (x )=16x 3+12(a -2)x 2+b ,g (x )=2a ln x .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处的切线互相垂直,求a ,b 的值; (2)设F (x )=f ′(x )-g (x ),若对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,都有F (x 2)-F (x 1)>a (x 2-x 1),求a 的取值范围.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,且过点(1,22),右焦点为F 2.设A ,B 是C上的两个动点,线段AB 的中点M 的横坐标为-12,线段AB 的中垂线交椭圆C 于P ,Q 两点.(1)求椭圆C 的方程; (2)求F 2P →·F 2Q →的取值范围.学生用书答案精析第一篇 活用审题路线图,教你审题不再难跟踪演练1 解 (1)因为函数y =sin x 的单调递增区间为[-π2+2k π,π2+2k π],k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以函数f (x )的单调递增区间为[-π4+2k π3,π12+2k π3],k ∈Z .(2)由已知,有sin(α+π4)=45cos(α+π4)(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45(cos αcos π4-sin αsin π4)(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0, 此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 跟踪演练2 (1)解 由于函数f (x )的定义域为(0,+∞), 当a =-1时,f ′(x )=x -1x =(x +1)(x -1)x ,令f ′(x )=0得x =1或x =-1(舍去), 当x ∈(0,1)时,函数f (x )单调递减, 当x ∈(1,+∞)时,函数f (x )单调递增,所以f (x )在x =1处取得极小值为12.(2)解 当a =1时,易知函数f (x )在[1,e]上为增函数, 所以f (x )min =f (1)=12,f (x )max =f (e)=12e 2+1.(3)证明 设F (x )=f (x )-g (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x ,当x >1时,F ′(x )<0,故f (x )在区间[1,+∞)上是减函数, 又F (1)=-16<0,所以在区间[1,+∞)上,F (x )<0恒成立. 即f (x )<g (x )恒成立.因此,当a =1时,在区间[1,+∞)上,函数f (x )的图象在函数g (x )的图象的下方. 跟踪演练3 8解析 方法一 取边BC 的中点D ,由于O 为△ABC 的外心,所以DO →⊥BC →,所以DO →·BC →=0,AO →=AD →+DO →=12(AB →+AC →)+DO →,所以AO →·BC →=[12(AB →+AC →)+DO →]·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=8. 方法二 取AB 的中点E ,AC 的中点F ,连接OE ,OF ,则OE ⊥AB ,OF ⊥AC .易知向量AO →在AB →上的投影为|AE →|,AO →在AC →上的投影为|AF →|, 所以AO →·BC →=AO →·(AC →-AB →)=AO →·AC →-AO →·AB → =|AC →|·|AF →|-|AB →|·|AE →|=5×52-3×32=8.跟踪演练4 (1)4 (2) 3 解析 (1)∵a n +1-a n =2n ,∴a n -a n -1=2n -2,......,a 2-a 1=2, ∴a n -a 1=2[(n -1)+(n -2)+ (1)=n (n -1), ∴a n =n (n -1)+6,∴c n =a n n =n +6n -1≥5-1=4,∵对一切n ∈N *,c n ≥M 恒成立, ∴M 的最大值为4. (2)∵a sin A =b sin B =c sin C=2R ,a =2,又(2+b )·(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c ,∴a 2-b 2=c 2-bc ,∴b 2+c 2-a 2=bc . ∴b 2+c 2-a 22bc =bc 2bc =12=cos A ,∴A =60°.∴△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得),∴S △ABC =12·bc ·sin A ≤12×4×32= 3.跟踪演练5 4 3解析 由频率分布直方图可知前五组的频率之和是(0.008+0.016+0.04+0.04+0.06)×5=0.82,第八组的频率是0.008×5=0.04,所以第六、七组的频率之和为1-0.82-0.04=0.14. 故第八组的人数为50×0.04=2, 第六、七组的人数之和为50×0.14=7.由题意,可得⎩⎪⎨⎪⎧ x +y =7,y -x =2-y ,解得⎩⎪⎨⎪⎧x =4,y =3.跟踪演练6 (1)解 依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4,当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =(na n +1-13n 3-n 2-23n )-[(n -1)·a n -13(n -1)3-(n -1)2-23(n -1)].整理得(n +1)a n =na n +1-n (n +1), 即a n +1n +1-a nn =1, 又a 22-a 11=1, 故数列{a nn }是首项为1,公差为1的等差数列,所以a nn =1+1×(n -1)=n ,所以a n =n 2.(2)证明 当n =1时,1a 1=1<74;当n =2时,1a 1+1a 2=1+14=54<74;当n ≥3时,1a n =1n 2<1n (n -1)=1n -1-1n,此时1a 1+1a 2+…+1a n =1+122+132+142+…+1n 2<1+14+(12-13)+(13-14)+…+(1n -1-1n )=1+14+12-1n =74-1n <74. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.审题突破练1.D [由圆的方程x 2+y 2-2x =0,得(x -1)2+y 2=1, 所以圆的圆心G (1,0),且圆的半径r =1, 由A (-3,0),B (0,3),得k AB =33=1,所以AB 的方程为y =x +3, 即x -y +3=0,所以点G (1,0)到AB 的距离d =|1-0+3|2=22>1, 所以AB 与给定的圆相离,圆上到AB 的距离的最小值t =d -r =22-1,又|AB |=9+9=32,所以△P AB 面积的最小值为12×32× (22-1)=6-322.] 2.B [由题意可知K ,A 1,A 2三类元件正常工作相互独立.A 1,A 2至少有一个正常工作的概率为P =1-(1-0.8)2=0.96.所以系统正常工作的概率为P K P =0.9×0.96=0.864.]3.A [由题意知,该多面体是由正方体挖去两个小三棱锥后所成的几何体,如图所示,所以该几何体的体积为V =2×2×2-2×13×(12×1×1)×1=233] 4.C [由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,输出k =8,所以应填s ≤1112?.] 5.(0,+∞)解析 ①当-1≤t -13<0时, f (t -13)=sin[π2(t -13)]>-12, ∴-π6+2k π<π2(t -13)<7π6+2k π(k ∈Z ). ∴-13+4k <t -13<73+4k (k ∈Z ). ∵-1≤t -13<0, ∴-13<t -13<0,∴0<t <13. ②当t -13≥0时,f (t -13)=a (t -13)2+a (t -13)+1>-12(a >0)恒成立, ∴t ≥13. 综上可知:实数t 的取值范围为(0,+∞).6.7解析 S =12AB ·AC ·sin A ,∴sin A =32,在锐角三角形中A =π3,由余弦定理得 BC =AB 2+AC 2-2AB ·AC ·cos A =7.7.解 方法一 (1)∵sin A +cos A =15, ∴1+2sin A ·cos A =125, ∴sin 2A =-2425, sin(3π2-A )cos(π2+A )=-cos A · (-sin A )=sin A cos A =12sin 2A =-1225. (2)∵sin A +cos A =15, ∴(sin A -cos A )2=(sin A +cos A )2-4sin A cos A =125+4825=4925, 又0<A <π且sin A +cos A =15, ∴π2<A <π, ∴sin A >0,cos A <0,∴sin A -cos A =75, ∴sin A =45,cos A =-35, ∴tan A =sin A cos A =-43. 方法二 (1)同方法一.(2)sin 2A =2sin A cos A cos 2A +sin 2A=2tan A 1+tan 2A=-2425, ∴12tan 2A +25tan A +12=0∴tan A =-43或tan A =-34又0<A <π,sin A +cos A =15, ∴π2<A <3π4,∴tan A <-1, 故tan A =-43. 8.证明 欲证原不等式成立,需证明ln(1+1n )-1n +1n 2>0. 构造函数F (x )=ln(1+x )-x +x 2(0<x ≤1)所以F ′(x )=11+x -1+2x =x (2x +1)x +1. 当0<x ≤1时,F ′(x )>0,所以函数F (x )在(0,1]上单调递增.所以函数F (x )>F (0)=0,即F (x )>0.所以∀x ∈(0,1],ln(1+x )-x +x 2>0,即ln(1+x )>x -x 2.令x =1n(n ∈N *), 则有ln(1+1n )>1n -1n 2,即a n >b n . 9.解 (1)f ′(x )=12x 2+(a -2)x , f ′(1)=a -32. g ′(x )=2a x,g ′(1)=2a . 依题意有f ′(1)g ′(1)=-1,且f (1)=g (1),可得⎩⎨⎧ 2a (a -32)=-1,16+12(a -2)+b =0,解得a =1,b =13,或a =12,b =712. (2)F (x )=12x 2+(a -2)x -2a ln x . 不妨设x 1<x 2,F (x 2)-F (x 1)>a (x 2-x 1),等价于F (x 2)-ax 2>F (x 1)-ax 1.设G (x )=F (x )-ax ,则对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,都有F (x 2)-F (x 1)x 2-x 1>a , 等价于G (x )=F (x )-ax 在(0,+∞)上是增函数.G (x )=12x 2-2a ln x -2x , 可得G ′(x )=x -2a x-2 =x 2-2x -2a x, 依题意有,对任意x >0,有x 2-2x -2a ≥0恒成立.由2a ≤x 2-2x =(x -1)2-1,可得a ≤-12. 10.解 (1)因为焦距为2,所以a 2-b 2=1.又因为椭圆C 过点(1,22), 所以1a 2+12b2=1.故a 2=2,b 2=1. 所以椭圆C 的方程为x 22+y 2=1.(2)由题意可知,当直线AB 垂直于x 轴时,直线AB 的方程为x =-12, 此时P (-2,0),Q (2,0),得F 2P →·F 2Q →=-1.当直线AB 不垂直于x 轴时,设直线AB 的斜率为k (k ≠0),M (-12,m )(m ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧ x 212+y 21=1,x 222+y 22=1,得(x 1+x 2)+2(y 1+y 2)·y 1-y 2x 1-x 2=0,则-1+4mk =0, 故4mk =1.此时,直线PQ 的斜率为k 1=-4m ,直线PQ 的方程为y -m =-4m (x +12). 即y =-4mx -m .联立⎩⎪⎨⎪⎧y =-4mx -m ,x 22+y 2=1消去y , 整理得(32m 2+1)x 2+16m 2x +2m 2-2=0.设P (x 3,y 3),Q (x 4,y 4)所以x 3+x 4=-16m 232m 2+1,x 3x 4=2m 2-232m 2+1. 于是F 2P →·F 2Q →=(x 3-1)(x 4-1)+y 3y 4=x 3x 4-(x 3+x 4)+1+(4mx 3+m )·(4mx 4+m ) =(4m 2-1)(x 3+x 4)+(16m 2+1)x 3x 4+m 2+1=(4m 2-1)(-16m 2)32m 2+1+ (1+16m 2)(2m 2-2)32m 2+1+1+m 2=19m 2-132m 2+1. 由于M (-12,m )在椭圆的内部,故0<m 2<78, 令t =32m 2+1,1<t <29,则F 2P →·F 2Q →=1932-5132t. 又因为1<t <29,所以-1<F 2P →·F 2Q →<125232. 综上所述,F 2P →·F 2Q →的取值范围为(-1,125232).。
5.立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________.2.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半”. [问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________. 3.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式 S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积 S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( ) A .4π B .3π C .2πD.32π 4.空间直线的位置关系(1)相交直线——有且只有一个公共点.(2)平行直线——在同一平面内,没有公共点.(3)异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 5.空间的平行关系(1)线面平行:⎭⎪⎬⎪⎫a ∥b b ⊂αa ⊄α⇒a ∥α;⎭⎪⎬⎪⎫α∥βa ⊂β⇒a ∥α;⎭⎪⎬⎪⎫α⊥βa ⊥βa ⊄α⇒a ∥α;(2)面面平行:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O a ∥βb ∥β⇒α∥β;⎭⎪⎬⎪⎫a ⊥αa ⊥β⇒α∥β;⎭⎪⎬⎪⎫α∥βγ∥β⇒α∥γ; (3)线线平行:⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b ;⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ;⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b ;⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b . [问题5] 判断下列命题是否正确,正确的在括号内画“√”号,错误的画“×”号. ①如果a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面.( ) ②如果直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行.( ) ③如果直线a ,b 和平面α满足a ∥α,b ∥α,那么a ∥b .( ) ④如果直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,那么b ∥α.()6.空间的垂直关系(1)线面垂直:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O l ⊥a ,l ⊥b ⇒l ⊥α;⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂α,a ⊥l ⇒a ⊥β; ⎭⎪⎬⎪⎫α∥βa ⊥α⇒a ⊥β;⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α; (2)面面垂直:二面角90°;⎭⎪⎬⎪⎫a ⊂βa ⊥α⇒α⊥β;⎭⎪⎬⎪⎫a ∥βa ⊥α⇒α⊥β; (3)线线垂直:⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b . [问题6] 已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确命题的个数是( ) A .3 B .2 C .1 D .07.空间向量(1)用空间向量求角的方法步骤 ①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|.②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. ③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离: 可表示为d =|n ·AB →||n |.[问题7] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________.易错点1 三视图识图不准例1 某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23C .1D .2 错因分析 解本题易出现的错误有(1)还原空间几何体的形状时出错,不能正确判断其对应的几何体;(2)计算时不能准确把三视图中的数据转化为对应几何体中的线段长度,尤其侧视图中的数据处理很容易出错.解析 由三视图,可知该空间几何体是底面为直角三角形的直三棱柱,直角边长分别为1和2,三棱柱的高为2,则该几何体的体积为V =12×1×2×2=1.故选C. 答案 C易错点2 旋转体辨识不清例2 如图所示(单位:cm),求图中阴影部分绕AB 旋转一周所形成的几何体的体积. 错因分析 注意这里是旋转图中的阴影部分,不是旋转梯形ABCD .在旋转的时候边界形成一个圆台,并在上面挖去了一个“半球”,其体积应是圆台的体积减去半球的体积.解本题易出现的错误是误以为旋转的是梯形ABCD ,在计算时没有减掉半球的体积. 解 由题图中数据,根据圆台和球的体积公式,得 V 圆台=13×π(22+2×5+52)×4=52π(cm 3),V 半球=43π×23×12=163π(cm 3).所以旋转体的体积为V 圆台-V 半球=52π-163π=1403π(cm 3).易错点3 空间线面关系把握不准例3 设a ,b 为两条直线,α,β为两个平面,且a ⊄α,a ⊄β,则下列结论中不成立的是( ) A .若b ⊂β,a ∥b ,则a ∥β B .若a ⊥β,α⊥β,则a ∥α C .若a ⊥b ,b ⊥α,则a ∥α D .若α⊥β,a ⊥β,b ∥a ,则b ∥α错因分析 本题易出现的问题就是对空间点、线、面的位置关系把握不准,考虑问题不全面,不能准确把握题中的前提——a ⊄α,a ⊄β,对空间中的平行、垂直关系的判定和性质定理中的条件把握不准导致判断失误.如A 项中忽视已知条件中的a ⊄β,误以为该项错误等. 解析 对于选项A ,若有b ⊂β,a ∥b ,且已知a ⊄β,所以根据线面平行的判定定理可得a ∥β,故选项A 正确;对于选项B ,若a ⊥β,α⊥β,则根据空间线面位置关系可知a ⊂α或a ∥α,而由已知可知a ⊄α,所以有a ∥α,故选项B 正确;对于C 项,若a ⊥b ,b ⊥α,所以a ⊂α或a ∥α,而由已知可得a ⊄α,所以a ∥α,故选项C 正确;对于D 项,由a ⊥β,b ∥a 可得b ⊥β,又因为α⊥β,所以b ⊂α或b ∥α,故不能得到b ∥α,所以D 项错,故选D. 答案 D易错点4 混淆空间角与向量夹角例4 如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,且PD =AD =1,AB =2,点E 是AB 上一点,求AE 等于何值时,二面角P -EC -D 的平面角为π4.错因分析 本题易出错的地方是误以为两个平面的法向量所成的角的大小等于所求二面角的大小,在计算时对两个平面的法向量所成的角和二面角的关系判断错误,导致在平面的法向量方向不同时把锐二面角的余弦值算出个负值而出错.解 以D 为原点,射线DA ,DC ,DP 分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,如图所示,则A (1,0,0),B (1,2,0),C (0,2,0),P (0,0,1). 设E (1,y 0,0),则EC →=(-1,2-y 0,0), 设平面PEC 的一个法向量为n 1=(x ,y ,z ),所以⎩⎪⎨⎪⎧n 1·EC →=0,n 1·PC →=0⇒⎩⎪⎨⎪⎧-x +y (2-y 0)=0,2y -z =0⇒x ∶y ∶z=(2-y 0)∶1∶2, 记n 1=(2-y 0,1,2).而平面ECD 的一个法向量为n 2=(0,0,1), 则二面角P -EC -D 的平面角的余弦值 cos π4=|cos 〈n 1,n 2〉|=22,所以cos π4=|n 1·n 2||n 1|·|n 2|=2(2-y 0)2+12+22=22⇒y 0=2-3或y 0=2+3(舍去). 所以当AE =2-3时,二面角P -EC -D 的平面角为π4.1.(2015·浙江)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥βD .若α∥β,则l ∥m2.设m ,n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是( ) A .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件3.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3 D.403cm 34.如图,已知△ABC 为直角三角形,其中∠ACB =90°,M 为AB 的中点,PM 垂直于△ABC 所在平面,那么( ) A .P A =PB >PCB .P A =PB <PC C .P A =PB =PCD .P A ≠PB ≠PC5.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( ) A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45°6.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则过A 、M 、C 1三点的平面截该三棱柱所得截面的最小周长为______.7.对于四面体ABCD ,给出下列四个命题: ①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD . 其中正确的是________.(填序号)8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号)10.如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别为棱PB ,PC 的中点.(1)求证:平面PBC⊥平面P AC;(2)求AD与平面P AC所成角的余弦值.学生用书答案精析5.立体几何要点回扣 [问题1] 43[问题2] 2 2 [问题3] D [问题4] 相交[问题5] ①× ②× ③× ④√ [问题6] C [问题7] (1)64 (2)24解析 (1)方法一 取A 1C 1的中点E ,连接AE ,B 1E ,如图. 由题意知B 1E ⊥平面ACC 1A 1,则∠B 1AE 为AB 1与侧面ACC 1A 1所成的角. 设正三棱柱侧棱长与底面边长为1, 则sin ∠B 1AE =B 1E AB 1=322=64.方法二 如图,以A 1C 1中点E 为原点建立空间直角坐标系E -xyz ,设棱长为1, 则A ⎝⎛⎭⎫12,0,1,B 1⎝⎛⎭⎫0,32,0, 设AB 1与平面ACC 1A 1所成的角为θ,EB 1→为平面ACC 1A 1的法向量.则sin θ=|cos 〈AB 1→,EB 1→〉|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫-12,32,-1·⎝⎛⎭⎫0,32,02×32=64. (2)建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1.设平面ABC 1D 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0. 令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1), 又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n |=122=24. 查缺补漏1.A [选项A :∵l ⊥β,l ⊂α,∴α⊥β,A 正确;选项B :α⊥β,l ⊂α,m ⊂β,l 与m 位置关系不固定;选项C ,∵l ∥β,l ⊂α,∴α∥β或α与β相交.选项D :∵α∥β,l ⊂α,m ⊂β.此时,l 与m 位置关系不固定,故选A.]2.A [当m ⊂α时,若n ∥α可得m ∥n 或m ,n 异面;若m ∥n 可得n ∥α或n ⊂α,所以“n ∥α”是“m ∥n ”的既不充分也不必要条件,答案选A.]3.C [该几何体是棱长为2 cm 的正方体与一底面边长为2 cm 的正方形、高为2 cm 的正四棱锥组成的组合体,V =2×2×2+13×2×2×2=323cm 3.故选C.] 4.C [∵M 为AB 的中点,△ACB 为直角三角形,∴BM =AM =CM ,又PM ⊥平面ABC ,∴Rt △PMB ≌Rt △PMA ≌Rt △PMC ,故PA =PB =PC .]5.D [若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A ,所以∠PDA=45°,D正确.]6.32+14解析由图形可知,当AM+MC1最小时,所得截面的周长最小,如图所示把平面A1ABB1与平面C1CBB1展开成一个平面AA1C1C,则AM+MC1最短为AC1=32+32=32,所以截面的最小周长为32+(5)2+32=32+14.7.①④解析取线段BC的中点E,连接AE,DE,∵AB=AC,BD=CD,∴BC⊥AE,BC⊥DE,∴BC⊥平面ADE,∵AD⊂平面ADE,∴BC⊥AD,故①正确.设点O为点A在平面BCD上的射影,连接OB,OC,OD,∵AB⊥CD,AC⊥BD,∴OB⊥CD,OC⊥BD,∴点O为△BCD的垂心,∴OD⊥BC,∴BC⊥AD,故④正确,易知②③不正确,填①④.8.π3解析 由∠ABC =∠DCB =π2知, BA →与CD →的夹角θ就是二面角A -BC -D 的平面角.又AD →=AB →+BC →+CD →,∴AD →2=(AB →+BC →+CD →)2=AB →2+BC →2+CD →2+2AB →·CD →.因此2AB →·CD →=(23)2-12-32-22=-2,∴cos(π-θ)=-12,且0<π-θ<π, 则π-θ=23π,故θ=π3. 9.①④解析 对命题①,由l ⊥α,α∥β得,l ⊥β,m ⊂β,∴l ⊥m ,故①正确.对命题②,l ⊥m ⇏l ⊥β,则l ⊥m ⇏α∥β,故②错误.对命题③,当α⊥β时,l 与m 也可能相交或异面或平行,故③错误.对命题④,由l ⊥α,l ∥m 得m ⊥α,又m ⊂β,∴α⊥β,故④正确.10.(1)证明 如图所示,以A 为坐标原点,AC ,AP 所在直线分别为y 轴,z 轴,过点A 且平行于BC 的直线为x 轴,建立空间直角坐标系.设P A =2,由已知可得A (0,0,0),B (-1,3,0),C (0,3,0),P (0,0,2),D (-12,32,1),E (0,32,1). 因为AP →=(0,0,2),BC →=(1,0,0),所以AP →·BC →=0.,所以BC ⊥AP ,又∠BCA =90°,所以BC ⊥AC .因为AC ∩AP =A 且AC ⊂平面P AC ,AP ⊂平面P AC ,所以BC ⊥平面P AC .又BC ⊂平面PBC ,所以平面PBC ⊥平面P AC .(2)解 设AD 与平面P AC 所成的角为θ.由(1)知BC ⊥平面P AC ,所以平面P AC 的一个法向量为BC →=(1,0,0).又AD →=(-12,32,1), 所以 sin θ=|cos 〈AD →,BC →〉 |=|AD →·BC →||AD →|×|BC →|=122×1=24. 所以AD 与平面P AC 所成角的余弦值为cos θ=1-sin 2θ=144.。
1.集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[问题1]已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3 B.0或3C.1或 3 D.1或32.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=f(x)}——函数的定义域;{y|y=f(x)}——函数的值域;{(x,y)|y=f(x)}——函数图象上的点集.[问题2]集合A={x|x+y=1},B={(x,y)|x-y=1},则A∩B=________.3.遇到A∩B=∅时,你是否注意到“极端”情况:A=∅或B=∅;同样在应用条件A∪B=B⇔A∩B=A⇔A⊆B时,不要忽略A=∅的情况.[问题3]设集合A={x|x2-5x+6=0},集合B={x|mx-1=0},若A∩B=B,则实数m组成的集合是________________________________________.4.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.[问题4]满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.5.注重数形结合在集合问题中的应用,列举法常借助Venn图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[问题5]已知全集I=R,集合A={x|y=1-x},集合B={x|0≤x≤2},则(∁I A)∪B等于()A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)6.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即:非p ,只是否定命题p 的结论.[问题6] 已知实数a 、b ,若|a |+|b |=0,则a =b .该命题的否命题和命题的否定分别是________________________________________________________________________ ________________________________________________________________________.7.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .[问题7] 设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的________条件.8.要注意全称命题的否定是特称命题,特称命题的否定是全称命题.如对“a ,b 都是偶数”的否定应该是“a ,b 不都是偶数”,而不应该是“a ,b 都是奇数”.求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[问题8] 若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是________________.易错点1 忽视空集致误例1 设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R },若B ⊆A ,求实数a 的取值范围.错因分析 集合B 为方程x 2+2(a +1)x +a 2-1=0的实数根所构成的集合,由B ⊆A ,可知集合B 中的元素都在集合A 中,在解题中容易忽视方程无解,即B =∅的情况,导致漏解. 解 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧ Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当∅≠B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综上所述,所求实数a 的取值范围是a ≤-1或a =1.易错点2 忽视区间端点取舍例2 记f (x )= 2-x +3x +1的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B .若B ⊆A ,求实数a 的取值范围.错因分析 在求解含参数的集合间的包含关系时,忽视对区间端点的检验,导致参数范围扩大或缩小.解 ∵2-x +3x +1≥0,∴x -1x +1≥0. ∴x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞).由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a ,∴B =(2a ,a +1).∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥12或a ≤-2,而a <1, ∴12≤a <1或a ≤-2. 故当B ⊆A 时,实数a 的取值范围是(-∞,-2]∪[12,1). 易错点3 混淆充分条件和必要条件例3 若p :a ∈R ,|a |<1,q :关于x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一个根小于零,但不满足p ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件错因分析 解答本题易出现的错误是颠倒了充分条件和必要条件,把充分条件当成必要条件而致误.解析 p :a ∈R ,|a |<1⇔-1<a <1⇒a -2<0,可知满足q 的方程有两根,且两根异号,所以p 是q 的充分条件,但p 不是q 的必要条件,如当a =1时,q 中方程的一个根大于零,另一个根小于零,但不满足p .本题也可以把命题q 中所有满足条件的a 值求出来,再进行分析判断,实际上一元二次方程两根异号的充要条件是两根之积小于0,对于本题就是a -2<0,即a <2,故选A.答案 A易错点4 “或”“且”“非”理解不清例4 已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是( )A .(-12,-4)∪[4,+∞)B .[-12,-4]∪[4,+∞)C .(-∞,-12)∪(-4,4)D .[12,+∞)错因分析 当p 或q 为真命题时,p ,q 之间的真假关系判断错误.解析 命题p 等价于Δ=a 2-16≥0,解得a ≤-4或a ≥4;命题q 等价于-a 4≤3,解得a ≥-12.因为p 或q 是真命题,p 且q 是假命题,则命题p 和q 一真一假.当p 真q 假时,a <-12;当p 假q 真时,-4<a <4,故选C.答案 C1.已知集合A ={1,3,a },B ={1,a 2-a +1},若B ⊆A ,则实数a 为( )A .-1B .2C .-1或2D .1或-1或22.设全集U =R ,A ={x |x x -2<0},B ={x |2x <2},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}3.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≥2D .a >24.(2015·天津)设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知集合A ={x ∈R |x -4x +1≤0},B ={x ∈R |(x -2a )(x -a 2-1)<0},若A ∩B =∅,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞)C .{1}∪[2,+∞)D .(1,+∞)6.已知p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,q :y =(2a -1)x 为减函数,若p 且q 为真命题,则a 的取值范围是( )A .a ≤23B .0<a <12 C.12<a ≤23 D.12<a <1 7.已知集合A ={-1,m },B ={x |x >1},若A ∩B ≠∅,则实数m 的取值范围是________.8.设全集U ={(x ,y )|x ,y ∈R },集合M ={(x ,y )|y +2x -2=1},N ={(x ,y )|y ≠x -4},那么(∁U M )∩(∁U N )=______.9.已知条件p :x 2+2x -3>0,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则a 的取值范围为__________.10.给出如下四个结论:①若“p ∨q ”为真命题,则p ,q 均为真命题;②“若a >b ,则2a >2b -1”的否命题为“若a ≤b ,则2a ≤2b -1”;③“∀x ∈R ,x 2+x ≥1”的否定是“∃x 0∈R ,x 20+x 0≤1”;④“x >0”是“x +1x≥2”的充要条件. 其中正确的是________.学生用书答案精析第四篇 回归教材,纠错例析,帮你减少高考失分点1.集合与常用逻辑用语要点回扣[问题1] B[问题2] ∅[问题3] {0,12,13} [问题4] 7[问题5] C[问题6] 否命题:已知实数a 、b ,若|a |+|b |≠0,则a ≠b ;1命题的否定:已知实数a 、b ,若|a |+|b |=0,则a ≠b[问题7] 充分不必要[问题8] (-∞,-1)∪⎝⎛⎭⎫23,+∞ 解析 不等式即(x 2+x )a -2x -2>0,设f (a )=(x 2+x )a -2x -2.研究“任意a ∈[1,3],恒有f (a )≤0”.则⎩⎪⎨⎪⎧f (1)≤0,f (3)≤0,解得x ∈⎣⎡⎦⎤-1,23. 则实数x 的取值范围是(-∞,-1)∪⎝⎛⎭⎫23,+∞.查缺补漏1.C [因为B ⊆A ,所以a 2-a +1=3或a 2-a +1=a .若a 2-a +1=3,即a 2-a -2=0,解得a =-1或a =2.当a =-1时,A ={1,3,-1},B ={1,3},满足题意;当a =2时,A ={1,3,2},B ={1,3},满足题意.若a 2-a +1=a ,即a 2-2a +1=0,解得a =1,此时集合A 中有重复元素1,舍去.由以上,可知a =-1或a =2.故选C.]2.B [A ={x |0<x <2},B ={ x | x <1},由题图可知阴影部分表示的集合为(∁U B)∩A ={ x |1≤x <2}.]3.C [∵B ={ x |1< x <2},∴∁R B ={x |x ≤1,或x ≥2},又∵A ={x |x <a },且A ∪(∁R B )=R ,利用数轴易知应有a ≥2,故选C.]4.A [由| x -2|<1得,1<x <3,由x 2+x -2>0,得x <-2或x >1,而1<x <3⇒x <-2或x >1,而x <-2或x >1⇏1<x <3,所以,“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,选A.]5.C [由x -4x +1≤0,得A ={x ∈R |-1<x ≤4},B ={x ∈R |(x -2a )(x -a 2-1)<0}={x ∈R |2a <x <a 2+1}.若B ≠∅,则在数轴上可以看出2a ≥4,所以a ≥2;若B =∅,只能a =1,综上选C.]6.C [p ⇔a ∈⎝⎛⎦⎤-∞,23,q ⇔a ∈⎝⎛⎭⎫12,1, ∴a ∈⎝⎛⎦⎤12,23.]7.(1,+∞)解析 因为A ∩B ≠∅且-1∉B ,所以必有m ∈B ,所以m >1.8.{(2,-2)}解析 由题意,知M ={(x ,y )|y =x -4(x ≠2)},M 表示直线y =x -4上的点集,但是除掉点(2,-2),∁U M 表示直线y =x -4外的点集,且包含点(2,-2);N 表示直线y =x -4外的点集,∁U N 表示直线y =x -4上的点集,所以(∁U M )∩(∁U N )={(2,-2)}.9.[1,+∞)解析由x2+2x-3>0可得x>1或x<-3,“綈p是綈q的充分不必要条件”等价于“q是p 的充分不必要条件”,故a≥1.10.②④解析①若“p∨q”为真命题,则p,q不一定都是真命题,所以①不正确;②“若a>b,则2a>2b-1”否命题为“若a≤b,则2a≤2b-1”,所以②正确;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x20+x0<1”,所以③不正确;④“x>0”是“x+1x≥2”的充要条件,所以④正确.。
第2讲 不等式与线性规划1.(2014·大纲全国)不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}2.(2015·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A .4 B.235 C .6 D.3153.(2015·浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cxD .ay +bx +cz4.(2015·重庆)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点;2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数取值范围;3.利用不等式解决实际问题.热点一 不等式的解法1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. 2.简单分式不等式的解法 (1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解. 例1 (1)(2015·广东)不等式-x 2-3x +4>0的解集为________(用区间表示).(2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-2<x <2} C .{x |x <0或x >4}D .{x |0<x <4}思维升华 (1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论.跟踪演练1 (1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.热点二 基本不等式的应用利用基本不等式求最大值、最小值,其基本法则是:(1)如果x >0,y >0,xy =p (定值),当x =y 时,x +y 有最小值2p (简记为:积定,和有最小值);(2)如果x >0,y >0,x +y =s (定值),当x =y 时,xy 有最大值14s 2(简记为:和定,积有最大值).例2 (1)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( )A.53B.83C .8D .24(2)已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52思维升华 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.跟踪演练2 (1)(2015·天津)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.(2)若直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值是________________________________________________________________________.热点三 简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3 (1)(2015·北京)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32D .2(2)(2014·安徽)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1思维升华 (1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.跟踪演练3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,y ≤-x +2,x ≥a ,且目标函数z =2x +y 的最小值为9,则实数a 的值是( )A .1B .2C .3D .71.若点A (a ,b )在第一象限,且在直线x +2y =1上,则ab 的最大值为( ) A .1 B.12 C.14D.182.已知函数f (x )=⎩⎪⎨⎪⎧x +3x -2 (x >2),log 2(2-x ) (x <2),则不等式f (x )≤4的解集为________.3.已知O 是坐标原点,点M (x ,y ),且实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≥0,y ≤2,x ≤2,则|OM →|的最小值为________.4.已知不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立,则a 的取值范围是________.提醒:完成作业 专题一 第2讲二轮专题强化练专题一第2讲 不等式与线性规划A 组 专题通关1.(2015·成都外国语学校10月月考)若a >b >0,c >d >0,则一定有( ) A.a c >b d B.a c <b d C.a d <b c D.a d >b c2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)3.(2015·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a 等于( )A .3B .2C .-2D .-34.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A.3-1 B.3+1 C .23+2 D .23-25.已知二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ),f ′(0)>0,且f (x )的值域为[0,+∞),则f (1)f ′(0)的最小值为( ) A .3 B.52 C .2 D.326.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,(13)x ,x ≤0,那么不等式f (x )≥1的解集为________________.7.(2015·绵阳市一诊)某商场销售某种商品的经验表明,该产品生产总成本C 与产量q (q ∈N *)的函数关系式为C =100-4q ,销售单价p 与产量q 的函数关系式为p =25-116q .要使每件产品的平均利润最大,则产量q =________.8.(2015·资阳市测试)若两个正实数x ,y 满足2x +1y =1,且x +2y >m 2+2m 恒成立,则实数m的取值范围是________.9.设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a)(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.B 组 能力提高10.(2015·陕西)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .q =r >p C .p =r <qD .p =r >q11.(2015·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x +y 的最大值为( )A .7B .8C .9D .1412.已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是__________________________________________________.13.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数. (1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时).学生用书答案精析第2讲 不等式与线性规划高考真题体验1.C [由⎩⎪⎨⎪⎧ x (x +2)>0,|x |<1,得⎩⎪⎨⎪⎧x >0或x <-2,-1<x <1,所以0<x <1,所以原不等式组的解集为 {x |0<x <1},故选C.]2.B [不等式组所表示的可行域如下图所示,由z =3x +2y 得y =-32x +z 2,依题当目标函数直线l :y =-32x +z2经过A ⎝⎛⎭⎫1,45时,z 取得最小值即z min =3×1+2×45=235,故选B.] 3.B [令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14; B 项:az +by +cx =3+4+3=10; C 项:ay +bz +cx =2+6+3=11; D 项:ay +bx +cz =2+2+9=13.故选B.] 4.3 2解析 ∵a ,b >0,a +b =5,∴(a +1+b +3)2=a +b +4+2a +1b +3≤a +b +4+(a +1)2+(b +3)2=a +b +4+a +b +4=18,当且仅当a =72,b =32时,等号成立,则a +1+b +3≤32,即a +1+b +3最大值为3 2.热点分类突破 例1 (1)(-4,1) (2)C解析 (1)不等式-x 2-3x +4>0,即x 2+3x -4<0,解得-4<x <1. (2)由题意可知f (-x )=f (x ).即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立, 故2a -b =0,即b =2a ,则f (x )=a (x -2)·(x +2). 又函数在(0,+∞)单调递增,所以a >0. f (2-x )>0即ax (x -4)>0,解得x <0或x >4. 故选C.跟踪演练1 (1)52(2)(-1,2-1)解析 (1)由x 2-2ax -8a 2<0,得(x +2a )·(x -4a )<0,因为a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.(2)当x ≥0时,f (x )=x 2+1是增函数; 当x <0时f (x )=1,因此由题设f (1-x 2)>f (2x )得,⎩⎨⎧ 1-x 2>02x <0或⎩⎨⎧1-x 2>2x ,2x ≥0. 解得-1<x <0或0≤x <2-1.故所求实数x 的取值范围是(-1,2-1). 例2 (1)C (2)B解析 (1)∵a ∥b ,∴3(y -1)+2x =0, 即2x +3y =3. ∵x >0,y >0,∴3x +2y =(3x +2y )·13(2x +3y ) =13(6+6+9y x +4x y )≥13(12+2×6)=8. 当且仅当3y =2x 时取等号. (2)2x +2x -a =2(x -a )+2x -a +2a≥2·2(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B.跟踪演练2 (1)4 (2)4解析 (1)log 2a ·log 2(2b )=log 2a ·(1+log 2b ) ≤⎝⎛⎭⎪⎫log 2a +1+log 2b 22=⎝ ⎛⎭⎪⎫log 2ab +122=⎝ ⎛⎭⎪⎫log 28+122=4,当且仅当log 2a =1+log 2b ,即a =2b 时,等号成立,此时a =4,b =2.(2)易知圆x 2+y 2+2x -4y +1=0的半径为2,圆心为(-1,2),因为直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,所以直线2ax -by +2=0(a >0,b >0)过圆心,把圆心坐标代入得:a +b =1,所以1a +1b =(1a +1b )·(a +b )=2+b a +a b ≥4,当且仅当b a =ab ,a +b=1,即a =b =12时等号成立.例3 (1)D (2)D解析 (1)可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x+12z 过点A (0,1)时,z 取得最大值2. (2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.跟踪演练3 C [依题意,不等式组所表示的可行域如图所示(阴影部分),观察图象可知,当目标函数z =2x +y 过点B (a ,a )时,z min =2a +a =3a ;因为目标函数z =2x +y 的最小值为9,所以3a =9,解得a =3,故选C .]高考押题精练1.D [因为点A (a ,b )在第一象限,且在直线x +2y =1上, 所以a >0,b >0,且a +2b =1, 所以ab =12·a ·2b ≤12·(a +2b 2)2=18,当且仅当a =2b =12,即a =12,b =14时,“=”成立.故选D.]2.{x |-14≤x <2或x ≥113}解析 由题意得⎩⎪⎨⎪⎧x >2,x +3x -2≤4或⎩⎪⎨⎪⎧x <2,log 2(2-x )≤4, 解得x ≥113或-14≤x <2,故不等式f (x )≤4的解集为{x |-14≤x <2或x ≥113}.3. 2解析 依题意得|OM →|=x 2+y 2可视为点M (x ,y )到原点O (0,0)的距离.在坐标平面内画出不等式组所表示的平面区域(如图所示阴影部分及边界).结合图形可知,在该平面区域内,点O (0,0)到直线x +y -2=0的距离即点M (x ,y )与原点O (0,0)之间距离的最小值,因此|OM →|的最小值是|0+0-2|2= 2. 4.[-1,2] 解析 设y =2x -1,y ′=-2(x -1)2, 故y =2x -1在x ∈[2,6]上单调递减, 即y min =26-1=25, 故不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立等价于15|a 2-a |≤25恒成立, 化简得⎩⎪⎨⎪⎧a 2-a -2≤0,a 2-a +2≥0,解得-1≤a ≤2, 故a 的取值范围是[-1,2].二轮专题强化练答案精析第2讲 不等式与线性规划1.D [∵c >d >0,∴1d >1c>0, 又∵a >b >0,∴a d >b c.] 2.C [根据题意,由于不等式x 2+x <a b +b a 对任意a ,b ∈(0,+∞)恒成立,则x 2+x <(a b +b a)min , ∵a b +b a ≥2a b ·b a=2, ∴x 2+x <2,求解此一元二次不等式可知其解集为(-2,1).]3.B [不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1).由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值,∴2a =4,∴a =2,排除A ,故选B.]4.D [由a (a +b +c )+bc =4-23,得(a +b )(a +c )=4-23,又a ,b ,c >0,所以2a +b +c =(a +b )+(a +c )≥2(a +b )(a +c )=24-23=2(3-1),当且仅当a +b =a +c 时取等号.故选D.]5.C [f ′(x )=2ax +b ,f ′(0)=b >0,函数f (x )的值域为[0,+∞),所以a >0,且b 2-4ac =0,即4ac =b 2,所以c >0.又f (1)=a +b +c ,所以f (1)f ′(0)=a +b +c b =1+a +c b ≥1+2ac b =1+4ac b =1+1=2(当且仅当b =2a =2c 时取等号),所以f (1)f ′(0)的最小值为2,故选C.] 6.(-∞,0]∪[3,+∞)解析 当x >0时,由log 3x ≥1可得x ≥3,当x ≤0时,由(13)x ≥1可得x ≤0, ∴不等式f (x )≥1的解集为(-∞,0]∪[3,+∞).7.40解析 每件产品的利润y =25-116q -100-4q q =29-(q 16+100q)≤29-2q 16·100q =24, 当且仅当q 16=100q且q >0,即q =40时取等号. 8.(-4,2)解析 ∵x +2y =(x +2y )(2x +1y )=4+x y +4y x≥4+2x y ·4y x =8,∴(x +2y )min =8, 令m 2+2m <8,得-4<m <2.9.解 (1)由-x 2-2x +8>0得-4<x <2,即A =(-4,2). y =x +1x +1=(x +1)+1x +1-1, 当x +1>0,即x >-1时y ≥2-1=1,此时x =0,符合要求;当x +1<0,即x <-1时,y ≤-2-1=-3,此时x =-2,符合要求.所以B =(-∞,-3]∪[1,+∞),所以A ∩B =(-4,-3]∪[1,2).(2)∁R A ={x |x ≤-4或x ≥2}.(ax -1a )(x +4)=0有两根x =-4或x =1a 2. 当a >0时,C ={x |-4≤x ≤1a 2},不可能C ⊆∁R A ; 当a <0时,C ={x |x ≤-4或x ≥1a 2}, 若C ⊆∁R A ,则1a 2≥2,∴a 2≤12, ∴-22≤a <0.故a 的取值范围为[-22,0). 10.C [∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln a +12ln b =ln(ab )12=f (ab )=p .故p =r <q .选C.]11.C [作出约束条件对应的可行域,如图中阴影部分,作直线l :3x +y =0,平移直线l 可知,经过点A 时,z =3x +y 取得最大值,由⎩⎪⎨⎪⎧x -2=0,x +2y -8=0,得A (2,3), 故z max =3×2+3=9.选C.]12.(-∞,376] 解析 要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),即a ≤(x +y )+1x +y 恒成立.由x +y +3=xy ,得x +y +3=xy ≤(x +y 2)2, 即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y=t +1t . 设f (t )=t +1t ,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是(-∞,376]. 13.解 (1)由题意:当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,显然v (x )=ax +b 在[20,200]上是减函数,由已知得⎩⎪⎨⎪⎧ 200a +b =0,20a +b =60,解得⎩⎨⎧ a =-13,b =2003,故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60x , (0≤x <20),13(200-x ), (20≤x ≤200).(2)依题意并由(1)可得 f (x )=⎩⎪⎨⎪⎧ 60x (0≤x <20),13x (200-x )(20≤x ≤200),当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20≤x ≤200时,f (x )=13x (200-x )≤13[x +(200-x )2]2=10 0003,当且仅当x =200-x ,即x =100时,等号成立,所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约3 333辆/小时.。
第2讲 椭圆、双曲线、抛物线1.(2015·福建)若双曲线E :x 29-y 216=1的左,右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .32.(2014·课标全国Ⅰ)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |等于( )A.72B.52C .3D .2 3.(2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,14.(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一 圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|);(2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|);(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M .2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4,则∠F 1PF 2等于( )A .30°B .60°C .120°D .150°(2)(2015·丰台模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点坐标为(2,0),则双曲线的方程为( )A.x 22-y 26=1 B.x 26-y 22=1 C .x 2-y 23=1 D.x 23-y 2=1 思维升华 (1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练1 (1)(2014·大纲全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 (2)(2014·江西)过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1热点二 圆锥曲线的几何性质1.椭圆、双曲线中,a ,b ,c 之间的关系(1)在椭圆中:a 2=b 2+c 2,离心率为e =c a= 1-(b a )2; (2)在双曲线中:c 2=a 2+b 2,离心率为e =c a =1+(b a)2. 2.双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为 y =±b ax .注意离心率e 与渐近线的斜率的关系. 例2 (1)椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.(2)(2015·西北工业大学附中四模)已知双曲线x 2a 2-y 2b2=1的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x 思维升华 (1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.跟踪演练2 (1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33(2)(2015·重庆)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞)热点三直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数.例3(2015·福建)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.思维升华 解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.跟踪演练3 (1)(2015·四川)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( ) A.433B .2 3C .6D .4 3(2)(2015·南开中学月考)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=11.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线上有两点A ,B ,若直线l 的方程为x +2y -2=0,且AB ⊥l ,则椭圆x 2a 2+y 2b2=1的离心率为( ) A.14 B.12 C.22 D.322.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点(1,32)在该椭圆上. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.提醒:完成作业专题六第2讲二轮专题强化练专题六第2讲 椭圆、双曲线、抛物线A 组 专题通关1.(2015·陕西)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)2.(2015·广东)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1 B.x 29-y 216=1 C.x 216-y 29=1 D.x 23-y 24=1 3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A 、B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( ) A.35 B.57 C.45 D.674.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833y B .x 2=1633y C .x 2=8y D .x 2=16y5.(2014·课标全国Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.946.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为________.7.已知点P (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,线段PF 与抛物线C 的交点为M ,过M 作抛物线准线的垂线,垂足为Q ,若∠PQF =90°,则p =________.8.(2015·黄冈模拟)已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点的坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值为______.9.(2015·威海模拟)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12. (1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.10.如图所示,抛物线y 2=4x 的焦点为F ,动点T (-1,m ),过F 作TF 的垂线交抛物线于P ,Q 两点,弦PQ 的中点为N .(1)证明:线段NT 平行于x 轴(或在x 轴上);(2)若m >0且|NF |=|TF |,求m 的值及点N 的坐标.B 组 能力提高11.(2014·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.4312.已知圆x 2+y 2=a 216上点E 处的一条切线l 过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F ,且与双曲线的右支交于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是____________. 13.已知抛物线y 2=4x 的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且与双曲线交于A ,B 两点,O 为坐标原点,且△AOB 的面积为32,则双曲线的离心率为 ______________.14.已知椭圆C 的长轴左、右顶点分别为A ,B ,离心率e =22,右焦点为F ,且AF →·BF →=-1.(1)求椭圆C 的标准方程;(2)若P 是椭圆C 上的一动点,点P 关于坐标原点的对称点为Q ,点P 在x 轴上的射影点为M ,连接QM 并延长交椭圆于点N ,求证:∠QPN =90°.学生用书答案精析第2讲 椭圆、双曲线、抛物线高考真题体验1.B [由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3, ∴|PF 2|-|PF 1|=6, ∴|PF 2|=9,故选B.]2.C [∵FP →=4FQ →,∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′, 设l 与x 轴的交点为A , 则|AF |=4, ∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C.]3.A [如图,设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca=c 2a 2= a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32,故选A.] 4.x 2+32y 2=1解析 设点B 的坐标为(x 0,y 0). ∵x 2+y 2b2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →, ∴(-21-b 2,-b 2) =3(x 0+1-b 2,y 0). ∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b 23. 将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y2b 2=1, 得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.热点分类突破 例1 (1)C (2)C解析 (1)由题意得a =3,c =7, 所以|PF 1|=2.在△F 2PF 1中,由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12.又因为cos ∠F 2PF 1∈(0°,180°), 所以∠F 2PF 1=120°.(2)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,故可知ba =3,又∵焦点坐标为(2,0), ∴c =a 2+b 2=2,解得a =1,b = 3. ∴双曲线方程为x 2-y 23=1.跟踪演练1 (1)A (2)A 解析 (1)由e =33得c a =33.① 又△AF 1B 的周长为43,由椭圆定义,得4a =43,得a =3, 代入①得c =1,∴b 2=a 2-c 2=2, 故C 的方程为x 23+y 22=1.(2)由⎩⎪⎨⎪⎧x =a ,y =-ba x ,得⎩⎪⎨⎪⎧x =a ,y =-b , ∴A (a ,-b ).由题意知右焦点到原点的距离为c =4, ∴(a -4)2+(-b )2=4,即(a -4)2+b 2=16.而a 2+b 2=16,∴a =2,b =2 3. ∴双曲线C 的方程为x 24-y 212=1.例2 (1)3-1 (2)C解析 (1)直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c2a =2cc +3c=3-1.(2)由题意作出示意图,易得直线BC 的斜率为a b ,cos ∠CF 1F 2=bc ,又由双曲线的定义及|BC |=|CF 2|可得 |CF 1|-|CF 2|=|BF 1|=2a , |BF 2|-|BF 1|=2a ⇒|BF 2|=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a 22×2a ×2c⇒b 2-2ab -2a 2=0⇒(b a )2-2(b a )-2=0⇒ba =1+3,故双曲线的渐近线方程为y =±(3+1)x . 跟踪演练2 (1)D (2)A解析 (1)因为PF 2⊥F 1F 2,∠PF 1F 2=30°, 所以|PF 2|=2c ·tan 30°=233c ,|PF 1|=433c .又|PF 1|+|PF 2|=633c =2a ,所以c a =13=33, 即椭圆C 的离心率为33. (2)由题作出图象如图所示.由x 2a 2-y2b 2=1可知A (a,0),F (c,0). 易得B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b 2a . ∵k AB =b 2ac -a =b 2a (c -a ),∴k CD =a (a -c )b 2.∵k AC =b 2aa -c =b 2a (a -c ),∴k BD =-a (a -c )b 2.∴l BD :y -b 2a =-a (a -c )b 2(x -c ),即y =-a (a -c )b 2x +ac (a -c )b 2+b 2a ,l CD :y +b 2a =a (a -c )b 2(x -c ),即y =a (a -c )b 2x -ac (a -c )b 2-b 2a.∴x D =c +b4a 2(a -c ).∴点D 到BC 的距离为⎪⎪⎪⎪⎪⎪b 4a 2(a -c ).∴b 4a 2(c -a )<a +a 2+b 2=a +c , ∴b 4<a 2(c 2-a 2)=a 2b 2, ∴a 2>b 2,∴0<b 2a2<1.∴0<b a <1或-1<b a<0.例3 方法一 (1)解 由抛物线的定义得 |AF |=2+p 2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2.又G (-1,0), 故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0. 所以点F 到直线GB 的距离 d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切. 跟踪演练3 (1)D (2)D解析 (1)由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以|AB |=4 3.(2)设A (x 1,y 1),B (x 2,y 2),代入椭圆的方程有,x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, 两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0.∵线段AB 的中点坐标为(1,-1), ∴x 1+x 2=2,y 1+y 2=-2代入上式得: y 1-y 2x 1-x 2=b 2a2. ∵直线AB 的斜率为0+13-1=12,∴b 2a 2=12⇒a 2=2b 2, ∵右焦点为F (3,0), ∴a 2-b 2=c 2=9, 解得a 2=18,b 2=9, 又此时点(1,-1)在椭圆内, ∴椭圆方程为x 218+y 29=1.高考押题精练1.C [由条件可知直线l 的斜率为-22,又AB ⊥l ,可知直线AB 的斜率为2,故ab=2,故a 2b 2=2,由此可知a >b >0,则椭圆的焦点在x 轴上,设椭圆的焦距为2c ,则a 2a 2-c 2=2,解得椭圆的离心率为c a =22.]2.解 (1)由题意可得e =c a =12,又a 2=b 2+c 2,所以b 2=34a 2.因为椭圆C 经过点(1,32),所以1a 2+9434a 2=1,解得a =2,所以b 2=3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,x 24+y 23=1消去x , 得(4+3t 2)y 2-6ty -9=0, 显然Δ>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=36t 2(4+3t 2)2+364+3t 2=12t 2+14+3t 2,所以S △AOB =12·|F 1O |·|y 1-y 2|=6t 2+14+3t 2=627,化简得18t 4-t 2-17=0, 即(18t 2+17)(t 2-1)=0, 解得t 21=1,t 22=-1718(舍去), 又圆O 的半径r =|0-t ×0+1|1+t 2=11+t 2,所以r =22, 故圆O 的方程为x 2+y 2=12.二轮专题强化练答案精析第2讲 椭圆、双曲线、抛物线1.B [由于抛物线y 2=2px (p >0)的准线方程为x =-p 2,由题意得-p2=-1,p =2,焦点坐标为()1,0,故选B.]2.C [因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选C.]3.B [如图,设|AF |=x , 则cos ∠ABF =82+102-x 22×8×10=45.解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知|AF 1|=8,且∠F AF 1=∠F AB +∠FBA =90°,△F AF 1是直角三角形,∴|F 1F |=10,故2a =8+6=14,2c =10,∴c a =57,故选B.]4.D [∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴c a=a 2+b 2a=2,∴b =3a , ∴双曲线的渐近线方程为3x ±y =0,∴抛物线C 2:x 2=2py (p >0)的焦点⎝⎛⎭⎫0,p2到双曲线的渐近线的距离为⎪⎪⎪⎪3×0±p 22=2,∴p =8.∴所求的抛物线方程为x 2=16y .] 5.D [由已知得焦点坐标为F (34,0),因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立抛物线方程化简得 4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94.方法二 联立方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94.]6.7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7. 7. 2解析 由抛物线的定义可得|MQ |=|MF |,F (p2,0),又PQ ⊥QF ,故M 为线段PF 的中点,所以M (p 4,1),把M (p 4,1),代入抛物线y 2=2px (p >0)得,1=2p ×p 4,解得p =2,故答案为 2. 8. 3解析 由|AM →|=1,A (3,0),知点M 在以A (3,0)为圆心,1为半径的圆上运动,∵PM →·AM →=0且P 在椭圆上运动,∴PM ⊥AM ,即PM 为⊙A 的切线,连接P A (如图),则|PM →|=|P A →|2-|AM →|2=|P A →|2-1,∴|P A →|min =a -c =5-3=2时,|PM →|min =3.9.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >0,b >0), 因为c =1,c a =12, 所以a =2,b =3,所以椭圆方程为x 24+y 23=1. (2)由题意得直线l 的斜率存在,设直线l 的方程为y =kx +1,联立方程⎩⎪⎨⎪⎧ y =kx +1,x 24+y 23=1,得(3+4k 2)x 2+8kx -8=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),由AM →=2MB →,得x 1=-2x 2,又⎩⎪⎨⎪⎧ x 1+x 2=-8k3+4k 2,x 1·x 2=-83+4k 2, 所以⎩⎪⎨⎪⎧ -x 2=-8k 3+4k 2,-2x 22=-83+4k 2,消去x 2得(8k 3+4k 2)2=43+4k 2,解得k 2=14,k =±12, 所以直线l 的方程为y =±12x +1, 即x -2y +2=0或x +2y -2=0.10.(1)证明 易知抛物线的焦点F (1,0),准线x =-1,动点T (-1,m )在准线上,则k TF =-m 2. 当m =0时,T 为抛物线准线与x 轴的交点,这时PQ 为抛物线的通径,点N 与焦点F 重合,显然线段NT 在x 轴上.当m ≠0时,由条件知k PQ =2m ,所以直线PQ 的方程为y =2m (x -1),联立⎩⎪⎨⎪⎧y 2=4x ,y =2m (x -1),得x 2-(2+m 2)x +1=0,又Δ=[-(2+m 2)]2-4=m 2(4+m 2)>0,设P (x 1,y 1),Q (x 2,y 2),可知x 1+x 2=2+m 2,y 1+y 2=2m(x 1+x 2-2)=2m .所以弦PQ 的中点N (2+m 22,m ),又T (-1,m ),知k NT =0,则NT 平行于x 轴. 综上可知线段NT 平行于x 轴(或在x 轴上).(2)解 已知|NF |=|TF |,在△TFN 中,tan ∠NTF =|NF ||TF |=1⇒∠NTF =45°,设A 是准线与x 轴的交点,则△TF A 是等腰直角三角形,所以|TA |=|AF |=2,又动点T (-1,m ),其中m >0,则m =2.因为∠NTF =45°,所以k PQ =tan 45°=1,又焦点F (1,0),可得直线PQ 的方程为y =x -1,由m =2得T (-1,2),由(1)知线段NT 平行于x 轴,设N (x 0,y 0),则y 0=2,代入y =x -1,得x 0=3,所以N (3,2).11.D [抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p 2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0),①由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12.因为切点在第一象限,所以k =12.将k =12代入①中,得y =8,再代入y 2=8x 中得x =8,所以点B 的坐标为(8,8),所以直线BF 的斜率为43.] 12.264解析 如图所示,设双曲线的右焦点为H ,连接PH , 由题意可知|OE |=a4,由OE →=12(OF →+OP →),可知E 为FP 的中点.由双曲线的性质,可知O 为FH 的中点,所以OE ∥PH ,且|OE |=12|PH |,故|PH |=2|OE |=a2.由双曲线的定义,可知|PF |-|PH |=2a (P 在双曲线的右支上), 所以|PF |=2a +|PH |=5a2.因为直线l 与圆相切,所以PF ⊥OE .又OE ∥PH ,所以PF ⊥PH .在Rt △PFH 中,|FH |2=|PH |2+|PF |2,即(2c )2=(a 2)2+(5a2)2, 整理得c a =264,即e =264.13.2解析 抛物线y 2=4x 的准线方程为x =-1,由题意知,双曲线的左焦点坐标为(-1,0),即c =1,且A (-c ,b 2a ),B (-c ,-b 2a), 因为△AOB 的面积为32, 所以12×2×b 2a ×1=32, 即b 2a =32, 所以,1-a 2a =32, 解得a =12,∴e =c a =112=2. 14.(1)解 依题意,设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), 则A (-a,0),B (a,0),F (c,0),由e =c a =22, 得a =2c .①由AF →·BF →=-1,得(c +a,0)·(c -a,0)=c 2-a 2=-1.② 联立①②,解得a =2,c =1, 所以b 2=1,故椭圆C 的方程为x 22+y 2=1. (2)证明 设P (x 1,y 1),N (x 2,y 2), 由题意知x i ≠0,y i ≠0(i =1,2), 且x 1≠x 2,又Q (-x 1,-y 1),M (x 1,0). 由Q ,M ,N 三点共线,知k QM =k QN ,所以y 12x 1=y 2+y 1x 2+x 1.③ 又k PQ k PN +1=y 1x 1·y 2-y 1x 2-x 1+1.④ 把③代入④,得k PQ k PN +1=2(y 2+y 1)x 2+x 1·y 2-y 1x 2-x 1+1=(x 22+2y 22)-(x 21+2y 21)x 22-x 21.⑤ 因为点P ,N 在椭圆上,所以x 21+2y 21=2,x 22+2y 22=2,⑥把⑥代入⑤,得k PQ k PN +1=2-2x 22-x 21=0, 即k PQ k PN =-1,所以∠QPN =90°.。
第3讲 圆锥曲线的综合问题1.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 22.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1(2014·北京)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.思维升华 解决范围问题的常用方法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后,数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值.热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.思维升华 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.跟踪演练2 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.热点三探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.2.反证法与验证法也是求解存在性问题常用的方法.例3如图,抛物线C:y2=2px的焦点为F,抛物线上一定点Q(1,2).(1)求抛物线C的方程及准线l的方程;(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3成立,若存在λ,求出λ的值;若不存在,说明理由.思维升华 解决探索性问题的注意事项:存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2015·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.提醒:完成作业 专题六 第3讲二轮专题强化练专题六第3讲 圆锥曲线的综合问题A 组 专题通关1.(2015·北京西城区期末)若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( )A .a 2>b 2B.1a <1b C .0<a <b D .0<b <a2.已知椭圆x 24+y 2b 2=1(0<b <2)的左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3 3.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .164.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .86.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为_______________________________________________________________.7.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.9.已知抛物线x 2=2py (p >0),过点M (0,m )的直线l 与抛物线交于A ,B 两点,又过A ,B 两点分别作抛物线的切线,两条切线相交于点P .(1)求证:两条切线的斜率之积为定值;(2)当p =m =4时,求△P AB 面积的最小值.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C相交于A,B两点,O为坐标原点.(1)求椭圆C的方程;(2)若B点关于x轴的对称点是N,证明:直线AN恒过一定点.B 组 能力提高11.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.12.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为________. 13.已知P 、Q 、M 、N 四点都在以中心为坐标原点,离心率为22,左焦点为F (-1,0)的椭圆C 上,已知PF →与FQ →共线,MF →与FN →共线,PF →·MF →=0.(1)求椭圆C 的方程;(2)试用直线PQ 的斜率k (k ≠0)表示四边形PMQN 的面积S ,并求S 的最小值.学生用书答案精析第3讲 圆锥曲线的综合问题高考真题体验1.D[如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0,解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62,故选D.]2.(1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2,所以椭圆的方程为x 22+y 2=1. (2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1, 得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2 =2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2. 热点分类突破例1 解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0. 又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4 =x 20+4-x 202+2(4-x 20)x 20+4 =x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.跟踪演练1 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b2=1,又a 2=b 2+c 2,∴a 2=4,b 2=3,∴椭圆标准方程为x 24+y 23=1. (2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2,=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程, 整理,得(3+4k 2)y 2+6ky -9k 2=0,Δ>0,y 1+y 2=-6k 3+4k 2,y 1·y 2=-9k 23+4k 2. =12·|F 1F 2|·|y 1-y 2|=12k 2+k 4(3+4k 2)2, 令t =3+4k 2,∴t >3,k 2=t -34, ∴=3-3(1t +13)2+43, ∵0<1t <13, ∴∈(0,3),∴当直线PQ 与x 轴垂直时最大,且最大面积为3.设△PF 1Q 内切圆半径为r ,则=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3. 即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大, ∴PF 2→=F 2Q →,∴λ=1.例2 解 (1)设椭圆方程为x 2a 2+y 2b2=1 (a >b >0), 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c 2=1. 又由题意知(2+c )2+12=10,解得c 2=1,故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1. (2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0. 则⎩⎪⎨⎪⎧ Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k 2.①又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2,∴(x 1-2)(x 2-2)+y 1y 2=0,∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0, ∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7, 由①,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝⎛⎭⎫27,0.跟踪演练2 (1)解 设椭圆的半焦距为c ,圆心O 到直线l 的距离d =61+1=3,∴b =5-3= 2.由题意得⎩⎪⎨⎪⎧ c a =33,a 2=b 2+c 2,b =2,∴a 2=3,b 2=2. ∴椭圆E 的方程为y 23+x 22=1. (2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k (x -x 0)+y 0,y 23+x 22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0,∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0, 设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2,则k 1·k 2=-y 20-32-x 20, ∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1. ∴两条切线的斜率之积为常数-1.例3 解 (1)把Q (1,2)代入y 2=2px ,得2p =4,所以抛物线方程为y 2=4x ,准线l 的方程为x =-1.(2)由条件可设直线AB 的方程为y =k (x -1),k ≠0.由抛物线准线l :x =-1,可知M (-1,-2k ).又Q (1,2),所以k 3=2+2k 1+1=k +1, 即k 3=k +1.把直线AB 的方程y =k (x -1),代入抛物线方程y 2=4x ,并整理,可得k 2x 2-2(k 2+2)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,知x 1+x 2=2k 2+4k 2,x 1x 2=1. 又Q (1,2),则k 1=2-y 11-x 1,k 2=2-y 21-x 2. 因为A ,F ,B 共线,所以k AF =k BF =k ,即y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=2-y 11-x 1+2-y 21-x 2=y 1x 1-1+y 2x 2-1-2(x 1+x 2-2)x 1x 2-(x 1+x 2)+1=2k -2(2k 2+4k 2-2)1-2k 2+4k 2+1=2k +2, 即k 1+k 2=2k +2.又k 3=k +1,可得k 1+k 2=2k 3.即存在常数λ=2,使得k 1+k 2=λk 3成立.跟踪演练3 解 (1)由已知,点C 、D 的坐标分别为(0,-b ),(0,b ),又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧ x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0, 其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1, 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以当λ=1时,-λ-12k 2+1-λ-2=-3, 此时OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.高考押题精练解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a 2, 所以a 2=4.又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1, 抛物线C 2的方程为y 2=4x .(2)假设存在直线l 使得|PN ||MQ |=2, 则可设直线l 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 4=2k 2+4k 2,x 1x 4=1, 所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4=4(1+k 2)k 2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2, 所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k 2. 若|PN ||MQ |=2,则4(1+k2)k2=2×12(1+k2)3+4k2,解得k=±62.故存在斜率为k=±62的直线l,使得|PN||MQ|=2.二轮专题强化练答案精析第3讲 圆锥曲线的综合问题1.C [由ax 2+by 2=1,得x 21a +y 21b =1, 因为焦点在x 轴上,所以1a >1b>0, 所以0<a <b .]2.D [由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a=3,可求得b 2=3,即b = 3.]3.C [依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程⎩⎪⎨⎪⎧y =x -2,y 2=8x 消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,x 1x 2=4,则||AF |-|BF ||=|(x 1+2)-(x 2+2)|=|x 1-x 2| =(x 1+x 2)2-4x 1x 2=144-16=8 2.] 4.A [∵x 1+x 2=-b a ,x 1x 2=-c a. ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=b 2a 2+2c a =b 2+2ac a 2. ∵e =c a =12,∴c =12a , ∴b 2=a 2-c 2=a 2-⎝⎛⎭⎫12a 2=34a 2.∴x 21+x 22=34a 2+2a ×12a a 2=74<2. ∴P (x 1,x 2)在圆x 2+y 2=2内.]5.C [设P (x 0,y 0),则x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6],所以(OP →·FP →)max =6.]6.-2解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.7.(1,2)解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)·(y -2)=0,即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax ,即bx ±ay =0, 由题意,可得2aa 2+b 2>1,即2a c >1, 所以e =c a<2,又e >1,故1<e <2. 8.(0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过定点(0,2).9.(1)证明 依题意,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,x 2=2py ,得x 2-2pkx -2pm =0, 则由根与系数的关系,得x 1+x 2=2pk ,x 1x 2=-2pm .对抛物线y =x 22p 求导,得y ′=x p, 设两条切线的斜率分别为k 1,k 2,则k 1=x 1p ,k 2=x 2p, 所以k 1k 2=x 1p ·x 2p =-2pm p 2=-2m p, 即两条切线的斜率之积为定值-2m p. (2)解 因为p =m =4,所以抛物线方程为x 2=8y ,y ′=x 4,x 1+x 2=8k ,x 1x 2=-32, 则直线P A 的方程为y -x 218=x 14(x -x 1), PB 的方程为y -x 228=x 24(x -x 2). 将两方程联立,得P 点的坐标为(x 1+x 22,x 1x 28),所以P (4k ,-4). 于是|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=81+k 2·k 2+2, 又点P 到直线AB 的距离d =4(k 2+2)1+k2, 所以S △P AB =16k 2+2·(k 2+2).当k 2=0,即k =0时,所求面积最小为32 2. 10.(1)解 由题意知b =1,e =c a =22, 得a 2=2c 2=2a 2-2b 2,故a 2=2.故所求椭圆C 的方程为x 22+y 2=1.(2)证明 设直线l 的方程为y =k (x -2),则由⎩⎪⎨⎪⎧ y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 21+2k 2, x 1x 2=8k 2-21+2k 2. 由对称性可知N (x 2,-y 2),定点在x 轴上,直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1). 令y =0得:x =x 1-y 1(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k (x 1+x 2)k (x 1+x 2-4)=2x 1x 2-2(x 1+x 2)x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k 21+2k 2-4=1, 故直线AN 恒过定点(1,0).11.[1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1.12.116解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y 得x 2-3x -4=0,∴x A =-1,x D =4,∴y A =14,y D =4. 直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5, ∴|AB ||CD |=|AF |-1|DF |-1=116. 13.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2=b 2+c 2,又依题意,知c =1,c a =22,所以a =2,b =1.所以椭圆C 的方程为x 22+y 2=1. (2)依题意,易知PQ 与MN 垂直于点F .设PQ 的方程为y =k (x +1), 由⎩⎪⎨⎪⎧ y =k (x +1),x 22+y 2=1,消y , 得(1+2k 2)x 2+4k 2x +2k 2-2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k2, 所以|PQ |=(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2]=22(1+k 2)1+2k 2.同理,可得|MN |=22(1+1k 2)1+2k 2=22(1+k 2)2+k 2, 所以四边形PMQN 的面积为S =12|PQ |·|MN |=4(1+k 2)2(1+2k 2)(k 2+2)=2-2k 22k 4+5k 2+2=2-22k 2+2k2+5≥169. 当且仅当k 2=1时,取等号.所以四边形PMQN 的面积S 的最小值为169.。
7.概率与统计1.随机抽样方法简单随机抽样、系统抽样、分层抽样的共同点是抽样过程中每个个体被抽取的机会相等,且是不放回抽样.[问题1] 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福社区的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次抽取的总户数为________.2.对于统计图表问题,求解时,最重要的就是认真观察图表,从中提取有用信息和数据.对于频率分布直方图,应注意的是图中的每一个小矩形的面积是数据落在该区间上的频率.茎叶图没有原始数据信息的损失,但数据很大或有多组数据时,茎叶图就不那么直观、清晰了. [问题2] 从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为________.3.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数. 众数为频率分布直方图中最高矩形的底边中点的横坐标.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标. 平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).平均数等于频率分布直方图中每个小矩形的面积乘以小距形底边中点的横坐标之和. 标准差的平方就是方差,方差的计算(1)基本公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)简化计算公式①s 2=1n [(x 21+x 22+…+x 2n )-n x 2],或写成s 2=1n (x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方和的平均数减去平均数的平方.[问题3] 已知一个样本中的数据为0.12,0.15,0.13,0.15,0.14,0.17,0.15,0.16,0.13,0.14,则该样本的众数、中位数分别是________. 4.变量间的相关关系假设我们有如下一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ).线性回归方程y ^=b ^x +a ^,其中⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y∑i =1n x 2i-n x2,a ^=y -b ^x .[问题4] 回归直线y ^=b ^x +a ^必经过点________. 5.独立性检验的基本方法一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表如表:根据观测数据计算由公式k =n (ad -bc )(a +b )(a +c )(b +d )(c +d )所给出的检验随机变量K 2的观测值k ,并且k 的值越大,说明“X 与Y 有关系”成立的可能性越大,可以利用数据来确定“X 与Y 有关系”的可信程度.[问题5] 为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:则至少有________的把握认为喜爱打篮球与性别有关.(请用百分数表示) 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )6.互斥事件有一个发生的概率P (A +B )=P (A )+P (B ) (1)公式适合范围:事件A 与B 互斥. (2)P (A )=1-P (A ).[问题6] 抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________.7.古典概型P (A )=mn (其中,n 为一次试验中可能出现的结果总数,m 为事件A 在试验中包含的基本事件个数)[问题7] 连掷两次骰子分别得到点数m 、n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是( )A.512B.712C.13D.12 8.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点在其内部一个区域d 内”为事件A ,则事件A 发生的概率为P (A )=d 的度量D 的度量.此处D 的度量不为0,其中“度量”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的度量分别为长度、面积和体积等. 即P (A )=构成事件A 的区域长度(面积和体积)试验的全部结果所构成的区域长度(面积和体积).[问题8] 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B .1-π12 C.π6 D .1-π69.解排列、组合问题的依据:分类相加,分步相乘,有序排列,无序组合.解排列、组合问题的规律:相邻问题捆绑法;不相邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配分步法;综合问题先选后排法;至多至少问题间接法. (1)排列数公式A m n =n (n -1)(n -2)…[n -(m -1)]=n !(n -m )!,其中m ,n ∈N *,m ≤n .当m =n 时,A n n =n ·(n -1)·…·2·1=n !,规定0!=1. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…[n -(m -1)]m !=n !m !(n -m )!.(3)组合数性质C m n =C n-mn,C m n +C m -1n =C m n +1,规定C 0n =1,其中m ,n ∈N *,m ≤n .[问题9] (1)将5封信投入3个邮筒,不同的投法共有________种.(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有________种. 10.二项式定理(1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n -1n abn -1+C n n b n(n ∈N *). 通项(展开式的第k +1项):T k +1=C k n a n -k b k ,其中C k n (k =0,1,…,n )叫做二项式系数.(2)二项式系数的性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n .②二项式系数的和等于2n (组合数公式),即C 0n +C 1n +C 2n +…+C n n =2n .③二项展开式中,偶数项的二项式系数和等于奇数项的二项式系数和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.特别提醒:二项式系数最大项与展开式系数最大项是两个不同的概念,在求法上也有很大的差别,往往因为概念不清导致出错. [问题10] 设⎝⎛⎭⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则A ∶B =________. 11.要注意概率P (A |B )与P (AB )的区别:(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).[问题11] 设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.12.求分布列,要检验概率的和是否为1,如果不是,要重新检查修正.还要注意识别独立重复试验和二项分布,然后用公式.如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k·(1-p )n -k . [问题12] 若随机变量ξ的分布列如下表,则E (ξ)的值为________.13.一般地,如果对于任意实数a <b ,随机变量X 满足P (a <X ≤b )=ʃb a φμ,σ(x )d x ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.[问题13] 已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于( ) A .0.6 B .0.4 C .0.3 D .0.2易错点1 统计图表识图不准、概念不清例1 如图所示是某公司(共有员工300人)2015年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的共有______人.错因分析 解本题容易出现的错误是审题不细,对所给图形观察不细心,认为员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.10)×2=0.60,从而得到员工中年薪在1.4万元~1.6万元之间的共有300×[1-(0.02+0.08+0.10)×2]=180(人)的错误答案.解析由所给图形,可知员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24,所以员工中年薪在1.4万元~1.6万元之间的共有300×0.24=72(人) 答案72易错点2误解基本事件的等可能性例2若将一枚质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率为________.错因分析解本题时易出现的错误在于对等可能性事件的概率中“基本事件”以及“等可能性”等概念的理解不深刻,错误地认为基本事件总数为11(点数和等于2,3,4,5,6,7,8,9,10,11,12),或者将点数和为4的事件错误地计算为(1,3)(2,2)两种,从而导致出错.解析将先后掷2次出现向上的点数记作点坐标(x,y),则共可得点坐标的个数为6×6=36,而向上点数之和为4的点坐标有(1,3),(2,2),(3,1),共3个,故先后掷2次,出现向上的点数之和为4的概率P=336=112.故填112.答案112易错点3几何概型中“测度”确定不准例3在等腰直角三角形ABC中,直角顶点为C.(1)在斜边AB上任取一点M,求AM<AC的概率;(2)在∠ACB的内部,以C为端点任作一条射线CM,与线段AB交于点M,求AM<AC的概率.错因分析本题易出现的问题是混淆几何概型中对事件的度量方式,不注意题中两问中点M 生成方式的差异,误以为该题两问中的几何概型都是用线段的长度来度量造成错解.解(1)如图所示,AB=2AC.由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB . 所以P (AM <AC )=AC 2AC =22. (2)由于在∠ABC 内作射线CM ,等可能分布的是CM 在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB ,所以P (AM <AC )=∠ACC ′∠ACB=π-π42π2=34.易错点4 互斥事件概念不清例4 对飞机连续射击两次,每次发射一枚炮弹.设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},其中彼此互为互斥事件的是________;互为对立事件的是________.错因分析 对事件互斥意义不明确,对事件的互斥与对立之间的关系不清楚,就会出现错误的判断.对立事件和互斥事件都不可能同时发生,但对立事件必有一个要发生,而互斥事件可能都不发生.所以两个事件都对立,则两个事件必是互斥事件;反之,两事件是互斥事件,但未必是对立事件.解析 因为A ∩B =∅,A ∩C =∅,B ∩C =∅,B ∩D =∅,故A 与B ,A 与C ,B 与C ,B 与D 为彼此互斥事件,而B ∩D =∅,B ∪D =Ω,故B 与D 互为对立事件. 答案 A 与B ,A 与C ,B 与C ,B 与D ;B 与D易错点5 排列、组合问题混淆例5 如图所示,A ,B ,C ,D 是海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有多少种?错因分析 搞不清几个元素之间有无顺序,混淆排列与组合的区别.解 由题意可能有两种结构,如图: 第一种:,第二种:对于第一种结构,连接方式只需考虑中心位置的情况,共有C 14种方法.对于第二种结构,有C 24A 22种方法. ∴总共有C 14+C 24A 22=16(种).易错点6 事件理解不准例6 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后第2位) (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.错因分析 这是一个5次独立重复试验的概率模型.解本题容易出错的地方,一是对“恰有2次”“至少有2次”理解错误,误用二项分布;二是对随机事件“5次预报中恰有2次准确,且其中第3次预报准确”的意义理解错误,不能把问题归结为只要在第1,2,4,5次预报中预报1次准确即可,出现仍然用5次独立重复试验模型解决问题的错误.解 令X 表示5次预报中预报准确的次数,则X ~B (5,45),故其分布列为P (X =k )=C k 5(45)k (1-45)5-k (k =0,1,2,3,4,5). (1)“5次预报中恰有2次准确”的概率为P (X =2)= C 25×(45)2×(1-45)3=10×1625×1125≈0.05.(2)“5次预报中至少有2次准确”的概率为P (X ≥2)=1-P (X =0)-P (X =1)=1-C 05×(45)0×(1-45)5-C 15×45×(1-45)4=1-0.000 32-0.006 4≈0.99. (3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为C 14×45×(1-45)3×45≈0.02.易错点7 随机变量分布列的性质用错例7 已知随机变量X 的概率只能取三个值a ,b ,c ,其概率依次成等差数列,则公差d 的取值范围是______.错因分析 本题将随机变量的分布列与等差数列联系起来,知识跨度大,考生往往审题不清,不能从分布列的性质以及等差数列的性质入手解题,或者考虑问题不全面而导致错解.解析 由已知,得a +b +c =1,而2b =a +c ,所以3b =1,b =13.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13,此即为公差d 的取值范围.故填[-13,13].答案 [-13,13]1.如图是2015年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( ) A .85,84 B .84,85 C .86,84D .84,862.一组数据3,4,5,s ,t 的平均数是4,这组数据的中位数是m ,对于任意实数s ,t ,从3,4,5,s ,t ,m 这组数据中任取一个,取到数字4的概率的最大值为( ) A.16 B.13 C.12 D.233.(2014·湖北)根据如下样本数据得到的线性回归方程为y ^=b ^x +a ^,则( )A.a ^>0,b ^>0B.a ^>0,b ^<0C.a ^<0,b ^>0 D.a ^<0,b ^<04.某电视台节目开展亲子闯关游戏,其规则是:父母两人蒙上眼睛在流水滑板上相互扶持爬过,并将水中的7个粉色气球与3个蓝色气球随意用身体挤破(这些气球的形状都相同,随意漂浮在身旁,且都在父母所触及的范围内).已知小光的父母参加游戏,并在第1次挤破一个蓝色气球,则他们第2次挤破的是粉色气球的概率为( ) A.310 B.29 C.78 D.795.如图,矩形ABCD 中,点E 为边CD 上任意一点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) A.14 B.13 C.12 D.236.(2015·北京海淀区期末)某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.7.(2015·广东)在(x -1)4的展开式中,x 的系数为________.8.已知某人投篮的命中率为34,则此人投篮4次,至少命中3次的概率是________.9.某路段检查站监控录像显示,在某时段内,有1 000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如图所示的频率分布直方图,则估计在这一时段内通过该站的汽车中车速不小于90 km/h 的约有________辆.(注:分析时车速均取整数)10.一个袋装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取一个,直到取出3个红球即停止.(1)从袋中不放回地取球,求恰好取4次停止的概率P 1; (2)从袋中有放回地取球, ①求恰好取5次停止的概率P 2;②求5次之内(含5次)取到红球的个数为ξ的分布列及数学期望.学生用书答案精析7.概率与统计要点回扣[问题1] 24解析 由抽样比例可知6x =480-200-160480,则x =24. [问题2] 20[问题3] 0.15、0.145[问题4] (x ,y )[问题5] 99.5%[问题6] 23[问题7] A [∵(m ,n )·(-1,1)=-m +n <0,∴m >n .基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).∴P =1536=512,故选A.] [问题8] B [记“点P 到点O 的距离大于1”为A ,P (A )=23-12×43π×1323=1-π12.] [问题9] (1)35 (2)70[问题10] 4∶1解析 T k +1=C k 6x 6-k (-1)k ⎝⎛⎭⎫2x k =C k 6(-1)k 2k x ,6-32k =3,k =2,系数A =60,二项式系数B =C 26=15, 所以A ∶B =4∶1.[问题11] 35[问题12] 209解析 根据概率之和为1,求出x =118, 则E (ξ)=0×2x +1×3x +…+5x =40x =209. [问题13] C[∵P (ξ<4)=0.8,∴P (ξ>4)=0.2,由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6.∴P (0<ξ<2)=12P (0<ξ<4)=0.3.] 查缺补漏1.A [由图可知,去掉一个最高分和一个最低分后,所剩数据为84,84,84,86,87.∴平均数为84+84+84+86+875=85,众数为84.] 2.D [由3,4,5,s ,t 的平均数是4可得s +t 2=4,易知m =4,所以当s =t =4时,取到数字4的概率最大,且为P =46=23.] 3.B [作出散点图如下:观察图象可知,回归直线y ^=b ^x +a ^ 的斜率b ^<0,当x =0时,y ^=a ^ >0.故a ^>0,b ^<0.]4.D [方法一 设事件A 为“第1次挤破的是蓝色气球”,事件B 为“第2次挤破的是粉色气球”,则P (A )=310,P (AB )=310×79=730.所以所求的概率为P (B |A )=P (AB )P (A )=730310=79. 方法二 第1次挤破的是蓝色气球,则还剩下2个蓝色气球和7个粉色气球,从剩余的9个气球中任取1个粉色气球挤破的概率为79.] 5.C [这是一道几何概型的概率问题,点Q 取自△ABE 内部的概率为S △ABE S 矩形ABCD =12·AB ·AD AB ·AD =12. 故选C.]6.50 1 015解析 第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为 1 020×0.5+980×0.2+1 030×0.3=1 015小时.7.6解析 由题意可知T k +1=C k 4(x )4-k (-1)k =C k 4(-1)k x ,令4-k 2=1解得k =2,所以展开式中x 的系数为C 24(-1)2=6. 8.189256解析 该人投篮4次,命中3次的概率为P 1=C 34⎝⎛⎭⎫343⎝⎛⎭⎫1-34=2764; 该人投篮4次,命中4次的概率为P 2=C 44⎝⎛⎭⎫344=81256,故至少命中3次的概率是P =2764+81256=189256. 9.300解析 由图可知,车速大于等于90 km /h 的车辆未标出频率,而小于90 km/h 的都标出了,故考虑对立事件.由题图知车速小于90 km /h 的汽车总数的频率之和为(0.01+0.02+0.04)×10=0.7,所以车速不小于90 km/h 的汽车总数的频率之和为1-0.7=0.3.因此在这一时段内通过该站的车速不小于90 km/h 的汽车有1 000×0.3=300(辆).10.解 (1)P 1=C 23C 16A 33A 49=128. (2)①P 2=13C 24(13)2(23)2=881; ②随机变量ξ的取值分别为0,1,2,3.由n 次独立重复试验概率公式P (k )=C k n p k (1-p )n -k ,得 P (ξ=0)=C 05(13)0(23)5=32243, P (ξ=1)=C 15(13)1(23)4=80243, P (ξ=2)=C 25(13)2(23)3=80243, P (ξ=3)=1-32+80×2243=1781. 随机变量ξ的分布列为ξ的数学期望为E (ξ)=0×32243+1×80243+2×80243+3×1781=13181.。
第2讲空间中的平行与垂直1.(2015·北京)设α,β是两个不同的平面,m是直线且m⊂α.则“m∥β”是“α∥β”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是() A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面3.(2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.热点一空间线面位置关系的判定空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1(1)(2015·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.跟踪演练1 已知m ,n 为两条不同的直线,α,β为两个不重合的平面,给出下列命题:①若m ⊥α,n ⊥α,则m ∥n ;②若m ⊥α,m ⊥n ,则n ∥α;③若α⊥β,m ∥α,则m ⊥β;④若m ⊥α,m ∥β,则α⊥β.A .0B .1C .2D .3热点二 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2 如图,在几何体ABCDEF 中,ABCD 是正方形,DE ⊥平面ABCD .(1)求证:AC ⊥平面BDE ;(2)若AF ∥DE ,DE =3AF ,点M 在线段BD 上,且BM =13BD ,求证:AM ∥平面BEF .思维升华垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.跟踪演练2如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD =DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.热点三平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.例3如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD 上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?请说明理由.思维升华(1)折叠问题中不变的数量和位置关系是解题的突破口;(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.跟踪演练3(2014·广东)如图(1),四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC =2,作如图(2)折叠,折痕EF∥DC.其中点E,F分别在线段PD,PC上,沿EF折叠后点P 叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M-CDE的体积.1.不重合的两条直线m,n分别在不重合的两个平面α,β内,下列为真命题的是() A.m⊥n⇒m⊥βB.m⊥n⇒α⊥βC.α∥β⇒m∥βD.m∥n⇒α∥βB1C1D1中,已知DC=DD1=2AD=2AB,2.如图,在直四棱柱ABCD-AAD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)问在棱CD上是否存在点E,使D1E∥平面A1BD.若存在,确定点E位置;若不存在,说明理由.提醒:完成作业专题五第2讲二轮专题强化练专题五第2讲空间中的平行与垂直A组专题通关1.(2015·山西康杰中学4月模拟)若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的为()A.若a∥α,b∥α,则a∥bB.若α∥a,β∥a,则α∥βC.若a⊥α,b⊥α,则a∥bD若α⊥β,α⊥γ,则β∥γ2.(2015·湖北)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则() A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件3.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的投影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a ,b ,a ⊥β,b ⊥α.其中,所有能成为“α⊥β”的充要条件的序号是( )A .①B .②C .③D .①③5.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC6.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =AN ND,则直线MN 与平面BDC 的位置关系是________.7.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题:①P A ∥平面MOB ;②MO ∥平面P AC ;③OC ⊥平面P AC ;④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).8.(2015·辽宁五校联考)四棱锥P -ABCD 的顶点P 在底面ABCD 上的投影恰好是A ,其三视图如图所示,其中正视图与侧视图都是腰长为a 的等腰三角形,则在四棱锥P -ABCD 的任意两个顶点的连线中,互相垂直的异面直线共有________对.9.(2015·山东)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.10.(2015·四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系.并证明你的结论;(3)证明:直线DF⊥平面BEG.B组能力提高11.(2015·辽宁师范大学附属中学期中)已知平面α、β、γ,则下列命题中正确的是() A.α⊥β,α∩β=a,a⊥b,则b⊥αB.α⊥β,β⊥γ,则α∥γC.α∩β=a,β∩γ=b,α⊥β,则a⊥bD.α∥β,β⊥γ,则α⊥γ12.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.13.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________.(填序号)①AC⊥BE;②B1E∥平面ABCD;③三棱锥E-ABC的体积为定值;④直线B1E⊥直线BC1.14.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.学生用书答案精析第2讲空间中的平行与垂直高考真题体验1.B[m⊂α,m∥β⇏α∥β,但m⊂α,α∥β⇒m∥β,∴m∥β是α∥β的必要而不充分条件.] 2.D[对于A,α,β垂直于同一平面,α,β关系不确定,A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.]3.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.热点分类突破例1(1)D(2)D解析(1)若l与l1,l2都不相交则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.(2)若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.跟踪演练1C[对于①,垂直于同一个平面的两条直线平行,①正确;对于②,直线n可能在平面α内,所以推不出n∥α,②错误;对于③,举一反例,m⊂β且m与α,β的交线平行时,也有m∥α,③错误;对于④,可以证明其正确性,④正确.故选C.]例2证明(1)因为DE⊥平面ABCD,AC⊂平面ABCD,所以DE⊥AC,因为ABCD是正方形,所以AC⊥BD,又BD∩DE=D,从而AC⊥平面BDE.(2)如图,延长EF、DA交于点G,连接GB,因为AF ∥DE ,DE =3AF ,所以GA GD =AF DE =13,因为BM =13BD ,所以BM BD =13,所以AM ∥GB ,又AM ⊄平面BEF ,GB ⊂平面BEF ,所以AM ∥平面BEF .跟踪演练2 证明 (1)如图,取CE 的中点G ,连接FG ,BG .∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD ,∴AB ∥DE ,∴GF ∥AB .又AB =12DE ,∴GF =AB .∴四边形GF AB 为平行四边形,则AF ∥BG .∵AF ⊄平面BCE ,BG ⊂平面BCE ,∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点,∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF .又CD ∩DE =D ,故AF ⊥平面CDE .∵BG∥AF,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.例3(1)证明因为D,E分别为AC,AB的中点,所以DE∥BC. 又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明由题图(1)得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE. (3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE ∥PQ .所以平面DEQ 即为平面DEP .由(2)知,DE ⊥平面A 1DC ,所以DE ⊥A 1C .又因为P 是等腰三角形DA 1C 底边A 1C 的中点,所以A 1C ⊥DP .所以A 1C ⊥平面DEP .从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .跟踪演练3 (1)证明 因为PD ⊥平面ABCD ,AD ⊂平面ABCD , 所以PD ⊥AD .又因为ABCD 是矩形,CD ⊥AD ,PD 与CD 交于点D ,所以AD ⊥平面PCD .又CF ⊂平面PCD ,所以AD ⊥CF ,即MD ⊥CF .又MF ⊥CF ,MD ∩MF =M ,所以CF ⊥平面MDF .(2)解 因为PD ⊥DC ,BC =2,CD =1,∠PCD =60°,所以PD =3,由(1)知FD ⊥CF ,在直角三角形DCF 中,CF =12CD =12.过点F 作FG ⊥CD 交CD 于点G ,得FG =FC sin 60°=12×32=34, 所以DE =FG =34, 故ME =PE =3-34=334, 所以MD =ME 2-DE 2=(334)2-(34)2=62. S △CDE =12DE ·DC =12×34×1=38. 故V M -CDE =13MD ·S △CDE =13×62×38=216. 高考押题精练1.C [构造长方体,如图所示.因为A 1C 1⊥AA 1,A 1C 1⊂平面AA 1C 1C ,AA 1⊂平面AA 1B 1B ,但A 1C 1与平面AA 1B 1B 不垂直,平面AA 1C 1C 与平面AA 1B 1B 不垂直.所以选项A ,B 都是假命题.CC 1∥AA 1,但平面AA 1C 1C 与平面AA 1B 1B 相交而不平行,所以选项D 为假命题.“若两平面平行,则平面内任何一条直线必平行于另一个平面”是真命题,故选C.]2.(1)证明 在直四棱柱ABCD -A 1B 1C 1D 1中,连接C 1D ,∵DC =DD 1,∴四边形DCC 1D 1是正方形,∴DC 1⊥D 1C .又AD ⊥DC ,AD ⊥DD 1,DC ∩DD 1=D ,∴AD ⊥平面DCC 1D 1, 又D 1C ⊂平面DCC 1D 1,∴AD ⊥D 1C .∵AD ⊂平面ADC 1,DC 1⊂平面ADC 1,且AD ∩DC 1=D ,∴D 1C ⊥平面ADC 1,又AC 1⊂平面ADC 1,∴D 1C ⊥AC 1.(2)解 假设存在点E ,使D 1E ∥平面A 1BD .连接AD 1,AE ,D 1E ,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E∥平面A1BD.二轮专题强化练答案精析第2讲空间中的平行与垂直1.C[对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.]2.A[由l1,l2是异面直线,可得l1,l2不相交,所以p⇒q;由l1,l2不相交,可得l1,l2是异面直线或l1∥l2,所以q⇏p.所以p是q的充分条件,但不是q的必要条件.故选A.]3.A[∵∠BAC=90°,∴AB⊥AC,又AC⊥BC1,BC1∩AB=B,∴AC⊥平面ABC1,又AC⊂平面ABC,∴平面ABC⊥平面ABC1,∴平面ABC1∩平面ABC=AB,∴点C1在平面ABC上的投影H必在两平面的交线AB上,故选A.]4.D[对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B、C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.]5.D [∵在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,∴BD ⊥CD ,又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD ,则CD ⊥AB ,又AD ⊥AB ,AD ∩CD =D ,所以AB ⊥平面ADC ,又AB ⊂平面ABC ,所以平面ABC ⊥平面ADC ,故选D.]6.平行解析 由AM MB =AN ND,得MN ∥BD . 而BD ⊂平面BDC ,MN ⊄平面BDC ,所以MN ∥平面BDC .7.②④解析 ①错误,P A ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面P AC .8.6解析 由题意可得P A ⊥BC ,P A ⊥CD ,AB ⊥PD ,BD ⊥P A ,BD ⊥PC ,AD ⊥PB ,如图所示,即互相垂直的异面直线共有6对.9.证明 (1)方法一 连接DG ,设CD ∩GF =M ,连接MH .在三棱台DEF-ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则M 为CD 的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.方法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.10.(1)解点F,G,H的位置如图所示.(2)解平面BEG∥平面ACH,证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH,又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明连接FH,BD.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH,因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD,又DF⊂平面BFHD,所以DF⊥EG,同理DF ⊥BG ,又EG ∩BG =G ,所以DF ⊥平面BEG .11.D [选项A 中,缺少条件b ⊂β,错误;B 中,α、β、γ的关系可参考教室墙角处三个平面的关系,易知错误;C 中的a ,b 可能平行或斜交.由两平面平行的性质可知D 正确.]12.a 或2a解析 由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.令CF ⊥DF ,设AF =x ,则A 1F =3a -x .易知Rt △CAF ∽Rt △F A 1D ,得AC A 1F =AF A 1D ,即2a x =3a -x a, 整理得x 2-3ax +2a 2=0,解得x =a 或x =2a .13.①②③解析 因AC ⊥平面BDD 1B 1,故①、②正确;记正方体的体积为V ,则V E -ABC =16V 为定值,故③正确;B 1E 与BC 1不垂直,故④错误.14.(1)证明 如图,因为ABCD -A 1B 1C 1D 1为正方体,所以B 1C 1⊥面ABB 1A 1.因为A 1B ⊂面ABB 1A 1,所以B 1C 1⊥A 1B .又因为A 1B ⊥AB 1,B 1C 1∩AB 1=B 1,所以A 1B ⊥面ADC 1B 1.因为A 1B ⊂面A 1BE ,所以平面ADC1B1⊥平面A1BE.(2)解当点F为C1D1中点时,可使B1F∥平面A1BE. 证明如下:易知:EF∥C1D,且EF=12C1D.设AB1∩A1B=O,则B1O∥C1D且B1O=12C1D,所以EF∥B1O且EF=B1O,所以四边形B1OEF为平行四边形.所以B1F∥OE.又因为B1F⊄面A1BE,OE⊂面A1BE.所以B1F∥面A1BE.。