17.1.3勾股定理(第三课时)
- 格式:ppt
- 大小:1.14 MB
- 文档页数:21
第十七章勾股定理第三课时17.1 勾股定理(3)一.教学目标:1.熟练掌握勾股定理,并能灵活的运用勾股定理解决数学中的实际问题。
2.能运用勾股定理在数轴上画出表示无理数的点,进一步体会数形结合的思想及数轴上的点与实数一一对应的理论。
3.通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.二.重点与难点:重点:运用勾股定理解决数学中的问题。
难点:勾股定理的灵活运用。
三.学情分析:在此之前,学生已学过在数轴上表示有理数和勾股定理。
但勾股定理的运用不太熟悉。
对于一些特殊的无理数(带根号的)如何在数轴上准确表示它们。
可仿造前面有理数表示方法来学习,所以关键是借助勾股定理来用线段表示这一无理数是本节的难点。
四.教学过程:(一)回顾复习.叙述勾股定理的内容?1.a中,∠C=90°,已知:c=17 b=8 求2. 在RT△ABC b已知:c=13 a=5 求 3.什么是数轴?实数与数轴上的点具有什么关系? 4.在数轴上画出表示下列各数的点: -4.-2.5、、0、3、141023-3-2-1(二)自主学习:27页,思考并回答26学生阅读课本页练习下和的点到原点的表示-3.41.在数轴上表示5的点到原点的距离为5.的点,到原点的距离就是距离为3.4,那么表示1313首先要画出表示这个数绝对值2.在数轴上要画出表示一个数的点,.的线段如何画出表示的线段。
3. 13.因此在数轴上△,斜边为由勾股定理知,直角边为1的等腰Rt2的点.能表示20321263514的线段能否是直角边为正整数的直角三角形的斜边,通那么长为13过下面的网格可以知道,两条直角边的长是2,3的直角三角形的斜边长为。
13(三)新知学习.在数轴上作出表示的点。
13作法:(1)在数轴上找到点A,使OA=3;(2)过点A作直线垂直于OA,在上取点B,使AB=2,那么OB=;13(3)以原点O为圆心,以OB为半径作弧,弧与数轴交于点C,则OC=.13的点。
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算教案【教学目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【教学难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学过程设计】一、情境导入[过渡语] 上一节课,我们学会了利用勾股定理解决生活中的实际问题.本节课我们将继续研究勾股定理的综合运用.我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?[设计意图] 在七年级时,学生只能找到数轴上的表示有理数的点,而对于表示像,这样的无理数的点却找不到.学习了勾股定理后,这样的问题就可以得到解决.由旧入新,开门见山导入新课.[过渡语]同学们,我们一起来欣赏一幅图片:这个美丽的图案是怎么画出来的呢?它依据的是什么数学知识?[设计意图] 以图案导入,在直观形象的图案欣赏中吸引了学生的注意力,加上巧妙设问,为新课的展开做好了铺垫.二、合作探究1.利用勾股定理证明HL定理[过渡语]让我们一起来探究下面的问题:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?师生共同画图,写出已知、求证.引导学生关注画图的过程,思考哪些元素相等.已知:如图所示,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.求证:Rt△ABC≌Rt△A'B'C'.〔解析〕要证明Rt△ABC≌Rt△A'B'C',难以找到锐角对应相等,只有找第三边相等,发现可以根据勾股定理得到BC=,B'C'=,容易得到BC=B'C'.证明:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,根据勾股定理,得:BC=,B'C'=.又AB=A'B',AC=A'C',∴BC=B'C'.∴△ABC≌△A'B'C'(SSS).2.利用勾股定理在数轴上表示无理数思路一[过渡语]下面我们回到导入一的问题,一起来看:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?学生回忆以前的作法,并运用勾股定理计算,长为的线段是两条直角边的长都为1的直角三角形的斜边.学生尝试在数轴上找到表示的点.OB是以数轴的单位长度为边的正方形的对角线,以数轴的原点为圆心、OB长为半径画弧,交数轴正半轴于点A,则点A表示的数是.小组交流讨论:找到长为的线段所在的直角三角形.教师可指导学生寻找长为,……这样的包含在直角三角形中的线段.逐步引导学生得出,由于在数轴上表示的点到原点的距离为,所以只需画出长为的线段即可.设c=,两直角边为a,b,根据勾股定理得a2+b2=c2,即a2+b2=13,若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.所以长为的线段是直角边长为2,3的直角三角形的斜边.学生在数轴上画出表示的点.教师根据巡视情况指导步骤如下:(1)在数轴上找到点A,使OA=3;(2)作直线l垂直于OA,在l上取一点B,使AB=2;(3)连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.学生自由作图,教师适当指导.利用勾股定理作出长为,,……的线段,按照同样方法,在数轴上画出表示,,……的点.[设计意图]利用勾股定理和数轴上的点表示实数,将数与形进一步联系在一起,渗透数形结合思想,加深对勾股定理、数轴和实数的理解.思路二引导学生观察图案发现:图形由若干个直角三角形形成,是根据我们所学的勾股定理来完成的.最后教师总结画图的方法:先构造出直角边长为1的等腰直角三角形,并以前一个三角形的斜边及长度为1的线段为直角边,以此向外画直角三角形,就可以得到问题中的图案了.提问:我们知道是两条直角边的长都为1的直角三角形的斜边的长,可是在数轴如何表示出?如何表示出呢?学生根据观察的结果思考在数轴上如何表示出,.教师根据情况指点.追问:你能在数轴上找出表示的点吗?学生讨论:利用勾股定理把长为的线段看成一个直角三角形的斜边,那么两条直角边长分别是哪两个正整数?学生发现()2=22+32后,尝试作图,教师讲解,师生再共同完成.作法:在数轴上找到点A,使OA=3;过点A作直线l垂直于OA,在l上取一点B,使AB=2,连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C 即为表示的点.[设计意图]通过观察感知,讨论分析,规范作图,一步紧扣一步,让学生明白如何利用勾股定理在数轴上找到表示无理数的点.[知识拓展]在数轴上表示无理数时,将在数轴上表示无理数的问题转化为画长为无理数的线段问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中两条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点为圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.3.例题讲解(补充)如图所示,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.学生讨论:如何构造直角三角形?比较发现:可以连接AC,或延长AB,DC交于F,或延长AD,BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.解:延长AD,BC交于E,如图所示.∵∠A=60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==4.DE2=CE2-CD2=42-22=12,DE==2.∴S四边形ABCD=S△ABE-S△CDE= AB·BE- CD·DE=6.[解题策略]不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.三、课堂小结师生共同回顾本节课所学主要内容:1.用勾股定理在数轴上表示无理数,构造长为无理数的线段放在直角三角形中,有时是直角边,有时是斜边.2.求不规则图形的面积,应用割补法把图形分解为特殊图形,四边形中常常通过作辅助线构造直角三角形,以利用勾股定理.【板书设计】17.1 勾股定理课时3 利用勾股定理作图或计算1.利用勾股定理证明HL定理2.利用勾股定理在数轴上表示无理数3.例题讲解例题.【教学反思】在课堂教学中注重数学与生活的联系,注重数学知识的应用,从学生认知规律和接受水平出发,循序渐进地引入新课,成功地引导学生会将长为无理数的线段看成一个直角三角形的斜边,再按照尺规作图的要求,在数轴上找出表示无理数的点.由于学生尺规作图的能力较差,学生在确定了作图思路之后,却难以按照尺规作图的步骤完成作图.教师指导在数轴上找出表示无理数的点,示范作图步骤.教学中,根据学生的基础情况,适当进行复习,帮助学生解决学习中的困难.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算学案【学习目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【学习重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【学习难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【自主学习】一、知识回顾1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,-2.5的点吗?2.求下列三角形的各边长.二、合作探究知识点1:勾股定理与数轴呢?(提示:可以构造直角三角形想一想 1.你能在数轴上表示出2的点吗?2作出边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为13的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数?3.13.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点.要点归纳:利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.类似地,利用勾股定理可以作出长2,3,5为线段,形成如图所示的数学海螺.【典例探究】例1如图,数轴上点A所表示的数为a,求a的值.易错点拨:求点表示的数时注意画弧的起点不从原点起,因而所表示的数不是斜边长.【跟踪检测】1.如图,点A表示的实数是()A. 3B. 5C. 3D.5--2.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2B.5 1C.10 1D.53.你能在数轴上画出表示17的点吗?知识点2:勾股定理与网格综合求线段长【典例探究】第1题图第2题图例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC 各顶点的坐标,并求出此三角形的周长.方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.例3 如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求AB边上的高.方法总结:此类网格中求格点三角形的高的题,常用方法是利用网格求面积,再用面积法求高.【跟踪检测】1.如图是由4个边长为1的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多可以作出多少条长度为5的线段?2.如图,在5×5正方形网格中,每个小正方形的边长均为1,画出一个三角形的长分别为2,2,10.知识点3:勾股定理与图形的计算【典例探究】例4 如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.方法总结:折叠问题中结合勾股定理求线段长的方法:(1)设一条未知线段的长为x(一般设所求线段的长为x);(2)用已知线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.变式题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.【跟踪检测】1.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD 的面积.三、知识梳理利用勾股定理作图或计算在数轴上表示出无理数的点利用勾股定理解决网格中的问题通常与网格求线段长或面积结合起来利用勾股定理解决折叠问题及其他图形的计算通常用到方程思想四、学习中我产生的疑惑【学习检测】1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25BA2.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位第1题图第2题图第3题图长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_______.4.边长分别为2cm和3cm的长方形的一条对角线长为_______cm.5.如果等腰直角三角形的斜边长为_______cm,那么这个三角形的面积是_______cm2.6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为_______.7. 如图,A是数轴上一点,以OA为边长作正方形ABCO,以OB为半径作半圆交数轴于P1、P2两点.(1)当点A表示的数是1时,P1表示的数是_______,P2表示的数是_______;(2) 当点A表示的数是2时,P1表示的数是_______,P2表示的数是_______.8. 边长为3的正方形的一条对角线长是_______.9.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.10. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,求重叠部分△AFC的面积.11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了多少米?12.问题背景:在△ABC中,AB、BC、AC三边的长分别为5103a、、,求这个三角形的面积.王琼同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)求△ABC的面积;a a a(a>0),请利用图②的正方形网格(每(2)若△ABC三边的长分别为5,22,17个小正方形的边长为a)画出相应的△ABC,并求出它的面积.图①图②13.如图所示,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是,点B表示的数是.14.如图所示,在Rt△AOB中,OB=1,AB=2,以原点O为圆心,OA为半径画弧,交数轴负半轴于点P,则点P表示的实数是.15.如图所示,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的格点上),并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
第十七章勾股定理第三课时17.1 勾股定理(3)一.教学目标:1.熟练掌握勾股定理,并能灵活的运用勾股定理解决数学中的实际问题。
2.能运用勾股定理在数轴上画出表示无理数的点,进一步体会数形结合的思想及数轴上的点与实数一一对应的理论。
3.通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.二.重点与难点:重点:运用勾股定理解决数学中的问题。
难点:勾股定理的灵活运用。
三.学情分析:在此之前,学生已学过在数轴上表示有理数和勾股定理。
但勾股定理的运用不太熟悉。
对于一些特殊的无理数(带根号的)如何在数轴上准确表示它们。
可仿造前面有理数表示方法来学习,所以关键是借助勾股定理来用线段表示这一无理数是本节的难点。
四.教学过程:(一)回顾复习1.叙述勾股定理的内容?2. 在RT△ABC中,∠C=90°,已知:c=17 b=8 求a已知:c=13 a=5 求 b3.什么是数轴?实数与数轴上的点具有什么关系?4.在数轴上画出表示下列各数的点:3、1、0、-2.5、 -4.(二)自主学习学生阅读课本26页练习下和27页,思考并回答:1.在数轴上表示5的点到原点的距离为5. 表示-3.4的点到原点的距离为3.4,那么表示13的点,到原点的距离就是132.在数轴上要画出表示一个数的点,首先要画出表示这个数绝对值的线段.3. 如何画出表示13的线段。
由勾股定理知,直角边为1的等腰Rt△,斜边为2.因此在数轴上能表示2那么长为13的线段能否是直角边为正整数的直角三角形的斜边,通过下面的网格可以知道,两条直角边的长是2,3的直角三角形的斜边长为13。
(三)新知学习在数轴上作出表示 的点。
作法:(1)在数轴上找到点A ,使OA=3;(2)过点A 作直线垂直于OA ,在上取点B, 使AB=2,那么OB=13;(3)以原点O 为圆心,以OB 为半径作 弧,弧与数轴交于点C ,则OC=13.如图,在数轴上,点C 为表示13 的点。
《17.1 勾股定理》(第3课时)教学设计一、内容与内容解析1.内容勾股定理的简单综合应用2.内容解析勾股定理在教学中占有非常重要的位置,定理本身也有重要的实际应用价值。
在直角三角形中,已知任意两条边的长,就可以求出第三条边的长.教科书相应安排了两个例题和习题,在利用勾股定理解决实际生活问题的过程中,能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.让学生学习运用勾股定理解决问题。
基于以上分析,可以确定本节课的教学重点是:运用勾股定理解决简单的综合实际问题.二、目标和目标解析1.教学目标(1)在探索并证明勾股定理的基础上,联系实际,归纳抽象,应用勾股定理解决实际问题;(2)在解题过程中,培养学生自觉地运用数形结合的思想,渗透转化思想,建模思想。
(3)学生能体会勾股定理的应用价值,通过自主探究与合作交流,激发数学学习的兴趣,树立学好数学的信心.三、教学问题诊断分析本节内容主要是在前面探究和证明勾股定理的基础上,对勾股定理进行简单的应用.由于目前所掌握的知识工具很有限,因此只能解决一些较简单的实际的综合的应用题.在应用勾股定理解题前,可以带领学生回顾三角形的相关知识,包括面积公式,特殊三角形的性质等;特别是直角三角形中,两锐角互余,30°的角所对的直角边等于斜边的一半等重要结论,都是结合勾股定理解决问题的重要依据.教学时,应引导学生注意构造勾股定理的使用条件,在应用定理时关注数学结合和分类讨论的思想.本节课的教学难点为:灵活运用勾股定理.四、教学过程设计1.复习提问回顾定理问题1 勾股定理的内容是什么?有何用途?师生活动学生回答。
【设计意图】让学生回忆勾股定理的内容,并注意文字语言、图形语言、符号语言的规范统一.2.例题示范,学会应用例已知:如图,在Rt△ABC 和Rt△A B C 中,∠C=∠C =90°,AB=A B ,AC=A C.求证:△ABC≌△A B C .师生活动 教师提示,通过画图探究得到过直角三角形全等的一个判定方法运用勾股定理更容易证明,学生自主发挥. 【设计意图】发挥学生自主性,通过对勾股定理的理解,进一步熟悉定理.建立勾股定理与全等的联系,在解决实际问题或在数学应用时,往往活学互用,体会内在联系.【设计意图】深刻理解勾股定理的内容,探究二:数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?分析引导:(1)你能画出长为 的线段吗?怎么画?说说你的画法.(2)长是的线段怎么画?是由直角边长为_____和______整数组成的直角三角形的斜边?(3)怎样在数轴上画出表示的点?师生活动 学生活动,师生共同补充、完善。
17.1 勾股定理第3课时利用勾股定理计算、作图课题第3课时利用勾股定理计算、作图授课人教学目标知识技能会运用勾股定理在数轴上画出并表示无理数,进一步理解、感受数轴上的点与实数的一一对应关系.了解利用勾股定理证明HL定理.数学思考经历用勾股定理求直角三角形边长的过程,理解并掌握在数轴上通过画线段的方法表示无理数.问题解决运用勾股定理解决带有一定综合性的几何图形问题,并从中进一步体会数形结合思想与转化思想.情感态度培养学生的思维意识,发展数学理念,体会勾股定理的应用价值.教学重点运用勾股定理在数轴上画出表示无理数的点,运用勾股定理进行作图与计算.教学难点理解实数与数轴的一一对应关系,在比较复杂的图形中利用勾股定理进行计算.授课类型新授课课时教具直尺、三角尺,多媒体:PPT课件、电子白板教学活动教学步骤师生活动设计意图活动一: 创设情境导入新课【课堂引入】数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示√2,√3,√4,√5,…的点吗?现在我们利用勾股定理来探究一下这个问题.利用目的明确的操作探究问题引入新课,激发学生的学习兴趣.活动二: 实践探究交流新知【探究1】1.根据图17-1-67填空:x= √2,y= √3,z=2,w= √5.图17-1-672.按照图中的规律一直作下去,你能说出第n个小直角三角形的各边长吗?第n个小直角三角形的两直角边长分别为1和√n,斜边长为√n+1.3.利用勾股定理,是否可以在数轴上画出表示√2,√3,√4,√5,…的点?试一试.教师:提出问题,巡查、指导.学生:(1)画图完成,感知画法并掌握.(2)阅读教材第27页学习理解画法.【探究2】怎样在数轴上画出表示√13的点?分析引导:教师可帮助学生进行如下分析:(1)你能画出长为√2的线段吗?怎么画?说说你的画法.(2)设斜边c=√13,两直角边分别为a,b,根据勾股定理有a2+b2=13,若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为√13的线段是直角边长分别为正整数2和3的直角三角形的斜边长.(3)在数轴上怎样作出这个三角形呢?教师:根据学生的叙述,写出画法,适当点评.1.利用一个目的明确的操作探究问题引入新课,培养学生的动手操作能力、抽象概括能力,激发学生的学习兴趣.2.引导学生主动探究,养成良好的思维习惯,培养与他人合作交流的意识,激发学生强烈的求知欲.活动二: 实践探究交流新知解:如图17-1-68,①在数轴上找到表示3的点A,则OA=3;②过点A作直线l垂直于OA,在l上截取AB=2;③以点O为圆心,OB长为半径画弧,交数轴正半轴于点C,点C即为表示√13的点.你知道OC为什么等于√13吗?图17-1-68【探究3】利用勾股定理证明HL定理(1)回忆HL定理的内容;(2)写出已知、求证、证明.教师提出问题,师生共同画图,写出已知、求证、证明.3.通过证明HL定理使学生掌握勾股定理在推理证明中的应用,提高学生应用勾股定理解决实际问题的能力.活动三: 开放训练体现应用【应用举例】例1细心观察图17-1-69,认真分析各式,然后解答问题:图17-1-69(√1)2+1=2,S1=√12;(√2)2+1=3,S2=√22;(√3)2+1=4,S3=√32;……(1)用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+S22+S32+…+S102的值.解:(1)(√n)2+1=n+1,S n=√n2.(2)OA10=√10.(3)554.例2如图17-1-70,在Rt△ABC中,∠C=90°,CD⊥AB于点D,∠A=60°,CD=√3,求线段AB的长.1.利用探究形式的问题巩固本节课所学知识.2.掌握勾股定理在几何计算中的应用,提高学生应用勾股定理解决问题的能力.活动 三:开放训练 体现 应用 分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用.目前“双垂图”需要掌握的知识点有:三个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°角的特殊性质等.图17-1-70要求学生能够自己画图,并正确标图.引导学生分析:可分别在两个小直角三角形中利用勾股定理和特殊角,求出BD=3和AD=1,再由AB=BD+AD 求AB.或分别在两个小直角三角形中利用勾股定理和特殊角,求出AC=2和BC=2√3,再由AB=√AC 2+BC 2求AB.【拓展提升】例3 如图17-1-71,在长方体盒子的点A 处有一昆虫,在点B 处有它最喜欢吃的食物,沿盒子表面爬行,如何爬行可使所爬路程最短?如果长方体的长、宽、高分别为a ,b ,c ,那么最短路程为多少?图17-1-71[解析] 将其中含有一点的面展开,与含另一点的面在同一平面内即可,主要可以分为三种情形:(1)将右侧面展开与上底面在同一平面内,可得其路程为:s 1=√(a +c )2+b 2;(2)将上底面展开与后表面在同一平面内,可得其路程为:s 2=√(b +c )2+a 2;1.知识的综合与拓展,提高学生的应考能力.活动三: 开放训练体现应用(3)将前面展开与右侧面在同一平面内,可得其路程为:s3=√(a+b)2+c2.然后比较s1,s2,s3的大小,即可得到最短路程.应用:如图17-1-72,一个实心长方体的长宽高分别为4,2,1,一只蚂蚁从长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处,怎样走路线最短?最短路线长为多少?图17-1-72通过此例师生共同总结规律:两条较短的棱长之和与最长的棱长作为直角边长的情况,路线最短.变式我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何.”题意是:如图17-1-73①所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是25尺.图17-1-73[解析] 这种问题可以转化成为平面内的问题解决,枯木侧面展开后可转化为图②,所以这是一个求直角三角形斜边长的问题,根据勾股定理可求出.一条直角边长(即枯木的高)为20尺,另一条直角边长为5×3=15(尺),因此葛藤长为√152+202=25(尺).2.此题意在考查学生的数学建模能力及解决实际问题的能力.活动四: 课堂总结反思【当堂训练】1.如图17-1-74,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是 (B)A.√3B.√5C.√6D.√7图17-1-742.如图17-1-75,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以点A为圆心,AB长为半径画弧,交最上方的网格线于点D,则CD的长为(C)A.√5B.0.8C.3-√5D.√13图17-1-753.为了比较√5+1与√10的大小,可以构造如图17-1-76所示的图形进行推算,其中∠C=90°,BC=3,点D在BC上且BD=AC=1.通过计算可得√5+1> √10.(填“>”“<”或“=”)图17-1-76图17-1-774.如图17-1-77,圆柱形容器的高为1.2 m,底面周长为1 m,在容器内壁离容器底部0.3 m的点B处有一只蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m与蚊子相对的点A处,则壁虎捕捉蚊子的最短路程为1.3m(容器厚度忽略不计).1.当堂检测,及时反馈学习效果.2.实际应用题意在考查学生的数学建模能力及解决实际问题的能力.3.让学生学会思考,培养学生的归纳能力和语言表达能力.活动四: 课堂总结反思5.如图17-1-78①,有5个边长为1的小正方形,我们可以分割后拼接成一个新的大正方形.现又有10个边长为1的小正方形如图②排列,请你在图中画出分割线,并在图②的右边画出拼接成的新的大正方形.图17-1-78解:分割线与拼接方法如图17-1-79:图17-1-79小结与作业:小结:今天我们学了哪些内容?让学生充分讨论交流,说出自己的体会,最后师生共同归纳.教师布置作业,学生记录并按要求在课外完成.在活动中,教师应重点关注:(1)培养学生对所学内容进行归纳、整理、总结的好习惯;(2)对学生在作业中反映出的问题,应做好记录,找出解决问题的方法.作业:教材28页习题17.1第6,9,11,12题.4.学生通过对学习过程的总结,领会其中的数学思想方法;通过梳理所学内容,形成完整的知识结构,培养归纳概括的能力.【知识网络】利用框架图回顾本节课的知识,更容易使学生形成知识网络.【教学反思】①[授课流程反思]本节课继续学习勾股定理的应用,新授部分先后有三个主要环节,分别是在数轴上画出表示无理数的点,证明“HL”定理,相关图形的计算.讲课过程中应找到这三个环节之间的衔接点,使之过渡自然流畅,并能很好地体现知识之间的联系与转化.活动四:课堂 总结反思②[讲授效果反思]在教学过程中,学生接触的新题型较多,大都有一定难度,应坚持“宁精勿滥”的原则,精选典型题目,同时有效发挥学生的主体作用,引导学生积极参与,尽量达到较好的学习效果. ③[师生互动反思]教学中教师要引导学生积极地发表自己的看法,梳理所学到的知识,加深对知识的理解和巩固. ④[习题反思]好题题号 错题题号回顾反思,找出差距与不足,形成知识及教学体系,更进一步提升教师教学的能力.学习目标:1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。