2020版高考数学一轮复习课后限时集训28数列的概念与简单表示法文含解析北师大版
- 格式:doc
- 大小:107.50 KB
- 文档页数:5
第1讲数列的概念及简单表示法最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的概念(1)数列的定义:按照一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N+(或它的有限子集)为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图像法和通项公式法.2.数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N+递减数列a n+1<a n常数列a n+1=a n按其他标准分类有界数列存在正数M,使|a n|≤M 摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.(1)通项公式:如果数列{a n}的第n项a n与n之间的函数关系可以用一个式子a n=f(n)来表示,那么这个式子叫作这个数列的通项公式,数列的通项公式就是相应的函数解析式. (2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫作这个数列的递推公式.4.已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的. (3)不是所有的数列都有通项公式. 答案 (1)× (2)× (3)× (4)√2.(2017·西安调研)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1 B .a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C .a n =2sin n π2 D .a n =cos(n -1)π+1解析 对n =1,2,3,4进行验证,a n =2sin n π2不合题意,故选C. 答案 C3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 A4.已知a n =n 2+λn ,且对于任意的n ∈N +,数列{a n }是递增数列,则实数λ的取值范围是________.解析因为{a n}是递增数列,所以对任意的n∈N+,都有a n+1>a n,即(n+1)2+λ(n+1)>n2+λn,整理,得2n+1+λ>0,即λ>-(2n+1).(*)因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.答案(-3,+∞)5.(必修5P8A1改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=________.答案5n-4考点一由数列的前几项求数列的通项【例1】根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)23,415,635,863,1099,…;(3)12,2,92,8,252,…;(4)5,55,555,5 555,….解(1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n=(-1)n(6n-5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数.故所求数列的一个通项公式为a n=2n(2n-1)(2n+1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即1 2,4 2,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n=n22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【训练1】 (1)数列0,23,45,67,…的一个通项公式为( ) A .a n =n -1n +2(n ∈N +) B .a n =n -12n +1(n ∈N +) C .a n =2(n -1)2n -1(n ∈N +) D .a n =2n2n +1(n ∈N +)(2)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________. 解析 (1)注意到分子0,2,4,6都是偶数,对照选项排除即可.(2)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1n (n +1).答案 (1)C (2)(-1)n1n (n +1)考点二 由S n 与a n 的关系求a n(易错警示)【例2】 (1)若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. (2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. 解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13, 两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2.又n =1时,S 1=a 1=23a 1+13,a 1=1, ∴a n =(-2)n -1.答案 (1)⎩⎨⎧2,n =16n -5,n ≥2(2)(-2)n -1规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.【训练2】 (1)(2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________.解析 (1)依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,a n =-2n -1. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式.∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)-2n -1(2)⎩⎨⎧4,n =1,2·3n -1,n ≥2考点三 由数列的递推关系求通项公式 【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项公式a n =________. (2)若a 1=1,a n =n -1n a n -1(n ≥2),则通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________.解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)法一 因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1·a n -2,…,a 2=12a 1,以上(n -1)个式子的等号两端分别相乘得a n =a 1·12·23·…·n -1n =a 1n =1n .法二 因为a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n -1n ·n -2n -1·n -1n -2·…·1=1n . (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4, 且b n +1b n=a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3. 答案 (1)n (n +1)2+1 (2)1n(3)2n +1-3 规律方法 (1)形如a n +1=a n +f (n )的递推关系式利用累加法求和,特别注意能消去多少项,保留多少项.(2)形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n =f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项.(3)形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键.【训练3】 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N +),则数列{a n }的通项公式a n =________.(2)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.解析 (1)由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1, ∴n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3, 将以上各式累加得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(当n =1时,也满足). (2)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得,a n =a 1+1-1n ,故a n =4-1n . 答案 (1)3×2n -1-2 (2)4-1n[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎨⎧S 1 (n =1),S n -S n -1(n ≥2).3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想; (2)利用累加或累乘法求数列的通项公式. [易错防范]1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的. 2.数列的通项公式不一定唯一.基础巩固题组(建议用时:40分钟)一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12 B .cosn π2 C .cosn +12π D .cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D2.数列23,-45,67,-89,…的第10项是( ) A .-1617 B .-1819 C .-2021 D .-2223解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n2n +1,故a 10=-2021. 答案 C3.(2016·上饶调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( ) A .2n -1 B .2n -1+1 C .2n -1 D .2(n -1)解析 法一 由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1. 法二 由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1. 答案 A4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A .2n -1 B .n 2 C.(n +1)2n 2 D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.答案 D5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A .7 B .6 C .5 D .4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D 二、填空题6.若数列{a n }满足关系a n +1=1+1a n,a 8=3421,则a 5=________.解析 借助递推关系,则a 8递推依次得到a 7=2113,a 6=138,a 5=85. 答案 857.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N +),则a n =________.解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,2n +1,n ≥2. 答案 ⎩⎨⎧4,n =1,2n +1,n ≥2.8.(2017·北京海淀期末)已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N +),又a n a n +1=S n ,则a 3-a 1=________.解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1,令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1. 答案 1 三、解答题9.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). ∴从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,……a n -1=n n -2a n -2, a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘,整理得a n =n (n +1)2.显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n (n +1)2.能力提升题组(建议用时:20分钟)11.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( )A.163B.133 C .4 D .0解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 答案 D12.(2017·石家庄质检)已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________.解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2 016=6×336,∴a 2 016=a 6=-1.答案 -113.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N +),则a n =________.解析 由a n -a n +1=na n a n +1得1a n +1-1a n =n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n 2,又因为a 1=1,所以1a n =n 2-n 2+1=n 2-n +22,所以a n =2n 2-n +2. 答案 2n 2-n +214.(2016·榆林模拟)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N +,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N +,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N +,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N +). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N +). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N +,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.即a 的取值范围是(-10,-8).。
课时规范练数列的概念与表示基础巩固组.下列数列中,既是递增数列又是无穷数列的是(),,…,…,…,,…,.数列,,…的一个通项公式(). . . ..已知数列{}的前项和为,若(∈),则()..已知数列{}满足…(,…),则()<>≠.已知数列{}的前项和为(∈),则为().已知数列{}的首项,其前项和(∈),则(). . . ..在数列{}中,则..数列{}的前项和为.若∈,则..在数列{}中,则..数列{}的通项公式是.()若,则数列中有多少项是负数为何值时有最小值?并求出最小值.()对于∈,都有>.求实数的取值范围.综合提升组.在数列{}中,若,且对任意正整数,总有,则{}的前项和为()().()..给定数列,…,则这个数列的一个通项公式是().已知数列{}的前项和为,若,则().在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{}是等和数列,且,公和为,那么..已知数列{}的前项和为,则.创新应用组.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数,….该数列的特点是:前两个数都是,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{}称为“斐波那契数列”,则()()()…()().(衡水中学二调)数列{}满足()(∈),且…,则的整数部分的所有可能值构成的集合是().{}.{}.{}.{}参考答案课时规范练数列的概念与表示项中,数列,,,,…是递减数列,不符合题意项中,数列,…是递减数列,不符合题意项中,数列,…是递增数列又是无穷数列,符合题意项中,数列,,,…,是有穷数列,不符合题意,故选.由已知得,数列可写成,,,…,故通项为.。
第一节数列的概念与简单表示突破点一数列的通项公式抓牢双基自学回扣[基本知识]1.数列的定义按照一定顺序排列的一列数称为数列. 数列中的每一个数叫做这个数列的项,_ 数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示, 那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n}的第1项(或前几项),且任何一项a n与它的前一项a n-1(或前几项)间的关系可以用一个式子来表示,即a n=f(a n—1)(或a n=f (a n—1, a n—2)等),那么这个式子叫做数列{a n}的递推公式.4. S与a n的关系S, n= 1,已知数列{a n}的前n项和为则a n=C 这个关系式对任意数列均成8 1, n>2,立.[基本能力]一、判断题(对的打“,”,错的打“x”)(1)所有数列的第n项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个. ( )1(3)若已知数列{an}的递推公式为an+1 = -——且a2=1,则可以写出数列{&}的任何2a n —1一项.( )(4)如果数列{a n}的前n项和为S,则对?nC N,都有a n+1 = S+1 —S.( )答案:(1) X (2) V (3) V (4) X二、填空题11.数列{a n}中,a=2,且a n+1 = 2ai- 1,则a5的值为1 1 . . 一1 一 . .解析:由& = 2, a n+1 = 2a n—1,得a2 = 2a1- 1 = 1 - 1 = 0, a3=~a2- 1 = 0-1 = - 1, a4- 7答案:-4n1 + a2 , n 为偶数,12,数列{ a n }定义如下:a 1=1,当n>2时)a n=- 1若a n = 4,I 尸,n 为奇数, L a n — 1则n 的值为31 2 」 , , 1 1a 3 = a 7= -= -, a 8=1+a 4=4, a 9=-=所以 n= 9.2 a 63 a 8 4答案:93 .数列{a n }的通项公式 a n=T -------- == ^/n +\n + 1解析:a n=.——1——『= ------- [ --- I n ■+1即 - p- = J n + 1 -J n ,n /n + 1 + n ]n n jm- 1 + y/n n jm 1 -yj n••.q iO —3=y i0—小,・•・回一3是该数列的第9项.答案:94.已知S 是数列{a n }的前n 项和,且&= n 2+ 1,则数列{ a n }的通项公式是2 n=1, ■=2n —1, n>2研透高考,潦化提能[全析考法]考法一利用an 与3的关系求通项 •S 1, n= 1,数列{a n }的前n 项和&与通项a n 的关系为a n= ”通过纽带:a n = SS n-S n 1, n>2,-S n 1(n>2),根据题目已知条件,消掉a n 或S n,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.[例1] (1)(2019 ・化州模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n+1) = n+1, 则数列{ a n }的通项公式为 .(2)(2019 •广州测试)已知数列{曰}的各项均为正数,S 为其前n 项和,且对任意nCN,=2a3 -1 = — 2— 1 = 一 3 … 1 d2 a 5= 2a 4 — 13-1 =-4解析:困为1a 1 - 1 , 以 a 2— 1 + a 1 — 2 , a 3 一 — a 2 1… c 1 1 … ,a 4 — 1 + a 2 — 3, a 5 —— , a 6 — 1 + 2a 3,则历一3是此数列的第项.答案:a n =均有an, S,芯成等差数列,则an=.[解析](1)由log 2(S n+ 1) =n+1,得S n+ 1 = 2n+1,当 n = 1 时,a [=S = 3;当 n>2 时,a n= S —S —1=2 ,3, n= 1, 所以数列{ a n }的通项公式为a n=<2n 值?(2)「a n, a 2成等差数列,2S=a n+a 2.2当 n = 1 时,2s = 2a 1 = a 1 + a 1. 又 a 1>0, •= a= 1.22当 n > 2 时,2a n = 2( S n — S1-1) =a n+a n — a n -1 — a n-1, • • (a n — a n- 1) — (a n+ a n- 1) = 0.--- (a n+ a n 1)( a n —a n 1)— (a n+ a n 1)= 0,「•(a n+a n-1)( a n —an-1-1) = 0,- a n + a n i >0, • • a n — a n-i = 1,[方法技巧]已知S 求a n 的3个步骤(1)先利用a 1=S 求出a;(2)用n-1替换S 中的n 得到一个新的关系, 利用a n=$—1(n>2)便可求出当n>2 时a n 的表达式; (3)对n=1时的结果进行检验,看是否符合n>2时a n 的表达式,如果符合,则可以把 数列的通项公式合写;如果不符合,则应该分n=1与n>2两段来写.考法二利用递推关系求通项[例2] (1)在数列{a n }中,a 1=2, a n+1=a n+3n+ 2,求数列{a n }的通项公式.n — 1(2)在数列{a n }中,a 1=1' a = ka n -1(廿2),求数列⑹的通项公式-(3)在数列{a n }中a = 1, a n+1 = 3a n+2,求数列{a n }的通项公式.2 a n⑷已知数列{a n }中,a 1f an+1="'求数列⑶的通项公式.[解](1)因为 a n+1 —a n=3n+2, 所以 a n — a n-1 = 3n — 1( n> 2),,、」 ................ n 3n+l ,、~所以 a n= (a n —a n-1) + (a n-1 — a n-2) + …+ (a 2—a 1)+a 1= 2 ( n>2).一 1当 n = 1 时,a 1=2= 2X(3X1+ 1),符合上式,.••{a n }是以1为首项,*.1为公差的等差数列,[答案](1) a n=<;2 , n=1,(2) n所以 a n=3n 2+2.…n — 1 , 一、(2)因为 a n= n a n i ( n>2),n —2所以 a n- 1 = a n- 2n-112 n-1 a i 11由累乘法可得 a n = a 1 - 2 - 3 .... n = —= -(n>2).又 a 1=1符合上式,.. a n=n . ,__, ,__ ~ .、,a n +1 + 1..... (3)因为 a n+1 = 3a n+ 2,所以 a n+1 + 1 = 3(a n+1),所以 .=3,所以数列{a n+1}为等a n 1比数列,公比 q=3,又 a 1+1=2,所以 a n+1=2 Tn —,所以 a n=2 • 3n-一1.--- a n+1= a n+2,a 1=1.1— = - + 1,即工一2=1,又d= 1,则工=1, a n+1 a n 2 a n+1 a n 2 a 1是以1为首项,2为公差的等差数列. )『(「Dx 2=2 + 2,• •a n = n :2-^(n^ Nj .1.[考法一]已知数列{a n }的前n 项和为S n,且a 1=1, S n="2,则a 2 019=()A. 2 018B. 2 019C. 4 036D. 4 038n + ] a n na n-1a n a n- 1 解析:选B 由题意知n>2时,a1 = Sn-Sn 1 = ——7一一工一,化为一=一2 2n n-1, 1a 2= -a i .a i i=1 ,an=n .贝Ua 2 019=2 019.故选 B.1一. S+1 3 ............................ 解析:选B 3=2an+1=23+1 —2S? 3S=2S+1? k = 故数列{3}为等比数列,公比S n 23.[考法二]已知在数列{d }中,a n+1 = nn^a n ( n C N *),且日=4,则数列{a n }的通项公式解析:由na n+1n 皿 a 2 1 a 3 2a n+1= ------- -a n,得 ----- = ---- 故—=二,一 =:n+2 a n n + 2 d 3 a 2 4a n n-1(n>2),以上a n 1 2 式子累乘信,01=3 4 n-3 n-27 'n-1 n n- 1 n+ 1 n n+1 .因为a1= 4,所以a n=T 』(n>2).因为a 1=4满足上式,所以 a n =8 nn+14.[考法二]已知数列{a n }满足 d= 2, a n-a n 1= n (n>2, n€ N),则 a n=解析:由题意可知, a 2- a 1 = 2, a 3—a 2=3,…,a n -a n 1 = n( n>2), 以上式子累加得, a n —a [ = 2+ 3+…+ n . 因为 a1 = 2,所以 an=2+(2 + 3+…+ n) = 2+n-1 2 + n n 2+n+2----- 2 ------ = -2( n > 2) •因为 所以 a 1 = 2满足上式,n 2+ n+2 a n=.2―n 2+ n+2 答案:一2 一突破点二数列的性质抓牢双基•自学回扣分类标准满足条件[基本知识]数列的分类 a n a n —1 n n-12.[考法一]已知数列{a n }的前n 项和为3, a 1=1, S=2a n+1,则S=(口 3~,是2,又S=1,所以[基本能力]1.已知数列{a n }的通项公式是a n=;r —那么这个数列是 _________________ (填递增或递减).3 n 1答案:递增2 .设a n=- 3n 2+ 15n-18,则数列{a n }中的最大项的值是 .答案:03 .已知数列{a n }的通项公式为a n=(n + 2) 7- n,则当a n 取得最大值时,n 等于 ________8答案:5或6研透高考*深化提能[全析考法]考法一 [例1] 数列的单调性 已知数列{a n }的通项公式为a n =n '1),则数列{a n }中的最大项为(3A.- B . 64 c 而125 口 243[解析]法一:(作差比较法)an +i-an=(n+1)(2 i n+1-n1)=2f^-当 n <2 时,a n+1 —a n >0,即 a n+1>a n ; 当 n = 2 时,a n+1 — a n = 0,即 a n+1 =a n ; 当 n >2 时,a n+1 — a n <0,即 a n+1<a n .所以 a «a 2=a 3, a 3>a 4>a 5> - >a n,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2x法二:(作商比较法)a n + 1 a n+ 1 a n+ 1令一>1,解得n<2;令——=1,解得n=2;令——<1,解得n>2. a n a n a n又a n>0,故a1<a2=a3, a3>a4>a5> - > a n,所以数列{a n}中的最大项为a2或a3,且a2=a3=2x .故选A.[答案]A[方法技巧]求数列最大项或最小项的方法(1)将数列视为函数f(x)当xC N*时所对应的一列函数值,根据f (x)的类型作出相应的函数图象,或利用求函数最值的方法,求出f(x)的最值,进而求出数列的最大(小)项.a n > a n- 1(2)通过通项公式a研究数列的单调性,利用((n>2)确定最大项,利用[a n > an+ 1an< a n —1 ,((n>2)确定最小项.anW a n + 1(3)比较法:a n+ 1①育有a n+1 — a n = f (n + 1) —f ( n)>0( 或a n>0 时,a >1 ) 5则a n+1 >a n,即数列{a n}递增数列,所以数列{a n}的最小项为a1 = f(1);②若有a n+1 —a n = f (n+1) —f ( n)<0( 或a n>0 时,a n^<1 ),则a n+1<a n,即数列{a n}是递减数列,所以数列{a n}的最大项为a1 = f(1).考法二数列的周期性•数列的周期性与函数的周期性相类似. 求解数列的周期问题时,通常是求出数列的前几项观察规律.确定出数列的一个周期,然后再解决相应的问题.[例2] (2019 •广西南宁二中、柳州高中联考 )已知数列2 008,2 009,1 , -2 008,…,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前 2 018项之和S2 018 = .[解析]由题意可知a n+1=a n+a n+2, a1=2 008, a2= 2 009, a3=1, a,=—2 008 ,a5= —2 009, a6=—1, a7=2 008, a8= 2 009,…,,a n+6=a n,即数列{a n}是以 6 为周期的数列,又a + & + a3 + a4 + a5 + a6 = 0 > S2 018 = 336( a〔 + & + a?+ a4 + st + a6) + ( a 〔 + a2)=4 017.[答案]4 017[方法技巧]周期数列的常见形式与解题方法(1)周期数列的常见形式①利用三角函数的周期性,即所给递推关系中含有三角函数;②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列.(2)解决此类题目的一般方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n项的和.[集训冲关]1.[考法—-]若数列{a nj 中,a i = 2, a:2=3,a ni+1 = a n—a n i( n—2),则a2 019 =( )A. 1B. - 2C. 3D. — 3解析:A 因为a n=a n-1 —a n-2( n >3),所1以a n+1 = a n —a n—1 =( a n—1 —a n 2) —a n-1 = - a n 2,所以an+3=—an,所以an+6=—an+3=an,所以{an}是以6为周期的周期数列.因为 2 019 =336x6+ 3,所以a2 019 = a3= a- a〔= 3— 2=1.故选A.n +12.[考法一]已知数列{a}满足a n = 3^516(n e N),则数列{a n}的最小项是第项.一_ ____ n+1 ... . ,… ,一、…~ n+1 ,, 斛析:因为a n= --------- -,所以数列{a n}的取小项必为a n<0,即:; ------ -<0,3 n— 16<0,从3n — 16 3n — 16而n<16.又nC N*,所以当n=5时,a n的值最小.3答案:5。
考点强化练21 九年级(全一册) Unit 13~Unit 14Ⅰ.单项填空。
1.(2018·内蒙古包头)My teacher has given me useful suggestions and I want to thank him from the of my heart.A.bottomB.conditionC.wayD.surface:我的老师给了我一些有用的建议,我想从心底里感谢他。
bottom底部。
2.(2018·新疆)—Wow,your sweater is very beautiful!How much is it?—Thank you.It me 30 dollars.A.spendB.paidC.costD.takecost。
3.(2018·云南)Don’t play games on the computer all day.It’s to your eyes.A.harmfulefulC.helpfulD.thankful对……有害。
4.My teacher often says that mistakes should in time.A.correctB.be correctingC.have correctedD.be corrected是情态动词,后面跟动词原形作谓语。
错误应该被改正,故选D项。
5.As time ,you’ll come to think of English as your friend and love it.A.goes byB.runs outC.takes offD.turns up:随着时间流逝,你会把英语当作你的朋友并且爱上它。
go by时光流逝;run out耗尽;take off起飞;turn up出现。
根据句意可知选A项。
6.(2018·天津)I am afraid we can not to take a taxi.Let’s go by underground instead.A.refuseB.affordC.forgetD.fall:恐怕我们不能负担起乘出租车,我们乘地铁去吧。
第六章 数列突破点一[基本知识]1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第1项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[基本能力]一、判断题(对的打“√”,错的打“×”) (1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)× (2)√ (3)√ (4)×二、填空题1.数列{a n }中,a 1=2,且a n +1=12a n -1,则a 5的值为________.解析:由a 1=2,a n +1=12a n -1,得a 2=12a 1-1=1-1=0,a 3=12a 2-1=0-1=-1,a 4=12a 3-1=-12-1=-32,a 5=12a 4-1=-34-1=-74.答案:-742.数列{a n}定义如下:a 1=1,当n ≥2时,a n=⎩⎨⎧1+a 2n ,n 为偶数,1a n -1,n 为奇数,若a n =14,则n 的值为________.解析:困为a 1=1,所以a 2=1+a 1=2,a 3=1a 2=12,a 4=1+a 2=3,a 5=1a 4=13,a 6=1+a 3=32,a 7=1a 6=23,a 8=1+a 4=4,a 9=1a 8=14,所以n =9.答案:93.数列{a n }的通项公式a n =1n +n +1,则10-3是此数列的第________项.解析:a n =1n +1+n =n +1-n (n +1+n )(n +1-n )=n +1-n ,∵10-3=10-9,∴10-3是该数列的第9项. 答案:94.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是____________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[全析考法]考法一 利用a n 与S n 的关系求通项数列{a n }的前n 项和S n 与通项a n 的关系为a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,通过纽带:a n =S n -S n -1(n ≥2),根据题目已知条件,消掉a n 或S n ,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.[例1] (1)(2019·化州模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为____________.(2)(2019·广州测试)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n ∈N *,均有a n ,S n ,a 2n 成等差数列,则a n =____________.[解析] (1)由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n ,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.(2)∵a n ,S n ,a 2n 成等差数列,∴2S n =a n +a 2n .当n =1时,2S 1=2a 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1, ∴(a 2n -a 2n -1)-(a n +a n -1)=0.∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0, ∴(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n (n ∈N *).[答案] (1)a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 (2)n[方法技巧]已知S n 求a n 的3个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.考法二 利用递推关系求通项[例2] (1)在数列{a n }中,a 1=2,a n +1=a n +3n +2,求数列{a n }的通项公式. (2)在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. (3)在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. (4)已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式. [解] (1)因为a n +1-a n =3n +2, 所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2). 当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2.(2)因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3,又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(4)∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *). [方法技巧] 典型的递推数列及处理方法递推式 方法 示例a n +1=a n +f (n ) 叠加法 a 1=1,a n +1=a n +2n a n +1=a n f (n ) 叠乘法 a 1=1,a n +1a n =2na n +1=Aa n +B (A ≠0,1,B ≠0) 化为等比数列a 1=1,a n +1=2a n +1a n +1=Aa nBa n +C(A ,B ,C 为常数)化为等差数列a 1=1,a n +1=3a n2a n +31.[考法一]已知数列{a n }的前n 项和为S n ,且a 1=1,S n =(n +1)a n2,则a 2 019=( )A .2 018B .2 019C .4 036D .4 038解析:选B 由题意知n ≥2时,a n =S n -S n -1=(n +1)a n 2-na n -12,化为a n n =a n -1n -1, ∴a n n =a n -1n -1=…=a 11=1,∴a n =n .则a 2 019=2 019.故选B.2.[考法一]已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D .⎝⎛⎭⎫12n -1解析:选B S n =2a n +1=2S n +1-2S n ⇒3S n =2S n +1⇒S n +1S n=32,故数列{S n }为等比数列,公比是32,又S 1=1,所以S n =1×⎝⎛⎭⎫32n -1=⎝⎛⎭⎫32n -1.故选B.3.[考法二]已知在数列{a n }中,a n +1=nn +2a n (n ∈N *),且a 1=4,则数列{a n }的通项公式a n =____________.解析:由a n +1=n n +2a n ,得a n +1a n=n n +2,故a 2a 1=13,a 3a 2=24,…,a n a n -1=n -1n +1(n ≥2),以上式子累乘得,a n a 1=13·24·…·n -3n -1·n -2n ·n -1n +1=2n (n +1).因为a 1=4,所以a n =8n (n +1)(n ≥2).因为a 1=4满足上式,所以a n =8n (n +1).答案:8n (n +1)4.[考法二]已知数列{a n }满足a 1=2,a n -a n -1=n (n ≥2,n ∈N *),则a n =____________. 解析:由题意可知,a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2), 以上式子累加得,a n -a 1=2+3+…+n .因为a 1=2,所以a n =2+(2+3+…+n )=2+(n -1)(2+n )2=n 2+n +22(n ≥2).因为a 1=2满足上式, 所以a n =n 2+n +22.答案:n 2+n +22突破点二 数列的性质[基本知识]数列的分类1.已知数列{a n }的通项公式是a n =2n3n +1,那么这个数列是________(填递增或递减). 答案:递增2.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 答案:03.已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫78n,则当a n 取得最大值时,n 等于________. 答案:5或6[全析考法]考法一 数列的单调性[例1] 已知数列{a n }的通项公式为a n =n ⎝⎛⎭⎫23n ,则数列{a n }中的最大项为( ) A.89 B .23C.6481D .125243[解析] 法一:(作差比较法)a n +1-a n =(n +1)⎝⎛⎭⎫23n +1-n ⎝⎛⎭⎫23n =2-n 3·⎝⎛⎭⎫23n , 当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A. 法二:(作商比较法)a n +1a n =(n +1)⎝⎛⎭⎫23n +1n ⎝⎛⎭⎫23n =23⎝⎛⎭⎫1+1n , 令a n +1a n >1,解得n <2;令a n +1a n =1,解得n =2;令a n +1a n <1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A.[答案] A [方法技巧]求数列最大项或最小项的方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项.(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.(3)比较法:①若有a n +1-a n =f (n +1)-f (n )>0( 或a n >0时,a n +1a n>1 ),则a n +1>a n ,即数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);②若有a n +1-a n =f (n +1)-f (n )<0( 或a n >0时,a n +1a n <1 ),则a n +1<a n ,即数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).考法二 数列的周期性数列的周期性与函数的周期性相类似.求解数列的周期问题时,通常是求出数列的前几项观察规律.确定出数列的一个周期,然后再解决相应的问题.[例2] (2019·广西南宁二中、柳州高中联考)已知数列2 008,2 009,1,-2 008,…,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 018项之和S 2 018=________.[解析] 由题意可知a n +1=a n +a n +2,a 1=2 008,a 2=2 009,a 3=1,a 4=-2 008,∴a 5=-2 009,a 6=-1,a 7=2 008,a 8=2 009,…,∴a n +6=a n ,即数列{a n }是以6为周期的数列,又a 1+a 2+a 3+a 4+a 5+a 6=0,∴S 2 018=336(a 1+a 2+a 3+a 4+a 5+a 6)+(a 1+a 2)= 4 017.[答案] 4 017 [方法技巧]周期数列的常见形式与解题方法(1)周期数列的常见形式①利用三角函数的周期性,即所给递推关系中含有三角函数; ②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列. (2)解决此类题目的一般方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.[集训冲关]1.[考法二]若数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2),则a 2 019=( ) A .1B .-2C .3D .-3解析:选A 因为a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2,所以a n +3=-a n ,所以a n +6=-a n +3=a n ,所以{a n }是以6为周期的周期数列.因为2 019=336×6+3,所以a 2 019=a 3=a 2-a 1=3-2=1.故选A.2.[考法一]已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项.解析:因为a n =n +13n -16,所以数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163.又n ∈N *,所以当n =5时,a n 的值最小.答案:5[课时跟踪检测][A 级 基础题——基稳才能楼高]1.在数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),则a 4的值为( ) A .31 B .30 C .15D .63解析:选C 由题意,得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,故选C. 2.已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 019=( )A .-1B .12C .1D .2解析:选A 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+3=a 3=-1. 3.数列-1,4,-9,16,-25,…的一个通项公式为( ) A .a n =n 2 B .a n =(-1)n ·n 2 C .a n =(-1)n +1·n 2D .a n =(-1)n ·(n +1)2解析:选B 易知数列-1,4,-9,16,-25,…的一个通项公式为a n =(-1)n ·n 2,故选B. 4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D .⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列, 所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *), 所以b <(2n +1)min =3,即b <3.[B 级 保分题——准做快做达标]1.(2019·福建四校联考)若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.(-1)n +1n +1B .(-1)n n +1C.(-1)n nD .(-1)n -1n解析:选A 由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪1n +1,故此数列的一个通项公式为(-1)n +1n +1.故选A.2.(2019·沈阳模拟)已知数列{a n }中a 1=1,a n =n (a n +1-a n )(n ∈N *),则a n =( ) A .2n -1 B .⎝⎛⎭⎫n +1n n -1C .nD .n 2解析:选C 由a n =n (a n +1-a n ),得(n +1)a n =na n +1,即a n +1n +1=a n n ,∴⎩⎨⎧⎭⎬⎫a n n 为常数列,即a n n =a 11=1,故a n =n .故选C.3.(2019·北京西城区模拟)已知数列{a n }的前n 项和S n =2-2n +1,则a 3=( )A .-1B .-2C .-4D .-8解析:选D ∵数列{a n }的前n 项和S n =2-2n +1,∴a 3=S 3-S 2=(2-24)-(2-23)=-8.故选D.4.(2019·桂林四地六校联考)数列1,2,2,3,3,3,4,4,4,4,…的第100项是( ) A .10 B .12 C .13D .14解析:选D 1+2+3+…+n =12n (n +1),由12n (n +1)≤100,得n 的最大值为13,易知最后一个13是已知数列的第91项,又已知数列中14共有14项,所以第100项应为14.故选D.5.(2019·兖州质检)已知数列{a n }满足a n =⎩⎪⎨⎪⎧a n -2,n <4,(6-a )n -a ,n ≥4,若对任意的n ∈N *都有a n <a n+1成立,则实数a 的取值范围为( ) A .(1,4)B .(2,5)C .(1,6)D .(4,6)解析:选A 因为对任意的n ∈N *都有a n <a n +1成立,所以数列{a n }是递增数列, 因此⎩⎪⎨⎪⎧1<a ,6-a >0,a <(6-a )×4-a ,解得1<a <4,故选A.6.(2019·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( )A .8B .2C .3D .7解析:选D 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,{a n }中的整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,….∵2 019=4×504+3,故b 2 019的末位数字为7.故选D.7.(2018·长沙调研)已知数列{a n },则“a n +1>a n -1”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由题意,若“数列{a n }为递增数列”,则a n +1>a n >a n -1,但a n +1>a n -1不能推出a n +1>a n ,如a n =1,a n +1=1,{a n }为常数列,则不能推出“数列{a n }为递增数列”,所以“a n +1>a n -1”是“数列{a n }为递增数列”的必要不充分条件.故选B.8.(2019·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n 等于( ) A.13n -1 B .2n (n +1)C.6(n +1)(n +2)D .5-2n3解析:选B 由题意知,S n +na n =2,当n ≥2时,(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a na n -1=13·24·…·n -1n +1,有a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1). 9.(2019·兰州诊断)已知数列{a n },{b n },若b 1=0,a n =1n (n +1),当n ≥2时,有b n =b n -1+a n-1,则b 501=________.解析:由b n =b n -1+a n -1得b n -b n -1=a n -1,所以b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,所以b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1(n -1)×n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1(n -1)×n =11-12+12-13+…+1n -1-1n =1-1n =n -1n ,又b 1=0,所以b n =n -1n ,所以b 501=500501.答案:500501 10.(2019·河南八市重点高中测评)已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=13,则数列{a n }的通项公式a n =________. 解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n +1,得2(1-a n +1)a n +1-2(1-a n )a n =1a n +1-1a n +1,整理,得1a n +1-1a n=1,即⎩⎨⎧⎭⎬⎫1a n 是以3为首项,1为公差的等差数列,∴1a n =3+(n -1)×1=n +2,即a n =1n +2. 答案:1n +211.(2019·宝鸡质检)若数列{a n }是正项数列,且a 1+a 2+a 3+…+a n =n 2+n ,则a 1+a 22+…+a n n =________.解析:由题意得当n ≥2时,a n =n 2+n -(n -1)2-(n -1)=2n ,∴a n =4n 2.又n =1,a 1=2,∴a 1=4,∴a n n =4n ,∴a 1+a 22+…+a n n =12n (4+4n )=2n 2+2n . 答案:2n 2+2n12.(2019·深圳期中)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a n n 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.解析:由a 1+a 222+a 332+…+a n n 2=a n (n ∈N *)知,当n ≥2时,a 1+a 222+a 332+…+a n -1(n -1)2= a n -1,∴a n n 2=a n -a n -1,即n +1n a n =n n -1a n -1,∴n +1n a n =…=2a 1=2,∴a n =2n n +1. 答案:2n n +113.(2019·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3.(1)写出该数列的前4项,并归纳出数列{a n }的通项公式;(2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n -1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4(a n +1)a n +1=4. 14.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围.解:(1)由n 2-5n +4<0,解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3. 所以实数k 的取值范围为(-3,+∞).15.(2019·武汉调研)已知数列{a n }的前n 项和S n =n 2+1,数列{b n }中,b n =2a n +1,且其前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式;(2)判断数列{c n }的增减性.解:(1)∵a 1=S 1=2,a n =S n -S n -1=2n -1(n ≥2), ∴b n =⎩⎨⎧ 23(n =1),1n (n ≥2).(2)由题意得c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴c n +1<c n ,∴数列{c n }为递减数列.。
课时分层训练(二十七)数列的概念与简单表示法A 组基础达标 (建议用时:30分钟)一、选择题1.在数列{a n }中,a 1=1,a n =1+-na n -1(n ≥2),则a 5=() A .32 B .53 C .85 D .23D [a 2=1+-2a 1=2,a 3=1+-3a 2=1+-12=12,a 4=1+1a 3=3,a 5=1+-a 4=23.] 2.数列{a n }的首项a 1=2,且(n +1)a n =na n +1,则a 3的值为()A .5B .6C .7D .8B [由(n +1)a n =na n +1得a n +1n +1=a n n ,所以数列⎩⎨⎧⎭⎬⎫a n n 为常数列,则a n n =a 11=2,即a n =2n ,所以a 3=2×3=6,故选B .]3.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =()【导学号:00090158】A .3(3n-2n) B .3n+2 C .3nD .3·2n -1C [当n ≥2时,a n =S n -S n -1=32(a n -1)-32(a n -1-1),整理,得a n =3a n -1,由a 1=32(a 1-1),得a 1=3,∴a na n -1=3,∴数列{a n }是以3为首项,3为公比的等比数列, ∴a n =3n,故选C .]4.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=()A .31B .42C .37D .47D [法一:a 2=S 1+1=3,a 3=S 2+1=6,a 4=S 3+1=12,a 5=S 4+1=24,所以S 5=S 4+a 5=47.法二:∵a n +1=S n +1,∴S n +1-S n =S n +1(n ∈N *)∴S n +1+1=2(S n +1)(n ∈N *),∴数列{S n +1}为等比数列,其首项为3,公比为2.则S 5+1=3×24,解得S 5=47.故选D .] 5.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2017=()A .12B .-12C .2D .-2C [由a n =a n +1-1a n +1+1,得a n +1=1+a n1-a n,而a 1=2,则有a 2=-3,a 3=-12,a 4=13,a 5=2,故数列{a n }是以4为周期的周期数列,且a 1a 2a 3a 4=1, 所以T 2017=(a 1a 2a 3a 4)504a 1=1504×2=2.] 二、填空题6.设数列{a n }的前n 项和为S n ,且S n =a 1n-3,若a 4=32,则a 1=________.12[a 4=S 4-S 3=a 14-3-a 13-3=32解得a 1=12.]7.已知数列{a n }满足a 1=1,a n -a n -1=n (n ≥2),则数列{a n }的通项公式a n =________.12n (n +1)[由a n -a n -1=n 得a 2-a 1=2, a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n ,上面(n -1)个式子相加得a n =1+2+3+…+n =12n (n +1),又n =1时也满足此式, 所以a n =12n (n +1).]8.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n +a n2,则a 2017=________. 2017[由题意知n ≥2时,a n =S n -S n -1=n +a n 2-na n -12,化为a n n =a n -1n -1,∴a n n =a n -1n -1=…=a 11=1,∴a n =n .则a 2017=2017.] 三、解答题9.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数?【导学号:00090159】[解](1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去). 所以从第7项起各项都是正数.10.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.[解](1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; 3分S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4. 5分 (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.8分由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .12分B 组能力提升 (建议用时:15分钟)1.已知正项数列{a n }中,a 1+a 2+…+a n =n n +2(n ∈N *),则数列{a n }的通项公式为() A .a n =n B .a n =n 2C .a n =n 2D .a n =n 22B [∵a 1+a 2+…+a n =n n +2, ∴a 1+a 2+…+a n -1=n n -2(n ≥2),两式相减得a n =n n +2-n n -2=n (n ≥2),∴a n =n 2(n ≥2),※又当n =1时,a 1=1×22=1,a 1=1,适合※式,∴a n =n 2,n ∈N *.故选B .]2.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=3S n ,则a n =__________.⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2[由a n +1=3S n ,得a n =3S n -1(n ≥2),两式相减可得a n +1-a n =3S n -3S n -1=3a n (n ≥2), ∴a n +1=4a n (n ≥2). ∵a 1=1,a 2=3S 1=3≠4a 1,∴数列{a n }是从第二项开始的等比数列, ∴a n =a 2qn -2=3×4n -2(n ≥2).故a n =⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2.]3.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围.【导学号:00090160】[解](1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 2分因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该数列是一个递增数列, 7分又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k2<32,即得k>-3.所以实数k的取值范围为(-3,+∞).12分。
考点规范练28 数列的概念与表示一、基础巩固1.数列1,,…的一个通项公式a n =( )23,35,47,59 A. B. C. D.n 2n +1n 2n -1n 2n -3n 2n +32.若S n 为数列{a n }的前n 项和,且S n =,则等于( )n n +11a 5A. B. C. D.305665130n ≥2时,a n =S n -S n-1=,n n +1‒n -1n =1n (n +1)则=5×(5+1)=30.1a 53.已知数列{a n }满足a n+1+a n =n ,若a 1=2,则a 4-a 2=( )A.4B.3C.2D.1a n+1+a n =n ,得a n+2+a n+1=n+1,两式相减得a n+2-a n =1,令n=2,得a 4-a 2=1.4.数列{a n }的前n 项和为S n =n 2,若b n =(n-10)a n ,则数列{b n }的最小项为( )A.第10项B.第11项C.第6项D.第5项S n =n 2,得当n=1时,a 1=1,当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1,当n=1时显然适合上式,所以a n =2n-1,所以b n =(n-10)a n =(n-10)(2n-1).令f (x )=(x-10)(2x-1),易知其图象的对称轴为x=5,14所以数列{b n }的最小项为第5项.5.已知数列{a n }满足a n+2=a n+1-a n ,且a 1=2,a 2=3,S n 为数列{a n }的前n 项和,则S 2 016的值为( )A.0B.2C.5D.6a n+2=a n+1-a n ,a 1=2,a 2=3,∴a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,a 8=a 7-a 6=3….∴数列{a n }是周期为6的周期数列.又2 016=6×336,∴S 2 016=336×(2+3+1-2-3-1)=0,故选A .6.设数列,2,…,则是这个数列的第 项.2,52,1141,得数列的通项公式为a n =.3n -1令,解得n=14,即为第14项.3n -1=417.已知数列{a n }满足:a 1+3a 2+5a 3+…+(2n-1)·a n =(n-1)·3n+1+3(n ∈N *),则数列{a n }的通项公式a n = .n1+3a 2+5a 3+…+(2n-3)·a n-1+(2n-1)·a n =(n-1)·3n+1+3,把n 换成n-1,得a 1+3a 2+5a 3+…+(2n-3)·an-1=(n-2)·3n +3,两式相减得a n =3n .8.已知数列{a n }的通项公式为a n =(n+2),则当a n 取得最大值时,n= . (78)n或6{a n ≥a n -1,a n ≥a n +1,∴{(n +2)(78)n ≥(n +1)(78)n -1,(n +2)(78)n ≥(n +3)(78)n +1,解得∴n=5或n=6.{n ≤6,n ≥5.9.设数列{a n }是首项为1的正项数列,且(n+1)-n +a n+1·a n =0,则它的通项公式a n = . a 2n +1a 2n (n+1)-n +a n+1·a n =0,a 2n +1a 2n ∴=0.[(n +1)a n +1-na n ](a n +1+a n )∵{a n }是首项为1的正项数列,∴(n+1)a n+1=na n ,即,∴a n =·…··a 1=·…··1=.a n +1a n =n n +1a n a n -1·a n -1a n -2a 2a 1n -1n ·n -2n -1121n 10.已知数列{a n}的前n 项和为S n .(1)若S n =(-1)n+1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n+1,求a n .因为S n =(-1)n+1·n ,所以a 5+a 6=S 6-S 4=(-6)-(-4)=-2.当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=(-1)n+1·n-(-1)n ·(n-1)=(-1)n+1·[n+(n-1)]=(-1)n+1·(2n-1).又a 1也适合于此式,所以a n =(-1)n+1·(2n-1).(2)当n=1时,a 1=S 1=6;当n ≥2时,a n =S n -S n-1=(3n +2n+1)-[3n-1+2(n-1)+1]=2·3n-1+2.①因为a 1不适合①式,所以a n ={6,n =1,2·3n -1+2,n ≥2.二、能力提升11.设数列{a n }满足a 1=1,a 2=3,且2na n =(n-1)a n-1+(n+1)a n+1,则a 20的值是( )A.4B.4C.4D.4152535452na n =(n-1)a n-1+(n+1)a n+1,得na n -(n-1)a n-1=(n+1)a n+1-na n =2a 2-a 1=5.令b n =na n ,则数列{b n }是公差为5的等差数列,故b n =1+(n-1)×5=5n-4.所以b 20=20a 20=5×20-4=96,所以a 20==4.96204512.已知函数f (x )是定义在区间(0,+∞)内的单调函数,且对任意的正数x ,y 都有f (xy )=f (x )+f (y ).若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )=f (3)(n ∈N *),则a n 等于( )A.2n-1B.nC.2n-1D.(32)n -1f (S n +2)=f (a n )+f (3)=f (3a n )(n ∈N *),∴S n +2=3a n ,S n-1+2=3a n-1(n ≥2),两式相减,得2a n =3a n-1(n ≥2).又当n=1时,S 1+2=3a 1=a 1+2,∴a 1=1.∴数列{a n }是首项为1,公比为的等比数列.32∴a n =.(32)n -113.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n = .n -1n ≥2时,a n =S n -S n-1=2a n -n-2a n-1+(n-1),即a n =2a n-1+1∴a n +1=2(a n-1+1).又S 1=2a 1-1,∴a 1=1.∴数列{a n +1}是以a 1+1=2为首项,公比为2的等比数列,∴a n +1=2·2n-1=2n ,∴a n =2n -1.14.已知{a n }满足a n+1=a n +2n ,且a 1=32,则的最小值为 .a n na n+1=a n +2n ,即a n+1-a n =2n ,∴a n =+(a n-1-a n-2)+…++a 1=2(n-1)+2(n-2)+…+2×1+32=2×(a n -a n -1)(a 2-a 1)(1+n -1)(n -1)2+32=n 2-n+32.∴=n+-1.a n n 32n 令f (x )=x+-1(x ≥1),则f'(x )=1-.32x 32x 2=x 2-32x 2∴f (x )在内单调递减,在内单调递增.[1,42)(42,+∞)又f (5)=5+-1=,f (6)=6+-1=<f (5),325525326313∴当n=6时,取最小值为.a n n 31315.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n+1=S n +3n ,n ∈N *,b n =S n -3n .(1)求数列{b n }的通项公式;(2)若a n+1≥a n ,求a 的取值范围.因为a n+1=S n +3n ,所以S n+1-S n =a n+1=S n +3n ,即S n+1=2S n +3n ,由此得S n+1-3n+1=2(S n -3n ),即b n+1=2b n .又b 1=S 1-3=a-3,故{b n }的通项公式为b n =(a-3)2n-1.(2)由题意可知,a 2>a 1对任意的a 都成立.由(1)知S n =3n +(a-3)2n-1.于是,当n ≥2时,a n =S n -S n-1=3n +(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2,故a n+1-a n =4×3n-1+(a-3)2n-2=2n-2.[12(32)n -2+a -3]当n ≥2时,由a n+1≥a n ,可知12+a-3≥0,即a ≥-9.(32)n -2又a ≠3,故所求的a 的取值范围是[-9,3)∪(3,+∞).三、高考预测16.已知数列{a n}的通项公式是a n=-n2+12n-32,其前n项和是S n,则对任意的n>m(其中m,n∈N*),S n-S m的最大值是 .a n=-n2+12n-32=-(n-4)·(n-8)>0得4<n<8,即在数列{a n}中,前三项以及从第9项起后的各项均为负且a4=a8=0,因此S n-S m的最大值是a5+a6+a7=3+4+3=10.。
第四章数列考点测试数列的概念与简单表示法一、基础小题.已知数列{}的通项公式=(∈*),则是这个数列的( ).第项.第项.第项.第项答案解析由题意知=,∈*,解得=,即是这个数列的第项.故选..在数列{}中,=,且(+)=+,则的值为( )....答案解析由(+)=+得=,所以数列为常数列,则==,即=,所以=×=.故选..设=-++,则数列{}的最大项是( )....答案解析因为=-++=-+,∈*,所以当=时,取得最大值..数列{}中,=,对于所有的≥,∈都有···…·=,则+=( )....答案解析解法一:令=,分别求出=,=,∴+=.故选.解法二:当≥时,···…·=.当≥时,···…·-=(-).两式相除得=,∴=,=,∴+=.故选..若数列{}满足=,+=,则=( ).-.-..答案解析∵数列{}满足=,+=(∈*),∴==-,==,==,…,可知此数列有周期性,周期=,即+=,则=×+==-.故选..把,…这些数叫做三角形数,这是因为这些数目的圆点可以排成一个正三角形(如图所示).则第个三角形数是( )....答案解析观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是该项的序号,即=-+(≥).所以根据这个规律计算可知,第个三角形数是=+=++=++=.故选..已知数列{}的前项和为,若=-,∈*,则=( ).+..-.-答案解析因为=-,所以≥时,有-=--,两式相减可得--=--,即=--,整理得=-,即=(≥).因为==-,所以=,所以=+.故选..在数列{}中,=,+=++,则=( ).+.+(-).+.++答案解析解法一:由已知得+-=+=,而=(--)+(-+-)+…+(-)+,≥,所以=++…++=··…·+=+,≥.当=时,==+.故选.解法二:由=-++=-+=-+- (-)(≥),可知-=-- (-)(≥).令=-,则数列{}是以=-=为首项的常数列,故=,所以=-,所以=+.故选..已知数列{}的通项公式为=,则数列{}中的最大项为( )....答案解析解法一(作差比较法):+-=(+)+-=·,当<时,+->,即+>;当=时,+-=,即+=;当>时,+-<,即+<.所以<=,>>>…>,所以数列{}中的最大项为或,且==×=.故选.解法二(作商比较法):==+,令>,解得<;令=,解得=;令<,解得>.又>,故<=,>>>…>,所以数列{}中的最大项为或,且==×=.故选..已知数列{}的通项公式为=++,若{}是单调递增数列,则实数的取值范围是( ).(-,+∞) .(-∞,-).(-∞,-) .(-,+∞)答案解析解法一:因为{}是单调递增数列,所以对于任意的∈*,都有+>,即(+)+(+)+>++,化简得>--,所以>--对于任意的∈*都成立,因为--≤-,所以>-.故选.解法二:设()=++,其图象的对称轴为=-,要使{}是递增数列,则-<,即>-.故选..已知是数列{}的前项和,且有=+,则数列{}的通项=.答案解析当=时,==+=,当≥时,=--=(+)-[(-)+]=-.此时对于=不成立,故=.对于数列{},定义数列{}满足:=+-(∈*),且+-=(∈*),=,=-,则=.答案解析由+-=知数列{}是公差为的等差数列,又=-=-,所以=-,=-,+=(-)+(-)=-=-,解得=.二、高考小题.(·全国卷Ⅰ)记为数列{}的前项和,若=+,则=.答案-解析根据=+,可得+=++,两式相减得+=+-,即+=,当=时,==+,解得=-,所以数列{}是以-为首项,以为公比的等比数列,所以==-..(·全国卷Ⅱ)数列{}满足+=,=,则=.答案解析由+=,得=-,∵=,∴=-=,=-=-,=-=,…,∴{}是以为周期的数列,∴==..(·浙江高考)设数列{}的前项和为.若=,+=+,∈*,则=,=.答案解析解法一:∵+=+,∴=+,即-=+,又∵=,∴-=+,解得=.又+=+-,∴+-=+,即+=+,由=,可求出=,=,=.解法二:由+=+,得=+,即-=+,又=,∴-=+,解得=.又+=+-,∴+-=+,即+=+,则++=,又+=,∴是首项为,公比为的等比数列,∴+=×-,即=,∴==..(·江苏高考)设数列{}满足=,且+-=+(∈*),则数列前项的和为.答案解析由已知得,-=+,-=+,-=+,…,--=-+(≥),则有-=+++…+-+(-)(≥),因为=,所以=+++…+(≥),即=(≥),又当=时,=也适合上式,故=(∈*),所以==,从而+++…+=×+×+×+…+×=×=.三、模拟小题.(·湖南六校联考)已知数列{}满足:∀,∈*,都有·=+,且=,那么=( )....答案解析∵数列{}满足:∀,∈*,都有·=+,且=,∴==,=·=.那么=·=.故选..(·南昌模拟)在数列{}中,=,-=-+(-)(≥,∈*),则的值是( )....答案解析由已知得=+(-)=,∴=+(-),=,∴=+(-),=,∴=+(-),∴=,∴=×=.故选..(·黄冈质检)已知数列{}满足+=+-(∈*),若=,=(≤,≠),且+=对于任意的正整数均成立,则数列{}的前项和=( )....答案解析∵=,=(≤,≠),∴=-=-=-,∴++=++(-)=,又+=对于任意的正整数均成立,∴数列{}的周期为,∴数列{}的前项和=×+=×+=.故选..(·河南郑州一中考前冲刺)数列{}满足:=,且对任意的,∈*,都有+=++,则+++…+=( )....答案解析∵=,且对任意的,∈*都有+=++,∴+=++,即+-=+,用累加法可得=+=,∴==-,∴+++…+=-+-+…+-=,故选..(·福建晋江季延中学月考)已知数列{}满足+++…+=+(∈*),则数列{}的通项公式为.答案=解析已知+++…+=+,将=代入,得=;当≥时,将-代入得+++…+(-)-=,两式相减得=(+)-=,∴=,∴=.(·北京海淀区模拟)数列{}的通项为=(∈*),若是{}中的最大值,则的取值范围是.答案[]解析当≤时,=-单调递增,因此=时取最大值,=-=.当≥时,=-+(-)=--+.∵是{}中的最大值,∴解得≤≤.∴的取值范围是[].一、高考大题.(·全国卷Ⅲ)已知各项都为正数的数列{}满足=,-(+-)-+=.()求,;()求{}的通项公式.解()由题意得=,=.()由-(+-)-+=得+(+)=(+).因为{}的各项都为正数,所以=.故{}是首项为,公比为的等比数列,因此=..(·浙江高考)已知数列{}满足=且+=-(∈*).()证明:<≤(∈*);()设数列{}的前项和为,证明:<≤(∈*).证明()由题意得+-=-≤,即+≤,故≤.由=(--)-,得=(--)(--)…(-)>.由<≤,得==∈(],即<≤.()由题意得=-+,所以=-,=-+.①由=-和<≤,得<-≤,所以<-≤,因此≤+<(∈*).②由①②得<≤(∈*).二、模拟大题.(·贵州贵阳月考)已知数列{}中,=+(∈*,∈,且≠).()若=-,求数列{}中的最大项和最小项的值;()若对任意的∈*,都有≤成立,求的取值范围.解()∵=+(∈*,∈,且≠),=-,∴=+(∈*).结合函数()=+的单调性,可知>>>>,>>>…>>(∈*).∴数列{}中的最大项为=,最小项为=.()=+=+.∵对任意的∈*,都有≤成立,结合函数()=+的单调性,∴<<,∴-<<-..(·湖南联考)已知数列{}的前项和为,=,≠,+=-(∈*).()证明:+-=;()求数列{}的通项公式.解()证明:∵+=-,∴++=+-,∴+(+-)=+.又≠,∴+-=.()由+=-,=,得=.由+-=知数列{}和{-}都是公差为的等差数列,∴=+(-)=()-,-=+(-)=(-)-,∴=-.。
第章 数 列第一节 数列的概念与简单表示法[考纲传真] 1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列有三种表示法,它们分别是列表法、图像法和通项公式法. 4.数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子就叫作这个数列的通项公式.5.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n , 则a n =⎩⎨⎧S 1(n =1),S n -S n -1(n ≥2).[常用结论]1.数列{a n }是递增数列⇔a n +1>a n 恒成立. 2.数列{a n }是递减数列⇔a n +1<a n 恒成立.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)所有数列的第n 项都能使用公式表达.( ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(3)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n . ( ) (4)任何一个数列不是递增数列,就是递减数列. ( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)数列-1,12,-13,14,-15,…的一个通项公式为( )A .a n =±1n B .a n =(-1)n ·1n C .a n =(-1)n +11nD .a n =1nB [由a 1=-1,代入检验可知选B .]3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 A [当n =8时,a 8=S 8-S 7=82-72=15.]4.把3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图所示).则第6个三角形数是( )A .27B .28C .29D .30B [由题图可知,第6个三角形数是1+2+3+4+5+6+7=28.] 5.在数列{a n }中,a 1=1,a n =1+(-1)n a n -1(n ≥2),则a 5=( )A .32B .53C .85D .23D [a 2=1+1a 1=2,a 3=1+-1a 2=1-12=12,a 4=1+1a 3=1+2=3,a 5=1+-1a 4=1-13=23.]1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +1(n ∈N *) B .a n =n -12n +1(n ∈N *) C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *) C [注意到分子0,2,4,6都是偶数,对照选项排除即可.]2.数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =__________.2n +1n 2+1 [数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n=2n +1n 2+1.] 3.写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,-34,78,-1516,3132,…; (3)3,33,333,3 333,…; (4)-1,1,-2,2,-3,3….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)数列中各项的符号可通过(-1)n +1表示.每一项绝对值的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =(-1)n +12n-12n. (3)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).(4)数列的奇数项为-1,-2,-3,…可用-n +12表示, 数列的偶数项为1,2,3,…可用n2表示.因此a n =⎩⎪⎨⎪⎧-n +12(n 为奇数),n2(n 为偶数).【例1】 (1)若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. (2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(1)⎩⎨⎧2,n =1,6n -5,n ≥2 (2)(-2)n -1 [(1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式. 故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.]n n n (2)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. (1)⎩⎨⎧4,n =1,2·3n -1,n ≥2 (2)-2n -1 [(1)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.(2)依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,a n =-2n-1.]►考法1 形如a n +1=a n +f (n ),求a n【例2】 在数列{a n }中,a 1=2,a n +1=a n +3n +2(n ∈N *),求数列{a n }的通项公式. [解] (1)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n (3n +1)2(n ≥2). 当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.►考法2 形如a n +1=a n f (n ),求a n【例3】 已知数列{a n }满足a 1=1,a n +1=2na n ,求数列{a n }的通项公式. [解] ∵a n +1=2na n ,∴a n +1a n=2n ,∴a na n -1=2n -1(n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1) =2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.►考法3 形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .【例4】 已知数列{a n }满足a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. [解] ∵a n +1=3a n +2, ∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,因此a n =2·3n -1-1.n (1)a 1=1,a n +1=a n +2n ; (2)a 1=12,a n =n -1n +1a n -1(n ≥2);(3)a 1=1,a n +1=2a n +3; (4)a 1=1,a n +1=2a na n +2.[解] (1)由题意知a n +1-a n =2n,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+2+1=1-2n 1-2=2n-1.(2)因为a n =n -1n +1a n -1(n ≥2), 所以当n ≥2时,a n a n -1=n -1n +1, 所以a n a n -1=n -1n +1,a n -1a n -2=n -2n ,…,a 3a 2=24,a 2a 1=13,以上n -1个式子相乘得a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·…·24·13,即a n a 1=1n +1×1n ×2×1,所以a n =1n (n +1). 当n =1时,a 1=11×2=12,与已知a 1=12相符,所以数列{a n }的通项公式为a n =1n (n +1).(3)由a n +1=2a n +3得a n +1+3=2(a n +3). 又a 1=1,∴a 1+3=4.故数列{a n +3}是首项为4,公比为2的等比数列, ∴a n +3=4·2n -1=2n +1,∴a n =2n +1-3. (4)因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n =12. 又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12.所以a n =2n +1(n ∈N *).1.(2014·全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 12 [∵a n +1=11-a n,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.]2.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. -1n [∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n .]3.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.。
课时规范练29 数列的概念与表示基础巩固组1.下列数列中,既是递增数列又是无穷数列的是( )A.1,12,13,14,…B.-1,-2,-3,-4,…C.-1,-12,-14,-18,…D.1,√2,√3,…,√n2.数列1,23,35,47,59,…的一个通项公式a n =( ) A .n 2n+1B .n 2n -1C .n2n -3 D .n 2n+33.(2020河北武邑校级联考,理4)大衍数列来源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,大衍数列中的每一项都代表太极衍生过程中,曾经经历的两仪数量总和.已知大衍数列前10项是0,2,4,8,12,18,24,32,40,50,则大衍数列中奇数项的通项公式a n =( )A .n 2-n 2 B .n 2-12 C .(n -1)22 D .n 224.在数列{a n }中,a 1=2,a n =1-1a n -1(n ≥2),则a 2 021等于( ) A .12 B.-12 C.-1 D.25.数列{a n }满足a n+1+a n =2n-3,若a 1=2,则a 8-a 4=( )A.7B.6C.5D.46.已知数列{a n }的通项公式a n =n 2-(6+2λ)n+2 014,若a 6或a 7为数列{a n }的最小项,则实数λ的取值范围是( )A.(3,4) B .[2,5]C.[3,4] D .(52,92) 7.(2020山东烟台一模,4)数列{F n }:F 1=F 2=1,F n =F n-1+F n-2(n>2),最初记载于意大利数学家斐波那契在1202年所著的《算盘全书》.若将数列{F n }的每一项除以2所得的余数按原来项的顺序构成新的数列{a n },则数列{a n }的前50项和为( )A.33B.34C.49D.508.已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n √S n -1-S n-1√S n =2√S n S n -1(n ∈N +且n ≥2),则a 81=( )A.638B.639C.640D.6419.(2020山东、湖北部分重点中学联考)已知数列{a n }的前n 项和为S n ,若a 1=2,a n+1=a n +2n-1+1,则a n = .10.(2020河南开封三模,文15)已知正项数列{a n }的前n 项和为S n ,且对于任意p ,q ∈N +,有a p ·a q =a p+q ,若a 2=4,则S 6= .11.数列{a n }的通项公式是a n =(n+1)·(1011)n ,则此数列的最大项是第 项.综合提升组12.(2020辽宁大连24中一模,8)数列{a n }满足对任意的n ∈N *,均有a n +a n+1+a n+2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( )A.132B.299C.68D.9913.(2020广东中山期末)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( )A .13n -1 B .2n (n+1) C .1(n+1)(n+2) D .5-2n 314.已知数列{a n }满足a 1=28,a n+1-a n n =2,则a n n 的最小值为( ) A .293 B.4√7-1 C .485 D .274 15.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n = .16.数列{a n }的前n 项和为S n ,且S n =2n -1,则数列b n =a n 2-7a n +6的最小值为 .创新应用组17.(2020山东济南三模,12改编)设{a n }是无穷数列,若存在正整数k ,使得对任意n ∈N +,均有a n+k >a n ,则称{a n }是间隔递增数列,k 是{a n }的间隔数,下列说法不正确的是( )A.公比大于1的等比数列一定是间隔递增数列B.已知a n =n+4n ,则{a n }是间隔递增数列C.已知a n =2n+(-1)n ,则{a n }是间隔递增数列且最小间隔数是2D.已知a n =n 2-tn+2 020,若{a n }是间隔递增数列且最小间隔数是3,则4≤t<518.如图,互不相同的点A 1,A 2,…A n ,…和B 1,B 2,…B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是 .参考答案课时规范练29 数列的概念与表示1.C 在A 选项中,数列1,12,13,14,…是递减数列,不符合题意;在B 选项中,数列-1,-2,-3,-4,…是递减数列,不符合题意;在C 选项中,数列-1,-12,-14,-18,…是递增数列又是无穷数列,符合题意;在D 选项中,数列1,√2,√3,…,√n 是有穷数列,不符合题意,故选C .2.B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n 2n -1.3.B 由数列的第一项为0,故D 错误;由数列的第三项为4,将n=3代入选项A,得到3,故A 错误;将n=3代入选项B,得到4,故B 正确.将n=3代入选项C,得到2,故C 错误.故选B .4.A ∵a 1=2,a n =1-1a n -1(n ≥2),∴a 2=1-12=12,a 3=1-2=-1,a 4=1-(-1)=2,a 5=1-12=12,…,∴数列{a n }是以3为周期的周期数列,∴a 2021=a 3×673+2=a 2=12.故选A. 5.D 依题意得(a n+2+a n+1)-(a n+1+a n )=[2(n+1)-3]-(2n-3),即a n+2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4.6.D 依题意,由二次函数的性质可知,当112<3+λ<152,即52<λ<92时,a 6或a 7为数列{a n }的最小项,故实数λ的取值范围为(52,92).故选D .7.B 由F 1=F 2=1,F n =F n-1+F n-2(n>2),得数列{F n }的各项分别为1,1,2,3,5,8,13,21,34,55,89,144,…,将数列{F n }的每一项除以2所得的余数构成新的数列{a n },则数列{a n }的各项分别为1,1,0,1,1,0,1,1,0,1,1,0,…,则数列{a n }的前50项和为(1+1+0)×16+1+1=34.故选B.8.C 已知S n √S n -1-S n-1√S n =2√S n S n -1,数列{a n }的每项均大于零,故等号两边同时除以√S n S n -1,故可得√S n −√S n -1=2,∴{√S n }是以1为首项,2为公差的等差数列,故√S n =2n-1,S n =(2n-1)2,∴a 81=S 81-S 80=1612-1592=640,故选C .9.2n-1+n a 1=2,∵a n+1=a n +2n-1+1,∴a n+1-a n =2n-1+1,∴a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 3-a 2)+(a 2-a 1)+a 1,则a n =2n-2+2n-3+…+2+1+n-1+a 1=1-2n -11-2+n-1+2=2n-1+n.10.126 正项数列{a n }的前n 项和为S n ,且对于任意p ,q ∈N *,有a p a q =a p+q ,若a 2=4,当p=q=1时,a 1a 1=a 2=4,所以a 1=2,当p=1,q=2时,a 1a 2=a 3,所以a 3=8,当p=2,q=2时,a 2a 2=a 4,所以a 4=16,当p=3,q=2时,a 3a 2=a 5,所以a 5=32,当p=3,q=3时,a 3a 3=a 6,所以a 6=64,所以S 6=2+4+8+16+32+64=126.11.9或10 ∵a n+1-a n =(n+2)(1011)n+1-(n+1)·(1011)n =(1011)n ·9-n 11,当n<9时,a n+1-a n >0,即a n+1>a n ;当n=9时,a n+1-a n =0,即a n+1=a n ;当n>9时,a n+1-a n <0,即a n+1<a n ,∴该数列中有最大项,且最大项为第9,10项.12.B ∵对任意的n ∈N *,均有a n +a n+1+a n+2为定值,∴(a n+1+a n+2+a n+3)-(a n +a n+1+a n+2)=0,故a n+3=a n ,∴{a n }是以3为周期的数列,∴a 1=a 7=2,a 2=a 98=4,a 3=a 9=3,∴S 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=33(a 1+a 2+a 3)+a 1=33×(2+4+3)+2=299.13.B ∵数列{a n }的前n 项和为S n ,且a 1=1,∴S 1+1×a 1=1+1=2.∵{S n +na n }为常数列,∴S n +na n =2.当n ≥2时,S n-1+(n-1)a n-1=2,∴(n+1)a n =(n-1)a n-1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·35·…·n -1n+1,∴a n =2n (n+1)(n ≥2),当n=1时上式成立,∴a n =2n (n+1).故选B .14.C 由a n+1-a n =2n ,得a 2-a 1=2×1,a 3-a 2=2×2,…,a n -a n-1=2(n-1),相加得a n -a 1=n 2-n ,∴a n n=n+28n -1, 由函数f (x )=x+28x 的性质可知,函数f (x )在(0,√28)上单调递减,在[√28,+∞)上单调递增.又n 为正整数,且a 55=485<293=a 66,故选C .15.2n -1 当n ≥2时,a n =S n -S n-1=2a n -n-2a n-1+(n-1),即a n =2a n-1+1,∴a n +1=2(a n-1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n-1=2n ,∴a n =2n -1.16.-6 ∵S n =2n -1,∴a 1=S 1=1,当n ≥2时,a n =S n -S n-1=2n -1-2n-1+1=2n-1,又a 1=1适合上式,∴a n =2n-1.∵b n =a n 2-7a n +6=(a n -72)2−254.∴当a n =4,即n=3时,b n 的最小值为(4-72)2−254=-6.17.A 对于选项A,a n+k -a n =a 1q n+k-1-a 1q n-1=a 1q n-1(q k -1),因为q>1,所以当a 1<0时,a n+k <a n ,故A 错误;对于选项B,a n+k -a n =n+k+4n+k -n+4n =k 1-4(n+k )n =k n 2+kn -4(n+k )n ,令t=n 2+kn-4,t 在n ∈N *单调递增,则t (1)=1+k-4>0,解得k>3,故B 正确;对于选项C,a n+k -a n =2(n+k )+(-1)n+k -[2n+(-1)n ]=2k+(-1)n [(-1)k -1],当n 为奇数时,2k-(-1)k +1>0,存在k ≥1成立,当n 为偶数时,2k+(-1)k -1>0,存在k ≥2成立,综上,{a n }是间隔递增数列且最小间隔数是2,故C 正确;对于选项D,若{a n }是间隔递增数列且最小间隔数是3,则a n+k -a n =(n+k )2-t (n+k )+2020-(n 2-tn+2020)=2kn+k 2-tk>0,n ∈N *成立,则k 2+(2-t )k>0,对于k ≥3成立,且k 2+(2-t )k ≤0,对于k ≤2成立,即k+(2-t )>0,对于k ≥3成立,且k+(2-t )≤0,对于k ≤2成立,所以t-2<3,且t-2≥2,解得4≤t<5,故D 正确.故选A.18.a n =√3n -2 记△OA 1B 1的面积为S ,则△OA 2B 2的面积为4S.从而四边形A n B n B n+1A n+1的面积均为3S.即得△OA n B n 的面积为S+3(n-1)S=(3n-2)S.因为这n 个三角形是相似三角形,所以它们的面积比等于对应边长比的平方,而△OA n B n 与△OA 1B 1的面积比为a n 2,∴a n 2=3n-2,即a n =√3n -2.。
考点28 数列的概念与简单表示法1、数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5B .72C .92D .132【答案】B【解析】∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2、给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是( ) A.a n =2n 2+3n-1 B.a n =n 2+5n-5 C.a n =2n 3-3n 2+3n-1 D.a n =2n 3-n 2+n-2【答案】C【解析】当n=1时,a 1=1,代入四个选项,排除A 、D;当n=2时,a 2=9,代入B 、C 选项,B 、C 都正确;当n=3时,a 3=35,代入B 、C 选项,B 错误,C 正确,所以选C .3、在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516 B .158C .34D .38【答案】C【解析】由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.4、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8, 13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n }称为“斐波那契数列”,则(a 1a 3-)(a 2a 4-)(a 3a 5-)…(a 2 015a 2 017-)=( ) A.1 B.-1 C.2 017 D.-2 017【答案】B【解析】∵a 1a 3-=1×2-12=1,a 2a 4-=1×3-22=-1,a 3a 5-=2×5-32=1,…,a 2 015a 2 017-=1.∴(a 1a 3-)(a 2a 4-)(a 3a 5-)·…·(a 2 015a 2 017-)=11 008×(-1)1 007=-1. 5、已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( )A .{1,2,3}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】C【解析】因为S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1,两式相减得a n =2a n -2a n -1,整理得a n =2a n -1.又a 1=2a 1-1,所以a 1=1,故a n =2n -1.又a n n ≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}.6、已知数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则a 2 018的值为( )A .-8B .-3C .-4D .13【答案】B【解析】由a 1=2,a n +1=1+a n 1-a n (n ∈N *)得,a 2=-3,a 3=-12,a 4=13,a 5=2,可见数列{a n }的周期为4,所以a 2 018=a 504×4+2=a 2=-3.7、已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018= ( )A.22 018-1B.32 018-6C. 2 018-D. 2 018-【答案】A【解析】由题意可得3S n =2a n -3n ,3S n+1=2a n+1-3 (n+1), 两式作差可得3a n+1=2a n+1-2a n -3, 即a n+1=-2a n -3,则a n+1+1=-2(a n +1), 结合3S 1=2a 1-3=3a 1可得a 1=-3,a 1+1=-2, 则数列{a n +1}是首项为-2,公比为-2的等比数列, 据此有a 2 018+1=(-2)×(-2)2 017=22 018,∴a 2 018=22 018-1.故选A .8、已知数列{a n }与{b n }的通项公式分别为a n =-n 2+4n +5,b n =n 2+(2-a )n -2a .若对任意正整数n ,a n <0或b n <0,则a 的取值范围为( )A .(5,+∞)B .(-∞,5)C .(6,+∞)D .(-∞,6)【答案】A【解析】由a n =-n 2+4n +5=-(n +1)(n -5)可知,当n >5时,a n <0.由b n =n 2+(2-a )n -2a =(n +2)(n -a )<0及已知易知-2<n <a ,为使当0<n ≤5时,b n <0,只需a >5.故选A. 9、在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( ) A .2n -1 B .2n -1+1C .2n -1D .2(n -1)【答案】A【解析】由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1.10、若数列{a n }满足(n -1)a n =(n +1)a n -1(n ≥2)且a 1=2,则满足不等式a n <462的最大正整数n 为( ) A .19 B .20 C .21 D .22【答案】B【解析】由(n -1)a n =(n +1)a n -1得,a n a n -1=n +1n -1,则a n =a 1×⎝⎛⎭⎫a 2a 1×⎝⎛⎭⎫a 3a 2×…×⎝⎛⎭⎫a n a n -1=2×31×42×…×n +1n -1=n (n +1).又a n <462,即n (n +1)<462,所以n 2+n -462<0,即(n -21)(n +22)<0,因为n >0,所以n <21.故所求的最大正整数n =20.11、数列{a n }满足a 1=,a n+1-1=a n (a n -1)(n ∈N +),且S n =+…+,则S n 的整数部分的所有可能值构成的集合是( ) A.{0,1,2} B.{0,1,2,3} C.{1,2} D.{0,2}【答案】A【解析】对a n+1-1=a n (a n -1)两边取倒数,得-=, S n =++…+=-+-+…+-=3-,由a n+1-a n =≥0,a n+1≥a n ,a n 为递增数列,a 1=,a 2=,a 3=,其中S 1=,整数部分为0,S 2=3-=,整数部分为0,S 3=,整数部分为1,由于S n <3,故选A .12、在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18= . 【答案】3【解析】由题意得a n +a n+1=5⇒a n+2+a n+1=5⇒a n =a n+2,所以a 18=a 2=5-a 1=3.13、已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧2·3n -1n 为偶数,2n -n 为奇数,则a 3a 4=________.【答案】 54【解析】由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54.14、数列{a n }的前n 项和为S n .若S 2=4,a n+1=2S n +1,n ∈N +,则S 5= . 【答案】121【解析】由于解得a 1=1.由a n+1=S n+1-S n =2S n +1,得S n+1=3S n +1, 所以S n+1+=3S n +,所以是以为首项,3为公比的等比数列,所以S n +=×3n-1,即S n =,所以S 5=121.15、已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.【答案】⎝⎛⎭⎫-12n -1 【解析】当n =1时,a 1=S 1=13a 1+23,∴a 1=1; 当n ≥2时,a n =S n -S n -1=13a n -13a n -1,∴a n a n -1=-12.∴数列{a n }是首项a 1=1,公比q =-12的等比数列,故a n =⎝⎛⎭⎫-12n -1. 16、在数列{a n }中,a 1=0,a n+1=,则S 2 019= . 【答案】0【解析】∵a 1=0,a n+1=,∴a 2==,a 3===-, a 4==0,即数列{a n }的取值具有周期性,周期为3,且a 1+a 2+a 3=0,则S 2 019=S 3×673=0. 17、已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n = .【答案】2n-1【解析】当n ≥2时,a n =S n -S n-1=2a n -n-2a n-1+(n-1), 即a n =2a n-1+1,∴a n +1=2(a n-1+1).又a 1=S 1=2a 1-1,∴a 1=1.∴数列{a n +1}是以首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n-1=2n , ∴a n =2n -1.18、已知数列{a n },{b n },S n 为数列{a n }的前n 项和,且满足a 2=4b 1,S n =2a n -2,nb n +1-(n +1)b n =n 3+n 2(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式.【答案】(1) 2n (2) n 3-n 2+2n 2,n ∈N *【解析】(1)当n =1时,S 1=2a 1-2,则a 1=2.当n ≥2时,由⎩⎪⎨⎪⎧S n =2a n -2,S n -1=2a n -1-2得a n =2a n -2a n -1,则a n =2a n -1,n ≥2.综上,数列{a n }是以2为首项,2为公比的等比数列,故a n =2n ,n ∈N *. (2)∵a 2=4b 1=4,∴b 1=1.∵nb n +1-(n +1)b n =n 3+n 2,∴b n +1n +1-b nn =n ,故b n n -b n -1n -1=n -1,…,b 33-b 22=2,b 22-b 11=1,n ≥2, 将上面各式累加得b n n -b 11=1+2+3+…+(n -1)=n n -2,∴b n =n 3-n 2+2n2,n ∈N *.19、设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【答案】(1) (a -3)2n -1 (2) [-9,3)∪(3,+∞)【解析】(1)由题意知,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2S n +3n -3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,所以a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎡⎦⎤12·⎝⎛⎭⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝⎛⎭⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,3)∪(3,+∞).20、已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,数列{b n }中,b n =1+a na n .(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 【答案】(1) 1 (2) 3 -1 (3) (-7,-6)【解析】(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1.(2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)=n -72,∴b n =1+1a n =1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数, ∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n ,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).。
1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类原则 类型 满足条件 按项数分类有穷数列 项数有限 无穷数列 项数无限 按项与项间的大小关系分类递增数列a n +1>a n 其中n ∈N递减数列 a n +1<a n 常数列a n +1=a n3.数列有三种表示法,它们分别是列表法、图像法和解析法. 4.数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子来表示成a n =f (n ),那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对任意n ∈N +,都有a n +1=S n +1-S n .( √ ) (6)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ )1.下列数列中,既是递增数列又是无穷数列的是( ) A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n 答案 C解析 根据定义,属于无穷数列的是选项A 、B 、C(用省略号),属于递增数列的是选项C 、D ,故同时满足要求的是选项C.2.数列-3,7,-11,15,…的通项公式可能是( ) A .a n =4n -7B .a n =(-1)n (4n +1)C .a n =(-1)n (4n -1)D .a n =(-1)n +1(4n -1)答案 C3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64答案 A解析 ∵S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 当n =1时符合上式,∴a n =2n -1,∴a 8=2×8-1=15.4.(教材改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =.答案 5n -45.已知数列{a n }的前n 项和S n =n 2+1,则a n =.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +1(n ∈N +)B .a n =n -12n +1(n ∈N +)C .a n =2(n -1)2n -1(n ∈N +)D .a n =2n2n +1(n ∈N +)(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =.答案 (1)C (2)2n +1n 2+1解析 (1)注意到分母0,2,4,6都是偶数,对照选项排除即可.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…,故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n -32n .题型二 由数列的前n 项和求数列的通项公式例2 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N +. (1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)令n =1时,T 1=2S 1-1, ∵T 1=S 1=a 1,∴a 1=2a 1-1,∴a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1=2a n -2n +1. 因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,所以a n =3×2n -1-2, 当n =1时也成立, 所以a n =3×2n -1-2.思维升华 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.(1)已知数列{a n }的前n 项和S n =n +1n +2,则a 4等于( )A.130B.132C.134D.120(2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为.答案 (1)A (2)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2解析 (1)a 4=S 4-S 3 =56-45=130. (2)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型三 由数列的递推关系求通项公式例3 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =. (2)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =. 答案 (1)n (n +1)2+1 (2)2×3n -1-1解析 (1)由题意得,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)方法一 (累乘法)a n +1=3a n +2,即a n +1+1=3(a n +1), 即a n +1+1a n +1=3,所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3.将这些等式两边分别相乘得a n +1+1a 1+1=3n .因为a 1=1,所以a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 方法二 (迭代法) a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1) =…=3n (a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.思维升华 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解. (1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2),则a n =.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N +),则a 5等于( ) A .-16B .16C .31D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16. 题型四 数列的性质命题点1 数列的单调性例4 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .无法确定答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N +,易知{a n }是递增数列.命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=.答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1 =1-111-a n -2=1-(1-a n -2)=a n -2, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得,f (x )≥290当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N +,不难发现当n =9或10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图像直观判断.(2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n≤12,2a n-1,12<a n<1,a 1=35,则数列的第2015项为.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0答案 (1)25(2)D解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2015=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.5.数列中的新定义问题典例 (1)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2014项与5的差,即a 2014-5等于( )A .2018×2012B .2020×2013C .1009×2012D .1010×2013(2)对于数列{x n },若对任意n ∈N +,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设b n =2t -tn -12n -1,若数列b 3,b 4,b 5,…是“减差数列”,则实数t 的取值范围是( )A .(-1,+∞)B .(-∞,-1]C .(1,+∞)D .(-∞,1]思维点拨 (1)观察图形,易得a n -a n -1=n +2(n ≥2)可利用累加法求解.(2)由“减差数列”的定义,可得关于b n 的不等式,把b n 的通项公式代入,化归为不等式恒成立问题求解.解析 (1)因为a n -a n -1=n +2(n ≥2),a 1=5,所以a 2014=(a 2014-a 2013)+(a 2013-a 2012)+…+(a 2-a 1)+a 1=2016+2015+…+4+5 =(2016+4)×20132+5=1010×2013+5,所以a 2014-5=1010×2013,故选D. (2)由数列b 3,b 4,b 5,…是“减差数列”, 得b n +b n +22<b n +1(n ≥3),即t -tn -12n +t -t (n +2)-12n +2<2t -t (n +1)-12n ,即tn -12n +t (n +2)-12n +2>t (n +1)-12n , 化简得t (n -2)>1.当n ≥3时,若t (n -2)>1恒成立,则t >1n -2恒成立,又当n ≥3时,1n -2的最大值为1,则t 的取值范围是(1,+∞). 答案 (1)D (2)C温馨提醒 解决数列的新定义问题要做到:1.准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.2.方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.[方法与技巧]1.求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2). 3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加法或累乘法可求数列的通项公式.4.数列的性质可利用函数思想进行研究.[失误与防范]1.数列a n =f (n )和函数y =f (x )定义域不同,其单调性也有区别:y =f (x )是增函数是a n =f (n )是递增数列的充分不必要条件.2.数列的通项公式可能不存在,也可能有多个.3.由a n =S n -S n -1求得的a n 是从n =2开始的,要对n =1时的情况进行验证.A 组 专项基础训练(时间:35分钟)1.对于数列{a n },“a n +1>|a n | (n =1,2,…)”是“{a n }为递增数列”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件答案 B解析 当a n +1>|a n | (n =1,2,…)时,∵|a n |≥a n ,∴a n +1>a n ,∴{a n }为递增数列.当{a n }为递增数列时,若该数列为-2,0,1,则a 2>|a 1|不成立,即知a n +1>|a n |(n =1,2,…)不一定成立.故综上知,“a n +1>|a n | (n =1,2,…)”是“{a n }为递增数列”的充分不必要条件.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15 答案 A解析 由题意知,a 1+a 2+…+a 10=-1+4-7+10-…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.3.设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T r ,则T 2016的值为( ) A .-12B .-1 C.12D .1 答案 D解析 由a 2=12,a 3=-1,a 4=2可知, 数列{a n }是周期为3的周期数列,∴T 2016=(a 1·a 2·a 3)672=⎣⎡⎦⎤2×12×(-1)672=1. 4.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N +),而数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9答案 B解析 ∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .∵a 7=22-21=1>0,a 8=22-24=-2<0,∴n =7时,数列{a n }的前n 项和最大.5.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N +),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N +都成立,于是有3>2λ,λ<32.由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A.6.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N +),则a n =.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2 解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N +),则a 7=.答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =.答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去).所以从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n. (1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1, a 3=42a 2, ……a n -1=n n -2a n -2, a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘,整理得a n =n (n +1)2. 显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n (n +1)2. B 组 专项能力提升(时间:20分钟)11.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( )A .a 2014=-1,S 2014=2B .a 2014=-3,S 2014=5C .a 2014=-3,S 2014=2D .a 2014=-1,S 2014=5 答案 D解析 由a n +1=a n -a n -1(n ≥2),知a n +2=a n +1-a n ,则a n +2=-a n -1(n ≥2),a n +3=-a n ,…,a n +6=a n ,所以数列{a n }是周期数列,周期是6.又a 1=1,a 2=3,a 3=2,a 4=-1,a 5=-3,a 6=-2,所以a 1+a 2+a 3+a 4+a 5+a 6=0,所以a 2014=a 4=-1,S 2014=a 1+a 2+a 3+a 4=1+3+2+(-1)=5.12.数列{a n }满足a n +a n +1=12(n ∈N +),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A .5B.72C.92D.132 答案 B解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 13.定义:称n P 1+P 2+…+P n为n 个正数P 1,P 2,…,P n 的“均倒数”.若数列{a n }的前n 项的“均倒数”为12n -1,则数列{a n }的通项公式为( ) A .a n =2n -1B .a n =4n -1C .a n =4n -3D .a n =4n -5 答案 C解析 ∵n a 1+a 2+…+a n =12n -1, ∴a 1+a 2+…+a n n=2n -1, ∴a 1+a 2+…+a n =(2n -1)n ,a 1+a 2+…+a n -1=(2n -3)(n -1)(n ≥2),当n ≥2时,a n =(2n -1)n -(2n -3)(n -1)=4n -3; a 1=1也适合此等式,∴a n =4n -3.14.若数列{n (n +4)(23)n }中的最大项是第k 项,则k =. 答案 4解析 由题意得⎩⎨⎧ k (k +4)(23)k ≥(k +1)(k +5)(23)k +1,k (k +4)(23)k ≥(k -1)(k +3)(23)k -1,所以⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,由k ∈N +可得k =4. 15.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N +,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N +,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N +,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N +).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N +).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2,已知对任意的n ∈N +,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.。
课后限时集训(二十八) 数列的概念与简单表示法(建议用时:60分钟)A 组 基础达标一、选择题1.(2019·延安模拟)设数列{a n }的前n 项和为S n ,若S n =2n -1(n ∈N +),则a 2 018的值为( )A .2B .3C .2018D .4035A [a 2 018=S 2018-S 2017=2×2018-1-(2×2017-1)=2.故选A.]2.(2018·石家庄一模)若数列{a n }满足a 1=2,a n +1=,则a 2018的值为( )1+an1-an A .2 B .-3 C .- D.1213B [∵a 1=2,a n +1=,1+an1-an ∴a 2==-3,1+a 11-a 1同理a 3=-,a 4=,a 5=2,…1213可得a n +4=a n ,∴a 2018=a 504×4+2=a 2=-3,故选B.]3.设数列{a n }的前n 项和为S n ,若a 1=4,a n +1=2S n -4,则S 10=( )A .2(310-1)B .2(310+1)C .2(39+1)D .4(39+1)C [∵a 1=4,a n +1=2S n -4,①∴a 2=2a 1-4=4,又当n ≥2时,a n =2S n -1-4,②①-②得a n +1-a n =2a n ,即a n +1=3a n .∴{a n }是从第二项起构成公比为3的等比数列,∴S 10=a 1+(a 2+a 3+…+a 10)=4+=2(39+1).]4 39-13-14.(2019·长春调研)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( )A. B. C .4 D .0163133D [a n =-32+,又n ∈N *,故当n =2或3时,a n 最大,最大为0,故选D.](n -52)345.(2018·郑州二模)已知f (x )=Error!数列{a n }(n ∈N *)满足a n =f (n ),且{a n }是递增数列,则a 的取值范围是( )A .(1,+∞)B.(12,+∞)C .(1,3) D .(3,+∞)D [因为a n =f (n ),且{a n }是递增数列,所以Error!则Error!得a >3.故选D.]二、填空题6.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.Error! [当n ≥2时,a n =S n -S n -1=2n +1,又当n =1时,a 1=S 1=4,∴a n =Error!]7.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.28 [∵a 1a 2a 3=8,且a 1=1,a 2=2.∴a 3=4,同理可求a 4=1,a 5=2.a 6=4,∴{a n }是以3的周期的数列,∴a 1+a 2+a 3+…+a 12=(1+2+4)×4=28.]8.已知数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式为________.a n =×4n -1- [因为点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,10313所以4a n -a n +1+1=0,所以a n +1+=4.13(an +13)因为a 1=3,所以a 1+=.13103故数列是首项为,公比为4的等比数列.{an +13}103所以a n +=×4n -1,故数列{a n }的通项公式为a n =×4n -1-.]1310310313三、解答题9.已知S n 为正项数列{a n }的前n 项和,且满足S n =a +a n (n ∈N *).122n 12(1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.[解] (1)由S n =a +a n (n ∈N *)122n 12可得a 1=a +a 1,解得a 1=1,122112S 2=a 1+a 2=a +a 2,解得a 2=2,12212同理,a 3=3,a 4=4.(2)S n =+a ,①an 2122n当n ≥2时,S n -1=+a ,②an -12122n -1①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列,故a n =n .10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围.[解] (1)由n 2-5n +4<0,解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=2-,(n -52)94由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-<,即得k >-3.k 232所以实数k 的取值范围为(-3,+∞).B 组 能力提升1.设{a n }是等比数列,则“a 1>a 2>a 3”是“数列{a n }是递减数列”的( )A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件C [设数列{a n }的公比为q ,因为a 1>a 2>a 3,所以a 1>a 1q >a 1q 2,解得Error!或Error!故数列{a n }是递减数列;反之,若数列{a n }是递减数列,则a 1>a 2>a 3,所以a 1>a 2>a 3是数列{a n }是递减数列的充分必要条件,故选C.]2.已知数列{a n }满足a 1=60,a n +1-a n =2n ,则的最小值为( )an n A. B .29 C .102 D.2921027A [因为a n +1-a n =2n ,所以当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=60+2+4+…+2(n -1)=n (n -1)+60=n 2-n +60,所以==n +-1,令an n n 2-n +60n 60n f (x )=x +(x ≥2),由函数性质可知,f (x )在区间[2,2)上单调递减,在区间60x 15(2,+∞)上单调递增,又7<2<8,n 为正整数,故当n =7时,1515=7+-1=;当n =8时,=8+-1=,且<<=60,所以的最小an n 6071027an n 6082922921027a 11an n值为.故选A.]2923.已知数列{a n }的各项均不为0,其前n 项和为S n ,且a 1=1,2S n =a n a n +1,则S n =________. [当n =1时,2S 1=a 1a 2,即2a 1=a 1a 2,∴a 2=2.当n ≥2时,n n +1 22S n =a n a n +1,2S n -1=a n -1a n ,两式相减得2a n =a n (a n +1-a n -1),∵a n ≠0,∴a n +1-a n -1=2,∴{a 2k -1},{a 2k }都是公差为2的等差数列,又a 1=1,a 2=2,∴{a n }是公差为1的等差数列,∴a n =1+(n -1)×1=n ,∴S n =.]n n +1 24.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.[解] (1)依题意得S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),即b n +1=2b n ,又b 1=S 1-3=a -3,因此,所求通项公式为b n =(a -3)2n -1,n ∈N *.(2)由(1)可知S n =3n +(a -3)2n -1,n ∈N *.于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)·2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2,[12·(32)n -2+a -3]所以,当n ≥2时,a n +1≥a n ⇒12n -2+a -3≥0⇒a ≥-9,(32)又a 2=a 1+3>a 1,a ≠3.所以,所求的a 的取值范围是[-9,3)∪(3,+∞).。
课时规范练28数列的概念与表示基础巩固组1.下列数列中,既是递增数列又是无穷数列的是()A.1,,…B.-1,-2,-3,-4,…C.- 1,-,-,-,…D.1,,…,2.数列1,,…的一个通项公式a n=()A. B. C. D.3.已知数列{a n}的前n项和为S n,若S n=2a n-4(n∈N+),则a n=()A.2n+1B.2nC.2n-1D.4.已知数列{a n}满足a1+a2+…+a n=2a2(n=1,2,3,…),则()A.a1<0B.a1>0C.a1≠a2D.a2=05.已知数列{a n}的前n项和为S n,a1=2,S n=a n(n∈N+),则S10为()A.50B.55C.100D.1106.已知数列{a n}的首项a1=1,其前n项和S n=n2a n(n∈N+),则a9=()A. B. C. D.7.在数列{a n}中,a1=1,S n=a n,则a n=.8.数列{a n}的前n项和为S n.若S2=4,a n+1=2S n+1,n∈N+,则S5=.9.在数列{a n}中,a1=0,a n+1=,则S2 019=.10.数列{a n}的通项公式是a n=n2+kn+4.(1)若k=-5,则数列中有多少项是负数?n为何值时,a n有最小值?并求出最小值.(2)对于n∈N+,都有a n+1>a n.求实数k的取值范围.综合提升组11.在数列{a n}中,若a1=2,且对任意正整数m,k,总有a m+k=a m+a k,则{a n}的前n项和为S n=()A.n(3n-1)B.C.n(n+1)D.12.给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是()A.a n=2n2+3n-1B.a n=n2+5n-5C.a n=2n3-3n2+3n-1D.a n=2n3-n2+n-213.已知数列{a n}的前n项和为S n,若3S n=2a n-3n,则a2 018=()A.22 018-1B.32 018-6C. 2 018-D. 2 018-14.在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{a n}是等和数列,且a1=2,公和为5,那么a18=.15.已知数列{a n}的前n项和为S n,S n=2a n-n,则a n=.创新应用组16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8, 13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n}称为“斐波那契数列”,则(a1a3-)(a2a4-)(a3a5-)…(a2 015a2 017-)=()A.1B.-1C.2 017D.-2 01717.(2018衡水中学二调,10)数列{a n}满足a1=,a n+1-1=a n(a n-1)(n∈N+),且S n=+…+,则S n的整数部分的所有可能值构成的集合是()A.{0,1,2}B.{0,1,2,3}C.{1,2}D.{0,2}参考答案课时规范练28数列的概念与表示1.C A项中,数列1, , , ,…是递减数列,不符合题意;B项中,数列-1,-2,-3,-4,…是递减数列,不符合题意;C项中,数列-1,-,-, -,…是递增数列又是无穷数列,符合题意;D项中,数列1,,,…,是有穷数列,不符合题意,故选C.2.B由已知得,数列可写成, , ,…,故通项为.3.A当n≥2时,由S n=2a n-4,得S n-1=2a n-1-4,两式相减得a n=2a n-2a n-1,a n=2a n-1.因此数列{a n}为公比为2的等比数列,又a1=S1=2a1-4,则a1=4,所以a n=4×2n-1=2n+1.4.D根据条件S n=a1+a2+a3+…+a n=2a2,S n-1=a1+a2+a3+…+a n-1=2a2,故两式做差得a n=0,故数列的每一项都为0,故选D.5.D依题意S n=(S n-S n-1),化简得=,故S10=··…··S1=×××…×××2=110.6.B由S n=n2a n,得S n+1=(n+1)2a n+1,所以a n+1=(n+1)2a n+1-n2a n,化简得(n+2)a n+1=na n,即=,所以a9=··…··a1=×××…×××1==.7.由题设知,a1=1.当n≥2时,a n=S n-S n-1=a n-a n-1.∴=,∴=,…,=,=,=3.以上(n-1)个式子的等号两端分别相乘,得=.∵a1=1,∴a n=.8.121由于解得a1=1.由a n+1=S n+1-S n=2S n+1,得S n+1=3S n+1,所以S n+1+=3S n+,所以是以为首项,3为公比的等比数列,所以S n+=×3n-1,即S n=,所以S5=121.9.0∵a1=0,a n+1=,∴a2==,a3===-,a4==0,即数列{a n}的取值具有周期性,周期为3,且a1+a2+a3=0,则S2 019=S3×673=0.10.解 (1)由n2-5n+4<0,解得1<n<4.∵n∈N+,∴n=2,3,∴数列中有两项a2,a3是负数.∵a n=n2-5n+4=n-2-,当n=2或n=3时,a n有最小值,a2=a3=-2.(2)由a n+1>a n知该数列是一个递增数列,又a n=n2+kn+4,可以看作是关于n的二次函数,考虑到n∈N+,所以-<,即得k>-3.11.C递推关系a m+k=a m+a k中,令k=1,得a m+1=a m+a1=a m+2,即a m+1-a m=2恒成立,据此可知,该数列是一个首项a1=2,公差d=2的等差数列,其前n项和为S n=na1+d=2n+×2=n(n+1).12.C当n=1时,a1=1,代入四个选项,排除A、D;当n=2时,a2=9,代入B、C选项,B、C都正确;当n=3时,a3=35,代入B、C选项,B错误,C正确,所以选C.13.A由题意可得3S n=2a n-3n,3S n+1=2a n+1-3 (n+1),两式作差可得3a n+1=2a n+1-2a n-3,即a n+1=-2a n-3,则a n+1+1=-2(a n+1),结合3S1=2a1-3=3a1可得a1=-3,a1+1=-2,则数列{a n+1}是首项为-2,公比为-2的等比数列,据此有a2 018+1=(-2)×(-2)2 017=22 018,∴a2 018=22 018-1.故选A.14.3由题意得a n+a n+1=5⇒a n+2+a n+1=5⇒a n=a n+2,所以a18=a2=5-a1=3.15.2n-1当n≥2时,a n=S n-S n-1=2a n-n-2a n-1+(n-1),即a n=2a n-1+1,∴a n+1=2(a n-1+1).又a1=S1=2a1-1,∴a1=1.∴数列{a n+1}是以首项为a1+1=2,公比为2的等比数列,∴a n+1=2·2n-1=2n,∴a n=2n-1.16.B∵a1a3-=1×2-12=1,a2a4-=1×3-22=-1,a3a5-=2×5-32=1,…,a2 015a2 017-=1.∴(a1a3-)(a2a4-)(a3a5-)·…·(a2 015a2 017-)=11 008×(-1)1 007=-1.17.A对a n+1-1=a n(a n-1)两边取倒数,得-=,S n=++…+=-+-+…+-=3-,由a n+1-a n=≥0,a n+1≥a n,a n为递增数列,a1=,a2=,a3=,其中S1=,整数部分为0,S2=3-=,整数部分为0,S3=,整数部分为1,由于S n<3,故选A.。
课后限时集训(二十八)(建议用时:60分钟) A 组 基础达标一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A .-n+12B .cos n π2 C .cosn +12πD .cosn +22π[答案] D2.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( ) A .2n B .2n -1 C .2nD .2n-1C [当n =1时,a 1=S 1=2(a 1-1),可得a 1=2,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1,所以数列{a n }为等比数列,公比为2,首项为2,所以a n =2n.]3.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A .6116 B.259 C .2516 D.3115A [由题意知a 1·a 2=4,a 1·a 2·a 3=9,a 1a 2a 3a 4=16,a 1a 2a 3a 4a 5=25,则a 3=94,a 5=2516,则a 3+a 5=6116,故选A .]4.已知数列{a n }满足a 1=0,a n +1=a n +2n -1,则数列{a n }的一个通项公式为( ) A .a n =n -1 B .a n =(n -1)2C .a n =(n -1)3D .a n =(n -1)4B [由题意知a n -a n -1=2n -3(n ≥2),则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(2n -3)+(2n -5)+…+3+1 =n -n -2=(n -1)2.故选B.]5.若数列{a n }满足a 1=12,a n =1-1a n -1(n ≥2,且n ∈N *),则a 2 018等于( )A .-1 B.12C .1D .2A [a 1=12,a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,….因此数列{a n }是以3为周期的数列. 从而a 2 018=a 2=-1,故选A .] 二、填空题6.若数列{a n }的前n 项和S n =23n 2-13n ,则数列{a n }的通项公式a n =________.43n -1 [当n =1时,a 1=S 1=13. 当n ≥2时,a n =S n -S n -1=23n 2-13n -23(n -1)2-13(n -1)=4n 3-1.又a 1=13适合上式,则a n =43n -1.]7.在数列{a n }中,a 1=1,a n =n -1na n -1(n ≥2),则数列{a n }的通项公式a n =________. 1n[由a n =n -1n a n -1得a n a n -1=n -1n, ∴a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1 =n -1n ×n -2n -1×…×12×1=1n. 当n =1时,a 1=1适合上式. 故a n =1n.]8.(2019·合肥模拟)已知数列{a n }的前n 项和为S n ,a 1=2,S n +1=2S n -1(n ∈N *),则a 10=________.256 [因为a 1=2,S n +1=2S n -1,所以S n +1-1=2(S n -1),所以{S n -1}是等比数列,且公比为2,所以S n -1=2n -1,所以S n =2n -1+1,所以a 10=S 10-S 9=29-28=256.]三、解答题9.已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n+2n +1,求a n .[解] (1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6,当n ≥2时,a n =S n -S n -1=(3n+2n +1)-[3n -1+2(n -1)+1]=2×3n -1+2.由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2.10.已知S n 为正项数列{a n } 的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. [解] (1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .B 组 能力提升1.已知各项都为正数的数列{a n }满足a 2n +1-a n +1a n -2a 2n =0,且a 1=2,则数列{a n }的通项公式为( )A .a n =2n -1B .a n =3n -1C .a n =2nD .a n =3nC [∵a 2n +1-a n +1a n -2a 2n =0, ∴(a n +1+a n )(a n +1-2a n )=0.∵数列{a n }的各项均为正数,∴a n +1+a n >0, ∴a n +1-2a n =0,即a n +1=2a n (n ∈N *),∴数列{a n }是以2为公比的等比数列. ∵a 1=2,∴a n =2n.]2.已知正项数列{a n }中,a 1+a 2+…+a n =n n +2,则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n 2D .a n =n 22B [∵a 1+a 2+…+a n =n n +2, ∴a 1+a 2+…+a n -1=n n -2(n ≥2),两式相减得a n =n n +2-n n -2=n (n ≥2),∴a n =n 2(n ≥2),①又当n =1时,a 1=1×22=1,a 1=1,适合①式,∴a n =n 2,n ∈N *.故选B.]3.已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=3S n ,则a n =__________.⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2 [由a n +1=3S n ,得a n =3S n -1(n ≥2),两式相减可得a n +1-a n =3S n -3S n -1=3a n (n ≥2), ∴a n +1=4a n (n ≥2). ∵a 1=1,a 2=3S 1=3≠4a 1,∴数列{a n }是从第二项开始的等比数列, ∴a n =a 2qn -2=3×4n -2(n ≥2).故a n =⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2.]4.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. [解] (1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k2<32,即得k >-3. 所以实数k 的取值范围为(-3,+∞).。