一元一次方程的应用试卷
- 格式:doc
- 大小:219.11 KB
- 文档页数:2
一元一次方程应用题试卷简介:行程问题,经济问题,方案设计类应用题等一、单选题(共6道,每道10分)1.节日期间,某电器按成本价提高35%后标价,为了促销,决定打九折销售,为了吸引更多顾客又降价130元,此时仍可获利15%.请问该电器的成本价是多少元?设该电器的成本价为x元,根据题意可列方程为( )A. B.C. D.答案:D解题思路:由题知电器的售价是,利润是15%x,根据售价-成本=利润,可列方程为,故选D试题难度:三颗星知识点:一元一次方程的应用—打折销售2.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是y件(y>20),而销售单价每增加1元,销售量就减少10件.则当y取何值时,才能使销售单价为80元与销售单价为82元时的销售利润相等,可列方程为( )A.(80-60)y=(82-60)(y-20)B.(80-60)y=(82-60)(y+20)C.80y=82(y-20)D.(80-60)y=(82-60)(y-10)答案:A解题思路:利润=售价-成本,因此单价为80元时,利润为(80-60)y,由题知单价为82元时销售量为(y-20),利润为(82-60)(y-20),当利润相等时可列方程(80-60)y=(82-60)(y-20),故选A 试题难度:三颗星知识点:经济问题3.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意可列方程为( )A.10(1-x%)-8=(1+90%)×(10-8)B.10(1-x%)-8=90%×(10-8)C.10·x%-8=90%×(10-8)D.10(1-x%)-8=(10-8)÷90%答案:B解题思路:利润=售价-成本,可知降价前一件商品的利润是(10-8)元,降价后一件商品的利润是10(1-x%)-8,根据题意可列方程为10(1-x%)-8=90%×(10-8),故正确选项为B试题难度:三颗星知识点:一元一次方程的应用—打折销售4.一列火车通过450米长的山洞用了23秒,经过一位站在铁路边的扳道工人用了8秒,求这列火车的长度.若设这列火车的长度为x米,根据题意可列方程为( )A. B.C. D.答案:C解题思路:路程火车通过山洞所行的路程是450+x,由速度=路程÷时间得火车速度为,经过工人所行的路程是x,由速度=路程÷时间得火车速度为,由于火车的速度不变,所以,故正确选项为C试题难度:三颗星知识点:行程问题5.甲、乙两船航行于A、B两地之间,由A到B航速为每小时35千米,由B到A航速为每小时25千米,现甲船由A地开往B地,乙船由B地开往A地,甲船先航行2小时,两船在距B地120千米处相遇,求两地的距离.若设两地的距离为x千米,根据题意可列方程为( )A. B.C. D.答案:A解题思路:两船在距B地120千米处相遇,所以甲船走的距离为(x-120),乙走路程为120,甲先走2小时,根据时间相等列等式:,故选A试题难度:三颗星知识点:行程问题6.用一根铁丝围成一个长4分米,宽2分米的长方形,然后将这个长方形改成正方形,则下列说法错误的是( )A.铁丝长度没变B.正方形的面积比长方形多1平方分米C.图形的形状发生了变化D.长方形和正方形的面积相等答案:D解题思路:因为铁丝的长度是不变的,利用长方形的周长公式可算出铁丝的长度为12分米,进而利用正方形的周长公式即可求出正方形的边长为3分米,从而求出长方形的面积为8平方分米,正方形的面积为9平方分米,故B选项正确,D选项错误,故答案选D.试题难度:三颗星知识点:一元一次方程的应用——我变高了二、填空题(共4道,每道10分)7.已知今年母女二人年龄之和是53,如果10年前母亲的年龄是女儿年龄的10倍,则今年母亲的年龄为____岁.答案:40解题思路:设母亲今年的年龄是x,则今年女儿的年龄是(53-x),十年前木母亲的年龄是(x-10),女儿的年龄是(53-x-10),根据题意可列方程为x-10=10(53-x-10),解得x=40,因此母亲今年的年龄是40岁试题难度:知识点:一元一次方程应用--数字规律问题8.足球的比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队踢了14场球,共得了19分,其中负了5场,那么这个球队胜了____场.答案:5解题思路:首先理解题意找出题中的等量关系:平场得分+胜场得分+负场得分=19分,根据此列方程即可.设该队胜了x场,则该队平了(14-x-5)场,胜场得分是3x分,平场得分是(14-x-5)分,负场得分为0分,根据等量关系列方程得:3x+(14-5-x)+0=19,解得x=5,故答案为5试题难度:知识点:一元一次方程的应用——得分问题9.一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车有____辆.答案:10解题思路:设摩托车x辆,则汽车(24-x)辆,根据题意列等式3x+4(24-x)=86,求得x=10,故答案为10试题难度:知识点:一元一次方程应用--鸡兔同笼问题10.在“十一”黄金周期间,某超市推出如下表所示的优惠方案:小丽在该超市两次购物分别付款80元、216元.如果小丽改成在该超市一次性购买与上次完全相同的商品,则应付款____元.答案:256解题思路:当一次性购物金额不少于100且不足300元时,打折之后的价钱不少于90元且不足270元,因此可知小丽两次所购物品的打折情况分别是不打折和打九折,设付款216元的物品原价是x元,因此0.9x=216,解得x=240,可知小丽改成一次性购买与上次完全相同的物品时,原价是320元,大于300元,打八折,因此应付款元试题难度:知识点:一元一次方程应用——打折销售。
一元一次方程(四)(通用版)试卷简介:方案设计问题一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米,则每立方米按a元收费;若超过15立方米,则超过部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.该居民在一个月内用水35立方米,应交水费为15×a+(35-15)×2a=55a,答案选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题2.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费;超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33.6元,则小明家六月份实际用水( )A.14立方米B.19立方米C.20立方米D.21立方米答案:B解题思路:小明家六月份交水费33.6元,其中包括15立方米的水费和超过15立方米的水费,设小明家六月份实际用水x立方米,根据题意得:15×1.6+(x-15)×2.4=33.6,解得x=19,答案为B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题3.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,则超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.60元B.66元C.75元D.78元答案:B解题思路:4月份的煤气费平均每立方米0.88元,那么煤气一定超过60立方米,等量关系为:60立方米的煤气费+超过60立方米的煤气费=所交煤气费,设4月份用了煤气x立方米,根据题意得60×0.8+(x-60)×1.2=0.88x,解得x=75,4月份应交煤气费为75×0.88=66元,故选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题4.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同,若要使到甲、乙两电脑商处购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:若购买的电脑不多于10台,则在甲电脑商处购买没有优惠,因此到甲、乙两电脑商购买电脑花钱不一样,因此要使花钱一样,必然购买多于10台.设购买电脑x台,在甲处购买需要花钱数目为元,在乙处购买需要花钱数目为元,根据题意可列方程为,解得x=20,即应该买电脑20台.试题难度:三颗星知识点:一元一次方程应用——方案类应用题5.九年级某班师生30人准备在中考后到某地旅游,班主任李老师了解到当地甲、乙两旅行社的服务项目和服务质量相同,且甲旅行社平时收费为每人300元,暑期对教师实行八折优惠,对学生实行五折优惠;乙旅行社平时收费为每人280元,暑期对教师和学生均实行六折优惠.若在甲、乙两家旅行社所需费用相同,则这个班师生中教师为( )A.4人B.5人C.6人D.7人答案:C解题思路:设这个班师生中教师有x人,学生有(30-x)人,由题可知甲旅行社收费为元,乙旅行社收费为元,若两家旅行社所需费用相同,可得,解得x=6,故选C试题难度:三颗星知识点:一元一次方程应用——方案类应用题6.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.你认为获利最多的方案和对应的利润是( )A.方案三,600 000元B.方案二,435 000元C.方案三,562 500元D.方案一,500 000元答案:C解题思路:方案一:全部粗加工所需时间为天,因此10内100吨可全部加工完毕,对应的利润为:5 000×100=500 000元;方案二:10天内(含10天)可以精加工10×5=50吨,剩余100-50=50吨直接销售,因此对应的利润:7 500×5×10+1 200×(100-5×10)=435 000元;方案三,设精加工的有x天,则粗加工的有(10-x)天,根据题意可列方程为,解得x=5,即5天精加工,5天粗加工,也即精加工5×5=25吨,粗加工15×5=75吨,因此方案三对应的利润为:562 500元.综上可知,方案三的利润最高,为562 500元.答案为C.试题难度:三颗星知识点:一元一次方程应用——方案类应用题。
五年级解方程的试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 解一元一次方程时,下列哪种情况需要移项?A. 等号左边有未知数B. 等号右边有未知数C. 等号两边都有未知数D. 等号两边都没有未知数2. 下列哪个是方程?A. 2x + 3B. x 4 = 0C. 5 + 2 = 7D. 4x + 2y3. 解方程5x 10 = 15,x的值是?A. 1B. 5C. 10D. 204. 下列哪个方程是一元二次方程?A. x^2 + 3x + 2 = 0B. 2x + 4 = 0C. x^3 2x = 0D. 3x + 2y = 65. 解方程2(x 3) = 4,x的值是?A. 2B. 4C. 5D. 6二、判断题(每题1分,共5分)1. 一元一次方程的解一定是整数。
()2. 方程的解是指使方程左右两边相等的未知数的值。
()3. 一元二次方程的解最多有两个。
()4. 解方程时,移项要变号。
()5. 任何一元一次方程都有解。
()三、填空题(每题1分,共5分)1. 一元一次方程的一般形式是______ = ______。
2. 解方程3x + 5 = 14,x的值是______。
3. 方程x^2 5x + 6 = 0的解是______和______。
4. 解方程(2x 3)(x + 4) = 0,x的值是______和______。
5. 方程2(x 3) + 4 = 3(x + 1) 5的解是______。
四、简答题(每题2分,共10分)1. 请解释一元一次方程的解的定义。
2. 请简述解一元一次方程的基本步骤。
3. 请解释什么是一元二次方程的判别式,并说明其作用。
4. 请举例说明如何解一元二次方程。
5. 请解释什么是方程的解,并说明如何找到方程的解。
五、应用题(每题2分,共10分)1. 小明有一些苹果,吃了一些后还剩下10个。
如果小明吃了2个,那么他原来有多少个苹果?2. 一个数比它的2倍少3,这个数是多少?3. 一个长方形的长是宽的2倍,如果宽是5厘米,那么长方形的长是多少厘米?4. 一个数的3倍加上4等于这个数的2倍减去3,这个数是多少?5. 一个数加上它的1/3等于8,这个数是多少?六、分析题(每题5分,共10分)1. 请分析并解答方程2(x 3) + 4 = 3(x + 1) 5。
初中数学一元一次方程的应用——比赛积分2019年4月9日(考试总分:136 分考试时长: 120 分钟)一、单选题(本题共计 10 小题,共计 40 分)1、(4分)2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x场,则可列方程为()A. 3x+(29﹣x)=67 B. x+3(29﹣x)=67C. 3 x+(30﹣x)=67 D. x+3(30﹣x)=672、(4分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得0分,某同学做完全部25题得70分,那么它做对题数为()A. 17 B. 18 C. 19 D. 203、(4分)某次数学竞赛共出了25个题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2个,他的总分是74分,则他答错了()A. 4题B. 3题C. 2题D. 1题4、(4分)一次知识竞赛共有20道选择题,规定答对一道题得5分,不做或做错一题扣1分,如果某学生的得分为76分,则他做对了道题( )A. 16 B. 17 C. 18 D. 195、(4分)某班进行一次标准化测试,试卷由25道选择题组成,每题答对得4分,不答得0分,答错扣1分.那么下列分数中不可能的是()A.95 B.89 C.79 D.756、(4分)某市中学生运动会篮球比赛,每场比赛都要决出胜负,每队胜一场得3分,负一场得1分,已知某篮球队在七场比赛中共得到15分,则该篮球队在这七场比赛中获胜了()A.六场B.五场C.四场D.三场7、(4分)2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x场,则可列方程为()A.3x+(29﹣x)=67 B.x+3(29﹣x)=67C.3x+(30﹣x)=67 D.x+3(30﹣x)=678、(4分)某次数学竞赛共出了25个题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2个,他的总分是74分,则他答错了()A.4题B.3题C.2题D.1题9、(4分)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.510、(4分)小李解关于x的方程5a-x=12时,误将-x看作+x,得方程的解为x=-3,则原方程的解是()A. x=-2 B. x=1 C. x=3 D. x=2二、填空题(本题共计 3 小题,共计 12 分)11、(4分)某次足球联赛的积分规则是:若胜一场得3分,平一场得1分,负一场得0分,到目前为止某球队已经赛了8场,其中平的场数是负的场数的2倍,已得17分,该球队胜了________场球.12、(4分)某试卷由26道题组成,答对一题得8分,答错一题倒扣5分.今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有_____道.13、(4分)某赛季中国职业篮球联赛第11轮前四名球队积分榜如下:队名比赛场次胜场负场积分辽宁11 11 0 22北京11 10 1 21广厦11 9 2 20新疆11 8 3 19(1)若一个队胜m场,则总积分为_____;(2)某队的胜场总积分能否等于它的负场总积分,你的观点是:_____.三、解答题(本题共计 7 小题,共计 84 分)14、(12分)一份试卷共有道题,规定答对一题得分,答错一题扣分,小明每道题都做了,共得分,那么他答对了几道题?(只需列方程,不需要解答)15、(12分)在一场篮球比赛中,某队员得23分(不含罚球得分),已知他投进的3分球比2分球少4个,则他一共投进了几个3分球和2分球?(1)求答对一题得多少分,不答或答错一题扣多少分?(2)一位同学说他得了65分,请问可能吗?请说明理由。
一、解答题(共15小题)1、一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?2、小红:昨天我们8个人去凤凰山公园玩,买门票花了260元,小明:哦,门票挺贵的,听说成人票每张40元,孩子票每张20元,是吗?小红:哼,是的,那你猜猜我们去了几个大人,几个小孩子?小明:去了…根据以上的对话,你能用列方程的知识帮助小明回答小红的提问吗?3、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比定货任务少100套,如果每天生产23套服装,就可超过订货任务20套,问这批服装的定货任是多少套原计创几天完成?4、如图所示,甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒钟跑6米,甲的速度是乙的倍.(1)如果甲、乙在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?5、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?6、某空调厂的装配车间原计划用2个月时间(每月30天计),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?7、金石中学有A、B两台复印机,用于印刷学习资料和考试试卷.学校举行期末考试,数学试卷如果用复印机A、B单独复印,分别需要90分钟和60分钟.在考试时为了保密需要,不能过早提前印刷试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)在复印30分钟后B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)B机经过紧急抢修,9分钟后修好恢复使用,请你再算算,学校能否按时发卷考试?8、小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗”试列出方程,解答小赵与小王的问题.9、暑假,某校初一年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.(1)他们一共租了10条船,并且每条船都坐满了人,那么大、小船各租了几只?(2)他们租船一共花了多少元钱?10、某水果批发商欲将A市的一批水果运往B市销售,有火车和汽车两种运输工具,运输过程中的损耗均为160元(1)如果汽车的总支出费用比火车费用多960元,你知道A市与B市之间的路程是多少千米吗?请你列方程解答;(2)如果A市与C市之间的距离为S千米,要想将这批水果运往C市销售.选择哪种运输工具比较合算呢说明你的理由.11、将连续的奇数1,3,5,7,9…,排成如图的数表,问:(1)十字框中的五个数的和与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于2009吗?若能,请求出这五个数;若不能,请说明理由.12、初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,摩托车从甲地,运货汽车从乙地,同时,同向出发,两车几小时相遇?请你将这道作业题补充完整并列出方程解答.13、一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是放水管,分别单独开放甲、乙水管各需45分钟和60分钟注满水池,单独打开丙水管,90分钟可放完一池水,现三管一齐开放,多少分钟可以注满水池?14、列方程解应用题:甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?15、某服装厂接受了一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问原计划多少天完成?这批服装订货任务是多少套?答案与评分标准一、解答题(共15小题)1、一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?考点:一元一次方程的应用。
一元一次方程的应用课后检测试题【同步达纲练习】(时间45分钟,满分 100分)1.填空题:(5分×5=25分)(1)我国1978年末城乡居民的存款为X亿元;1988年末的存款比1978年末的存款的18倍还多4亿元,则1988年末的存款为亿元.(2)甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,然后甲再追乙,那么在追及问题中,甲、乙二人的路程差是米,甲、乙的速度差是——;甲追及乙的时间是.(3)一个两位数,个位上的数字为x,十位上的数为y,这个两位数可表示为_,如果把十位和个位上的数字对调,新的两位数可表示为.(4)若甲、乙、丙、丁四种草药重量的比为0.1:1:2:4.7,设乙种草药的重量为x克,则甲、丙、丁四种草药的重量可分别表示为克,克,克.(5)甲、乙两人分别从相距20千米的A,B两地出发相向而行,甲先出发1小时,甲的速度是a千米/时,乙的速度是b千米/时,求乙出发多少时间,甲、乙二人相遇.若设乙出发X小时,甲、乙二人相遇,则依题意列方程应为2.选择题:(5分× 3= 15分)(1)甲、乙二人从同一地点出发去某地,若甲先走2小时,乙从后面追赶,则当乙追上甲时()A甲、乙二人所走路程相等B.乙走的路程比甲多C.乙比甲多走2小时D.以上答案均不对(2)一张试卷,只有25道选择题,做对一题得4分,做错~题倒扣 1分,某学生做了全部试题,共得70分,他做对了()道题A 17B 18C 19D 20(3)一件工作,甲队独做10天可以完成,乙队独做15天可以完成,若两队合做,()天可以完成 A .25B .12.5C .6D .无法确定3.列方程解应用题:(15分×4=60分)(1)一条铁丝,第一次用去它的一半少 1米,第二次用去剩下的一半多 1米,结果还剩下3米,求这条铁丝原来长多少米?(2)永盛电子有限公司向工商银行申请了甲乙两种贷款,共计68万元,每年付出利息8.42万元.甲种贷款每年的利率是 12%,乙种贷款每年的利率是 13%,求这两种贷款的数额是多少?(3)甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米对的速度开往A 地,如果A ,B 两地相距200千米,求两车相遇点距A 地多远?(4)某商店买进一批水果,进价每箱20元,计划零售时赚利30%,在卖出这批水果的43又15箱时已盈利300元,问这个商店这次买进多少箱水果?【素质优化训练】1. 选择题:(1)一个三位数的个位数字是7,若把个位数字移到首位,则新数比原数的5倍还多86,求这个三位数,设这个三位数的前两位数为x ,则列出的方程应是( ).A.865700-+x=10x+7 B.700+x-86=5(10x+7) C.865700++x=x+7D.5(700+x)=x+7+86(2)甲、乙二人在400米的环形跑道上练习跑步,若同向跑,甲a 分钟可超过乙一圈;若反向跑二人每隔b 分钟相遇一次,则甲、乙速度之比为( )A.400400++b aB.b a a +C.bba +D.ba ba -+(3)甲、乙、丙三人各有贺年片若干张要互相赠送,先由甲送乙、丙,所送的张数等于乙、丙原来的张数;再由乙送给甲、丙现在的张数;后由丙送甲、乙现在的张数,互送后每人各有32张,则原来每人各有贺年片 ( )张A. 甲16,乙28,丙52B. 甲52,乙16,丙28C. 甲28,乙16,丙52D. 甲52,乙28,丙16(4)将55分成四个数,如果第一个数加上1,第二个数减去1,第三个数乘以2,第四个数除以3,所得的数都相同,那么这四个数分别是()A.9,11,5,30B.9,12,4,30C.9,11,6,29D.9,11,7,282.列方程解应用题:(1)某学生骑自行车从学校去市内,先以12千米/时的速度下坡,又以9千米/时的速度通过平路,到达市内共用55分钟,返回时,他以8千米/时的速度通过平路,又以4千米/时的速度上坡,回到学校又用121小时.求从学校到市内有多少千米?(2)汽车若干辆装运一批货物,如果每辆汽车装3.5吨,那么这批货物就有2吨不能运走;如果每辆汽车装4吨,那么装完这批货物后,还可以装其他货物一吨,这批货物共有多少吨?(3)一船顺水航行24千米后又返回共用 231小时,而顺水航行8千米,逆水航行18千米,共用131小时,求水流速度和船在静水中的速度?(4)甲、乙二人分别由A ,B 两地沿同一路线同时相向而行,在离B 地12千米相遇后分别到达B ,A 两地,然后立即返回,在第一次相遇后6小时,两人又在离A 地6千米处中遇,求A ,B 两地的距离及甲、乙二人的速度?(5)一个六位数,左边第一位上的数字是1,这个六位数乘以3以后,仍是一个六位数,这个新的六位数恰好是把首位上的数字移到个位,而其余各位上的数字相应向左移动一位,求原来的六位数?(6)有酒水混合液两种,甲种混合液中酒是水的3倍,乙种混合液中,水是酒的5倍现在要把这两种混合液混合成酒与水各占一半的溶液14升问甲、乙两种溶液应各取多少升?(7)一组园丁要把两片草地的草割完,大的一片比小的一片大1倍.上午全体组员都割大片草地,下午一半组员仍留在大片草地,收工时正好把大片草地割完,另一半组员去割小片草地,收工时还剩下一部分没割完,第二天由一个园丁用一天时间恰好割完,问这组园丁共多少人?(8)现在是10点和11点之间的某一时刻,在这之后6分钟,分针的位置与在这之前3分钟的时针的位置反向成一直线,求现在的时刻?(9)某人下午六点多外出时,手表时针与分针的夹角为110°,下午约七点回家时,发现手表时针与分针的夹角又是110”,问他外出了多少时间?(10)小王同时点燃粗细不同长短一样的两支蜡烛,已知粗的燃烧完要用4小时,细的燃烧完要用3小时,过一段时间后,小王把两支蜡烛同时熄灭,这时剩下的蜡烛细的是粗的31,求小王点燃蜡烛的时间是多少?(11)从两个重量分别为12千克和8千克并且含银的百分数不同的合金上各切下重量相同的两块,把所切下的每块与另一块剩余的合金混合,熔炼后合金含银的百分数相同,求所切下的合金的重量是多少?【生活实际运用】A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台已知从A市调运一台机器到C市、D市的运费分别为4百元和8百元;从B市调运一台机器到C市、D市的运费分别为3百元和5百元(1)设B市运往C市机器x台,用x的代数式表示总运费W;(2)若要求总运费不超过9千元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?参考答案【同步达纲练习】1.(1)(18x+4); (2)6.5,0.5米/秒,13秒;(3)10y+x,10x+y; (4)0.1x,2x 4.7x;(5)a(x+1)+bx=20.2.A C C3.略【素质优化训练】1.(1)B;(2)D;(3)D.(提示:由题意得,互送后每人各有32张,则3人共有96张,设甲有X 张,则乙、丙共有(96-x)张,甲送乙、丙后剩下[x-(96-x)]张,乙送甲后,甲有2[x-(96-x)]张,丙送甲后,甲有4[x-(96-x)]张,列方程为:4[x-(96-x)]=32.解得x=52,同样方法能可求出乙、丙的张数);(4)A.(提示:可设变化后的数为x,则四个数分别是x-1,x+1,2x ,3x,可列方程为x-1+x+1+2x+3x=55). 2.(1)设平路长为x 千米,则坡路长为12(96055x-)千米,学校到市内的路程为[12(96055x -)+x]千米,根据题意,得8x +4)96055(12x-=121,x=6. 12(96055x -) +x=9.(2)设这批货共有x 吨,根据题意,得.23,415.32=+=-x x x (3)由题意可知逆水速度为18千米/时,设船顺水速度为x 千米/时,则水流速度为218-x 千米/时,船在静水中的速度为218+x 千米/时,根据题意,得(131-1)x=8,x=24,21218,3218=+=-x x . (4)由题意可知第一次相遇用了3小时,甲速比乙速快2千米/时,设A 、B 两地距离为x 千米,则甲速为312-x 千米/时,根据题意,得2312312+=-x ,x=30, 312-x =6. (5)设原六位数的后五位数为x ,则原六位数为100000+x ,根据题意得3(100000+x )=10x+1,x=42875,100000+42857=142857.(6)设甲种酒取x 升,则乙种酒取 (14-x)升,根据题意,得43x+61(14-x)=7,x=8.14-x=6.(7)设这组园丁共x 人,根据题意,得43x=2(41x+1),x=8.(8)设现在的时刻是10点x 分,根据题意,得6(x+6)+[60-21(x-3)]=180,x=15. (9)设他外出了x 分钟,根据题意,得6x-21x=220,x=40. (10)解:令粗,细蜡烛的长度都为1,设点燃烛的时间是x 小时,根据意,得1-4x =3(1-x 31),x=232.(11)设辅助未知数,设切下合金的重量是x 千克,第一块合金含银a%,第二块合金含银b%,(a ≠b ).根据题意,得12%%)()8(12%%)12(a x b x b x a x ⋅+⋅-=⋅+⋅-,整理得5(a-b )x=24(a-b), ∵a ≠b, ∴x=454. 【生活实际运用】1.①W=2x+86 ②3种 ③8600元。
一元一次方程(二)(通用版)试卷简介:行程问题和经济问题一、单选题(共14道,每道7分)1.甲商品的进价是1400元,按标价1700元的九折出售;乙商品的进价是400元,按标价520元的八折出售,则( )A.甲商品获利多B.乙商品获利多C.甲,乙获利一样多D.无法比较答案:A解题思路:甲商品的利润是元,乙商品的利润是元,因此甲商品获利多.试题难度:三颗星知识点:一元一次方程的应用——打折销售2.一件风衣,按成本价提高50%后标价,后因季节关系按标价的八折出售,每件卖180元,这件风衣的成本价是( )A.80元B.100元C.120元D.150元答案:D解题思路:设这件风衣的成本价是x元,根据题意可列方程为:,解得x=150,因此这件风衣的成本价是150元.试题难度:三颗星知识点:一元一次方程的应用——打折销售3.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为( )A.26元B.27元C.28元D.29元答案:C解题思路:设这种电子产品的标价是x元,根据题意列方程得:,解得x=28试题难度:三颗星知识点:一元一次方程的应用——打折销售4.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意可列方程为( )A.10(1-x%)-8=(1+90%)×(10-8)B.10(1-x%)-8=90%×(10-8)C.10·x%-8=90%×(10-8)D.10(1-x%)-8=(10-8)÷90%答案:B解题思路:利润=售价-成本,可知降价前的利润是(10-8)元,降价后的利润是10(1-x%)-8,根据题意可列方程为:10(1-x%)-8=90%×(10-8),故选B试题难度:三颗星知识点:一元一次方程的应用——打折销售5.某商店有一套运动服,按成本价提高40%进行标价,为了促销,决定打九折,为了吸引更多顾客又降价16元,此时这套运动服仍可获利10%,则这套运动服的成本是多少元?若设这套运动服的成本是x元,根据题意可列方程为( )A. B.C. D.答案:B解题思路:由题知这套运动服的售价是,利润是10%x,根据利润=售价-成本,可列方程为试题难度:三颗星知识点:一元一次方程的应用——打折销售6.某商品提价25%后,欲恢复原价,则应再降价( )A.40%B.25%C.20%D.15%答案:C解题思路:设商品的价格为a,欲恢复原价,则应再降价x,提价后价格为(1+25%)a,根据题意可列等式,可求得x=20%,故选C试题难度:三颗星知识点:一元一次方程的应用——打折销售7.网络购物方便快捷,逐渐成为人们日常购物的一种重要方式.“十一期间”某网店推出一系列并行优惠活动:(1)在“十一”期间,网店全部商品九折销售;(2)凡在本网店购物均可享受5%的返利(在成交价的基础上返还5%).小李是该网店的一个店主,他想将商铺中进价为每件350元的羽绒服卖出,且保证在自己承担13元运费的情况下每件获得150元的利润,请问他该如何给这种羽绒服标价?若设这种羽绒服的标价为x元,根据题意可列方程为( )A. B.C. D.答案:B解题思路:设这种羽绒服的标价为x元,在“十一”期间的售价为,成本为(350+13)元,利润为150元,由售价-成本=利润得:,故选B 试题难度:三颗星知识点:一元一次方程的应用——打折销售8.小黄骑自行车从A地到B地,小周骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距35 km,到中午12时,两人又相距70 km.则A,B两地间的距离为( )A.35kmB.70 kmC.105 kmD.140 km答案:D解题思路:设两地之间的距离是xkm,根据题意列方程为:,解得x=140,故选D试题难度:三颗星知识点:行程问题9.甲、乙两船航行于A,B两地之间,由A地到B地航速为35千米/时,由B地到A地航速为25千米/时,现甲船由A地开往B地,乙船由B地开往A地,甲船先航行2小时,两船在距B地120千米处相遇,求两地的距离.若设两地的距离为x千米,根据题意可列方程为( )A. B.C. D.答案:A解题思路:两船在距B地120千米处相遇,所以甲船走的距离为(x-120)千米,乙走路程为120千米,甲先走2小时,根据时间相等列等式:,故选A试题难度:三颗星知识点:行程问题10.A,B两城相距720km,普快列车从A城出发行进120km后,特快列车从B城出发开往A城,特快列车出发6h后两车相遇,若普快列车的速度是特快列车速度的,且设普快列车的速度为xkm/h,则下面所列方程正确的是( )A. B.C. D.答案:C解题思路:根据题意,由公式:路程=速度×时间可得,变形得,故选C试题难度:三颗星知识点:行程问题11.一列火车通过450米长的山洞用了23秒,经过一位站在铁路边的扳道工人用了8秒,求这列火车的长度.若设这列火车的长度为x米,根据题意可列方程为( )A. B.C. D.答案:C解题思路:火车通过山洞所行的路程是(450+x)米,经过工人所行的路程是x米,由于火车的速度不变,由公式:速度=路程÷时间可得,故选C试题难度:三颗星知识点:行程问题12.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.若设小华去时走平路的时间为x分,则下面所列方程正确的是( )A. B.C. D.答案:D解题思路:小明从家到学校走的是平路和下坡,从学校到家走的是上坡和平路,由题可知小明下坡所用的时间是(10-x)分钟,小明上坡所用的时间是(15-x)分钟,由于路程相等,因此可列方程为,故答案选D试题难度:三颗星知识点:行程问题13.一客车以60千米/小时的速度从甲地出发驶向乙地,经过45分钟后,一辆小汽车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,若设甲、乙两地的距离为x千米,依题意可列方程为( )A. B.C. D.答案:B解题思路:由题知客车和汽车行驶的路程都是,而行驶同样的路程,客车比汽车多用个小时,根据题意可列方程为,故选B试题难度:三颗星知识点:行程问题14.小明骑自行车到郊外游玩,有一辆农用车在小明前方200米处与小明相向行进,小明骑自行车的速度为4米/秒,农用车行驶的速度为6米/秒,经测算,当人距离农用车20米时可受到噪声的影响.若小明和农用车继续保持原来的速度和方向行进,小明受到农用车噪声的影响会持续多长时间?若设小明受到农用车噪声的影响持续时间为x秒,根据题意可列方程为( )A. B.C. D.答案:A解题思路:设持续x秒,由题意知,当人距离农用车20米内可受到噪声的影响,两人相向而行,相遇前两人相距20米时小明开始受到噪音影响,相遇后两人相背而行,再次距离20米时,小明开始远离噪音影响,共走路程40米,根据题意列式:,故选A 试题难度:三颗星知识点:行程问题。
一元一次方程组练习题初二初二学生学习数学时,一元一次方程组是一个重要的知识点。
通过解一元一次方程组,学生能够培养逻辑思维和解决问题的能力。
下面是一些一元一次方程组的练习题,帮助初二学生巩固所学知识。
1. 解下列方程组:a) 2x + y = 73x - y = 1b) 3x + 4y = 102x - 3y = 1c) 5x - 2y = 93x + y = 1d) 2x + 3y = 84x - 6y = 122. 某小组举行义卖活动,售卖饮料和糖果。
已知每瓶饮料售价为2元,每份糖果售价为1元。
一次义卖活动后,小组共售出了12瓶饮料和20份糖果,总收入为34元。
求饮料和糖果的单价。
3. 小明去超市购买商品,他买了4个苹果和2个橙子,总共花费了12元。
小明的朋友小华购买了6个苹果和3个橙子,总共花费了18元。
求每个苹果和橙子的单价。
4. 现有两种商品,甲种每个售价6元,乙种每个售价10元。
现在购买了甲种商品x个,乙种商品y个,总共花费了108元。
已知购买的总数量为12个。
求甲种和乙种商品的购买数量。
5. 甲、乙两家店在同一时间进行打折活动。
甲店的商品进行半价优惠,乙店的商品进行八折优惠。
小明去甲店购买了2个商品,花费了9.5元;接着他又去乙店购买了3个商品,花费了13.5元。
求每个商品的原价。
通过解一元一次方程组,我们可以逐步解决上述练习题。
答案如下:1.a) x = 2, y = 3b) x = 2, y = 1c) x = 2, y = -5d) 无解2. 饮料单价为2元,糖果单价为1元。
3. 苹果单价为1元,橙子单价为2元。
4. 甲种商品购买了6个,乙种商品购买了6个。
5. 甲店商品原价为4元,乙店商品原价为6.5元。
通过解答上述练习题,初二学生可以巩固和提升解一元一次方程组的能力,培养数学思维和解决实际问题的能力。
希望同学们能够认真思考并解答出正确的结果。
七年级一元一次方程应用百题集一、比例问题1. 某种三色冰淇淋45g,咖啡色、红色、和白色配料的比1:2:6,这种冰淇淋中咖啡色、红色、和白色配料分别是多少?(提示比例问题最常用的设元方法是设1份为x)2.某洗衣机厂今年计划生产洗衣机2550台,其中I型、II型、III型三种洗衣机的数量之比为1:2:14,请问这三种洗衣机计划各生产多少台?二、足球比赛问题3.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分。
甲队胜了多少场?平了多少场?4.某排球队参加排球联赛,得分规则:胜一场得2分,负一场得1分。
(1)若该队全胜,共得20分,请问该队胜了多少场?(2)若该队负了2场,共得20分,请问该队胜了多少场?(3)若该队赛了12场,共得20分,请问该队胜了多少场?(4)若得分规则改为:胜一场得2分,平一场得1分,负一场得0分。
该队赛了14场,负了5场,共得13分,问这个队胜了几场?5.某区中学生足球联赛共赛8轮(即每队均需赛8场),胜一场得3分,平一场得1分,负一场得0分。
在这次足球联赛中,小平安队踢平的场数是所负场数的2倍,共得17分,试问该队胜了几场?6-1.一位教师和一群学生一起去看足球赛,教师门票按全票价每人70元,学生只收半价。
如果门票总价910元,那么学生有多少人?6-2.甲、乙两球队开展足球比赛,规定胜一场得3分,平一场得1分,负一场得0分。
甲、乙两队共比赛6场,甲队保持不败,共得14分。
甲队胜了几场?三、收费问题7.某城市按以下规定收取每月煤气费:用煤气如果不超过60m3,按每立方米0.8元收费,如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?8.某市居民用电基本价格为每度0.4元,若每月用电量超过a度,超过部分按基本电价的70%收费。
一元一次方程与一元一次不等式综合练习题1. 某商店举行打折促销活动,一款原价为x元的商品现在打7折出售,求打折后的价格。
解答:打折后的价格 = 原价 ×折扣= x × 0.7= 0.7x元2. 一辆汽车以每小时60公里的速度行驶,行驶t小时后,汽车行驶了多少公里?解答:汽车行驶了公里数 = 速度 ×时间= 60t公里3. 销售员工资由底薪和提成两部分组成,底薪为y元,提成按照销售额的10%计算。
如果销售额为z元,求该销售员的总工资。
解答:总工资 = 底薪 + 提成= y + 0.1z元4. 小明用某品牌牙膏每支刷头可以用h天,他购买了n支牙膏,这些牙膏能使用多少天?解答:牙膏使用天数 = 牙膏每支刷头使用天数 ×牙膏数量= h × n天5. 一个数减去3,再乘以2,得到结果等于13,求这个数。
解答:设这个数为x,根据题意可以得到方程:(2 × (x-3)) = 13化简得到:2x - 6 = 13移项得到:2x = 19解得:x = 9.56. 从学校到图书馆的距离是d千米,小明骑自行车以v千米/小时的速度从学校出发,需要多长时间才能到达图书馆?解答:到达时间 = 距离 / 速度= d / v小时7. 若-4x + 7 < 3x - 2,求x的取值范围。
解答:-4x + 7 < 3x - 2移项得到:-7x < -9除以-7,并注意不等号方向改变:x > 9/7因此,x的取值范围为x > 9/7。
8. 已知一元一次方程3x - 5 = 7 - 2x,求x的值。
解答:将方程两边的x合并,并移项得到:5x = 12解得:x = 12/59. 某手机厂商生产手机A和手机B,每台手机A的生产成本是500元,每台手机B的生产成本是700元。
若生产n台手机A和m台手机B的总成本为3300元,求n和m的值。
解答:总成本 = A手机的成本 × A手机的数量 + B手机的成本 × B手机的数量= 500n + 700m根据题意可得到方程:500n + 700m = 330010. 上述手机厂商今年计划生产的手机总数为x台,其中A手机占总数的40%,B手机占总数的60%。
一元一次方程的应用——工程问题专题练习一、选择题1、某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则下列方程正确的是( ). A. 52m m-=20 B.53m m -=20C. 57m m -=20D. 35m m -=20答案:D解答:由题意得:35m m-=20. 2、整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作的34,假设每个人的工作效率相同,具体先安排x 人工作,则列方程正确的是( ).A.440x +()8240x +=1B.440x +()8240x +=34 C. 440x +()8240x -=1 D.440x +()8240x -=34 答案:B解答:设应先安排x 人工作,根据题意得:一个人做要40小时完成,现在计划由一部分人先做4小时,工作量为440x,再增加2人和他们一起做8小时的工作量为()8240x +,故可列式440x +()8240x +=34,选B. 3、一项工程甲单独做要40天完成,乙单独做要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A. 440+4050x+=1 B.440+5040x⨯=1C. 440+50x =1D. 440+40x +50x =1答案:D解答:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1, 列出方程式为:404050选D.4、某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲,乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ). A. 14x ++6x=1 B.4x +16x +=1C. 4x +16x -=1D. 4x +14+16x +=1答案:C解答:解:设甲一共做了x 天,则乙一共做了(x -1)天. 可设工程总量为1,则甲的工作效率为14,乙的工作效率为16. 那么根据题意可得出方程4x +16x -=1, 选C.5、整理一批数据,由一个人做要40小时完成.现在计划由x 人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,则得( ).A.440x +()8240x +=1B.440x +()8240x -=1C.()4240x -+840x=1 D.()4240x -+()8240x +=1答案:A解答:由题意得方程为:440x +()8240x +=1.6、一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合做,那么剩下的部分需要几个小时完成?若设还要x 小时完成,则依题意可列方程为( ). A. 4202012x x--=1 B.42020x -+12x =1C. 420+2012x x-=1 D. 420+20x +12x =1答案:D解答:设还要x 小时完成,由题意得:202012选D.二、填空题7、一条地下管道,甲队单独需要6天完成铺设,乙队单独需要12天完成铺设,若两队合作需要______天完成铺设.答案:4解答:设合作x天完成铺设,由题意,得:(16+112)·x=1,解得x=4.故答案为:4.8、为配合上海南站的大整修,上海铁路局决定修建一个临时车站——梅陇火车站.施工方第一个月修了全长的35%,第二个月修了360米,这时两个月的总米数距车站总长的34还有40米.这个火车站站长______米.答案:1000解答:设这个火车站站长x米.依题意得:x·35%+360=34x-40解得:x=1000答:这个火车站站长1000米.9、一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做______天.答案:3解答:设乙还需要做x天.由题意得:312+38+8x=1解得:x=3.答:乙还需要做3天.10、某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为______.答案:840x+()4240x-=1解答:每个人的工作效率为1 40,该小组全体同学一起做8h ,完成840x , 2名同学离开,剩下的同学做4h ,完成()4240x -, 由题意得,840x +()4240x -=1.(形式不唯一) 11、一个蓄水池有甲、乙两个出水口,水池满时,若单独开甲出水口6小时可把水池放空;若单独开乙出水口12小时可把水池放空;若同时开放两个出水口,则______小时即可将水池放空. 答案:4解答:设x 小时放空,由题意,得:(16+112)x =1,解得x =4. 12、有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为______小时. 答案:125解答:设长度为1,时间为x ,1-13x =12(1-14x ) x =125. 三、解答题13、某车间加工一批零件,计划每天加工12件,加工了全部零件的23后改进了操作,工效提高到原来的54倍,∴比预定时间提早了一天完成,问这批零件共有多少件? 答案:180件.解答:设这批零件有x 件,可得:2312x +153124x ⨯=12x -1, 15x -180=10x +4x , x =180.答:这批零件共有180件.14、某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务.求实际施工时,平均每天铺设多少米?这段输油管道有多长?答案:实际施工时,平均每天铺设225米;这段输油管道有1575米. 解答:设实际施工时,平均每天铺设x 米. 依题意,得9(x -50)=7x . 解得x =225. 7x =7×225=1575.答:实际施工时,平均每天铺设225米;这段输油管道有1575米.15、有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50平方米墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40平方米墙面.每名一级工比二级工一天多粉刷10平方米墙面,求每名一级工、二级工每天分别刷墙面多少平方米.答案:每名一级工、二级工每天分别刷墙面122平方米,112平方米. 解答:设每一个房间的墙面共有x 平方米,则850104035x x -+-=10, 解得x =52,8503x -=122(平方米), 10405x +=112(平方米), 答:每名一级工、二级工每天分别刷墙面122平方米,112平方米.16、某地为了打造风景带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m ,求甲、乙两个工程队分别整治了多长的河道.答案:甲工程队整治了120米的河道,乙工程队整治了240米的河道. 解答:设甲工程队整治了x 米的河道, 则乙工程队整治了(360-x )米的河道. 根据题意得:24x +36016x -=20, 解得:x =120,∴360-x =240.答:甲工程队整治了120米的河道,乙工程队整治了240米的河道.17、市政府要求地铁2号线工程12个月完工.现由甲、乙两工程队参与施工,已知甲队单独完成需要16个月,每月需费用600万元;乙队单独完成需要24个月,每月需费用400万元.由于前期工程路面较宽,可由甲、乙两队共同施工.随着工程的进行,路面变窄,两队再同时施工,对交通影响较大,为了减小对解放大道的交通秩序的影响,后期只能由一个工程队施工.工程总指挥部结合实际情况现拟定两套工程方案:①先由甲、乙两个工程队合做m 个月后,再由甲队单独施工,保证恰好按时完成. ②先由甲、乙两个工程队合做n 个月后,再由乙队单独施工,也保证恰好按时完成. (1)求两套方案中m 和n 的值.(2)通过计算,并结合施工费用及施工对交通的影响,你认为该工程总指挥部应该选择哪种方案?答案:(1)m =6;n =8. (2)方案一. 解答:(1)1216+24m=1,解得m =6; 16n +1224=1,解得n =8. (2)方案一:施工费为600×12+400×6=9600万元,两队同时施工时间为6个月. 方案二:施工费用为600×8+400×12=9600万元,两队同时施工时间为8个月. 方案一与方案二施工费用相同,但方案一对交通影响较小,故采用方案一. 答:该工程总指挥部应该选择方案一. 18、列方程解应用题.(1)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13800m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?(2)加工一批零件,张师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,张师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由张、李二位师傅合作完成,这样完成这批零件一共用了多长时间? 答案:(1)中、美两国人均淡水资源占有量各为2300m 3,11500m 3. (2)完成这批零件一共用了46天.解答:(1)设美国人均淡水资源占有量为xm3,中国人均淡水资源占有量为15xm3,依题意得:x+15x=13800,解得x=11500,则15x=2300.答:中、美两国人均淡水资源占有量各为2300m3,11500m3.(2)设完成这批零件共用x天.根据题意,得:10÷40+30÷60+(1÷40+1÷60)(x-40)=1,解得:x=46.答:完成这批零件一共用了46天.19、某工程由哥哥单独做40天后,再由弟弟单独做28天可以完成,现在兄弟两人合作35天就完成了,如果先由哥哥单独做30天,再由弟弟单独做,那么弟弟要工作多少天才能完成这项工程?答案:42天.解答:设哥哥的工作效率为x,则弟弟的工作效率为135-x.依题意有:40x+28(135-x)=1,解得:x=160∴弟弟的工作效率为113560=184.那么哥哥单独作30天后,弟弟还要作(1-30 60)÷184=42天.20、某中学举行校运会,初二(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?答案:(1)14张卡纸做球拍,7张卡纸做小旗.(2)再增加3个人做1小时可以刚好完成.解答:(1)设x张卡纸做球拍,则(21-x)张卡纸做小旗,依题意可得:3x=6(21-x),解得:x=14,21-x=21-14=7,答:14张卡纸做球拍,7张卡纸做小旗.(2)设再增加y个人做1小时可以刚好完成,由题意可得:16×12×2+16×1×(2+y)=1,解得:y=3,答:再增加3个人做1小时可以刚好完成.21、整理一批图书,若由一个人独做需要80个小时完成,假设每人的工作效率相同.(1)若限定32小时完成,一个人先做8小时,再需增加多少人一起做才能在规定的时间内完成?(2)计划由一部分人先做4小时,然后增加3人与他们一起做4小时,正好完成这项工作的34,应该安排多少人先工作?答案:(1)再需增加2人帮忙才能在规定的时间内完成.(2)应安排6人先工作.解答:(1)设再需增加x人帮忙才能在规定的时间内完成,可得:880+32880-(x+1)=1,解得:x=2.答:再需增加2人帮忙才能在规定的时间内完成.(2)设应该安排x人先工作,可得:480x+()4380x+=34,解得:x=6.答:应安排6人先工作.22、某公司有A、B两台复印机,用于印刷学习资料和考试试卷,学校举行期末考试,数学试卷如果用复印机A、B单独复印,分别需要90分钟和60分钟,在考试时为了保密需要,不能过早提前印刷试卷,学校决定在考试前用两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)在复印30分钟后B机出了故障,暂时不能复印,此时离发卷还有13分钟,请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)B机经过紧急抢修,9分钟后修好恢复使用,请你再算算,学校是否能按时发卷考试?答案:(1)两台复印机同时复印,共需要36分钟才能印完. (2)会影响考试发卷. (3)可以按时发卷考试.解答:(1)设共需要x 分钟才能印完,(190 +160)x =1,解得x =36. (2)设由A 机单独完成剩下的任务要y 分钟才能印完(190+160)×30+90y =1,解得y =15>13.(3)设当B 机恢复使用时,两机又共复印了z 分钟完成任务(190+160)×30+990+(190+160)z =1,解得z =2.49+2.4=11.4<13. 23、武汉巨人教学楼墙面粉刷装修,有一些相同的教室需要粉刷.一天3名一级工去粉刷8间教室,结果其中有50m 2的墙面未来得及刷.同样的时间内5名二级技工粉刷了10间教室的墙面之外,还多刷了另外的40m 2的墙面.每一级技工比二级技工一天多刷10m 2的墙面. (1)求每间教室需要粉刷的墙面面积.(2)现剩下40间半这样教室需要粉刷,已知每名一级技工,二级技工每天的工资分别是363元、336元,要求在3天内完成,要求在这8个人中雇佣人员,请提出一个最省钱的方法?并求出此时粉刷的墙面的总费用.答案:(1)每间教室需要粉刷的墙面面积为52m 2. (2)选择3名一级技工,3名二级技工粉刷3天. 总费用为:3×(363+336)×3=6291元.解答:(1)设每间教室需要粉刷的墙面面积为xm 2.850104035x x -+-=10, 解出x =52,答:每间教室需要粉刷的墙面面积为52m 2. (2)由(1)可知,当x =52时,8503x - =122. ∴一级技工每天可刷122,二级技工每天可刷112. 现在需要粉刷的墙面面积为40.5×52=2106. ∵363336122112<, ∴最大限度选择一级技工.若3名一级技工粉刷,三天可以粉刷122×3×3=1098<2106,则需二级技工:(2106-1098)÷112÷3=3.∴可以选择3名一级技工,3名二级技工粉刷3天.总费用为:3×(363+336)×3=6291元.。
一元一次方程应用题50道题1.一袋大米重3 kg,比一袋小米重2 kg 多5 kg,两袋共重多少千克?2.一只汽车以每小时60 km 的速度在高速公路行驶,经过3小时行驶了多少公里?3.一个瓶子装有300 ml 水,如果每天喝掉其中的1/5,这瓶水可以喝几天?4.张三和李四两个人合作挖坑,如果张三工作8小时,李四工作6小时,他们一起挖了多少立方米的土方?5.一个长方形花池的长是3 m,宽是2 m,若要在花池周围铺设30 cm 宽的石板,需要多少平方米的石板?6.一本书原价80 元,打了6 折后的价格是多少?7.一家餐馆中午卖出了300 份饭菜,占当天总菜品销售量的1/3,这家餐馆当天总共卖出了多少份饭菜?8.小明的体重是x 公斤,小红的体重是x-10 公斤,已知小明的体重是小红的体重的1.2 倍,求小红的体重是多少公斤?9.一块长方形铁皮长6 米,宽4 米,若每平方米20元,这块铁皮的售价是多少元?10.水果店买了150 公斤苹果,以每公斤5元的价格卖出,若想要盈利600 元,每公斤的成本价是多少元?11.某班同学中男生和女生的比例是3:2,如果班级中有30 名女生,求男生的人数?12.一个正方形花坛的周长是24 米,周围留有1 米的空白地带,求花坛和空白地带的总面积。
13.小明做了一份试卷,正确题数占总题数的3/4,如果正确的题数是30 题,求这份试卷总题数。
14.甲乙两个水龙头一起放水,甲水龙头每分钟放4 升水,乙水龙头每分钟放3 升水,它们一起放水10 分钟的总共放了多少升水?15.一辆汽车开了400 公里的路程,行驶时间是5 小时,求汽车的时速是多少公里?16.一支笔每支卖5 元,卖掉8 支时的总收入是多少元?17.篮球队举行了一场友谊赛,每名队员缴纳30 元参赛费,若入场观众共有150 人,求篮球队一共收入了多少元?18.一块长方形面积是80 平方米,宽是4 米,求长是多少米?19.甲乙两人运动员从同一地点出发,甲以每小时8 km 的速度向东跑,乙以每小时6 km 的速度向西跑,若2 小时后相遇,求两人的相距距离是多少千米?20.三个自行车座椅的长度总和是3 米,第一个座椅长度是2 肘,第二个长度是1 米,求第三个座椅的长度。
第三章 一元一次方程考试范围:第三章一元一次方程;考试时间:100分钟;第I 卷(选择题 共42分)一、选择题(1--6题每题2分,7--16每题3分,共计42分)1.下列运用等式的性质对等式进行的变形中,正确的是( ). A.若,则 B .若,则 C ,则 D .若,则2.若 与kx -1=15的解相同则k 的值为( ).A.2B.8C.-2D.63.下列方程①②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,( ).A .2个B .3个C .4个D .5个4.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 A .70元 B .120元 C .150元 D .300元 5A .B .C .D .6m 的值为( ) A7.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电标价是( ) A .3200元 B .3429元 C .2667元 D .3168元8.用“●”“■”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A 、5B 、4C 、3D 、2 9.某商店在某一时间以每件50元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店( ) A 、亏损6.7元 B 、盈利6.7元 C 、不亏不盈 D 、以上都不正确10.若,,都是不等于零的数,且,则( )A .2B .-1C .2或-1D .不存在11.种饮料比种饮料单价少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花了13元,如果设种饮料单价为元/瓶,那么下面所列方程正确的是A .B .C .D .12.日历上竖列相邻的三个数,它们的和是39,则第一个数是( ) A.6 B.12 C.13 D.1413 )A.-14.若与互为相反数,则a=( )A .B .10C .D .﹣1015.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【 】A .7岁B .8岁C .9岁D .10岁16.相传有个人不讲究说话艺术常引起误会。
一元一次方程应用题积分问题训练题(含解析)一、单选题(共10题;共20分)1.(2020七下·江苏月考)篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是()A. 2B. 3C. 4D. 52.(2020七下·黄石期中)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A. 17道B. 18道C. 19道D. 20道3.(2020七上·乌兰浩特期末)一次知识竞赛共有20道选择题,规定答对一道题得5分,不做或做错一题扣1分,如果某学生的得分为76分,则他做对了道题()A. 16B. 17C. 18D. 194.(2020七上·三门峡期末)某竞赛试卷由26道题组成,答对一题得8分,答错一题倒扣5分,小强虽然做了全部的26道题,但所得总分为零,他答对的题有()A. 10道B. 15道C. 20道D. 8道5.(2019七上·崇川月考)某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了()场.A. 3B. 4C. 5D. 66.(2019七上·凉州月考)某次知识竞赛共有25道题,某一题答对给5分,打错或不答都扣3分,小明得了85分,那么他答对的题数是()A. 22B. 20C. 19D. 187.(2019七上·福州期中)在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x场,则根据以上信息所列方程正确的是()A. 3x+2x=32B. 3(11﹣x)+3(11﹣x)+2x=32C. 3(11﹣x)+2x=32D. 3x+2(11﹣x)=328.(2019七上·哈尔滨月考)中国CBA篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,今年某队在全部38场比赛中最少得到70分,那么这个队今年胜的场次是()A. 6场B. 31场C. 32场D. 35场9.(2019七上·宝安期末)在“足球进校园”活动中规定:胜一场得3分,平一场得1分,负一场得0分某班足球队踢了10场球,负了3场,得17分,这个足球队共胜了A. 2场B. 4场C. 5场D. 7场10.(2018七上·和平期末)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()道.A. 17B. 18C. 19D. 20二、填空题(共6题;共7分)11.(2020·仙桃)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了________场.12.(2020七下·博兴期中)一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣2分,有人仅得70分,问此人答对了________道题.13.(2020七上·抚顺期末)某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了5个参赛者的得分情况.在此次竞赛中,有一位参赛者答对15道题,答错5道题,则他的得分是________.14.(2020七上·海珠期末)在一次猜谜比赛中,每个选手要回答30题,答对一题得20分,不答或答错扣10分,如果小明一共得了120分,那么小明答对了________题.15.(2020七上·天心期末)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜________场.16.(2020七上·厦门期末)下表是某中学足球冠军杯第一阶段A组赛不完整的积分表.A组共个队,每个队分别与其它个队进行主客场比赛各一场,即每个队都要进行场比赛.每队每场比赛积分都是自然数.(总积分胜场积分平场积分负场积分)战神队旋风队龙虎队梦之队本次足球小组赛中,平一场积________分,梦之队总积分是________分.三、综合题(共6题;共65分)17.(2020七上·越秀期末)某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.(1)每答对1题得多少分?(2)参赛者D得54分,他答对了几道题?18.(2020七上·金牛期末)2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;19.(2020七上·通榆期末)足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季中共需比赛14场,现已比完了8场,输了1场球,得了17分。
教学辅导教案1.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若﹣3x=5,则x=﹣C.若+=1,则2(x﹣1)+3(x+1)=1D.若﹣x=1,则x=﹣32.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.如果x=y,a为有理数,那么下列等式不一定成立的是()A.1﹣y=1﹣x B.x2=y2 C.=D.ax=ay 4.小华在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是y﹣=y﹣■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是:y=﹣6,小华很快补好了这个常数,并迅速完成了作业.这个常数是()A.﹣4B.3C.﹣4D.45.解方程:.第1页共12页6.我们规定吗,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x﹣4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.1.用7.8米长的铁丝做成一个长方形框架,使长比宽多1.2米,求这个长方形框架的宽是多少米?设长方形的宽是x米,可列方程为( ).A.x+(x+1.2)=7.8B.x+(x-1.2)=7.8C.2[x+(x+1.2)]=7.8D.2[x+(x-1.2)]=7.82.有一位工人师傅要锻造底面直径为40 cm的“矮胖”形圆柱,可他手上只有底面直径是10 cm,高为80 cm的“瘦长”形圆柱,试帮助这位师傅求出“矮胖”形圆柱的高.3.如图所示是用铁丝围成的一个梯形,将其改成一个长和宽比为2∶1的长方形,那么该长方形的长和宽分别为多少?4.(1)某商品成本100元,提高40%后标价,则标价为__________元;(2)500元的9折是__________元,__________元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________.5.在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?6.某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?7.某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?8.某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?1.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)2.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?3.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)8.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?9.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.10.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?1.几何图形中常用的公式 (1)常用的体积公式长方体的体积=长×宽×高;正方体的体积=棱长×棱长×棱长;圆柱的体积=底面积×高=πr 2h ;圆锥的体积=13×底面积×高=13πr 2h . (2)常用的面积、周长公式长方形的面积=长×宽;长方形的周长=2×(长+宽);正方形的面积=边长×边长;正方形的周长=边长×4;三角形的面积=12×底×高; 平行四边形的面积=底×高;梯形的面积=12×(上底+下底)×高; 圆的面积=πr 2;圆的周长=2πr .2.形积变化问题中的等量关系形积变化问题中,物体的形状和体积会发生变化,但问题中一定有相等关系.分以下几种情况:(1)形状发生了变化,体积不变.其相等关系是:变化前物体的体积=变化后物体的体积.(2)形状、面积发生了变化,周长不变.其相等关系是:变化前图形的周长=变化后图形的周长.(3)形状、体积不同.根据题意找出体积之间的关系,即为相等关系.3.等长变形问题等长变形,是指用物体(一般用铁丝)围成不同的图形,图形的形状、面积发生了变化,但周长不变.解答此类问题,可以利用周长不变设未知数,寻找相等关系列出方程.面积问题中常常会用到特殊图形的周长和面积公式.如三角形、平行四边形、长方形、正方形、梯形、圆等;记住常见的几何图形的面积公式,抓住周长不变的特征是解决等长变形问题的关键.4.商品销售中与打折有关的概念及公式(1)与打折有关的概念∶进价:也叫成本价,是指购进商品的价格.∶标价:也称原价,是指在销售商品时标出的价格.∶售价:商家卖出商品的价格,也叫成交价.∶利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润.∶利润率:利润占进价的百分比.∶打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.(2)利润问题中的关系式∶售价=标价×折扣;售价=成本+利润=成本×(1+利润率).∶利润=售价-进价=标价×折扣-进价.∶利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 5.列方程解应用题的一般步骤及注意事项(1)列方程解应用题步骤∶审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系. ∶找:找出能够表示应用题全部含义的一个相等关系.∶设:设未知数(一般求什么就设什么).∶列:根据相等关系列出方程.∶解:解所列的方程,求出未知数的值.∶验:检验所求出的解是否符合实际意义.∶答:写出答案.(2)列方程解应用题应注意∶列方程时,要注意方程两边应是同一类量,并且单位要统一.∶解、答时必须写清单位名称.∶求出的方程的解要判断是否符合实际意义,即必须检验.6.利用一元一次方程确定商品的利润与商品的利润有关的实际问题主要有以下三类:(1)确定商品的打折数利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.(2)确定商品的利润根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.(3)优惠问题中的打折销售商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54-x=20%×108 B.54-x=20%(108+x)C.54+x=20%×162 D.108-x=20%(54+x)2.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.22+x=2×26 B.22+x=2(26-x)C.2(22+x)=26-x D.22=2(26-x)3.甲数是2013,甲数是乙数的14还多1.设乙数为x,则可列方程为()A.4(x-1)=2013 B.4x-1=2013C.14x+1=2013 D.14(x+1)=20134.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,设有x辆汽车,可列方程()A.45x-28=50(x-1)-12 B.45x+28=50(x-1)+12C.45x+28=50(x-1)-12 D.45x-28=50(x-1)+125.我校初一所有学生参加2012年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A.30x-8=31x+26 B.30x+8=31x+26C.30x-8=31x-26 D.30x+8=31x-266.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.327.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台9.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:0010.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.1001.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为______元.2.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省______元.3.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了______千克.4.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票______张.5.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.6.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为______.7.小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程______.8.“比a的2倍小3的数等于a的3倍”可列方程表示为:______.9.一台电脑的进价为2000元,原标价为3000元,现打折销售,要使利润率保持20%,那么需要在原标价的基础上打几折?设需要打x折.可列方程为______.10.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为______.。
一元一次方程的应用题练习题班级姓名一、行程问题1、小亮原计划骑车以12千米/时的速度,由A 地去B地, 这样便可在规定时间到达B地,但因故将原计划出发时间推迟了20分钟,只好以15千米/时的速度前进, 结果比规定时间早4分钟到达B地,求A、B两地间的距离?2、随随与州州约好1小时后到州州家去玩,•他骑车从家出发半小时后发现时间不够了便将速度提高到原来的2倍,半小时后准时到达州州的家.•已知他们家相距30千米,求随随原来的骑车速度. •3、从甲地到乙地公共汽车原需行驶7个小时,开通高速公路后,路程近了30千米,而车速平均每小时增加了30千米,只需4个小时即可到达。
求甲乙两地之间高速公路的路程。
4、一艘轮船从甲地顺流而下6小时到达乙地,原路返回需用10个小时才能到达甲地,已知水流的速度是每小时3千米,求甲、乙两地的距离。
5、一条山路,从山下到山顶,走了1小时还差1km,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km.6、A、B两地相距49千米,某人步行从A地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.7、A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车相向而行,慢车先开28分钟,快车开出后多少小时两车相遇?(3)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?8、甲、乙两列火车的长分别为200m、280m,在双行的轨道上相向匀速而行,已知两车自车头相遇到车尾相离经过12s,甲、乙两车的速度比为5:3,求两车的速度各是多少?9、张明叔叔与李威在四百米环形跑道上跑步锻炼身体,若两人在同一起跑点向同一个方向出发,已知张明叔叔的速度为195米/分,李威的速度为115米/分,问第几分钟时,张明叔叔第一次追上李威?10、甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,•乙每秒钟跑6米,甲的速度是乙的113倍.(1)如果甲、乙两人在跑道上相距8米处同时反向出发,•那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?二、时钟问题:1、时钟从5:00正走到5:30,分针旋转角度为度;时针旋转角度为度;这时,时针和分针的夹角为度;(40)时钟从5:00正走到5:40,分针旋转角度为度;时针旋转角度为度;这时,时针和分针的夹角为度;2、求在1点和2点之间时钟的时针和分针重合的时刻?3点到4点之间呢?3、求在1点和2点之间时钟的时针和分针成一条直线的时刻?3点到4点之间呢?3、求在1点和2点之间时钟的时针和分针垂直的时刻?3点到4点之间呢?三、工程问题1、用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m3, 第一架工作16小时,第二架工作24小时,共掘土8640 m3,问每架掘土机每小时可以掘土多少 m3?2、某工厂原计划26小时生产一批零件,后因每小时多生产5件,用24小时不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?3、一项工程,甲单独完成需要9天,乙单独完成需12天,丙单独完成要15天,若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问还需多少天能完成这项工程的65?4、一个进水管和一个出水管,单开进水管5小时就能灌满一池水,在灌水两小时后发现出水管没有关,关闭出水管后再继续向水池灌水,再经4小时才将水池灌满,问单开出水管需多少时间才能把一池水放完?5、一项工程,甲工程队单独做40天可以完成,乙工程队单独做80天可以完成, 现由甲先单独做10天,然后与乙共同完成了余下的工程,问甲工程队一共做了多少天?6、用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?四、调配问题1、出操时,初一、初二两个方队共有学生146人.如果让初一方队中的11人插到初二方队,那么两个方队的人数相等.初一初二方队原来各有多少人?2、课外数学小组的女同学原来占全组人数的31,后来又有4个女同学加入,就占全组人数的21,问课外数学小组原来有多少个同学.3、初一(1)班举办图书展览,展出的册数人均3册还多24册,人均4册则差26册,问这班学生有多少人?展出的图书有多少册?4、“广东兴发铝型材集团公司”,是全国著名的专业生产建筑铝型材、工业铝型材的大型企业之一。
第 1 页,共 4 页 第 2 页,共 4 页
班级 姓名 考场 座号
金明中学七年级数学一元一次方程的应用测试题 一、填空题
1. 已知关于x 的方程1(2)30m m x ---=是一元一次方程,则m 的值是
2.单项式-258
x y
的系数是 .
3. 若单项式352m a b +与33n a b --是同类项,则=+n m .
4.一个两位数,个位上的数字是a,十位上的数字比个位上的数字的3倍大2,则这个两位数是__________
5.若3()2()a b a b -=+,且0a ≠,则b
a 的值是__________。
6.若方程2(23)13x x -=-和方程82(1)k x -=+的解相同,则_______.k =
7.若""*的意义为22a b a b +*=
(,a b 为有理数),则方程5
32
x *=的解是______ 8.21
302322y x y x x y y
+=+==+=①②③④
中是一元一次方程的有_________。
9.已知关于432x x m -=的方程的解是x m =,则m 的值是_________。
10.当2x =时,代数式(3)a x a -+的值是10,则当2x =-时,这个代数式的值是________。
二、计算题
11.解方程
(1)3257243y y --=- (2)715131
2324
x x x -++-=-
(3)311126x x +--= (4)332164
x x
+-=-
(5)......2019122320192020x x x +++=⨯⨯⨯ (6)4 1.63 5.4 1.80.50.20.1x x x ----=
12.已知关于1
(2)50a x a x
-+
-=的方程是关于x 的一元一次方程,求
22[3(23)]a a a ---+的值
13.定义一种新运算""⊕为2,a b a b ⊕=-比如2(3)22(3)268⊕-=-⨯-=+=
(1)求(3)2-⊕的值 (2)已知(3)(1)1x x -⊕+=,求x 的值
三、应用题
14.某饮料含有甲、乙、丙三种成分,这三种成分的质量比是2:3:7,现在要配制1440g 饮料,三种成分分别是多少?
15.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小36求原数
16. 一个两位数,十位上的数字比个位上的数字少3,这两个数字之和等于这个两位数的四分之一,求这个两位数。
17.ー个三位数,三个数位上的数字之和是17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,求这个数。
18. 某校七年级(1)班去植树,班级统一规定:每名男生要比女生多植2棵,其中第一组有男生8人,女生4人,他们一共要植40棵,男生每人该植几棵树?
19.甲、乙两个煤厂共存煤400吨,如果甲煤厂运进煤30吨,乙煤厂运出煤50吨,两煤 厂的煤的质量恰好相等,那么原来两个煤厂各存多少吨煤?
第 3 页,共 4 页 第 4 页,共 4 页
密
封线内不准答题
20.某中学开学初到商场购买A ,B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元.求购买一个A 种品牌,一个B 种品牌的足球各需多少元。
21.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆现在停车场共有50辆中、小型汽车,这些车共需缴纳停车费480元,中、小型汽车各有多少辆?
22.七年级某班举办了一次集邮展览,展出的邮票若平均每人3张,则多24张,若平均每人4张,则少26张,这个班有多少学生?一共展出了多少张邮票?
23.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?
24.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间.现在知道工人每人每天平均能织布30m 或制4件成衣,每件成衣用布1.5m ,若使生产出的布匹刚好制成成衣,应有多少人去生产成衣?
25.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套?
26.某车间有60名エ人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)
27.一项工程,甲单独位要10天完成,乙单独做要15天完成,两人一起做4天后,剩下的部分由乙单独做,还需要几天完成?
28.整理一批图书,如果由一个人单独做要花60h .现先由一部分人用1h 整理,随后增加15人和他们一起又做了2h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
29. 一件工作,甲单独做20h 完成,乙单独做12h 完成,现在先由甲单独做4h ,剩下的部分由甲、乙一起做,剩下的部分需要几小时完成?
30.加工一批零件,张师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,张师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由张、李二位师傅一起加工,完成这批零件一共用了多长时间?
31.一件工程,甲、乙、丙单独做各需10天、12天、15天オ能完成,现在计划开工7天完成,甲、乙先一起做了3天,甲队因事离去、由丙队代替,在各队工作效率不变的情况下、乙、丙需一起工作多少天オ能完工?在计划时间内吗?
32.某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道?
33.甲、乙两个施工队在郑州―开封城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离。
若设甲队每天铺设x 米,则乙队每天铺设(x -100)米.
(1)依题意列出一元一次方程;(2)求出甲、乙两个施工队每天各铺设多少米
34.某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50m ,结果只用了7天就完成了全部任务.实际施工时,平均每天铺设多少米?这段输油管道有多长?。