2020高中数学 第一章 常用逻辑用语阶段复习课学案 新人教A版选修2-1
- 格式:doc
- 大小:206.50 KB
- 文档页数:6
2020秋高中数学人教A版选修2-1学案:1.1.1命题含解析第一章常用逻辑用语德国伟大的诗人歌德,有一次在魏玛公园散步.当他走在一条仅能容一个人通过的小路上时,迎面走来了一位曾经把歌德的所有作品都贬得一文不值的文艺批评家.那位批评家站在歌德的对面,傲慢地说:“对一个傻子,我绝不让路." “我却正好相反."歌德边说边微笑着站到了一边.顿时,那位批评家满脸通红,羞得无地自容.这里反映的就是常用逻辑用语在现实生活中的应用.日常生活中,我们经常涉及一些逻辑上的问题.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维,需要对一些命题进行判断和推理.因此,正确地使用逻辑用语是现代社会公民应该具备的基本素质.本章我们将学习常用逻辑用语,体会逻辑用语在表述和论证中的作用.学习目标1.了解命题的概念,会判断命题的真假.2.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.3.通过数学实例,了解逻辑联结词“且”“或"“非”的含义.4.能够正确地对含有一个量词的命题进行否定.5.理解必要条件、充分条件与充要条件的意义.6.了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.本章重点命题及其关系;充分条件、必要条件、充要条件的意义;逻辑联结词“或”“且”“非”的含义;全称量词与存在量词的应用.本章难点必要条件的含义;含有一个量词的全称命题和特称命题的否定.1。
1命题及其关系1。
1。
1命题自主预习·探新知情景引入中国古代伟大的逻辑学家公孙龙提出过一个命题:白马非马.对于一般人来说,“白马是马”就如同说“苹果是水果”一样清楚明白,怎么可能“白马非马”呢?孔子的六世孙孔穿,为了驳倒公孙龙的主张,找上门去辩论,结果公孙龙说:“如果白马是马,那么黑马也是马,因此就有白马是黑马,也就是说白等于黑.像你这样黑白不分,我不值得和你辩论.”孔穿几句话就败下阵来.公孙龙在这里正是运用了逻辑推理才将这个错误的命题“证明”了,它的破绽在哪里呢?新知导学命题及相关的概念(1)定义:用__语言、符号或式子__表达的,可以__判断真假__的陈述句.(2)分类:①真命题:判断为__真__的语句;②假命题:判断为__假__的语句.(3)形式:命题的结构形式是“__若p,则q__”,其中__p__是命题的条件,__q__是命题的结论.预习自测1.下列语句中,命题的个数是(C)①空集是任何集合的真子集;②请起立;③单位向量的模为1;④你是高二的学生吗?A.0B.1C.2D.3[解析]由命题的定义知,语句①③能判断真假,所以是命题,故选C.2.下列语句中是命题的是(D)A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AMD.两个锐角的和大于直角[解析]两个锐角的和大于直角是一个假命题,A、B、C都不能判断真假.3.下列命题为假命题的是(C)A.log24=2B.直线x=0的倾斜角是错误!C.若|a|=|b|,则a=bD.若直线a⊥平面α,直线a⊥平面β,则α∥β[解析]由|a|=|b|得a与b的模相等,但方向不定,故a与b不一定相等,故选C.4.下列命题为真命题的是(A)A.若错误!=错误!,则x=y B.若x2=1,则x=1C.若x=y,则错误!=错误!D.若x〈y,则x2〈y2[解析]B中,若x2=1,则x=±1;C中,若x=y<0,则x与错误!无意义;D中,若x=-2,y=-1,满足x〈y,但x2〉y2,故选A.5.把命题“函数f(x)=sin x是奇函数”改写成“若p,则q”的形式是__若一个函数是f(x)=sin x,则该函数是奇函数__。
常用逻辑用语小结【知识归类】1 •命题:能够判断真假的陈述句•2. 四种命题的构成:原命题:若p则q ;逆命题:若q则p ;否命题:若p则q ;逆否命题:若q则p .一个命题的真假与其他三个命题的真假有如下关系:原命题为真,它的逆命题 ________ . ______ 原命题为真,它的否命题_________ . _____原命题为真,它的逆否命题 ________ . ____ 逆命题为真,它的否命题_________ . _____原命题与逆否命题互为逆否命题,它们的真假性是逆命题与否命题互为逆否命题,它们同真同假•3. 充分条件与必要条件:p q : p是q充分条件;q是p必要条件;p q: p是q的充分必要条件,简称充要条件.判断命题充要条件的三种方法(1 )定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断•即利用与Y = 一羞;三=卫与-上=-三;工=三与订=*的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法(3)利用集合间的包含关系判断,比如A二I B可判断为A B; A=B可判断为A B,且B=A,即A= B.如图. “齐已山=・兀亡占且兀已月书是齐已吕的充分不必要条件.“以二三”三-是上■三的充分必要条件.4. 逻辑联接词:“且”、“或”、“非”分别用符号“ ”“”“ ”表示,意义为: 或:两个简单命题至少一个成立;且:两个简单命题都成立;非:对一个命题的否定按要求写出下面命题构成的各复合命题,并注明复合命题的“真”与“假”p:矩形有外接圆;q:矩形有内切圆.P或q :(C)若a 0且b 0(a,b R),则a2b2 0(D)若a 0或b 0(a,b R),则a2b20p且q :非p :5. 全称量词与全称命题:常用的全称量词有:“所有的”、“任意的”、“每一个”、“一切”、“任给”等,并用符号“”表示.含有全称量词的命题叫全称命题.6. 存在量词与特称命题:常用的存在量词有:“存在一个”、“至少有一个”、“有些”、“有的”、“某个”等,并用符号“”表示•含有存在量词的命题叫特称命题8.反证法的逻辑基础:(1)p与p的真假相异,因此,欲证p为真,可证p为假,即将p作为条件进行推理,如果导致矛盾,那么p必为假,从而p为真.(2) “若p,则q ”与“若q则p ”等价.欲证“若p,则q ”为真,可由假设“q ”来证明“ p ” ,即将“ q ”作为条件进行推理,导致与已知条件p矛盾.(3)由“若p,则q ”的真假表可知,“若p,则q ”为假,当且仅当p真q假,所以我们假设“ p 真q假”,即从条件p和q出发进行推理,如果导致与公理、定理、定义矛盾,就说明这个假设是错误的,从而就证明了“若p,则q ”是真命题.后两条的逻辑基础,可以概括成一句话:“否定结论,推出矛盾”.全称命题与特称命题真假的判断1. 要判断一个全称命题是真命题,必须对限定的集合M中每一个元素工,验证• ■'成立;要判断全称命题是假命题,只要能举出集合M中的一个工飞",使二不成立可;2. 要判断一个特称命题的真假,依据:只要在限定集合M中,至少能找到一个1; =■;|:,使:一-;成立,则这个特称命题就是真命题,否则就是假命题【题型归类】题型一:四种命题之间的关系例1 命题“若a2 b20(a、bR),则a=b=O”的逆否命题是( ).(A)若a b 0 (a,b R),则a2 b20(B)若a=b 0(a,b R),则a2 b20(C)若a 0且b 0(a,b R),则a2b2 0(D)若a 0或b 0(a,b R),则a2b20题型二:充分、必要条件题型例2 “ ,,成等差数列”是“等式sin ( + )=sin2 成立”的( )题型三:复合命题真假的判断是题型四:全称命题、特称命题例5设A,B 为两个集合,下列四个命题(A )充分而不必要条件 (C )充要条件变式练习:“ a 1 ”是“对任意的正数 (A )充分而不必要条件 (C )充要条件x 1例 3 已知 p : 2 12;q:x 2 3不充分条件,求实数 m 的取值范围.(B )必要而不充分条件 (D )既不充分有不必要的条件x,2x -1 ”的( )•x(B )必要而不充分条件 (D )既不充分有不必要的条件2 _________________________________________2x 1 m 0(m 0),若p 是 q 的必要但例4 已知p :方程x 2 mx 10有两个不等的负实数根;2q :方程4x4 m 2 x 1 0无实根,若p 或q 为真,p 且q 为假,求m 的取值范变式练习:设有两个命题p :不等式x x 1 a 的解集为R q :函数f (x )x7 3a 在R 上是减函数,如果这两个命题中有且只有一个真命题,则a 的取值范围(1)A B x A,有 x B ⑵⑶ ABBA⑷A BAI BA Bx A 使得x B变式练习:下列命题中,既是真命题又是特称命题的是().其中真命题的序号为______________ . ___________(C)若a 0且b 0(a,b R),则a2b2 0(D)若a 0或b 0(a,b R),则a2b20(A)有一个 使si n 90 sin(B)存在头数x ,使sinx2(C)对一切,sin 180sin (D) sin15 sin 60 cos45 cos60 sin 45题型五:综合应用例6已知关于x 的实系数二次方程x 2ax b 0有两个实数根 ,.证明:| 2且2是2 | 4 b 且| b 4的充要条件已知函数 f(x) 4si n 2(— x) 2..3cos2x 1,且给定条件 p : “ _4 4(1)求f (x)的最大值及最小值m | 2"且p 是q 的充分条件,求实数 m 的取值范围。
word第一章 常用逻辑用语注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知原命题“若2a b +>,则a 、b 中至少有一个不小于1”,原命题与其逆命题的真假情况是( ) A .原命题为假,逆命题为真 B .原命题为真,逆命题为假 C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题2.已知命题p :∀x ∈R ,0x a >(a >0且a ≠1),则( ) A .¬p :∀x ∈R ,0x a ≤ B .¬p :∀x ∈R ,0x a > C .¬p :0x ∃∈R ,00x a >D .¬p :0x ∃∈R ,00x a ≤3.若命题“p ∧q ”为假,且“¬p ”为假,则( ) A .p 或q 为假 B .q 为假C .q 为真D .不能判断q 的真假4.“a =-3”是“圆22=1x y +与圆()224x a y ++=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知p 是R 的充分不必要条件,s 是R 的必要条件,q 是s 的必要条件,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.设x 、y 、z ∈R ,则“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题p :对任意x ∈R ,总有20x >;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝8.命题“t a n x =0”是命题“co sx =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知命题p :“对x ∀∈R ,m ∃∈R ,使4210x x m ++=”.若命题¬p 是假命题, 则实数m 的取值X 围是( ) A .-2≤m ≤2 B .m ≥2C .m ≤-2D .m ≤-2或m ≥210.下列命题中,错误的是( )A .命题“若2560x x -+=,则x =2”的逆否命题是“若x ≠2,则2560x x -+≠”B .已知x ,y ∈R ,则x =y 是22x y xy +⎛⎫≥ ⎪⎝⎭成立的充要条件C .命题p :x ∃∈R ,使得210x x ++<,则¬p :x ∀∈R ,则210x x ++≥D .已知命题p 和q ,若p q ∨为假命题,则命题p 与q 中必一真一假 11.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;word②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆2212x y +=相切. 其中真命题的序号是( ) A .①②③B .①②C .①③D .②③12.设a 、b ∈R ,现给出下列五个条件:①a +b =2;②a +b >2;③a +b >-2; ④ab >1;⑤log ab <0,其中能推出:“a ,b 中至少有一个大于1”的条件为( ) A .②③④ B .②③④⑤C .①②③⑤D .②⑤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.命题“若|x |>1,则x >1”的否命题是__________________.(填“真”或“假”) 14.写出命题“若方程()200ax bx c a -+=≠的两根均大于0,则0ac >”的一个等价命题是______________________________________________.15.已知p (x ):220x x m +->,如果p (1)是假命题,p (2)是真命题,则实数m 的取值X 围是__________________.16.若p 的逆命题是r ,r 的否命题是s ,则s 是p 的否命题的__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤有非空解集,则240a b -≥,写出命题的逆命题、否命题、逆否命题,并判断这些命题的真假.18.(12分)写出下列命题的否定,并判断其真假: (1)p :∀m ∈R ,方程20x x m +-=必有实数根; (2)q :∃x ∈R ,使得210x x ++≤.word19.(12分)已知P ={x |a -4<x <a +4},{}2430Q x x x =-+<,且x P ∈是x Q ∈的必要条件,某某数a 的取值X 围.20.(12分)已知命题p :1,[]1m -∀∈,不等式253a a --≥;命题q :∃x ,使不等式220x ax ++<.若p 或q 是真命题,¬q 是真命题,求a 的取值X 围.word21.(12分)求使函数()()()2245413f x a a x a x +---+=的图象全在x 轴上方成立的充要条件.22.(12分)已知命题p :方程2220x ax a +-=在[-1,1]上有解;命题q :只有一个实数0x 满足不等式200220x ax a ++≤,若命题“p 或q ”是假命题,求a 的取值X 围.word2018-2019学年选修2-1第一章训练卷常用逻辑用语(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】逆否命题为:a ,b 都小于1,则a +b ≤2是真命题,所以原命题是真命题, 逆命题为:若a 、b 中至少有一个不小于1,则2a b +>,例如,当a =2,b =﹣2时,满足条件,当()220a b +=+-=,这与2a b +>矛盾,故为假命题.故选B . 2.【答案】D【解析】∵命题p 为全称命题,∴¬p 为特称命题,由命题的否定只否定结论知0x a >的否定为0xa ≤,∴故选D . 3.【答案】B【解析】∵“¬p ”为假,∴p 为真,又∵p ∧q 为假,∴q 为假,p 或q 为真.故选B . 4.【答案】A【解析】当3a =-时,圆()2234x y -+=的圆心为()3,0,半径12R =, 与圆221x y +=相外切,当两圆相内切时,a =±1,故选A . 5.【答案】A【解析】图示法/p R s q⇒⇐⇒⇒,故/q p ⇒,否则q ⇒p ⇒R ⇒q ⇒p ,则R ⇒p ,故选A . 6.【答案】A【解析】由题意得,“lg y 为lg x ,lg z 的等差中项”,则22lg lg lg y x z y xz =+⇒=,则“y 是x ,z 的等比中项”;而当2y xz =时,如1x z ==,1y =-时,“lg y 为lg x ,lg z 的等差中项”不成立, 所以“lg y 为lg x ,lg z 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件, 故选A . 7.【答案】D【解析】命题p 是真命题,命题q 是假命题,所以选项D 正确.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断. 8.【答案】B【解析】x =π时,t a n x =0,但co sx =-1;co sx =1时,s in x =0,故t a n x =0. 所以“t a n x =0”是“co sx =1”的必要不充分条件. 9.【答案】C【解析】由题意可知命题p 为真,即方程4210x x m ++=有解,∴4122x x m +=-≤--,当且仅当0x =时取等号,所以m ≤-2.10.【答案】D【解析】由逆否命题的定义知A 正确;当x =y 时,22x y xy +⎛⎫≥ ⎪⎝⎭成立;22x y xy +⎛⎫≥ ⎪⎝⎭||2x y +≥,故x =y ,∴B 为真命题;由特称命题的否定为全称命题知C 为真命题;∵p q ∨为假,∴p 假且q 假,∴D 为假命题. 11.【答案】C【解析】对于①,设球半径为R ,则34π3V R =,12R R =, ∴33141π1π3268R V R V ⎛⎫=⨯== ⎪⎝⎭,故①正确; 对于②,两组数据的平均数相等,标准差一般不相等; 对于③,圆心()0,0,圆心()0,0到直线的距离d =,故直线和圆相切,故①,③正确. 12.【答案】D【解析】①2a b +=可能有1a b ==;word②a +b >2时,假设a ≤1,b ≤1,则a +b ≤2矛盾; ③a +b >-2可能a <0,b <0; ④ab >1,可能a <0,b <0;⑤log ab <0,∴0<a <1,b >1或a >1,0<b <1,故②⑤能推出.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】真【解析】原命题的否命题为“若|x |≤1,则x ≤1”, ∵|x |<1,∴-1<x <1,故原命题的否命题为真命题.14.【答案】若a c≤0,则方程()200ax bx c a -+=≠的两根不全大于0. 【解析】根据原命题与它的逆否命题是等价命题可直接写出. 15.【答案】3≤m <8【解析】∵p (1)是假命题,p (2)是真命题,∴3080m m -≤⎧⎨->⎩,解得3≤m <8.16.【答案】逆命题【解析】解法1:依据四种命题的关系图解.由图示可知?处应为互逆关系. 解法2:用特殊命题探究p :若x >2,则x >1,r :若x >1,则x >2,s :若x ≤1,则x ≤2,p 的否命题:若x ≤2,则x ≤1,故s 是p 的否命题的逆命题.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】逆命题,已知a 、b 为实数,若240a b -≥,则关于x 的不等式20x ax b ++≤有非空解集.否命题:已知a 、b 为实数,若关于x 的不等式20x ax b ++≤没有非空解集, 则240a b -<.逆否命题:已知a 、b 为实数,若240a b -<,则关于x 的不等式20x ax b ++≤没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题. 18.【答案】(1)见解析;(2)见解析.【解析】(1)¬p :∃m ∈R ,使方程20x x m +-=无实数根.若方程20x x m +-=无实数根,则140Δ=m +<,∴14m <-,∴¬p 为真.(2)¬q :∀x ∈R ,使得210x x ++>.∵22131024x x x ⎛⎫++=++> ⎪⎝⎭,∴¬q 为真.19.【答案】-1≤a ≤5.【解析】P ={x |a -4<x <a +4},Q ={x |1<x <3}.∵x P ∈是x Q ∈的必要条件,∴x Q ∈⇒x P ∈,即Q ⊆P . ∴4143a a -≤⎧⎨+≥⎩,51a a ≤⎧⎨≥-⎩,∴-1≤a ≤5.20.【答案】221a -≤≤-.【解析】根据p 或q 是真命题,¬q 是真命题,得p 是真命题,q 是假命题.∵,1[]1m ∈-2822,3m ⎡⎤+⎣⎦. 因为1,[]1m -∀∈,不等式22538a a m --=+2533a a --≥,∴a ≥6或a ≤-1.故命题p 为真命题时,a ≥6或a ≤-1.又命题q :∃x ,使不等式220x ax ++<,∴280Δ=a ->,∴22a >22a <- 从而命题q 为假命题时,2222a -≤word所以命题p 为真命题,q 为假命题时,a 的取值X 围为1a -≤≤-. 21.【答案】1≤a <19.【解析】∵函数()f x 的图象全在x 轴上方,∴()()22245016144530a a Δa a a ⎧+->⎪⎨=--+-⨯<⎪⎩,或245010a a a ⎧+-=⎨-=⎩, 解得1<a <19或a =1,故1≤a <19.所以使函数()f x 的图象全在x 轴的上方的充要条件是1≤a <19. 22.【答案】{a |a >2或a <-2}.【解析】由2220x ax a +-=得(2x -a )(x +a )=0,∴2ax =或x =-a , ∴当命题p 为真命题时12a≤或|-a |≤1,∴|a |≤2. 又“只有一个实数0x 满足200220x ax a ++≤”,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480Δ=a a -=,∴a =0或a =2. ∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2. ∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值X 围为{a |a >2或a <-2}.。
常用逻辑用语复习1怎样解逻辑用语问题1.利用集合理清关系充分(必要)条件是高中学段的一个重要概念,并且是理解上的一个难点.要解决这个难点,将抽象的概念用直观、形象的图形表示出来,看得见、想得通,才是最好的方法.本节使用集合模型对充要条件的外延与内涵作了直观形象的解释,实践证明效果较好.集合模型解释如下:①A是B的充分条件,即A⊆B.②A是B的必要条件,即B⊆A.③A是B的充要条件,即A=B.④A是B的既不充分也不必要条件,或即A∩B=∅或A、B既有公共元素也有非公共元素.例1设集合S={0,a},T={x∈Z|x2<2},则“a=1”是“S⊆T”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析T={x∈Z|x2<2}={-1,0,1},a=1时,S={0,1},所以S⊆T;反之若S⊆T,则S={0,1}或S={0,-1}.所以,“a=1”是“S⊆T”的充分不必要条件.答案充分不必要2.抓住量词,对症下药全称命题与特称命题是两类特殊的命题,这两类命题的否定是这部分内容中的重要概念,解决有关此类命题的题目时一定要抓住决定命题性质的量词,理解其相应的含义,从而对症下药.例2 (1)已知命题p :“任意x ∈[1,2],x 2-a ≥0”,与命题q :“存在x ∈R ,x 2+2ax +2+a =0”都是真命题,则实数a 的取值范围为______________.(2)已知命题p :“存在x ∈[1,2],x 2-a ≥0”与命题q :“存在x ∈R ,x 2+2ax +2+a =0”都是真命题,则实数a 的取值范围为____________.解析 (1)将命题p 转化为“当x ∈[1,2]时,(x 2-a )min ≥0”,即1-a ≥0,即a ≤1.命题q :即方程有解,Δ=(2a )2-4×(2+a )≥0,解得a ≤-1或a ≥2.综上所述:a ≤-1.(2)命题p 转化为当x ∈[1,2]时,(x 2-a )max ≥0,即4-a ≥0,即a ≤4.命题q 同(1).综上所述:a ≤-1或2≤a ≤4.答案 (1)a ≤-1 (2)a ≤-1或2≤a ≤4点评 认真比较两题就会发现,两题形似而神异,所谓失之毫厘,谬之千里,需要我们抓住这类问题的本质——量词,有的放矢.3.挖掘等价转化思想,提高解题速度在四种命题的关系、充要条件、简单的逻辑联结词、全称量词与存在量词中,时时刻刻渗透着等价转化思想,例如互为逆否命题的两个命题(原命题与逆否命题或逆命题与否命题)一定同真或同假,它们就是等价的;但原命题与逆命题不等价,即原命题为真,其逆命题不一定为真.例3 设p :⎩⎪⎨⎪⎧ 3x +4y -12>0,2x -y -8≤0,x -2y +6≥0,q :x 2+y 2≤r 2 (r >0),若q 是綈p 的充分不必要条件,求r 的取值范围.分析 “q 是綈p 的充分不必要条件”等价于“p 是綈q 的充分不必要条件”.设p 、q 对应的集合分别为A 、B ,则可由A ⊆∁R B 出发解题.解 设p 、q 对应的集合分别为A 、B ,将本题背景放到直角坐标系中,则点集A 表示平面区域,点集∁R B 表示到原点距离大于r 的点的集合,也即是圆x 2+y 2=r 2外的点的集合. ∵A ⊆∁R B 表示区域A 内的点到原点的最近距离大于r ,∴直线3x +4y -12=0上的点到原点的最近距离大于等于r ,∵原点O 到直线3x +4y -12=0的距离d =|-12|32+42=125,∴r 的取值范围为0<r ≤125. 点评 若直接解的话,q 是¬ p 的充分不必要条件即为x 2+y 2≤r 2 (r >0)在p :⎩⎪⎨⎪⎧ 3x +4y -12>0,2x -y -8≤0,x -2y +6≥0所对应的区域的外部,也是可以解决的.但以上解法将“q 是綈p 的充分不必要条件”等价转化为“p 是¬ q 的充分不必要条件”,更好地体现了相应的数学思想方法.2 辨析命题的否定与否命题否命题与命题的否定是逻辑关系中的两个相似知识点,但又有着本质的区别,应注意弄清它们的区别和正确表述,下面从以下两个方面来看一下它们的区别.1.否命题与命题的否定的概念设命题“若A ,则B ”为原命题,那么“若¬ A ,则¬ B ”为原命题的否命题,“若A ,则¬ B ”为原命题的否定.所以从概念上看“否命题”是对原命题的条件和结论同时否定后得到的新命题,而且否定的条件仍为条件,否定的结论仍为结论.“命题的否定”是对原命题结论的全盘否定,即“命题的否定”与原命题的条件相同,结论相反.例1 写出下列命题的否命题及否定:(1)若|x |+|y |=0,则x ,y 全为0;(2)函数y =x +b 的值随x 的增加而增加.分析 问题(1)直接依据格式写出相应的命题;问题(2)先改写成“若A ,则B ”的形式,然后再写出相应的命题.解 (1)原命题的条件为“|x |+|y |=0”,结论为“x ,y 全为0”.写原命题的否命题需同时否定条件和结论,所以原命题的否命题为:若|x |+|y |≠0,则x ,y 不全为0.写原命题的否定只需否定结论,所以原命题的否定为:若|x |+|y |=0,则x ,y 不全为0.(2)原命题可以改写为:若x 增加,则函数y =x +b 的值也随之增加.否命题为:若x 不增加,则函数y =x +b 的值也不增加;命题的否定为:若x 增加,则函数y =x +b 的值不增加.点评如果所给命题是“若A,则B”的形式,则可以依据否命题和命题的否定的定义,直接写出相应的命题.如果不是“若A,则B”的形式,则需要先将其改写成“若A,则B”的形式,便于写出命题的否定形式及其否命题.2.否命题与命题的否定的真假从命题的真假上看,原命题与其否命题的真假没有必然的关系,原命题为真,其否命题可能为真,也可能为假;原命题为假,其否命题可能为真,也可能为假.但是原命题与其否定的真假必相反,原命题为真,则其否定为假;原命题为假,则其否定为真.这也可以作为检验写出的命题是否正确的标准.例2写出下列命题的否命题与命题的否定,并判断原命题、否命题和命题的否定的真假:(1)若x2<4,则-2<x<2;(2)若m>0且n>0,则m+n>0.分析依据定义分别写出否命题与命题的否定.根据不等式及方程的性质逐个判断其真假.解(1)否命题:“若x2≥4,则x≥2或x≤-2”.命题的否定:“若x2<4,则x≥2或x≤-2”.通过解不等式可以知道,原命题为真,否命题为真,命题的否定为假.(2)否命题:“若m≤0或n≤0,则m+n≤0”.命题的否定:“若m>0且n>0,则m+n≤0”.由不等式的性质可以知道,原命题为真,否命题为假,命题的否定为假.3判断条件四策略1.应用定义如果p⇒q,那么称p是q的充分条件,同时称q是p的必要条件.判断时的关键是分清条件与结论.例1设集合M={x|x>2},P={x|x<3},那么“x∈M或x∈P”是“x∈P∩M”的________条件.解析条件p:x∈M或x∈P;结论q:x∈P∩M.若x∈M,则x不一定属于P,即x不一定属于P∩M,所以p q;若x∈P∩M,则x∈M且x∈P,所以q⇒p.综上知,“x∈M或x∈P”是“x∈P∩M”的必要不充分条件.答案 必要不充分2.利用传递性充分、必要条件在推导的过程当中具有传递性,即:若p ⇒q ,q ⇒r ,则p ⇒r .例2 如果A 是B 的必要不充分条件,B 是C 的充要条件,D 是C 的充分不必要条件,那么A 是D 的______条件.解析 依题意,有A ⇐B ⇔C ⇐D 且A B ⇔CD ⇒/D ,由命题的传递性可知D ⇒A ,但A D .于是A 是D 的必要不充分条件.答案 必要不充分3.利用集合运用集合思想来判断充分条件和必要条件是一种行之有效的方法.若p 以非空集合A 的形式出现,q 以非空集合B 的形式出现,则①若A ⊆B ,则p 是q 的充分条件;②若B ⊆A ,则p 是q 的必要条件;③若A B ,则p 是q 的充分不必要条件;④若B A ,则p 是q 的必要不充分条件;⑤若A =B ,则p 是q 的充要条件.例3 已知p :x 2-8x -20≤0,q :x 2-2x +1-m 2≤0(m >0),若p 是q 的充分不必要条件,则m 的取值范围是________.解析 设p 、q 分别对应集合P 、Q ,则P ={x |-2≤x ≤10},Q ={x |1-m ≤x ≤1+m },由题意知,p ⇒q ,但q p .故P Q ,所以⎩⎪⎨⎪⎧ 1-m <-2,1+m ≥10,m >0,或⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10,m >0,解得m ≥9.即m 的取值范围是[9,+∞).答案 [9,+∞)4.等价转化由于互为逆否命题的两个命题同真同假,所以当由p 推q 较困难时,可利用等价转化,先判断由非q 推非p ,从而得到p ⇒q .例4 已知p :x +y ≠2,q :x ,y 不都是1,则p 是q 的________条件.解析 因为p :x +y ≠2,q :x ≠1或y ≠1,所以¬ p :x +y =2,¬ q :x =1且y =1.因为¬ p ¬ q ,但¬ q ⇒¬ p ,所以¬q是¬p的充分不必要条件,即p是q的充分不必要条件.答案充分不必要4例析逻辑用语中的常见误区误区1所有不等式、集合运算式都不是命题例1判断下列语句是不是命题,若是命题,判断其真假.(1)x+2>0;(2)x2+2>0;(3)A∩B=A∪B;(4)A⊆A∪B.错解(1)(2)(3)(4)都不是命题.剖析(1)中含有未知数x,且x不定,所以x+2的值也不定,故无法判断x+2>0是否成立,不能判断其真假,故(1)不是命题;(2)x虽为未知数,但x2≥0,所以x2+2≥2,故可判断x2+2>0成立,故(2)为真命题.(3)若A=B,则A∩B=A∪B=A=B;若A B,则A∩B=A A∪B=B.由于A,B的关系未知,所以不能判断其真假,故(3)不是命题.(4)A为A∪B的子集,故A⊆A∪B成立,故(4)为真命题.正解(2)(4)是命题,且都为真命题.误区2原命题为真,其否命题必为假例2判断下列命题的否命题的真假:(1)若a=0,则ab=0;(2)若a2>b2,则a>b.错解(1)因为原命题为真命题,故其否命题是假命题;(2)因为原命题为假命题,故其否命题为真命题.剖析否命题的真假与原命题的真假没有关系,否命题的真假不能根据原命题的真假来判断,应先写出命题的否命题,再判断.正解(1)否命题为:若a≠0,则ab≠0,是假命题;(2)否命题为:若a2≤b2,则a≤b,是假命题.误区3搞不清谁是谁的条件例3使不等式x-3>0成立的一个充分不必要条件是()A.x>3 B.x>4C.x>2 D.x∈{1,2,3}错解由不等式x-3>0成立,得x>3,显然x>3⇒x>2,又x>2x>3,因此选C.剖析若p的一个充分不必要条件是q,则q⇒p,p q.本题要求使不等式x-3>0成立的一个充分不必要条件,又x>4⇒x-3>0,而x-3>0x>4,所以使不等式x-3>0成立的一个充分不必要条件为x>4.正解 B误区4考虑问题不周例4如果a,b,c∈R,那么“b2>4ac”是“方程ax2+bx+c=0有两个不等实根”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件错解判别式Δ=b2-4ac>0,即方程ax2+bx+c=0有两个不等实根;若方程ax2+bx+c=0有两个不等实根,则判别式Δ=b2-4ac>0,即b2>4ac.综上可知“b2>4ac”是“方程ax2+bx +c=0有两个不等实根”的充要条件,选C.剖析判别式Δ=b2-4ac只适用于一元二次方程的实数根存在情况的判断.对于方程ax2+bx+c=0,当a=0时,原方程为一次方程bx+c=0(b≠0),一次方程不存在判别式,所以当b2>4ac时不能推出方程ax2+bx+c=0有两个不等实根;若方程ax2+bx+c=0有两个不等实根,则它的判别式Δ=b2-4ac>0,即b2>4ac.由上可知,“b2>4ac”是“方程ax2+bx+c=0有两个不等实根”的必要不充分条件.正解 B误区5用“且”“或”联结命题时只联结条件或结论例5(1)已知p:方程(x-11)(x-2)=0的根是x=11;q:方程(x-11)(x-2)=0的根是x=2,试写出“p∨q”.(2)p:四条边相等的四边形是正方形;q:四个角相等的四边形是正方形,试写出“p∧q”.错解(1)p∨q:方程(x-11)(x-2)=0的根是x=11或x=2.(2)p∧q:四条边相等且四个角相等的四边形是正方形.剖析(1)(2)两题中p,q都是假命题,所以“p∨q”,“p∧q”也都应是假命题.而上述解答中写出的两命题却都是真命题.错误原因是:(1)只联结了两个命题的结论;(2)只联结了两个命题的条件.正解(1)p∨q:方程(x-11)(x-2)=0的根是x=11或方程(x-11)(x-2)=0的根是x=2. (2)p∧q:四条边相等的四边形是正方形且四个角相等的四边形是正方形.误区6不能正确否定结论例6p:方程x2-5x+6=0有两个相等的实数根,试写出“¬p”.错解¬p:方程x2-5x+6=0有两个不相等的实数根.剖析命题p的结论为“有两个相等的实数根”,所以“¬p”应否定“有”,而不能否定“相等”.正解¬p:方程x2-5x+6=0没有两个相等的实数根.误区7对含有一个量词的命题否定不完全例7已知命题p:存在一个实数x0,使得x20-x0-2<0,写出¬p.错解一¬p:存在一个实数x0,使得x20-x0-2≥0.错解二¬p:对任意的实数x,都有x2-x-2<0.剖析该命题是特称命题,其否定是全称命题,但错解一中得到的¬p仍是特称命题,显然只对结论进行了否定,而没有对存在量词进行否定;错解二中只对存在量词进行了否定,而没有对结论进行否定.正解¬p:对任意的实数x,都有x2-x-2≥0.误区8忽略了隐含的量词例8写出下列命题的否定:(1)不相交的两条直线是平行直线;(2)奇函数的图象关于y轴对称.错解(1)不相交的两条直线不是平行直线;(2)奇函数的图象不关于y轴对称.剖析以上错误解答在于没有看出这两个命题都是全称命题.对于一些量词不明显或不含有量词,但其实质只是在文字叙述上省略了某些量词的命题,要特别引起注意.正解(1)存在不相交的两条直线不是平行直线;(2)存在一个奇函数的图象不关于y轴对称.5 解“逻辑”问题的三意识1.转化意识(1)由于互为逆否的两个命题同真假,因此,当原命题的真假不易判断或证明原命题较困难时,可以转化为逆否命题的真假来判断或证明.例1 证明:若a 2-b 2+2a -4b -3≠0,则a -b ≠1.分析 本题直接证明原命题是真命题,显然不太容易,可考虑转化为证明它的逆否命题是真命题.证明 命题“若a 2-b 2+2a -4b -3≠0,则a -b ≠1”的逆否命题是“a -b =1,则a 2-b 2+2a -4b -3=0”.由a -b =1得a 2-b 2+2a -4b -3=(a +b )(a -b )+2(a -b )-2b -3=a -b -1=0.∵原命题的逆否命题是真命题,∴原命题也是真命题.故若a 2-b 2+2a -4b -3≠0,则a -b ≠1.例2 命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,命题q :实数x 满足x 2-x -6≤0或x 2+2x -8>0,且q 是p 的必要不充分条件,求a 的取值范围.分析 将充分、必要条件转化为集合之间的关系,进而转化为集合运算问题.解 设A ={x |x 2-4ax +3a 2<0(a <0)}={x |3a <x <a },B ={x |x 2-x -6≤0或x 2+2x -8<0}.={x |x 2-x -6<0}∪{x |x 2+2x -8>0},={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.因为q 是p 的必要不充分条件,所以p ⇒q ,q 推不出p ,由A B 得⎩⎨⎧ 3a ≥-2a <0或⎩⎨⎧a ≤-4a <0即a ≤-4或-23≤a <0. 所以实数a 的取值范围是(-∞,-4]∪[-23,0). 2.简化意识判断命题真假的关键:一是识别命题的构成形式;二是分别将各命题简化,对等价的简化命题进行判断.例3已知命题p:函数y=log0.5(x2+2x+a)的值域为R,命题q:函数y=-(5-2a)x是R上的减函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是________.分析先将命题p,q等价转化,再根据题意构建关于a的关系式,从而得到a的取值范围.解析函数y=log0.5(x2+2x+a)的值域为R,即y=x2+2x+a的值域是(0,+∞),即在方程x2+2x+a=0中,Δ=4-4a≥0⇔a≤1,即p真⇔a≤1;函数y=-(5-2a)x是减函数⇔5-2a>1⇔a<2,即q真⇔a<2.由p或q为真命题,p且q为假命题,知命题p,q中必有一真一假.若p真q假,则无解;若p假q真,则1<a<2.故满足题意的实数a的取值范围是(1,2).答案(1,2)点评若命题“p或q”“p且q”中含有参数,求解时,可以先等价转化命题p,q,直至求出这两个命题为真时参数的取值范围,再依据“p或q”“p且q”的真假情况确定参数的取值范围.3.反例意识在“逻辑”中,经常要对一个命题的真假(尤其是假)作出判断,若直接从正面判断一个命题是假命题不易进行,这时可以通过举出恰当的反例来说明,这是一个简单有效的办法.例4设A,B为两个集合,则下列四个命题中真命题的序号是________.①A B⇔对任意x∈A,都有x∉B;②A B⇔A∩B=∅;③A B⇔B A;④A B⇔存在x∈A,使得x∉B.分析画出表示A B的Venn图进行判断.解析画出Venn图,如图1所示,则A B⇔存在x∈A,使得x∈B,故①②是假命题,④是真命题.A B⇒B A不成立的反例如图2所示.同理可得B A⇒A B不成立.故③是假命题.综上知,真命题的序号是④.答案④。
织金二中高二年级数学组集体备课教案执笔人:李武松 田海斌参加人:陈元凤 方健 吕招贵 周越 余平 李承华 朱枝涛 程佳 班银 教学内容:选修2-1 第一章 常用逻辑用语 课时安排:8课时 课时内容:1.1命题及其关系 第1课时 1.1.1 命题一、教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p ,则q ”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假三、教学过程<一>复习引入 1.回顾初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线b a //,则直线a 与直线b 没有公共点 . (2)2+4=7.(3)垂直于同一条直线的两个平面平行. (4)若12=x ,则1=x .(5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
<二>探讨新知4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.例题解析(P例1)2判断下列语句是否为命题?(解略)(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(-=-2.(6)15x.>让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。
2020-2021学年高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定课时跟踪训练新人教A版选修2-1年级:姓名:第一章常用逻辑用语[A组学业达标]1.下列命题中为全称命题的是( )A.过直线外一点有一条直线和已知直线平行B.矩形都有外接圆C.存在一个实数与它的相反数的和为0D.0没有倒数解析:命题“矩形都有外接圆”可改写为“每一个矩形都有外接圆”,是全称命题.故选B.答案:B2.下列命题中为特称命题的是( )A.所有的整数都是有理数B.三角形的内角和都是180°C.有些三角形是等腰三角形D.正方形都是菱形解析:A,B,D为全称命题,而C含有存在量词“有些”,故为特称命题.答案:C3.命题“∃x0∈R,2x0<12或x20>x0”的否定是( )A.∃x0∈R,2x0≥12或x20≤x0B.∀x∈R,2x≥12或x2≤xC.∀x∈R,2x≥12且x2≤xD.∃x0∈R,2x0≥12且x20≤x0解析:原命题为特称命题,其否定为全称命题,应选C.答案:C4.下列四个命题中的真命题为( )A.若sin A=sin B,则A=BB.∀x∈R,都有x2+1>0C.若lg x2=0,则x=1D.∃x0∈Z,使1<4x0<3解析:A中,若sin A=sin B,不一定有A=B,故A为假命题,B显然是真命题;C中,若lg x2=0,则x2=1,解得x=±1,故C为假命题;D中,解1<4x<3得14<x<34,故不存在这样的x∈Z,故D为假命题.答案:B5.命题“∀x∈[1,2],x2-a≤0”是真命题的一个充分不必要条件是( ) A.a≥4B.a≤4C.a≥5 D.a≤5解析:当该命题是真命题时,只需a≥(x2)max,x∈[1,2].因为y=x2在[1,2]上的最大值是4,所以a≥4.因为a≥4⇒/ a≥5,a≥5⇒a≥4,故选C.答案:C6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号)①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”,是全称命题;④是特称命题.答案:①②③④7.命题p :∃x 0∈R ,x 20+2x 0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定是綈p :____________,它是________命题(填“真”或“假”).解析:∵x 2+2x +5=(x +1)2+4≥0恒成立,∴命题p 是假命题. 答案:特称命题 假 ∀x ∈R ,x 2+2x +5≥0 真8.若命题“∃x 0∈R ,使得x 20+(1-a )x 0+1<0”是真命题,则实数a 的取值范围是________.解析:由题意可知,Δ=(1-a )2-4=(a -3)(a +1)>0,解得a <-1或a >3. 答案:(-∞,-1)∪(3,+∞) 9.判断下列命题的真假,并说明理由. (1)∀x ∈R ,都有x 2-x +1>23;(2)∃x 0∈R 使sin x 0+cos x 0=2; (3)∀x ,y ∈N ,都有(x -y )∈N ; (4)∃x 0,y 0∈Z ,使2x 0+y 0=3.解析:(1)x 2-x +1>23⇔x 2-x +13>0,由于Δ=1-4×13=-13<0,∴不等式x 2-x +1>23的解集是R ,∴该命题是真命题.(2)∵sin x 0+cos x 0=2sin ⎝⎛⎭⎪⎫x 0+π4,∴-2≤sin x 0+cos x 0≤2<2, ∴该命题是假命题.(3)当x =2,y =4时,x -y =-2∉N ,所以该命题是假命题. (4)当x 0=0,y 0=3时,2x 0+y 0=3,所以该命题是真命题.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π. (1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值.解析:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π.(2)因为綈p 是假命题,所以p 是真命题,所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.[B 组 能力提升]11.已知命题p :∀x ∈R,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧q C .p ∧(綈q )D .(綈p )∧(綈q )解析:由20=30知,p 为假命题;令h (x )=x 3+x 2-1,则h (0)=-1<0,h (1)=1>0,∴方程x 3+x 2-1=0在(0,1)内有解,∴q 为真命题,∴p ∧q ,p ∧(綈q ),(綈p )∧(綈q )均为假命题,(綈p )∧q 为真命题,故选B.答案:B12.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎨⎧a >0,Δ≤0,即⎩⎨⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.。
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、略 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称.这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:若 a b 1,则a2b22a 4b3( a b)( a b) 2( a b) 2b3a b 2 2b3a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则a,b都是偶数.这是假命题.否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数.这是假命题.逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b不都是偶数.这是真命题.(2)逆命题:若方程 x2 x m 0 有实数根,则m 0. 这是假命题 . 否命题:若 m 0 ,则方程x2x m 0没有实数根.这是假命题.逆否命题:若方程x2x m 0 没有实数根,则m 0 .这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是e O的两条互相平分的相交弦,交点是 E ,若 E 和圆心 O 重合,则AB,CD是经过圆心 O 的弦,AB,CD是两条直径.若 E 和圆心 O 不重合,连结AO, BO,CO 和DO,则OE是等腰AOB , COD 的底边上中线,所以,OE AB ,OE CD .AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的.所以, E 和 O 必然重合.即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1).3( 1) .4、(1)真;(2)真;( 3)假;( 4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;( 3)p是q的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc 0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形.(2)必要性:如果ABC是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a 所以 a 2b2c2ab ac bc 0 2b2c2ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假 .2、(1)真;(2)假 .3、(1)225,真命题;( 2)3 不是方程 x290的根,假命题;( 3)( 1)21,真命题.习题 1.3 A组( P18)1、(1) 4{2,3}或 2 {2,3},真命题;(2) 4{2,3}且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;( 4) 2 是偶数且 3 不是素数,假命题 .2、(1)真命题;( 2)真命题;(3)假命题 .3、(1) 2 不是有理数,真命题;( 2)5 是 15 的约数,真命题;(3)2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组( P18)(1)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(2)真命题 . 因为p为真命题,q为真命题,所以p q为真命题;(3)假命题 . 因为p为假命题,q为假命题,所以p q为假命题;(4)假命题 . 因为p为假命题,q为假命题,所以p q为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .练习( P26)1、(1) n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数 .2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数 .习题 1.4 A 组( P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题 .2、(1)真命题;(2)真命题;(3)真命题 .3、(1) x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3) x R, x2x 10 ;(4)所有四边形的对角线不互相垂直 .习题 1.4 B组( P27)(1)假命题 . 存在一条直线,它在y轴上没有截距;(2)假命题 . 存在一个二次函数,它的图象与 x 轴不相交;(3)假命题 . 每个三角形的内角和不小于180;(4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1) n N ,n20 ;(2)P { P P 在圆x2y2r 2上 } ,OP r (O 为圆心);(3)( x, y) {( x, y) x, y 是整数},2x 4y 3;( 4)x0{ x x 是无理数}, x03{ q q 是有理数} .6、(1)32,真命题;(2)5 4 ,假命题;( 3) x0R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1)p q;(2) ( p) (q) ,或 ( p q) .2、(1)Rt ABC,C90 ,A, B, C 的对边分别是 a, b, c ,则 c2a2b2;(2)ABC ,A,B,a b cC 的对边分别是 a, b,c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a32 ,b 18 .25253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率2 02kCAt2 t2所以, k CB1 t 2k CA2由直线的点斜式方程,得直线CB 的方程为 y2t2( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t ) .由于点 M 是线段 AB 的中点,由中点坐标公式得 xt, y4 t .t4 t ,22由 x得 t 2x ,代入 y 22 得 y42x,即 x y 20 ①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A 组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点M 的轨迹方程为 x 2y 2 4 .4、解法一:设圆 x 2y 2 6x 50 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CM AB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]yy1 (x 3, x 0)所以,3 xx化简得 x 2y 23x 0 (x 3, x 0)当 x 3 时, y 0 ,点 (3,0) 适合题意;当 x 0 时, y 0 ,点 (0,0) 不合题意 .解方程组x 2 y 23x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 23x 0 ,5x3.3解法二:注意到OCM 是直角三角形,利用勾股定理,得 x 2 y 2(x 3)2y 2 9 ,即 x 2y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为xy 1.a b因为直线 l 经过点 P(3,4) ,所以341因此, ab 4a 3bab由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3 y 0 .2、解:如图,设动圆圆心M 的坐标为 (x, y) .y由于动圆截直线 3xy0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD 4 . 过点 M 分别CMFE作直线 3x y0 和 3x y0 的垂线,垂足分别为E ,DF ,则 AE4 , CF2 . A3xy, MF3x yME1010 .Ox连接 MA , MC ,因为 MAMC ,(第 2 题)2ME 2CF 2MF 2 则有, AE(3 x y) 2(3 x y) 210 .所以, 1610410,化简得, xy因此,动圆圆心的轨迹方程是 xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1PF220 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1 ;(2) y2x21;(3) x2y21,或 y2x2 1616361636163、解:由已知,a 5, b 4 ,所以 c a2b2 3 .(1)AF1B 的周长AF1AF2BF1BF2.由椭圆的定义,得 AF1AF22a, BF1BF22a .所以, AF1B 的周长4a20.(2)如果AB不垂直于 x 轴, AF1B 的周长不变化 .这是因为①②两式仍然成立,AF1 B 的周长20,这是定值 .4、解:设点M的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x1)kAM;x1直线 BM 的斜率y(x1) ;kBMx1由题意,得kAM2,所以y2y( x1, y0) kBM x 1x1化简,得 x3( y0)因此,点 M 的轨迹是直线 x 3 ,并去掉点( 3,0) .练习( P48)yB2 1、以点 B2(或 B1)为圆心,以线段 OA2(或 OA1)为半径画圆,圆与 x 轴的两个交点分别为F1 , F2 .A 1F1O点 F1 , F2就是椭圆的两个焦点 .B 1这是因为,在 Rt B2OF2中,OB2 b , B2 F2OA2 a ,(第 1 题)所以, OF2 c .同样有 OF1 c .2、(1)焦点坐标为(8,0) , (8,0) ;14.1.F2 A 2x(2)焦点坐标为 (0,2) , (0, 2) .3、(1)x2y 21;(2) y2x2 1 . 363225164、(1)x2y21(2) x2y 21,或 y2x2 1. 9410064100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x2y2 1 的离心率是 1 ,316122因为221 ,所以,椭圆x2y2 1 更圆,椭圆 9x2y236 更扁;321612(2)椭圆 x29 y236 的离心率是22 ,椭圆 x2y2 1 的离心率是10 ,36105因为2210 ,所以,椭圆x2y2 1 更圆,椭圆 x29 y 236 更扁 . 356106、(1)(3,8(2) (0,2) ;( 3)(487082 ) ;,) .7、. 537377习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x2( y3)2x2( y3)210 以及椭圆的定义得,点 M 的轨迹是以F1(0,3) , F2 (0,3) 为焦点,长轴长为10 的椭圆 .它的方程是y2x21. 25162、(1)x2y 21;( 2)y2x2 1 ;(3) x2y21,或 y2x2 1. 3632259494049403、(1)不等式2x 2 , 4 y 4 表示的区域的公共部分;(2)不等式25x25 ,10y10表示的区域的公共部分 .图略 . 334、(1)长轴长2a8 ,短轴长 2b 4 ,离心率e 3 ,2焦点坐标分别是 (23,0), (23,0),顶点坐标分别为 (4,0), (4,0), (0,2) , (0,2) ;(2)长轴长2a18 ,短轴长 2b 6 ,离心率e 2 2 ,3焦点坐标分别是 (0, 62),(0,62),顶点坐标分别为 (0, 9) ,(0,9) , (3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2y21,或 y2x2 1 ;859819(3) x2y21,或 y 2x2 1 .2592596、解:由已知,椭圆的焦距F1F2 2 .因为PF1F2的面积等于1,所以,1F1F2y P1,解得y P1. 2代入椭圆的方程,得x211,解得 x15 .P54215l所以,点 P 的坐标是(1),共有 4个 .,2QA 7、解:如图,连接 QA .由已知,得 QA QP .O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以 OA OP(第 7 题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点, r 为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x m 代入椭圆方程x2y2 1 ,得 9x26mx2m218 0 .249这个方程根的判别式36m236(2 m 218)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 32,32) 时,直线与椭圆相交 .( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为M (x, y) .则 x x1x2m .23因为点 M 在直线y 3 x m 上,与 x m联立,消去 m ,得 3x 2 y0 .23这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .x2y29、3.5252 2.8752 1 .10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km.习题 2.2 B 组( P50)1、解:设点M的坐标为 ( x, y) ,点P的坐标为 ( x0 , y0 ) ,则 x x0, y 3 y0 .所以 x0x , y0 2 y① . 23因为点 P(x0, y0 ) 在圆上,所以 x02y02 4 ② .将①代入②,得点 M 的轨迹方程为x2 4 y24,即 x2y21949所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P(x, y) ,半径为R,两已知圆的圆心分别为O1, O2 .分别将两已知圆的方程x2y26x 50 , x2y 26x 910配方,得 (x 3)2y2 4 ,( x3) 2y2100当 e P 与e O1:( x3)2y2 4 外切时,有O1P R2①当 e P 与e O2:( x3)2y2100 内切时,有O2P10R ②①②两式的两边分别相加,得O1P O2 P12即, ( x 3)2y2(x 3)2y212③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2y212x ④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⑥3627由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12, 6 3 .解法二:同解法一,得方程( x 3)2y2( x 3)2y 212①由方程①可知,动圆圆心P(x, y) 到点 O1 ( 3,0) 和点 O2 (3,0)距离的和是常数12,所以点 P 的轨迹方程是焦点为( 3,0) 、 (3,0) ,长轴长等于 12 的椭圆 .并且这个椭圆的中心与坐标原点重合,焦点在 x 轴上,于是可求出它的标准方程 .因为 2c 6 , 2a 12 ,所以 c 3 , a 6所以 b 2 36 927 .于是,动圆圆心的轨迹方程为x 2y2361.273、解:设 d 是点 M 到直线 x8 的距离,根据题意,所求轨迹就是集合PMF 1 M2d( x2)2y 2 1由此得x28将上式两边平方,并化简,得3x24 y248 ,即x 2y 2 11612所以,点 M 的轨迹是长轴、短轴长分别为8, 4 3 的椭圆 .4、解:如图,由已知,得E(0, 3) , F (4,0) , G (0,3) , H ( 4,0) .DyGLC因为 R,S,T 是线段 OF 的四等分点,R'MR , S ,T 是线段 CF 的四等分点,S' 所以, R(1,0), S(2,0), T (3,0) ;HN T'O RSTF xR (4, 9 ), S (4, 3),T (4, 3) .424直线 ER 的方程是 y 3x 3 ;直线 GR 的方程是 y3.AEBx 31632 , y 45 .(第 4 题)联立这两个方程,解得x17 17所以,点 L 的坐标是 (32 ,45) .17 17同样,点 M 的坐标是 (16 , 9) ,点 N 的坐标是 ( 96 , 21) .5 525 25由作图可见,可以设椭圆的方程为x 2y 21 (m 0, n 0) ①nm 22把点 L, M 的坐标代入方程①,并解方程组,得11,11m 22232.4 n高中数学选修 2-1 课后习题答案 [ 人教版 ]所以经过点 L, M 的椭圆方程为x 2y 21 .16 9把点 N 的坐标代入x 2y 2 ,得 1( 96 ) 2 1 ( 21)2 1,169 16 259 25所以,点 N 在x 2y 2 1 上 . 169因此,点 L, M , N 都在椭圆x 2y 2 1 上.1692.3双曲线练习( P55)1、(1)x 2y 21 .(2) x 2y21.16 93(3)解法一:因为双曲线的焦点在y 轴上y 2x 21 ( a 0,b0)所以,可设它的标准方程为2b 2a将点 (2, 5) 代入方程,得254 1 ,即 a 2b 24a 2 25b 2 0a 2b 2又 a 2b 236解方程组a 2b 2 4a 2 25b 2 0a2b 236令 m a 2,nmn 4m 25n 0 b 2,代入方程组,得n 36m m 20 m 45 解得16,或9nn第二组不合题意,舍去,得a 2 20,b 2 16y 2x 2所求双曲线的标准方程为 120 16解法二:根据双曲线的定义,有 2a4 (5 6)24 (5 6)2 4 5 .所以, a 2 5高中数学选修2-1 课后习题答案 [ 人教版 ]又 c6,所以 b23620 16由已知,双曲线的焦点在y2x2y 轴上,所以所求双曲线的标准方程为 1 .20162、提示:根据椭圆中a2b2c2和双曲线中 a2b2c2的关系式分别求出椭圆、双曲线的焦点坐标 .3、由 (2 m)( m 1) 0 ,解得m 2 ,或 m1练习( P61)1、(1)实轴长 2a8 2 ,虚轴长2b 4 ;顶点坐标为(4 2,0),(42,0);焦点坐标为 (6,0),(6,0);离心率 e3 2 .4(2)实轴长2a 6 ,虚轴长 2b18 ;顶点坐标为(3,0),(3,0) ;焦点坐标为 (310,0),(310,0) ;离心率 e10 .(3)实轴长2a 4 ,虚轴长 2b 4 ;顶点坐标为(0,2),(0,2);焦点坐标为 (0,22),(0,22) ;离心率 e 2 .(4)实轴长2a10,虚轴长2b14;顶点坐标为(0,5),(0,5) ;焦点坐标为 (0,74),(0,74) ;离心率 e74 .52、(1)x2y 2 1 ;(2) y2x2 1.3、 x2y21169362835 4、 x2y2 1 ,渐近线方程为y x .18185、(1) (6,2),( 14,2) ;( 2) (25,3) 334习题 2.3 A组( P61)y2x21 . 因为a 8,由双曲线定义可知,点P 到两焦点距1、把方程化为标准方程,得1664离的差的绝对值等于16. 因此点P到另一焦点的距离是17.2、(1)x2y2 1 .(2) x2y2120162575高中数学选修 2-1 课后习题答案 [ 人教版 ]3、(1)焦点坐标为 F 1 ( 5,0), F 2 (5,0) ,离心率 e5 ;3 (2)焦点坐标为 F 1 (0, 5), F 2 (0,5) ,离心率 e5 ;44、(1)x 2y 21.( 2) y2x 2 1 2516916(3)解:因为 ec2 ,所以 c 22a 2 ,因此 b 2c 2 a 22a 2 a 2a 2 .a设双曲线的标准方程为x 2 y 21 ,或 y 2x 2 1.a 2 a 2a 2a 2将 ( 5,3) 代入上面的两个方程,得25 9 1 ,或 925 1 .a 2a 2 a 2a 2解得 a 216 (后一个方程无解) .所以,所求的双曲线方程为x 2 y 21 .16 165、解:连接 QA ,由已知,得 QA QP .所以, QA QO QP QO OP r .又因为点 A 在圆外,所以 OA OP .根据双曲线的定义,点Q 的轨迹是以 O, A 为焦点, r 为实轴长的双曲线 .6、 x 2 y 2 1 .8 8习题 2.3 B组( P62)1、 x 2y 2116 92、解:由声速及 A, B 两处听到爆炸声的时间差,可知A, B 两处与爆炸点的距离的差,因此爆炸点应位于以 A, B 为焦点的双曲线上 .使 A, B 两点在 x 轴上,并且原点 O 与线段 AB 的中点重合,建立直角坐标系 xOy .设爆炸点 P 的坐标为 ( x, y) ,则 PA PB 340 3 1020 .即 2a 1020 , a 510.又 AB1400,所以 2c 1400 , c 700 , b 2 c 2 a 2229900 .因此,所求双曲线的方程为x 2y22601001.2299003、 x 2y 2 1 a 2b 24、解:设点 A( x 1 , y 1) , B( x 2 , y 2 ) 在双曲线上,且线段 AB 的中点为 M ( x, y) .设经过点 P 的直线 l 的方程为 y 1 k ( x 1) ,即 ykx 1 k把 ykx1 k 代入双曲线的方程 x 2y 2 1得2(2 k 2 )x 2 2k(1 k )x (1 k 2 ) 20 ( 2 k 2 0 ) ①所以, x x 1 x 2 k(1 k)22 k2由题意,得k (1k) 1,解得 k 2 .2k 2当 k 2 时,方程①成为 2x 2 4x 3 0 .根的判别式16 24 8 0 ,方程①没有实数解 .所以,不能作一条直线 l 与双曲线交于 A, B 两点,且点 P 是线段 AB 的中点 .2.4 抛物线练习( P67)1、(1) y 2 12x ; ( 2) y 2x ;(3) y 24x, y 2 4x, x 2 4 y, x 24y .2、(1)焦点坐标 F (5,0) ,准线方程 x5 ; ( 2)焦点坐标 F (0, 1) ,准线方程 y1 ;88(3)焦点坐标 F ( 5 ,0) ,准线方程 x5; ( 4)焦点坐标 F (0, 2) ,准线方程 y 2 ; p . 8 83、(1) a , a ( 2) (6,6 2) , (6, 6 2)2提示:由抛物线的标准方程求出准线方程 . 由抛物线的定义,点 M 到准线的距离等于 9,所以 x 39 , x 6, y 6 2 .yy 2= 4x练习(P72)y 2= 2x1、(1) y216 x ; ( 2) x220 y ;y 2=x52 1=(3) y 216 x ;( 4) x 232 y .yx22、图形见右, x 的系数越大,抛物线的开口越大 .Ox3、解:过点 M (2,0) 且斜率为 1 的直线 l 的方程为 yx 2与抛物线的方程 y24x 联立y x 2y24x解得x 142 3 x 24 2 3,y 1 2 2 3y 2 2 2 3设 A(x 1, y 1 ) , B(x 2 , y 2 ) ,则 AB( x 2 x 1) 2( y 2 y 1 )2( 4 3) 2( 4 3) 2 4 6 .4、解:设直线 AB 的方程为 xa ( a 0) .将 x a 代入抛物线方程 y 2 4x ,得 y 24a ,即 y 2 a .因为AB 2 y 2 2 a 4 a 4 3 , 所以, a3因此,直线 AB 的方程为 x3 .习题 2.4 A 组( P73)1、(1)焦点坐标 F (0, 1) ,准线方程 y1 ;22(2)焦点坐标 F (0,3) ,准线方程 y3 ;1616(3)焦点坐标 F ( 1 ,0) ,准线方程 x1 ;8 8 (4)焦点坐标 F ( 3 ,0) ,准线方程 x3 .222、(1) y 28x ;( 2) (4,4 2) ,或 (4, 42)3、解:由抛物线的方程 y 2 2 px ( p0) ,得它的准线方程为 xp .2根据抛物线的定义,由 MF 2 p ,可知,点 M 的准线的距离为 2 p .设点 M 的坐标为 ( x, y) ,则xp 2 p ,解得 x3p .3 p 代入 y 222将 x2 px 中,得 y3 p .2因此,点 M 的坐标为 (3 p,3 p) , (3 p,3 p) .224、(1) y 2 24 x , y 2 24x ;(2) x 212 y (图略)5、解:因为xFM 60 ,所以线段 FM 所在直线的斜率 k tan 603 .因此,直线 FM 的方程为 y3( x 1)高中数学选修2-1 课后习题答案 [ 人教版 ]与抛物线 y 24xy3( x1)L L 1联立,得y 24xL L 2将 1 代入 2 得, 3x210 x 3 0 ,解得, x 11, x 2 33把 x 11, x 2 3 分别代入①得y 12 3, y 2 2 333由第 5 题图知 (1 ,2 3) 不合题意,所以点 M 的坐标为 (3,2 3) .33因此, FM(3 1)2 (2 3 0) 246、证明:将 y x2 代入 y 22x 中,得 ( x2) 2 2x ,化简得 x 2 6x 4 0 ,解得 x35则 y 3 5 2 15因为 k OB1 5, k OA 1 535 35所以 k OB k OA1 5 1 5 153535 915所以 OA OB7、这条抛物线的方程是 x217.5 yy8、解:建立如图所示的直角坐标系,Ox设拱桥抛物线的方程为 x 22 py ,2l因为拱桥离水面 2 m ,水面宽 4 m所以222 p( 2) , p 1因此,抛物线方程为 x 2 2y4①(第 8 题)水面下降 1 m ,则 y 3 ,代入①式,得 x 22 ( 3) , x6 .这时水面宽为 2 6 m.习题 2.2 B 组( P74)1、解:设垂线段的中点坐标为( x, y) ,抛物线上相应点的坐标为(x 1, y 1 ) .根据题意, x 1x , y 1 2 y ,代入 y 122 px 1 ,得轨迹方程为 y21px .2由方程可知,轨迹为顶点在原点、焦点坐标为( p,0) 的抛物线 .82、解:设这个等边三角形 OAB 的顶点 A, B 在抛物线上,且坐标分别为( x 1 , y 1 ) , (x 2 , y 2 ) ,则 y 12 2 px 1 , y 22 2 px 2 .又 OAOB ,所以 x 12 y 12 x 22 y 22即 x 12 x 22 2 px 1 2 px 2 0, (x 12 x 22 ) 2 p( x 1 x 2 ) 0因此, ( x 1 x 2 )( x 1 x 2 2 p)因为 x 1 0, x 2 0,2 p 0 ,所以 x 1 x 2由此可得 y 1y 2 ,即线段 AB 关于 x 轴对称 .因为 x 轴垂直于 AB ,且AOx 30 ,所以y 1tan303 .x 13因为 x 1y 12 ,所以 y 1 2 3p ,因此 AB2 y 14 3 p .2 p3、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x1) .x 1直线 BM 的斜率 k BMy ( x 1) .x 1由题意,得 k AMkBM2 ,所以,yy2( x1) ,化简,得 x 2( y 1)(x1)x 1 x 1第二章复习参考题 A 组( P80)1、解:如图,建立直角坐标系, 使点 A, B, F 2 在 x 轴上, F 2 为椭圆的右焦点 (记 F 1 为左焦点) .因为椭圆的焦点在 x 轴上,所以设它的标准方程为x 2 y 2.a2b 21(a b0)y则 a c OAOF 2 F 2 A 6371 439 6810,a c OBOF 2F 2B 6371 2384 8755 ,解得 a 7782.5 , c 8755BF 1OF 2A x所以 ba 2c 2(a c)( ac)8755 6810用计算器算得 b 7722因此,卫星的轨道方程是x 2y 2 1.77832772222R r 1 r 2a cR r 1 a 22、解:由题意,得,解此方程组,得a c Rr 2r 1r 2c2因此卫星轨道的离心率 ecr 2 r 1 .a2R r 1r 23、(1) D ; ( 2) B .4、(1)当0 时,方程表示圆 .(2)当 090 时,方程化成 x 2y 21. 方程表示焦点在 y 轴上的椭圆 .1cos(3)当 90 时, x 2 1,即 x1,方程表示平行于 y 轴的两条直线 .(4)当 90180 时,因为 cos0,所以 x 2y 2 cos1 表示双曲线,其焦点在 x 轴上. 而当180 时,方程表示等轴双曲线 .5、解:将 ykx 1代入方程 x 2y 2 4得 x 2k 2 x 2 2kx 1 4 0即 (1 k 2 ) x 2 2kx 5 0 ①4k 2 20(1k 2 ) 20 16k 2令0 ,解得 k5,或 k522因为0 ,方程①无解,即直线与双曲线没有公共点,所以, k 的取值范围为 k5,或 k5226、提示:设抛物线方程为y 2 2 px ,则点 B 的坐标为 ( p, p) ,点 C 的坐标为 ( p, p)2 2 设点 P 的坐标为 ( x, y) ,则点 Q 的坐标为 ( x,0) .因为, PQ y2px , BC 2 p , OQ x .所以, PQ 2BC OQ ,即 PQ 是 BC 和 OQ 的比例中项 .7、解:设等边三角形的另外两个顶点分别是A, B ,其中点 A 在 x 轴上方 .高中数学选修2-1 课后习题答案 [ 人教版 ]3 p直线 FA 的方程为 y( x)32与 y 22 px 联立,消去 x ,得 y 2 23 py p 2解方程,得 y 1 ( 3 2) p , y 2 ( 3 2) p把 y 1( 3 2) p 代入 y3( xp ) ,得 x 1(72 3) p .322把 y 2( 3 2) p 代入 y3(xp) ,得 x 2 (72 3) p .322所以,满足条件的点 A 有两个 A 1 ((72 3) p,(3 2) p) , A 2 ((72 3) p,(3 2) p) .22根据图形的对称性,可得满足条件的点B 也有两个B 1(( 72 3) p, (3 2) p) ,2 7( 32) p)B 2 ((2 3) p,2所以,等边三角形的边长是A 1B 12( 3 2) p ,或者 A 2 B 22(23) p .8、解:设直线 l 的方程为 y 2xm .把 y2x m 代入双曲线的方程 2x 23y 2 6 0 ,得 10x 2 12mx 3m 2 6 0 .x 1 x 26m, x 1x 2 3m 2 6 ①5 10由已知,得(1 4)[( x 1 x 2 ) 2 4x 1x 2 ] 16②210 把①代入②,解得m3210 所以,直线 l 的方程为 y2x39、解:设点 A 的坐标为 (x 1, y 1 ) ,点 B 的坐标为 ( x 2 , y 2 ) ,点 M 的坐标为 (x, y) .并设经过点 M 的直线 l 的方程为 y1 k (x 2) ,即 ykx 1 2k .22y把 y kx 1 2k 代入双曲线的方程 x1 ,得(2 k 2 )x 22k (1 2k )x(1 2k)2 2 0 (2 k 2 0) . ①高中数学选修 2-1 课后习题答案 [ 人教版 ]x 1 x 2 k (1 2k)所以, x22 k 2由题意,得k(12k) 2 ,解得 k42 k 2当 k4 时,方程①成为 14 x 2 56x 51根的判别式56 256 51 2800 ,方程①有实数解 .所以,直线 l 的方程为 y4x 7 .10、解:设点 C 的坐标为 (x, y) .由已知,得 直线 AC 的斜率 k ACy (x5)x 5直线 BC 的斜率kBCy 5 ( x 5)x 由题意,得 k AC k BCm . 所以, y y m( x5)5 x 5x化简得,x 2y 2 1(x 5)2525m当 m 0 时,点 C 的轨迹是椭圆 (m 1) ,或者圆 ( m 1) ,并除去两点 ( 5,0),(5,0) ;当 m 0 时,点 C 的轨迹是双曲线,并除去两点( 5,0),(5,0) ;11、解:设抛物线 y 2 4x 上的点 P 的坐标为 ( x, y) ,则 y 24x .点 P 到直线 yx 3 的距离 dx y 3y 2 4y 12 ( y 2)2824 24 2.当 y 2时, d 的最小值是2 .此时 x1,点 P 的坐标是 (1,2) .12、解:如图,在隧道的横断面上,以拱y顶为原点、拱高所在直线为y 轴Ox(向上),建立直角坐标系 .抛物线设隧道顶部所在抛物线的方程6 mE为 x 22 py因为点 C (4, 4) 在抛物线上DC所以 422 p( 4) 2 mFA3 m3 m2 p 4B解得高中数学选修2-1 课后习题答案 [ 人教版 ]为 x 2 4 y .设 EFh 0.5. 则 F (3, h 5.5)把点 F 的坐标代入方程 x 24y ,解得 h3.25 .答:车辆通过隧道的限制高度为3.2 m.第二章复习参考题 B 组( P81)1、SPF 1F 224 3 .2、解:由题意,得 PF 1x 轴.把 xc 代入椭圆方程,解得yb 2 . 所以,点 P 的坐标是 ( c, b 2)aa 直线 OP 的斜率 k 1b 2 .直线 AB 的斜率 k 2b .aca由题意,得b 2b,所以, b c , a2c .ac a由已知及 F 1A a c ,得 ac 105所以 (1 2) c 105 ,解得 c5所以, a10 , b5因此,椭圆的方程为x 2 y 2 1.1053、解:设点 A 的坐标 (x 1, y 1 ) ,点 B 的坐标 ( x 2 , y 2 ) .由 OA OB ,得 x 1x 2y 1y 2 0 .由已知,得直线 AB 的方程为 y2x 5 .则有 y 1 y 25( y 1 y 2 ) 25 0 ①由 y2x 5 与 y 22px 消去 x ,得 y 2py 5 p0 ②y 1y 2p , y 1 y 25 p ③把③代入①,解得 p54高中数学选修 2-1 课后习题答案 [ 人教版 ]当 p5时,方程②成为 4 y 25y 25 0 ,显然此方程有实数根 .所以, p5444、解:如图,以连接 F 1 , F 2 的直线为 x 轴,线段 F 1 F 2 的中点为原点,建立直角坐标系 .对于抛物线,有p1763 529 2292 ,2所以, p4584 , 2 p 9168 .对于双曲线,有c a 2080c a 529解此方程组,得 a 775.5, c 1304.5因此, b 2 c 2 a 2 1100320 .(第 4 题)所以,所求双曲线的方程是x 2y 2 601400.31 ( x 775.5) .1100320因为抛物线的顶点横坐标是 (1763 a)(1763 775.5)987.5所以,所求抛物线的方程是y 2 9168( x987.5)答:抛物线的方程为 y 29168( x 987.5) ,双曲线的方程是x 2y 21 ( x 775.5) .601400.311003205、解:设点 M 的坐标为 ( x, y)由已知,得 直线 AM 的斜率 k AMy ( x 1)x 1直线 BM 的斜率 k BMy ( x 1)x1由题意,得 kAMk2 ,所以y y 2( x1),化简,得 xy x 2 1(x1)BMx1 x 1所以,点 M 轨迹方程是 xy x 21(x1) .6、解:(1)当 m 1时,方程表示 x 轴;( 2)当m3 时,方程表示 y 轴;(3)当 m1,m 3 时,把方程写成x 2 y23 mm 1.1①当 1 m 3, m 2 时,方程表示椭圆;② m 2 时,方程表示圆;③当 m 1,或 m3时,方程表示双曲线 .7、以 AB 为直径的圆与抛物线的准线 l 相切 .高中数学选修2-1 课后习题答案 [ 人教版 ]垂线,垂足分别为 D , E .由抛物线的定义,得AD AF , BE BF .所以, AB AF BF AD BE .设 AB 的中点为 M ,且过点 M 作抛物线y22px ( p0) 的准线l的垂线,垂足为C .显然 MC ∥x轴,所以, MC 是直角梯形 ADEB 的中位线.于是, MC 1( AD BE )1AB .因此,点 C 在以 AB 为直径的圆上.22又 MC l ,所以,以 AB 为直径的圆与抛物线的准线l 相切.类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离;对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.高中数学选修 2-1 课后习题答案 [ 人教版 ]第三章空间向量与立体几何3.1空间向量及其运算练习( P86)1、略 .2、略 .uuuur uuuruuur uuur uuuur uuur uuur uuur uuuur uuur uuur uuur 3、 A C ABAD AA , BD AB AD AA , DB AA AB AD .练习( P89)uuuruuuruuuur1、(1) AD ; (2) AG ;(3) MG .2、(1) x 1; (2) x y1; (3) x y1 .3、如图 .22A CPB QRSO(第 3 题)练习( P92)1、 B .uuuur uuur uuuruuur2、解:因为 ACABADAA ,uuuur2uuur uuur uuur 所以 AC( AB AD AA )2uuur 2 uuur 2 uuur 2uuur uuur uuur uuur uuur uuurABADAA2( AB AD AB AA AD AA )uuuur 42 32 52 2 (0 10 7.5)8585所以 AC3、解:因为 AC所以 AC BD , AC AB ,又知 BD AB .uuur uuur uuur uuur 0uuur uuur 0 .所以 AC BD 0 , AC AB ,又知 BD AB uuur 2 uuur uuur CD CD CDuuur uuur uuuruuur uuuruuur(CA AB BD ) (CA ABBD )uuur 2 uuur 2uuur2CAAB BDa 2b 2c 2所以 CDa 2b 2c 2 .高中数学选修 2-1 课后习题答案 [ 人教版 ]r r r r rr r r r r 1、向量 c 与 a b , a b 一定构成空间的一个基底 . 否则 c 与 ab , a b 共面,r r r2、共面于是 c 与 a , b 共面,这与已知矛盾 .uuur uuuruuur uuur uuur uuur uuur uuur uuuur r r r 2、(1)解: OB OBBB OA AB BB OA OC OO a b c ;uuur uuur uuur uuur uuuur r rBA BABBOC OOc buuur uuur uuur uuur uuur uuuur r r rCA CA AA OA OC OO a bcuuur uuur uuuruuur1 uuur r 1 rr 1rr1r(2) OGOC CGOCCBb (ac)ab2 c .222练习( P97)1、(1) ( 2,7,4) ; (2) ( 10,1,16); (3) ( 18,12,30) ; ( 4)2.2、略 .3、解:分别以 DA ,DC , DD 1 所在的直线为 x 轴、 y 轴、 z 轴,建立空间直角坐标系 .则 D (0,0,0) , B 1 (1,1,1), M (1,1,0) , C(0,1,0) 2uuuur uuuur 1所以, DB 1 (1,1,1), CM (1, ,0) .2uuuur uuuur 1 1uuuur uuuurDB 1 CM 015所以, cos2.DB 1, CMuuuur uuuur 1 15DB 1 CM31D'4C'习题 3.1 A 组( P97)A'B' Muuuruuur uuur D GC1、解:如图,(1) ABBC AC ;uuur uuur uuuruuur uuur uuur uuuur uuuur(2) AB AD AAACAA AC CC AC ;A(第 1 题) Buuur uuur1 uuuur uuur uuuuruuuur(3)设点 M 是线段 CC 的中点,则 ABADCCACCMAM ;1 uuur 21 uuuur(4)设点 G 是线段 AC 的三等分点,则uuur uuuruuur ( AB AD AA ) AC AG .uuur uuuur uuuur uuur33向量 AC , AC , AM , AG 如图所示 .2、 A .uuuur 2 uuur uuur uuur3、解: AC ( AB AD AA )2高中数学选修 2-1 课后习题答案 [ 人教版 ]uuur 2 uuur 2 uuur 2 uuur uuur uuur uuur uuur uuurAB AD AA 2( AB AD AB AA AD AA ) 52 32 722(5 3 1 5 72 3 7 2 )2 2298 56 2所以, AC13.3 .uuur uuuruuur uuur 1a2;4、(1) AB ACAB AC cos60uuur uuuruuur uuur21a 2;(2) AD DBAD DB cos120uuur uuur uuur uuur 2 uuur uuur1 a2 1 1(3) GF AC GF AC cos180 2 ( GF AC a) ;2 2 uuur uuur uuur uuur 1 a 2 uuur 1 uuur 1(4) EF BC EF BC cos60 4 ( EF 2 BD a) ; uuur uuur uuur uuur uuur uuur 21 2 1 1; (5) FG BA FG BA cos120 a ( FG2 AC a)4 2uuur uuur uuur uuur 1 uuur 1 uuur(6) GE GF(GCCB2 BA)CA21 uuuruuur1 uuur 1 uuur( DCCB2 BA)2 CA21 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA 2 CB CA 4 BA CA1 uuur uuur 1 uuur uuur 1 uuur uuur4 DC CA cos120 2 CB CA cos604 BA CA cos601 a 245、(1) 60 ; (2)略 .r rr6、向量 a 的横坐标不为 0,其余均为 0;向量 b 的纵坐标不为 0,其余均为 0;向量 c 的竖坐标不为 0,其余均为 0.7、(1)9; (2) (14, 3,3) .rr r r 0 ,即 82 3x0 ,解得 x10 . 8、解:因为 ab ,所以 a buuuruuur3(5,1, 10)9、解: AB ( 5, 1,10) , BAuuuur1 uuur uuur1 9 2) ,设 AB 的中点为 M , OM2(OAOB )( , ,uuur 2 2所以,点 M 的坐标为 (1 , 9 ,( 5)2( 1)21021262) , AB2 210、解:以 DA , DC , DD 1 分别作为 x 轴、 y 轴、 z 轴建立空间直角坐标系 O xyz .高中数学选修 2-1 课后习题答案 [ 人教版 ]则 C ,M , D 1 , N 的坐标分别为:uuuur 1 uuuur CM (1, 1, ) , D 1 N2 uuuur12 ( 1)2 ( 1) 2 所以 CM2C (0,1,0) , M (1,0, 1 1 ) ,D 1(0,0,1) , N (1,1, ) .122(1,1, )23uuuur 121)23, D 1 N12 ( 22 2uuuur uuuur1 1 11 cos CM , D 1N9 4 94由于异面直线 CM 和 D 1N 所成的角的范围是 [0,]2因此, CM 和 D 1 N 所成的角的余弦值为 1.31911、 ( , ,3)2 2 习题 3.1 B组( P99)1、证明:由已知可知,uuur uuur uuur uuurOA BC , OB ACuuur uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA BC 0 , OB AC 0 ,所以 OA (OC OB ) 0 , OB (OC OA) 0 .uuur uuur uuur uuur uuur uuuruuur uuur∴ OA OC OA OB , OB OCOB OA .uuur uuur uuur uuur uuur uuur uuur uuur uuur∴ OA OC OB OC 0 , (OAOB) OC 0 , BA OC 0 .∴ OC AB .2、证明:∵点 E, F ,G , H 分别是 OA,OB, BC ,CA 的中点 . uuur1 uuuruuur1 uuuruuuruuur ∴ EFAB , HGAB ,所以 EFHG22∴四边形 EFGH 是平行四边形 .uuur uuur 1 uuur 1 uuur 1 uuur uuur uuur 1 uuur uuuruuur uuurEFEHABOC4 (OBOA) OC4(OB OCOA OC )2 2∵ OA OB , CA CB (已知), OC OC .∴ BOC ≌ AOC ( SSS )∴ BOC AOCuuur uuur uuur uuur∴ OB OC OA OCuuur uuur ∴ EF EH 0uuur uuur ∴ EF EH∴ 平行四边形 □ EFGH 是矩形 .。
1。
3。
1 “且”与“或”自主预习·探新知情景引入要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你能运用“或”“且”的方法解决吗?新知导学1.逻辑联结词“或”“非"构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就__p∧q____p且q__得到一个新命题用联结词“或”把命题p和命题q联结起来,__p∨q____p或q__就得到一个新命题p q p∧q p∨q真真__真____真__真假__假____真__假真__假____真__假假__假____假__预习自测1.“xy≠0"是指( A )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0 D.不都是0[解析]xy≠0当且仅当x≠0且y≠0.2.p:点P在直线y=2x-3上;q:点P在曲线y=-x2上,则使“p∧q"为真命题的一个点P(x,y)是( C )A.(0,-3)B.(1,2)C.(1,-1)D.(-1,1)[解析]点P(x,y)满足错误!,解得P(1,-1)或P(-3,-9),故选C.3.下列判断正确的是( B )A.命题p为真命题,命题“p或q”不一定是真命题B.命题“p且q”是真命题时,命题p一定是真命题C.命题“p且q”是假命题,命题p一定是假命题D.命题p是假命题,命题“p且q”不一定是假命题[解析] 因为p、q都为真命题时,“p且q”为真命题.4.由下列各组命题构成的新命题“p或q"“p且q”都为真命题的是( B )A.p:4+4=9,q:7〉4B.p:a∈{a,b,c},q:{a}{a,b,c}C.p:15是质数,q:8是12的约数D.p:2是偶数,q:2不是质数[解析] “p或q"“p且q”都为真,则p真q真,故选B.5.给出下列条件:(1)“p成立,q不成立”;(2)“p不成立,q成立”;(3)“p与q都成立”;(4)“p与q都不成立”.其中能使“p或q"成立的条件是__(1)(2)(3)__(填序号).互动探究·攻重难互动探究解疑命题方向❶命题的构成形式典例1 分别指出下列命题的构成形式及构成它的简单命题.(1)小李是老师,小赵也是老师;(2)1是合数或质数;(3)他是运动员兼教练员;(4)这些文学作品不仅艺术上有缺点,而且政治上有错误;(5)要么周长相等的两个三角形全等,要么面积相等的两个三角形全等.[规范解答](1)这个命题是“p∧q"的形式,其中,p:小李是老师;q:小赵是老师.(2)这个命题是“p∨q”的形式,其中,p:1是合数;q:1是质数.(3)这个命题是“p∧q”的形式,其中,p:他是运动员;q:他是教练员.(4)这个命题是“p∧q"的形式,其中,p:这些文学作品艺术上有缺点;q:这些文学作品政治上有错误.(5)这个命题是p∨q形式,其中p:周长相等的两个三角形全等,q:面积相等的两个三角形全等.『规律总结』1。
(全国通用版)2018-2019高中数学第一章常用逻辑用语章末复习学案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2018-2019高中数学第一章常用逻辑用语章末复习学案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2018-2019高中数学第一章常用逻辑用语章末复习学案新人教A版选修2-1的全部内容。
第一章常用逻辑用语章末复习学习目标1。
掌握充分条件、必要条件的判定方法.2.理解全称量词、存在量词的含义,会判断全称命题、特称命题的真假,会求含有一个量词的命题的否定.1.充分条件、必要条件和充要条件(1)定义一般地,若p则q为真命题,是指由p通过推理可以得出q。
这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q。
此时,我们说,p是q的充分必要条件,简称充要条件.(2)特征充分条件与必要条件具有以下两个特征:①对称性:若p是q的充分条件,则q是p的必要条件;②传递性:若p是q的充分条件,q是r的充分条件,则p是r的充分条件.即若p⇒q,q⇒r,则p⇒r。
必要条件和充分条件一样具有传递性,但若p是q的充分条件,q是r的必要条件,则p与r的关系不能确定.2.量词(1)短语“所有"“任意”“每一个"等表示全体的量词在逻辑中通常称为全称量词,通常用符号“∀x”表示“对任意x”.(2)短语“有一个”“有些"“存在一个”“至少一个”等表示部分的量词在逻辑中通常称为存在量词,通常用符号“∃x0”表示“存在x0".3.含有全称量词的命题叫做全称命题,含有存在量词的命题叫做特称命题.(1)“所有奇数都是质数"的否定“至少有一个奇数不是质数”是真命题.(√)(2)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(3)当q是p的必要条件时,p是q的充分条件.(√)类型一充要条件例1 (1)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)A (2)A解析(1)当b<0,且x=-错误!>0时,f(x)取得最小值-错误!,则f(x)的值域为错误!,则当f(x)=-错误!时,f(f(x))的最小值与f(x)的最小值相等,故是充分条件;当b=0时,f(x)=x2,f(f(x))=x4的最小值都是0,故不是必要条件.故选A。
模块复习课一、常用逻辑用语1.命题及其关系(1)原命题:若p,则q.则逆命题:若q,则p.否命题:若¬p,则¬q.逆否命题:若¬q,则¬p.(2)两个命题互为逆否命题,它们有相同的真假性.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件.(2)若p⇔q,则p是q的充要条件.(3)若p⇒q,q p,则p是q的充分不必要条件.(4)若p q,q⇒p,则p是q的必要不充分条件.(5)若p q,q p,则p是q的既不充分也不必要条件.3.简单的逻辑联结词(1)命题p∧q的真假:“全真则真”,“一假则假”.(2)命题p∨q的真假:“一真则真”,“全假则假".(3)命题¬p的真假:p与¬p的真假性相反.4.全称命题与特称命题的否定(1)全称命题的否定p:x∈M,p(x).¬p:x0∈M,¬p(x0).(2)特称命题的否定p:x0∈M,p(x0).¬p:x∈M,¬p(x).ﻬ二、圆锥曲线与方程1.椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.(2)椭圆的标准方程焦点在x 轴上:错误!未定义书签。
+错误!未定义书签。
=1(a >b >0),焦点在y 轴上:错误!未定义书签。
+x2b=1(a〉b 〉0).(3)椭圆的几何性质①范围:对于椭圆错误!+错误!=1(a〉b 〉0), -a≤x≤a,-b ≤y ≤b .②对称性:椭圆x 2a2+错误!未定义书签。
=1或错误!未定义书签。
+错误!未定义书签。
=1(a 〉b 〉0),关于x 轴,y 轴及原点对称.③顶点:椭圆错误!未定义书签。
+错误!=1的顶点坐标为A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ).④离心率:e =错误!未定义书签。
课题:命题教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教学过程一.复习回顾引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?二.新课教学下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
抽象、归纳:1.命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.例1:判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
复习课(一)常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要][典例]将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解](1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.下列说法中错误的个数是()①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数”②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0”③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.2.原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:选A a n +a n +12<a n ,即a n +a n +1<2a n ,则a n +1<a n ,∴{a n }为递减数列,故原命题为真,则其逆否命题也为真;若{a n }是递减数列,则a n +1<a n ,∴a n +a n +1<2a n ,∴a n +a n +12<a n ,故其逆命题也是真命题,则其否命题也是真命题.故选A .3.下列说法正确的是________.(写出所有正确说法的序号)①若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件;②命题“存在x 0∈R ,x 20+1>3x 0”的否定是“任意x ∈R ,x 2+1<3x ”; ③设x ,y ∈R ,命题“若xy =0,则x 2+y 2=0”的否命题是真命题;④若f (x +1)为R 上的偶函数,则f (x )的图象关于直线x =1对称.解析:①因为p 是q 的充分不必要条件,所以p ⇒q 为真命题,q ⇒p 为假命题,故綈p ⇒綈q 为假命题,綈q ⇒綈p 为真命题,故綈p 是綈q 的必要不充分条件,即命题正确;②命题“存在x 0∈R ,x 20+1>3x 0”的否定是“任意x ∈R ,x 2+1≤3x ”,故命题不正确;③逆命题为:“若x 2+y 2=0,则xy =0”是真命题,据互为逆否命题的两个命题真假相同,可知其否命题为真命题,故命题正确;④若f (x +1)为R 上的偶函数,则f (x +1)关于y 轴对称,将函数f (x +1)向右平移一个单位得到f (x ),即f (x )的图象关于直线x =1对称,故正确.答案:①③④充分条件与必要条件的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;(2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(山东高考)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A .(2)当α=0时,sin α=0,cos α=1,∴sin α<cos α;而当sin α<cos α时,α=0或α=π6,…,故选A .[答案] (1)A (2)A[类题通法]充分条件、必要条件、充要条件的判断方法(1)定义法.①若“p ⇒q ”,且“q p ”,则p 是q 的“充分不必要条件”,同时q 是p 的“必要不充分条件”;②若“p ⇔q ”,则p 是q 的“充要条件”,同时q 是p 的“充要条件”;③若p q ,且q p ,则p 是q 的“既不充分也不必要条件”,同时q 是p 的“既不充分也不必要条件”.(2)等价命题法.利用互为逆否的两个命题间的等价关系判断.[题组训练]1.(北京高考)设α,β是两个不同的平面,m 是直线且m ⊂α,“m ∥β ”是“α∥β ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要而不充分条件.2.对于任意实数x,x表示不小于x的最小整数,例如1.1=2,-1.1=-1,那么“|x-y|<1”是“x=y”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B当x=1.8,y=0.9时,满足|x-y|<1,但1.8=2,0.9=1,即x≠y;当x=y时,必有|x-y|<1,所以“|x-y|<1”是“x=y”的必要不充分条件,故选B.3.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD 不一定是菱形,故选A.含有逻辑联结词、量词的命题题的真假,以及全称命题,特称命题的否定.[考点精要][典例](1)已知a与b均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π p 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3 p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π 其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4(2)命题“∀x ∈R ,|x |+x 2≥0”的否定是( )A .∀x ∈R ,|x |+x 2<0B .∀x ∈R ,|x |+x 2≤0C .∃x 0∈R ,|x 0|+x 20<0D .∃x 0∈R ,|x 0|+x 20≥0[解析] (1)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎡⎭⎫0,2π3.当θ∈⎣⎡⎭⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝⎛⎦⎤π3,π,反之也成立. (2)全称命题的否定是特称命题,即命题“∀x ∈R ,|x |+x 2≥0”的否定为“∃x 0∈R ,|x 0|+x 20<0”.故选C .[答案] (1)A (2)C[类题通法]1.判断含有逻辑联结词的命题真假的方法(1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假.(3)利用真值表判断所给命题的真假.2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.已知命题p :∃x 0∈R ,mx 20+1≤0,命题q :∀x ∈R ,x 2+mx +1>0,若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .(0,2)解析:选C 因为p ∧q 为真命题,所以命题p 和命题q 均为真命题,若p 真,则m <0,①若q 真,则Δ=m 2-4<0,所以-2<m <2.②所以p ∧q 为真,由①②知-2<m <0.3.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠0。
课时作业(一) 命题-|b |<|a -b |;③(b ·c )a -(c ·a )b 不与c 垂直;④(3a +2b )·(3a -2b )=9|a |2-4|b |2,是真命题的有( )A .①②B .②③C .③④D .②④解析:①错,数量积不满足结合律;②对,由向量减法的三角形法则可知有|a |-|b |<|a -b |;③[(b ·c )·a -(c ·a )·b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0.∴③错;④对.答案:D12.已知不等式x +3≥0的解集是A ,则使得a ∈A 是假命题的a 的取值范围是( )A .a ≥-3B .a >-3C .a ≤-3D .a <-3解析:∵x +3≥0,∴A ={x |x ≥-3}.又∵a ∈A 是假命题,即a ∉A ,∴a <-3.答案:D13.已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若视A 为p ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”,由命题为真命题可知1+a 5≥1,解得a ≥4; 若视B 为p ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”,由命题为真命题可知1+a 5≤1,解得a ≤4.故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x>1,则x >25”. 14.若命题p :sin x +cos x >m ,命题q :x 2+mx +1>0,对任意的x ∈R ,p 和q 都是真命题,求实数m 的取值范围.解:由题意知sin x +cos x >m ,x ∈R 恒成立,即2sin ⎝⎛⎭⎪⎫x +π4>m ,x ∈R 恒成立,∴m <- 2. 又由x 2+mx +1>0,x ∈R 恒成立,得Δ=m 2-4<0,即-2<m <2,综上可得,-2<m <- 2.15.(1)已知p :x -1x +2≤0,求p 为真命题时x 的取值范围; (2)q :y =ax 2-2x +1在[1,+∞)上为减函数,求q 为真命题时,a 的取值范围.解析:(1)由x -1x +2≤0,得⎩⎪⎨⎪⎧ x +2x -1≤0,x +2≠0,即-2<x ≤1.∴p 为真命题时,x 的取值范围是(-2,1].(2)当a =0时,y =-2x +1满足在[1,+∞)上为减函数;当a ≠0时,由已知可得⎩⎪⎨⎪⎧ 1a≤1,a <0,可得a <0.∴为真命题时,的取值范围是≤0.。
第一课常用逻辑用语[核心速填]1.命题及其关系(1)判断一个语句是否为命题,关键是:①为陈述句;②能判断真假.(2)互为逆否关系的两个命题的真假性相同.(3)四种命题之间的关系如图所示.2.充分条件、必要条件和充要条件(1)定义一般地,若p,则q为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说,p是q的充分必要条件,简称充要条件.(2)特征充分条件与必要条件具有以下两个特征:①对称性:若p是q的充分条件,则q是p的必要条件;②传递性:若p是q的充分条件,q是r的充分条件,则p是r的充分条件.即若p⇒q,q⇒r,则p⇒r.必要条件和充分条件一样具有传递性,但若p是q的充分条件,q是r的必要条件,则p与r的关系不能确定.3.含逻辑联结词的命题的真假判断(1)p∧q:全真才真,一假则假;(2)p∨q:全假才假,一真则真;(3)﹁p:p与﹁p真假性相反.4.全称量词与全称命题,存在量词与特殊命题(1)全称量词与全称命题:短语“所有的”“任意一个”“每一个”“任给”在逻辑中通常叫做全称量词,并用符号“∀”表示.全称命题“对M中任意一个x,有p(x)成立”,可用符号简记为∀x∈M,p(x).(2)存在量词与特称命题:短语“存在一个”“至少有一个”“有些”在逻辑学中通常叫做存在量词,并用符号“∃”表示;特称命题“存在M中的元素x0,使p(x0)成立”,可用符号简记为∃x0∈M,p(x0).5.含有一个量词的命题的否定(1)全称命题p:∀x∈M,p(x),则﹁p:∃x0∈M,﹁p(x0).(2)特称命题p:∃x0∈M,p(x),则﹁p:∀x∈M,﹁p(x).[体系构建][题型探究]四种命题的关系及其真假判断真假.(1)当mn<0时,方程mx2-x+n=0有实数根;(2)能被6整除的数既能被2整除,又能被3整除.[解] (1)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真)(2)将命题写成“若p,则q”的形式为:若一个数能被6整除,则它能被2整除,且能被3整除,它的逆命题,否命题和逆否命题如下:逆命题:若一个数能被2整除又能被3整除,则它能被6整除.(真)否命题:若一个数不能被6整除,则它不能被2整除或不能被3整除.(真)逆否命题:若一个数不能被2整除或不能被3整除,则它不能被6整除.(真)[规律方法] 1.在原命题、逆命题、否命题、逆否命题中,原命题与逆否命题,逆命题与否命题是等价命题,它们的真假性相同.2.“p∧q”的否定是“﹁p或﹁q”,“p∨q”的否定是“﹁p且﹁q”.1.(1)给出下列三个命题:①“全等三角形的面积相等”的否命题;②“若lg x2=0,则x=-1”的逆命题;③若“x≠y或x≠-y,则|x|≠|y|”的逆否命题.其中真命题的个数是( )A .0B .1C .2D .3B [对于①,否命题是“不全等三角形的面积不相等”,它是假命题;对于②,逆命题是“若x =-1,则lg x 2=0”,它是真命题;对于③,逆否命题是“若|x |=|y |,则x =y 且x =-y ”,它是假命题,故选B.](2)命题:“若a 2+b 2=0,则a =0且b =0”的逆否命题是( )【导学号:46342039】A .若a 2+b 2=0,则a =0且b ≠0 B .若a 2+b 2≠0,则a ≠0或b ≠0 C .若a =0且b =0,则a 2+b 2≠0 D .若a ≠0或b ≠0,则a 2+b 2≠0D [命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是:“若a ≠0或b ≠0,则a 2+b 2≠0”.故选D.]充分条件、必要条件与充要条件(1)B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件(2)已知直线l 1:x +ay +2=0和l 2:(a -2)x +3y +6a =0,则l 1∥l 2的充分必要条件是a =__________. [解析] (1)由a cos A =b cos B ⇒sin 2A =sin 2B , ∴A =B 或2A +2B =π,故选A. (2)由1a -2=a 3≠26a, 得a =-1(舍去),a =3. [答案] (1)A (2)3[规律方法] 充分条件和必要条件的判断充分条件和必要条件的判断,针对具体情况,应采取不同的策略,灵活判断.判断时要注意以下两个方面: (1)注意分清条件和结论,以免混淆充分性与必要性从命题的角度判断充分、必要条件时,一定要分清哪个是条件,哪个是结论,并指明条件是结论的哪种条件,否则会混淆二者的关系,造成错误.(2)注意转化命题判断,培养思维的灵活性由于原命题与逆否命题,逆命题与否命题同真同假,因此,对于那些具有否定性的命题,可先转化为它的逆否命题,再进行判断,这种“正难则反”的等价转化思想,应认真领会.2.(1)已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A ,B ,C 三点共线的充要条件是( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1λ2=1D .λ1λ2=-1C [依题意,A ,B ,C 三点共线⇔AB →=λAC →⇔λ1a +b =λa +λλ2b ⇔⎩⎪⎨⎪⎧λ1=λ,λλ2=1,故选C .](2)设p :m +n ∈ /Z ,q :m ∈ /Z 或n ∈ /Z ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件A [﹁p :m +n ∈Z ,﹁q :m ∈Z 且n ∈Z ,显然﹁p ⇒/﹁q ,﹁q ⇒﹁p ,即p ⇒q ,q ⇒/p ,p 是q 的充分不必要条件.]含逻辑联结词的命题(1)参加冬奥会选拔赛,记“甲得第一名”为p ,“乙得第二名”为q ,“丙得第三名”为r ,若p ∨q 是真命题,p ∧q 是假命题,(﹁q )∧r 是真命题,则选拔赛的结果为( )A .甲得第一名、乙得第二名、丙得第三名B .甲得第二名、乙得第一名、丙得第三名C .甲得第一名、乙得第三名、丙得第二名D .甲得第一名、乙没得第二名、丙得第三名(2)已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(﹁q ) C .(﹁p )∧(﹁q )D .(﹁p )∧q[解析] (1)(﹁q )∧r 是真命题意味着﹁q 为真,q 为假(乙没得第二名)且r 为真(丙得第三名);p ∨q 是真命题,由于q 为假,只能p 为真(甲得第一名),这与p ∧q 是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名,故选D.(2)命题p :a =0时,可得1>0恒成立;a ≠0时,可得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解得0<a <4,综上,可得实数a ∈[0,4),因此p 是假命题,则﹁p 是真命题;命题q :由x 2-2x -8>0解得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,是真命题.故(﹁p )∧q 是真命题.故选D .[答案] (1)D (2)D[规律方法] 1.判断含有逻辑联结词的命题的真假的关键是对逻辑联结词“或”“且”“非”的含义的理解,应根据组成各个复合命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.确定含有逻辑联结词的命题的构成形式→判断其中简单命题的真假→根据真值表判断含有逻辑联结词的命题的真假[跟踪训练]3.(1)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .﹁q 为假 C .p ∧q 为假D .p ∨q 为真C [函数y =sin 2x 的最小正周期为2π2=π,故命题p 为假命题;直线x =π2不是y =cos x 的图象的对称轴,命题q 为假命题,故p ∧q 为假,故选C .](2)已知命题p :m ,n 为直线,α为平面,若m ∥n ,n ⊂α,则m ∥α;命题q :若a >b ,则ac >bc ,则下列命题为真命题的是( )【导学号:46342040】A .p 或qB .﹁p 或q C .﹁p 且qD .p 且qB [命题q :若a >b ,则ac >bc 为假命题,命题p :m ,n 为直线,α为平面,若m ∥n ,n ⊂α,则m ∥α也为假命题,因此只有﹁p 或q 为真命题.]全称命题与特称命题(1)p ∧q ”是真命题,则实数a 的取值范围是( )A .[e,4]B .[1,4]C .(4,+∞)D .(-∞,1](2)命题p :∀x ∈R ,f (x )≥m ,则命题p 的否定﹁p 是________. [思路探究] (1)p ∧q 为真⇔p ,q 都为真.(2)由﹁p 的定义写﹁p . [解析] (1)由p 为真得出a ≥e,由q 为真得出a ≤4, ∴e≤a ≤4.(2)全称命题的否定是特称命题,所以“∀x ∈R ,f (x )≥m ”的否定是“∃x 0∈R ,f (x 0)<m ”. [答案] (1)A (2)∃x 0∈R ,f (x 0)<m[规律方法] 全称命题的否定是特称命题;特称命题的否定是全称命题.要判断一个全称命题为真命题,必须对限定集合M 中的每一个x 验证p (x )成立,一般要运用推理的方法加以证明;要判断一个全称命题为假命题,只需举出一个反例即可.要判断一个特称命题为真命题,只要在限定集合M 中能找到一个x 0使p (x 0)成立即可,否则这一特称命题为假命题.4.(1)命题p :∀x <0,x 2≥2x ,则命题﹁p 为( ) A .∃x 0<0,x 20≥2x 0 B .∃x 0≥0,x 20<2x 0 C .∃x 0<0,x 20<2x 0D .∃x 0≥0,x 20≥2x 0C [﹁p :∃x 0<0,x 20<2x 0,故选C .](2)在下列四个命题中,真命题的个数是( ) ①∀x ∈R ,x 2+x +3>0; ②∀x ∈Q ,13x 2+12x +1是有理数;③∃α,β∈R ,使sin(α+β)=sin α+sin β; ④∃x 0,y 0∈Z ,使3x 0-2y 0=10.【导学号:46342041】A .1B .2C .3D .4D [①中,x 2+x +3=⎝ ⎛⎭⎪⎫x +122+114≥114>0,故①为真命题;②中,∀x ∈Q ,13x 2+12x +1一定是有理数,故②也为真命题;③中,当α=π4,β=-π4时,sin(α+β)=0,sin α+sin β=0,故③为真命题;④中,当x 0=4,y 0=1时,3x 0-2y 0=10成立,故④为真命题.]。
第一课常用逻辑用语[核心速填]1.命题及其关系(1)判断一个语句是否为命题,关键是:①为陈述句;②能判断真假.(2)互为逆否关系的两个命题的真假性相同.(3)四种命题之间的关系如图所示.2.充分条件、必要条件和充要条件(1)定义一般地,若p,则q为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,我们说,p是q的充分必要条件,简称充要条件.(2)特征充分条件与必要条件具有以下两个特征:①对称性:若p是q的充分条件,则q是p的必要条件;②传递性:若p是q的充分条件,q是r的充分条件,则p是r的充分条件.即若p⇒q,q⇒r,则p⇒r.必要条件和充分条件一样具有传递性,但若p是q的充分条件,q是r的必要条件,则p与r的关系不能确定.3.含逻辑联结词的命题的真假判断(1)p∧q:全真才真,一假则假;(2)p∨q:全假才假,一真则真;(3)﹁p:p与﹁p真假性相反.4.全称量词与全称命题,存在量词与特殊命题(1)全称量词与全称命题:短语“所有的”“任意一个”“每一个”“任给”在逻辑中通常叫做全称量词,并用符号“∀”表示.全称命题“对M中任意一个x,有p(x)成立”,可用符号简记为∀x∈M,p(x).(2)存在量词与特称命题:短语“存在一个”“至少有一个”“有些”在逻辑学中通常叫做存在量词,并用符号“∃”表示;特称命题“存在M中的元素x0,使p(x0)成立”,可用符号简记为∃x0∈M,p(x0).5.含有一个量词的命题的否定(1)全称命题p:∀x∈M,p(x),则﹁p:∃x0∈M,﹁p(x0).(2)特称命题p:∃x0∈M,p(x),则﹁p:∀x∈M,﹁p(x).[体系构建][题型探究]四种命题的关系及其真假判断假.(1)当mn<0时,方程mx2-x+n=0有实数根;(2)能被6整除的数既能被2整除,又能被3整除.[解] (1)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真)(2)将命题写成“若p,则q”的形式为:若一个数能被6整除,则它能被2整除,且能被3整除,它的逆命题,否命题和逆否命题如下:逆命题:若一个数能被2整除又能被3整除,则它能被6整除.(真)否命题:若一个数不能被6整除,则它不能被2整除或不能被3整除.(真)逆否命题:若一个数不能被2整除或不能被3整除,则它不能被6整除.(真)[规律方法] 1.在原命题、逆命题、否命题、逆否命题中,原命题与逆否命题,逆命题与否命题是等价命题,它们的真假性相同.2.“p∧q”的否定是“﹁p或﹁q”,“p∨q”的否定是“﹁p且﹁q”.1.(1)给出下列三个命题:①“全等三角形的面积相等”的否命题;②“若lg x2=0,则x=-1”的逆命题;③若“x ≠y 或x ≠-y ,则|x |≠|y |”的逆否命题. 其中真命题的个数是( )A .0B .1C .2D .3B [对于①,否命题是“不全等三角形的面积不相等”,它是假命题;对于②,逆命题是“若x =-1,则lg x 2=0”,它是真命题;对于③,逆否命题是“若|x |=|y |,则x =y 且x =-y ”,它是假命题,故选B.](2)命题:“若a 2+b 2=0,则a =0且b =0”的逆否命题是( )【导学号:46342039】A .若a 2+b 2=0,则a =0且b ≠0 B .若a 2+b 2≠0,则a ≠0或b ≠0 C .若a =0且b =0,则a 2+b 2≠0 D .若a ≠0或b ≠0,则a 2+b 2≠0D [命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是:“若a ≠0或b ≠0,则a 2+b 2≠0”.故选D.]充分条件、必要条件与充要条件(1)B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件(2)已知直线l 1:x +ay +2=0和l 2:(a -2)x +3y +6a =0,则l 1∥l 2的充分必要条件是a =__________. [解析] (1)由a cos A =b cos B ⇒sin 2A =sin 2B , ∴A =B 或2A +2B =π,故选A. (2)由1a -2=a 3≠26a, 得a =-1(舍去),a =3. [答案] (1)A (2)3[规律方法] 充分条件和必要条件的判断充分条件和必要条件的判断,针对具体情况,应采取不同的策略,灵活判断.判断时要注意以下两个方面: (1)注意分清条件和结论,以免混淆充分性与必要性从命题的角度判断充分、必要条件时,一定要分清哪个是条件,哪个是结论,并指明条件是结论的哪种条件,否则会混淆二者的关系,造成错误.(2)注意转化命题判断,培养思维的灵活性由于原命题与逆否命题,逆命题与否命题同真同假,因此,对于那些具有否定性的命题,可先转化为它的逆否命题,再进行判断,这种“正难则反”的等价转化思想,应认真领会.2.(1)已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A ,B ,C 三点共线的充要条件是( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1λ2=1D .λ1λ2=-1C [依题意,A ,B ,C 三点共线⇔AB →=λAC →⇔λ1a +b =λa +λλ2b ⇔⎩⎪⎨⎪⎧λ1=λ,λλ2=1,故选C .](2)设p :m +n ∈ /Z ,q :m ∈ /Z 或n ∈ /Z ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件A [﹁p :m +n ∈Z ,﹁q :m ∈Z 且n ∈Z ,显然﹁p ⇒/﹁q ,﹁q ⇒﹁p ,即p ⇒q ,q ⇒/p ,p 是q 的充分不必要条件.]含逻辑联结词的命题(1)记“甲得第一名”为p ,“乙得第二名”为q ,“丙得第三名”为r ,若p ∨q 是真命题,p ∧q 是假命题,(﹁q )∧r 是真命题,则选拔赛的结果为( )A .甲得第一名、乙得第二名、丙得第三名B .甲得第二名、乙得第一名、丙得第三名C .甲得第一名、乙得第三名、丙得第二名D .甲得第一名、乙没得第二名、丙得第三名(2)已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(﹁q ) C .(﹁p )∧(﹁q )D .(﹁p )∧q[解析] (1)(﹁q )∧r 是真命题意味着﹁q 为真,q 为假(乙没得第二名)且r 为真(丙得第三名);p ∨q 是真命题,由于q 为假,只能p 为真(甲得第一名),这与p ∧q 是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名,故选D.(2)命题p :a =0时,可得1>0恒成立;a ≠0时,可得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解得0<a <4,综上,可得实数a ∈[0,4),因此p 是假命题,则﹁p 是真命题;命题q :由x 2-2x -8>0解得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,是真命题.故(﹁p )∧q 是真命题.故选D .[答案] (1)D (2)D解,应根据组成各个复合命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.2.判断命题真假的步骤:确定含有逻辑联结词的命题的构成形式→判断其中简单命题的真假→根据真值表判断含有逻辑联结词的命题的真假[跟踪训练]3.(1)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .﹁q 为假 C .p ∧q 为假D .p ∨q 为真C [函数y =sin 2x 的最小正周期为2π2=π,故命题p 为假命题;直线x =π2不是y =cos x 的图象的对称轴,命题q 为假命题,故p ∧q 为假,故选C .](2)已知命题p :m ,n 为直线,α为平面,若m ∥n ,n ⊂α,则m ∥α;命题q :若a >b ,则ac >bc ,则下列命题为真命题的是( )【导学号:46342040】A .p 或qB .﹁p 或q C .﹁p 且qD .p 且qB [命题q :若a >b ,则ac >bc 为假命题,命题p :m ,n 为直线,α为平面,若m ∥n ,n ⊂α,则m ∥α也为假命题,因此只有﹁p 或q 为真命题.]全称命题与特称命题(1)p ∧q ”是真命题,则实数a 的取值范围是( )A .[e,4]B .[1,4]C .(4,+∞)D .(-∞,1](2)命题p :∀x ∈R ,f (x )≥m ,则命题p 的否定﹁p 是________. [思路探究] (1)p ∧q 为真⇔p ,q 都为真.(2)由﹁p 的定义写﹁p . [解析] (1)由p 为真得出a ≥e,由q 为真得出a ≤4, ∴e≤a ≤4.(2)全称命题的否定是特称命题,所以“∀x ∈R ,f (x )≥m ”的否定是“∃x 0∈R ,f (x 0)<m ”. [答案] (1)A (2)∃x 0∈R ,f (x 0)<m[规律方法] 全称命题的否定是特称命题;特称命题的否定是全称命题.要判断一个全称命题为真命题,必须对限定集合M 中的每一个x 验证p (x )成立,一般要运用推理的方法加以证明;要判断一个全称命题为假命题,只需举出一个反例即可.4.(1)命题p :∀x <0,x 2≥2x ,则命题﹁p 为( ) A .∃x 0<0,x 20≥2x 0 B .∃x 0≥0,x 20<2x 0 C .∃x 0<0,x 20<2x 0D .∃x 0≥0,x 20≥2x 0C [﹁p :∃x 0<0,x 20<2x 0,故选C .](2)在下列四个命题中,真命题的个数是( ) ①∀x ∈R ,x 2+x +3>0; ②∀x ∈Q ,13x 2+12x +1是有理数;③∃α,β∈R ,使sin(α+β)=sin α+sin β; ④∃x 0,y 0∈Z ,使3x 0-2y 0=10.【导学号:46342041】A .1B .2C .3D .4D [①中,x 2+x +3=⎝ ⎛⎭⎪⎫x +122+114≥114>0,故①为真命题;②中,∀x ∈Q ,13x 2+12x +1一定是有理数,故②也为真命题;③中,当α=π4,β=-π4时,sin(α+β)=0,sin α+sin β=0,故③为真命题;④中,当x 0=4,y 0=1时,3x 0-2y 0=10成立,故④为真命题.]。