2020-2021学年江苏省徐州市中考数学模拟试题及答案解析
- 格式:docx
- 大小:371.41 KB
- 文档页数:24
江苏省徐州市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2015•徐州)﹣2的倒数是()A.﹣B.C.﹣2 D.2考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选A.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(3分)(2015•徐州)下列四个几何体中,主视图为圆的是()A.B.C.D.考点:简单几何体的三视图.专题:计算题.分析:找出从正面看,主视图为圆的几何体即可.解答:解:主视图为圆的为,故选B点评:此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.3.(3分)(2015•徐州)下列运算正确的是()A.3a2﹣2a2=1 B.(a2)3=a5C.a2•a4=a6D.(3a)2=6a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同类项、幂的乘方、同底数幂的乘法计算即可.解答:解:A、3a2﹣2a2=a2,错误;B、(a2)3=a6,错误;C、a2•a4=a6,正确;D、(3a)2=9a2,错误;故选C.点评:此题考查同类项、幂的乘方、同底数幂的乘法,关键是根据法则进行计算.4.(3分)(2015•徐州)使有意义的x的取值范围是()A.x≠1 B.x≥1 C.x>1 D.x≥0考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵有意义,∴x﹣1≥0,即x≥1.故选B.点评:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.5.(3分)(2015•徐州)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球考点:随机事件.分析:由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.解答:解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.点评:本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,6.(3分)(2015•徐州)下列图形中,是轴对称图形但不是中心对称图形的是()A.直角三角形B.正三角形C.平行四边形D.正六边形考点:中心对称图形;轴对称图形.分析:中心对称图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合;轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合;据此判断出是轴对称图形,但不是中心对称图形的是哪个即可.解答:解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,它也不是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项D不正确.故选:B.点评:(1)此题主要考查了中心对称图形问题,要熟练掌握,解答此题的关键是要明确:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.(2)此题还考查了轴对称图形,要熟练掌握,解答此题的关键是要明确:轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.7.(3分)(2015•徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD 的周长为28,则OE的长等于()A.3.5 B.4C.7D.14考点:菱形的性质.分析:根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.解答:解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.点评:本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.(3分)(2015•徐州)若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>5考点:一次函数与一元一次不等式.分析:根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.解答:解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故选C.点评:本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)(2015•徐州)4的算术平方根是 2 .考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.(3分)(2015•徐州)杨絮纤维的直径约为0.000 010 5m,该直径用科学记数法表示为 1.05×10﹣5.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定解答:解:0.000 0105=1.05×10﹣5 ,故答案为:1.05×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(3分)(2015•徐州)小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是25 元.考点:中位数.分析:根据中位数的定义,按大小顺序排列,再看处在中间位置的数即可得到答案.解答:解:把这6个数据按从小到大的顺序排列,可得18、24、24、26、28、37,处在中间位置的数为24、26,又∵24、26的平均数为25,∴这组数据的中位数为25,故答案为:25.点评:本题主要考查中位数的定义,掌握求中位数应先按顺序排列是解题的关键.12.(3分)(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是9 .考点:多边形内角与外角.分析:首先根据求出外角度数,再利用外角和定理求出边数.解答:解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.点评:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.13.(3分)(2015•徐州)已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k 值为﹣3 .考点:根的判别式.分析:因为方程有两个相等的实数根,则△=(﹣2)2+4k=0,解关于k的方程即可.解答:解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,∴△=0,即(﹣2)2﹣4×(﹣k)=12+4k=0,解得k=﹣3.故答案为:﹣3.点评:本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.(3分)(2015•徐州)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= 125 °.考点:切线的性质.分析:连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA 计算求解.解答:解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.点评:本题利用了切线的性质,三角形的外角与内角的关系,等边对等角求解.15.(3分)(2015•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为4cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.解答:解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4点评:此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.16.(3分)(2015•徐州)如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= 87 °.考点:线段垂直平分线的性质.分析:根据DE垂直平分BC,求证∠DBE=∠C,再利用角平分线的性质和三角形内角和定理,即可求得∠A的度数.解答:解:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=87°.故答案为:87.点评:此题本题考查的知识点为线段垂直平分线的性质,关键是根据角平分线的性质,三角形内角和定理等知识点进行分析.17.(3分)(2015•徐州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.考点:正方形的性质.专题:规律型.分析:首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.解答:解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.点评:该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.18.(3分)(2015•徐州)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 1 .考点:圆锥的计算.分析:正确理解圆锥侧面与其展开得到的扇形的关系:圆锥的底面周长等于扇形的弧长.解答:解:根据扇形的弧长公式l===2π,设底面圆的半径是r,则2π=2πr∴r=1.故答案为:1.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.三、解答题(本大题共10小题,共86分)19.(10分)(2015•徐州)计算:(1)|﹣4|﹣20150+()﹣1﹣()2(2)(1+)÷.考点:分式的混合运算;实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用算术平方根定义计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=4﹣1+2﹣3=2;(2)原式=•=.点评:此题考查了分式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2015•徐州)(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.考点:解一元二次方程-因式分解法;解一元一次不等式组.分析:(1)将方程的左边因式分解后即可求得方程的解;(2)分别求得两个不等式解集后取其公共部分即可求得不等式组的解集.解答:解:(1)因式分解得:(x+1)(x﹣3)=0,即x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;(2)由①得x>3由②得x>1∴不等式组的解集为x>3.点评:本题考查了因式分解法解一元二次方程及解一元一次不等式组的知识,属于基础知识,难度不大.21.(7分)(2015•徐州)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为25%(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?考点:列表法与树状图法;概率公式.分析:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以4,求出抽中20元奖品的概率为多少即可.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30元的概率为多少即可.解答:解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2),∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷12=.点评:(1)此题主要考查了概率公式,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.22.(7分)(2015•徐州)某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下.请根据图中信息,解答下列问题:(1)a= 19 %,b= 20 %,“总是”对应阴影的圆心角为144 °;(2)请你补全条形统计图;(3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名?(4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)先用80÷40%求出总人数,即可求出a,b;用40%×360°,即可得到圆心角的度数;(2)求出2014年“有时”,“常常”的人数,即可补全条形统计图;(3)根据样本估计总体,即可解答;(4)相比2012年,2014年数学课开展小组合作学习情况有所好转.解答:解:(1)80÷40%=200(人),a=38÷200=19%,b=100%﹣40%﹣21%﹣19%=20%;40%×360°=144°,故答案为:19,20,144;(2)“有时”的人数为:20%×200=40(人),“常常”的人数为:200×21%=42(人),如图所示:(3)1200×=480(人),答:数学课“总是”开展小组合作学习的学生有480人;(4)相比2012年,2014年数学课开展小组合作学习情况有所好转.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)(2015•徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 4 时,四边形BFCE是菱形.考点:平行四边形的判定;菱形的判定.分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.解答:(1)证明:∵AB=DC,∴AC=DF,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4 时,四边形BFCE是菱形,故答案为:4.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.24.(8分)(2015•徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,打折前需要多少钱?考点:二元一次方程组的应用.分析:设打折前A商品的单价为x元,B商品的单价为y元,根据买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元列出方程组,求出x、y的值,然后再计算出买50件A商品和40件B商品共需要的钱数即可.解答:解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则50×8+40×2=480(元),答:打折前需要的钱数是480元.点评:本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.25.(8分)(2015•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值= 12 cm.考点:相似形综合题.分析:(1)①过点C作y轴的垂线,垂足为D,利用含30°角的直角三角形的性质解答即可;②设点A向右滑动的距离为x,得点B向上滑动的距离也为x,利用三角函数和勾股定理进行解答;(2)过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证明△ACE与△BCD相似,再利用相似三角形的性质解答.解答:解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=12,故答案为:12.点评:此题考查相似三角形的综合题,关键是根据相似三角形的性质和勾股定理以及三角函数进行分析解答.26.(8分)(2015•徐州)如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x 轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k= 4 ;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)连接OE,根据反比例函数k的几何意义,即可求出k的值;(2)连接AC,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,得到,从而求出DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,易得,△B′CD∽△EFB′,然后根据对称性求出B′E、B′D的表达式,列出,即=,从而求出(5﹣)2+x2=(3﹣x)2,即可求出x值,从而得到D点坐标.解答:解:(1)连接OE,如,图1,∵Rt△AOE的面积为2,∴k=2×2=4.(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,=,∴∴DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即=,∴B′F=,∴OB′=B′F+OF=B′F+AE=+=,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴满足条件的点D存在,D的坐标为D(0.96,5).故答案为4.点评:本题考查了反比例函数综合题,涉及反比例函数k的几何意义、平行线分线段成比例定理、轴对称的性质、相似三角形的性质等知识,值得关注.27.(8分)(2015•徐州)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?考点:一次函数的应用.分析:(1)根据图象的信息得出即可;(2)首先求出第一、二阶梯单价,再设出解析式,代入求出即可;(3)因为102>90,求出第三阶梯的单价,得出方程,求出即可.解答:解:(1)图中B点的实际意义表示当用水25m3时,所交水费为90元;(2)设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为1.5 x元/m3,设A(a,45),则解得,∴A(15,45),B(25,90)设线段AB所在直线的表达式为y=kx+b则,解得∴线段AB所在直线的表达式为y=x﹣;(3)设该户5月份用水量为xm3(x>90),由第(2)知第二阶梯水的单价为4.5元/m3,第三阶梯水的单价为6元/m3则根据题意得90+6(x﹣25)=102解得,x=27答:该用户5月份用水量为27m3.点评:此题主要考查了一次函数应用以及待定系数法求一次函数解析式等知识,根据题意求出直线AB是解此题的关键.28.(12分)(2015•徐州)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA= 90 °.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?考点:二次函数综合题.分析:(1)利用圆周角定理,直径所对的圆周角等于90°,即可得出答案;(2)利用(1)中的结论易得OB是的垂直平分线,易得点B,点C的坐标,由点O,点B 的坐标易得OB所在直线的解析式,从而得出点E的坐标,用待定系数法得抛物线的解析式;(3)利用(2)的结论易得点P的坐标,分类讨论①若点P在CD的左侧,延长OP交CD 于Q,如右图2,易得OP所在直线的函数关系式,表示出Q点的纵坐标,得QE的长,表示出四边形POAE的面积;②若点P在CD的右侧,延长AP交CD于Q,如右图3,易得AP所在直线的解析式,从而求得Q点的纵坐标,得QE求得四边形POAE 的面积,当P在CD右侧时,四边形POAE的面积最大值为16,此时点P的位置就一个,令=16,解得p,得出结论.解答:解:(1)∵OA是⊙O的直径,∴∠OBA=90°,故答案为:90;(2)连接OC,如图1所示,∵由(1)知OB⊥AC,又AB=BC,∴OB是的垂直平分线,∴OC=OA=10,在Rt△OCD中,OC=10,CD=8,∴OD=6,∴C(6,8),B(8,4)∴OB所在直线的函数关系为y=x,又∵E点的横坐标为6,∴E点纵坐标为3,即E(6,3),抛物线过O(0,0),E(6,3),A(10,0),∴设此抛物线的函数关系式为y=ax(x﹣10),把E点坐标代入得:3=6a(6﹣10),解得a=﹣.∴此抛物线的函数关系式为y=﹣x(x﹣10),即y=﹣x2+x;(3)设点P(p,﹣p2+p),①若点P在CD的左侧,延长OP交CD于Q,如右图2,OP所在直线函数关系式为:y=(﹣p+)x∴当x=6时,y=,即Q点纵坐标为,∴QE=﹣3=,S四边形POAE=S△+S△OPEOAE=S△+S△OQE﹣S△PQEOAE=•OA•DE+QE•OD﹣•QE•P x•=×10×3+×(﹣p+)×6﹣•()•(6﹣p),=②若点P在CD的右侧,延长AP交CD于Q,如右图3,P(p,﹣p2+p),A(10,0)∴设AP所在直线方程为:y=kx+b,把P和A坐标代入得,,解得.∴AP所在直线方程为:y=x+,∴当x=6时,y=•6+=P,即Q点纵坐标为P,∴QE=P﹣3,∴S四边形POAE=S△+S△APEOAE=S△+S△AQE﹣S△PQEOAE=•OA•DE+•QE•DA﹣•QE•(P x﹣6)=×10×3+•QE•(DA﹣P x+6)=15+•(p﹣3)•(10﹣p)==,∴当P在CD右侧时,四边形POAE的面积最大值为16,此时点P的位置就一个,令=16,解得,p=3±,∴当P在CD左侧时,四边形POAE的面积等于16的对应P的位置有两个,综上所知,以P、O、A、E为顶点的四边形面积S等于16时,相应的点P有且只有3个.点评:本题主要考查了圆周角定理及二次函数的相关问题,解决这类问题关键是善于将函数问题转化为方程问题,然后数形结合解决问题.。
2021年江苏省徐州市中考数学学业水平测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列四组条件中,能判定△ABC与△DEF相似的是()A.∠A=45°,∠B=55°,∠D=45°,∠F=75°B.AB=5,BC=4,∠A=45°,DE=5,EF=4,∠D=45°C.AB=6,BC=5,∠B=40°,DE=12,EF=10,∠E=40°D.AB=BC,∠A=50°,DE=EF,∠E=50°2.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF等于()A.4:10:25 B.4:9:25 C.2:3:5 D.2:5:253.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时, 滑轮的一条半径OA 绕轴心O按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动, 取3.14,结果精确到1°)()A.115°B.60°C.57°D.29°4.图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是()A.y=12(x+2 )2 -2 B y=12(x-2 )2 -2. C y=2(x+2 )2 -2. D.y=2(x-2 )2 -25.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()A.S1<S2<S3B.S2<S1<S3 C.S3<S1<S2 D.S1=S2=S36.关于菱形的说法中,不正确的是()A.菱形的四个角相等B.菱形的一条对角线是另一条对角线的中垂线C.菱形的一条对角线平分这组对角D.菱形的对称轴是对角线所在的直线7.下列定理中无逆定理的是()A.平行四边形的两组对边分别相等B .平行四边形的两组对角分别相等C .三角形的中位线平行于第三边D .四边形的内角和为360°8.小明将若干个苹果向若干只篮子里分放,若每只篮子分 4个苹果,还剩 20个未分完;若每只篮子里分放 8个苹果,则还有一只篮子没有放,那么小明共有苹果的个数为( )A .44个B . 42个C . 40个D . 38个9.若41(2)(5)x m x n x +=-+-,则m 、n 的值是( )A .41m n =-⎧⎨=-⎩B .41m n =⎧⎨=⎩C .73m n =⎧⎨=-⎩D . 73m n =-⎧⎨=⎩ 10.如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm 则△ADC 的周长为( )A .14 cmB .13 cmC .11 cmD .9 cm 11.多项式6(2)3(2)x x x -+-的公因式是3(2)x -,则另一个因式是( ) A .2x +B .2x -C .2x -+D .2x -- 12.下列近似数中,含有3个有效数字的是( )A .5.430B .65.43010⨯C . 0.5430D .5.43万 二、填空题13.直角三角形的两条直角边长分别为 3cm 和4 cm ,则它的外接圆半径是 cm ,内切圆半径是 cm .14.若α是锐角,且 tan α=1,则α= .15.在⊙O 中,AB 是弦,∠OAB=50°,则弦AB 所对的圆心角的度数是_______,弦AB 所对的两条弧的度数是_______.16.一次函数y=kx+b 与y=-2x+3平行,且经过点(-3,4),则一次函数的表达式是 .17.如图,大圆半径为2cm ,小圆的半径为1cm ,则图中阴影部分的面积是__________cm 2.18.如图所示,△ABC 是等腰直角三角形,AD ⊥BC ,则△ABD 可以看做是由△ACD 绕 点逆时针旋转 得到的.19.如图.(1)用刻度尺量出下列线段的长度.AB= cmAC= cmBC= cmAD= cmDC= cmBD= cm(2)用“>”、“<”或“=”号填空.AB BC BC ACBC AD AD+BD AB AB+BC AC20.构造一个以6为根的一元一次方程(要求含未知数的项至少有两项):.721.把139500 四舍五人取近似数,保留 3 个有效数字是.22.中国国家图书馆藏书约2亿册,用科学记数法表示为册.三、解答题23.已知:如图,点D是等腰△ABC的底边BC上任意一点,DE∥AC•交AB•于点E,DF∥AB交AC于点F.求证:DE+DF=AB.24.如图所示,AB是被障碍物隔开不能直接到达的两点,请你设计一个方案,计算一下AB 之间的距离.25.说明多项式22221x mx m+++的值恒大于0.26.一个长方形足球场的长为x(m),宽为 70 m.如果它周长大于350m,面积小于7560 m2,求x的取值范围.用于国际比赛的足球场有如下要求:长在 100 m到110之间,宽在64m到75 m之间,请你判断上述球场是否亩以用作国标足球比赛.27.小玲家的鱼塘里养了2000条鲢鱼,现准备打捞出售,为了估计鱼塘中鲢鱼的总量,从鱼塘中捕捞了3次进行统计,得到数据如下表:鱼的条数平均每条鱼的质量第一次捕捞20 1.6 kg第二次捕捞10 2.2 kg第三次捕捞10 1.8 kg试求出鱼塘中鲢鱼的总质量约是多少?28.先化简2(21)(31)(31)5(1)x x x x x--+-+-,再选取一个你喜欢的数代替x求值.29.根据图中提供的信息,求出每副网球拍和每副乒乓球拍的单价.30.在数轴上表示数4,-2,1,0,-2.5,并比较它们的大小,将它们按从小到大的顺序用“<”连接.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.A5.D6.A7.C8.A9.C10.B11.BD二、填空题13.2.5,114.45°15.80度;80度或280度16.y=-2x-217.π218.D,90°19.(1)略 (2)>,<,>,>,>20.例如:926=-等x x21.1.40×10522.8210⨯三、解答题23.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∠EDB=∠C,∴DF=EA.∵AB=AC,∴∠B=∠C,∴∠B=∠EDB,∴BE=DE,∴DE+DF=BE+EA=AB,∴DE+DF=AB.24.略25.原式=22+++≥>()110x m m<<,可以用作国际足球比赛x10510827.3600 k28.-+;92x29.网球拍每副 80 元,乒乓球拍每副 40元30.-2.5<-2<0<1<4 (图略)。
2021年江苏省徐州市中考数学测评考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若∠Acos A<<,则∠A 的范围是()A.30°<∠A<45°B. 60°<∠A <90° C.30°<∠A <60° D.0°<∠A <30°2.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(,OC与⊙D相交于点C,∠OCA=30°,则图中阴影部分的面积为()A.2π-B.4πC.4π-D.2π-x3.以下可以用来证明命题“若x+2y=0,则x=y=0”是假命题的反例的是()A.x=1,y=1 B.x=2,y=0 C.x=-l,y=2 D.x=2,y=-l4.已知点P在x轴下方,在y轴右侧.且点P到x轴的距离是3,到y轴的距离是2.则点P 的坐标是()A.(2,-3)B.(3,-2)C.(-2,3)D.(-3,2)5.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向B.南偏西40°方向C.北偏东50°方向D.北偏东40°方向6.下列不等式组无解的是()A.1020xx-<⎧⎨+<⎩B.1020xx-<⎧⎨+>⎩C.1020xx->⎧⎨+<⎩D.1020xx->⎧⎨+>⎩7.已知等腰三角形的一个底角为80,则这个等腰三角形的顶角为()A.20B.40C.50D.808.4a2b3-8a4b2+10a3b因式分解时,应提公因式()A.2a2b B.2a2b2 C.4a2b D.4ab29.中国足球队在训练时,教练安排了甲、乙两队进行一个对抗赛游戏. 要求甲队准确地将球传到如图所示的浅色区域,要求乙队准确地将球传到如图所示的深色区域. 下列对对抗赛哪一个队获胜的机会大的说法中,正确的是()A .甲队,浅色区域面积大于深色区域面积B .乙队,浅色区域面积小于深色区域面积C .甲队,深色区域面积大于浅色区域面积D .乙队,深色区域面积小于浅色区域面积10.甲班有54人,乙班有48人,要使甲班人数是乙班人数的 2倍,设从乙班调往甲班x 人,可列方程( )A .542(48)x x +=-B .482(54)x x +=-C .54248x -=⨯ 48254x +=⨯ 11.一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A .4cm~5cm 之间B .5cm~6cm 之间C .6cm~7cm 之间D .7cm~8cm 之间 12.世纪联华超市出售的三种品牌的大米包装袋(标准质量为 50千克)上,分别标有(50± 0.2),(50±0.3),(50±0.25)的字样. 则从超市中任意拿出两袋大米,其质量与标准质量最多相差( )A . 0.4B .0.55C . 0.5D . 0.613.-3 不是( )A . 有理数B . 整数C .自然数D .负有理数 二、填空题14.二次函数y =2x 2+bx +c 的顶点坐标为(1,2),则这个函数的解析式为 . y =2x 2-4x +415.已知下列函数①2y x =;②32y x =-+;③1(0)y x x=->;④2(0)y x x =<; ⑤2321y x x =-+-.其中y 随x 增大而减少的 (填序号). 16.如图,已知矩形ABCD 中,AB=2BC ,E 在CD 上,且AE=AB ,则BC EC = . 17. 计算:(1)32320()25= ; (2)31645122= ; (3)1320(5)353÷= ; 18.已知点(32)M -,,将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是 .19.已知一次函数的图象如图所示,则一次函数的解析式为 .20.已知方程组3523x yy x=-⎧⎨=+⎩,用代入法消去x,可得方程.(不必化简).21.把线段AB延长到C,使BC=12AB,再把线段AB反向延长到E,使AE=34AB,D为线段EC的中点,若AB=2,则BD的长是.三、解答题22.如图,以 0为圆心,方圆 8海里范围内有暗礁,某轮船行驶到距 0点正西 16海里的A处接到消息,则该船至少向东偏南多少度航行才不会触礁?23.如图,已知直线MN和MN外一点A,请用尺规作图的方法完成下列作图:(1)作出以A为圆心与MN相切的圆;(2)在MN上求一点B,使∠ABM=30°(保留作图迹,不要求写作法、证明)24.如图,在两个同心圆中,大圆的弦 AB 交小圆于C、D两点,求证:AC=BD.25.判断下列各组线段的长度是否成比例,说明理由.(1)1,2,3,4;(2) 2, 4,3, 6;(3)1. 2 ,1. 8 ,30 ,45;(4)11,22 ,44,5526.某村过去是一个缺水的村庄,由于兴修水利,现在家家户户都用上了自来水.据村委会主任徐伯伯讲,以前全村400多户人家只有5口水井:第一口在村委会的院子里,第二口在村委会正西1500 m处,第三口在村委会北偏东30°方向,2000 m处,第四口在村委会东南方向1000 m处,第五口在村委会正南900 m处.请你根据徐伯伯的话,画图表示这个村庄5口水井的位置.27.如图4,AB∥EF,AB∥CD. 若∠EFB =l20°,∠C =70°,求∠FBC的度数.28.如图所示,有一条小船,(1)若把小船平移,使点A平移到点B,请你在图中画出平移后的小船;(2)若该小船先从点A航行到达岸边l的点P处补给后再航行到点B,但要求航程最短,试在图中画出点P的位置.29.如图所示,已知△ABC的边AB和BC边上的中线AD,请把△ABC补画完整.30.有一根长 20m 的绳子,第一天截去一半,第二天截去剩下的一半,如此截下去,第五天后还剩多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.A5.B6.C7.A8.A9.B10.A11.AD13.C二、填空题14.15.⑤④16. 32- 17. (1)92-;(2)430;(3)253- 18.(11)-, 19.y=-2x+220.2(35)3y y =-+21.1.25三、解答题22.该船要不触礁,则航线至少与⊙O 相切,过A 作⊙O 的切线 AB ,再过0点作0C ⊥AB 于 C ,则OC=8,又AO=16,在 Rt △OAC 中,81sin 162OC A OA ===,∴∠A= 30°,即当该船至少向东偏南30°航行时,才不会触礁. 23.略.24.作OE ⊥AB ,垂足为 E ,则EA=EB ,EC=ED ,∴EA-EC=EB-ED ,∴AC=BD .(1)∵ 1×4≠2×3,∴1,2,3,4 不成比例.(2)由小到大排列为:2,3,4,6,∵2 ×6 = 3 ×4= 12∴2,4,3,6成比例,即23 46(3)从小到大排列为:1.2,1.8,30,45,∵1.2 ×45 = 1.8×30 ,∴1. 2 ,1. 8 ,30 ,45 成比例.( 4 ) ∵1 1 ×55≠22×44∴.11,22,44,55 不成比例.26.略27.∵AB∥EF,∠EFB=120°,∴∠ABF=180°-120°=60°∵AB∥CD.∠C=70°,∴∠A8C=∠C=70°.∴∠FBC∠ABC-∠ABF=70°-60°=10°28.略29.连结BD,并延长BD到C,使DC=BD,连结AC30.58m。
江苏省中考数学二模试卷一、选择题(共6小题,每小题3分,计18分)1.4的算术平方根是()A.±2 B.C.2 D.﹣22.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84.5分C.85.5分D.86.5分4.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE5.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A.8 B.12 C.16 D.206.如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.﹣3<m<﹣B.C.﹣2<m< D.﹣3<m<﹣2二、填空题(共10小题,每小题3分,计30分)7.函数中,自变量x的取值范围是.8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为.9.若直线y=2x+3b+c与x轴交于点(﹣2,0),则代数式2﹣6b﹣2c的值为.10.已知,则= .11.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是.12.已知一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于.13.如图,A点为反比例函数图象上一点,过A点作AB⊥y轴,B为垂足,点P 为x轴上任意一点,且△ABP的面积为2,则k= .14.根据图中所标注的数据,计算此圆锥的侧面积cm2(结果保留π).15.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.16.在平面直角坐标系中,⊙P的圆心P的坐标为(a,4),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值为.三、解答题(共10小题,计102分)17.(1)计算:(2)解不等式组.18.先化简,再求值:(1+)÷(m﹣),其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.19.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2016年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)扇形统计图中3级空气质量所对应的圆心角为°;(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2016年该城市有多少天不适宜开展户外活动.20.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.21.某校九年级两个班,各选派10名学生参加学校举行的“数学奥林匹克”大赛预赛.各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班10094b9312九(2)班99a95.5938.4(1)直接写出表中a、b的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,求另外两个决赛名额落在不同班级的概率.22.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?23.如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B 的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠DBC的度数;(2)求C,D之间的距离.24.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.25.如图,已知直线y=﹣x+1与x轴交于A点,与y轴交于B点,P(a,b)为双曲线y=(x>0)上一动点,过P点分别作x轴、y轴的垂线,垂足分别为C、D,交直线AB于点E、F(1)用含b的代数式表示E点的坐标用含a的代数式表示F点的坐标(2)求证:△AOE∽△BFO(3)当点P在双曲线y=(x>0)上移动时,∠EOF也随之变化,试问∠EOF的大小是否变化,如果不变,求出其值,如果变化,说明理由.26.如图,二次函数y=a(x2﹣4x+3)(a>0)的图象与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)若△ABD为直角三角形,求此二次函数的解析式;(2)P为抛物线对称轴上一点,且P点的纵坐标t是大于3的常数,试问是否存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.(3)是否存在实数a,使得△OAC沿AC翻折后,点O的对应点O′落在△ABC的外部?若存在,求出a的范围,若不存在,请说明理由.参考答案与试题解析一、选择题(共6小题,每小题3分,计18分)1.4的算术平方根是()A.±2 B.C.2 D.﹣2【考点】算术平方根.【分析】根据算术平方根的定义即可得出答案.【解答】解:4的算术平方根是2,故选C.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.3.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84.5分C.85.5分D.86.5分【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:2+3+5=10根据题意得:80×+85×+90×=16+25.5+45=86.5(分)答:小王的成绩是86.5分.故选:D.4.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE【考点】三角形的外接圆与外心.【分析】利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.【解答】解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.5.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A.8 B.12 C.16 D.20【考点】平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=6,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=6,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==8,∴AE=2AO=16.故选C.6.如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.﹣3<m<﹣B.C.﹣2<m< D.﹣3<m<﹣2【考点】二次函数图象与几何变换.【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.【解答】解:令y=﹣2x2﹣8x﹣6=0,即x2+4x+3=0,解得x=﹣1或﹣3,则点A(﹣1,0),B(﹣3,0),由于将C1向左平移2个长度单位得C2,则C2解析式为y=﹣2(x+4)2+2(﹣5≤x≤﹣3),当y=﹣x+m1与C2相切时,令y=﹣x+m1=y=﹣2(x+4)2+2,即2x2+15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=﹣x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=﹣x+m与C1、C2共有3个不同的交点,故选:A.二、填空题(共10小题,每小题3分,计30分)7.函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围;分式有意义的条件.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为 6.344×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6344000=6.344×106.故答案为:6.344×106.9.若直线y=2x+3b+c与x轴交于点(﹣2,0),则代数式2﹣6b﹣2c的值为﹣6 .【考点】一次函数图象上点的坐标特征.【分析】先将(﹣2,0)代入y=2x+3b+c,得到3b+c=4,再将2﹣6b﹣2c变形为2﹣2(3b+c),然后把3b+c=4代入计算即可.【解答】解:∵直线y=2x+3b+c与x轴交于点(﹣2,0),∴0=2×(﹣2)+3b+c,∴3b+c=4,∴2﹣6b﹣2c=2﹣2(3b+c)=2﹣2×4=﹣6.故答案为﹣6.10.已知,则= ﹣.【考点】比例的性质.【分析】根据等式的性质,可得a=b,根据分式的性质,可得答案.【解答】解:两边都乘以b,得a=b.==﹣,故答案为:﹣.11.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=5cm,∴S△ABC=×5×5=cm2.故答案是:cm2.12.已知一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于 6 .【考点】概率公式.【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解此分式方程即可求得答案.【解答】解:根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.13.如图,A点为反比例函数图象上一点,过A点作AB⊥y轴,B为垂足,点P 为x轴上任意一点,且△ABP的面积为2,则k= ﹣4 .【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数y=中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:如图,连接AO,设反比例函数的解析式为y=.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第二象限,∴k<0.∴k=﹣4.故答案为:﹣4.14.根据图中所标注的数据,计算此圆锥的侧面积15πcm2(结果保留π).【考点】圆锥的计算.【分析】先利用勾股定理计算出圆锥的母线长为5cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算此圆锥的侧面积.【解答】解:圆锥的高为4cm,圆锥的底面圆的半径为3cm,所以圆锥的母线长==5(cm),所以此圆锥的侧面积=•2π•3•5=15(cm2).故答案为15π.15.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22 元时,该服装店平均每天的销售利润最大.【考点】二次函数的应用.【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.16.在平面直角坐标系中,⊙P的圆心P的坐标为(a,4),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值为4﹣或4+.【考点】垂径定理;一次函数图象上点的坐标特征;勾股定理.【分析】分为两种情况:①当P在直线y=x的左边时,过P1D⊥AB于D,由垂径定理求出AD、由勾股定理求出P1D,过P1作P1D∥直线y=x,交y轴于D,过D作DB⊥直线y=x于B,得出DB=P1D=1,OB=DB=1,由勾股定理求出DO,得出直线P1D的解析式是y=x+,把P(a,4)代入求出a即可;②与①解法类似,当P在直线y=x的右边时,同法得出直线的解析式y=x﹣,把p(a,4)代入求出a的另一个值.【解答】解:分为两种情况:①当P在直线y=x的左边时,过P1D′⊥AB于D′,由垂径定理得:AD′=×2=,∵P1A=2,由勾股定理得:P1D′=1,过P1作P1D∥直线y=x,交y轴于D,过D作DB⊥直线y=x于B,则DB=P1D=1,∵直线y=x,∴∠DOB=45°,∴OB=DB=1,由勾股定理得:DO=,∵直线P1D∥直线y=x,∴直线P1D的解析式是y=x+(即把直线y=x相上平移个单位),∴把P(a,4)代入得:4=a+,∴a=4﹣,②当P在直线y=x的右边时,与①解法类似,P2M=ON=1,由勾股定理得OH=,把直线y=x向下平移个单位得出直线y=x﹣,把p(a,4)代入求出a的另一个值是4+.故答案为:4﹣或4+.三、解答题(共10小题,计102分)17.(1)计算:(2)解不等式组.【考点】解一元一次不等式组;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据零指数幂,负整数指数幂,二次根式的性质,特殊角的三角函数值分别求出每一部分的值,再合并即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)原式=1+9+2﹣2|﹣1|=10+2﹣2+=8+3;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为﹣1≤x<2.18.先化简,再求值:(1+)÷(m﹣),其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.【考点】分式的化简求值;根的判别式.【分析】先算括号里面的,再算除法,根据实数m使关于x的一元二次方程x2﹣4x ﹣m=0有两个相等的实数根求出m的值,代入分式进行计算即可.【解答】解:原式=÷=•=,∵实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根,∴△=0,即(﹣4)2+4m=0,解得m=﹣4,∴原式=﹣.19.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2016年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50 天的空气质量检测结果进行统计;(2)扇形统计图中3级空气质量所对应的圆心角为72 °;(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2016年该城市有多少天不适宜开展户外活动.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据圆周角乘以3级所占的百分比,可得答案;(3)根据有理数的减法,可得5级的天数,根据5级的天数,再根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)360°×=72°,故答案为:72;(3)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.20.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.【考点】菱形的性质;全等三角形的判定与性质;平行四边形的性质.【分析】①欲证明△ADE≌△CBF,只要证明AD=BC,∠A=∠C,AE=CF即可.②连接BD,根据S四边形ABCD=2S△ABD,只要证明△ADB是直角三角形,求出AD、BD即可解决问题.【解答】①证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为AB、CD的中点,∵AE=EB,DF=FC,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF,②连接BD,由①有AE=EB,∵四边形DEBF是菱形,∴DE=EB=AE,∴△ADB是直角三角形,在RT△ADB中,∵∠ADB=90°,AD=BC=2,AB=4,∴BD==2,∵四边形ABCD是平行四边形,∴S平行四边形ABCD=2•S△ADB=2××2×2=4.21.某校九年级两个班,各选派10名学生参加学校举行的“数学奥林匹克”大赛预赛.各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班10094b9312九(2)班99a95.5938.4(1)直接写出表中a、b的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,求另外两个决赛名额落在不同班级的概率.【考点】列表法与树状图法;算术平均数;中位数;众数;方差.【分析】(1)根据平均数的定义计算(2)班的平均数,根据中位数的定义确定(1)班的中位数;(2)可利用平均数或中位数或方差的意义说明九(2)班成绩好;(3)设九(1)班中98分的两名学生分别用A、B表示,九(2)班中98分的两名学生分别用a、b表示,画树状图展示所有9种等可能的结果数,找出另外两个决赛名额落在不同班级的结果数,然后根据概率公式求解.【解答】解:(1)a=95,b=93;(2)九(2)班成绩好的理由为:(2)班的平均数比(1)高;(2)班的方差比(1)班小,(2)班的成绩比(1)班稳定;(3)设九(1)班中98分的两名学生分别用A、B表示,九(2)班中98分的两名学生分别用a、b表示,画树状图为:共有9种等可能的结果数,其中另外两个决赛名额落在不同班级的结果数为8,所以另外两个决赛名额落在不同班级的概率==.22.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时”,列出方程组,即可解答.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.从而得到W=﹣8a+3200,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.【解答】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y 小时.由题意得:,解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.23.如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B 的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠DBC的度数;(2)求C,D之间的距离.【考点】解直角三角形的应用-方向角问题.【分析】由各方向角得出:∠EAD=45°,FBD=30°,又∠DAC=15°,则∠EAC=60°,∠FBC=60°,∠DBC=30°,△ABD是等腰三角形,∠ADB的大小,即可;(2)过B作BO⊥DC,交其延长线于点O,把求CD的问题转化为求DO和CO的问题【解答】解:(1)由示意图可得:∠EAD=45°,∠FBD=30°,又∵∠DAC=15°,∴∠EAC=60°,∵AE∥BF,∴∠FBC=∠EAB=60°,∴∠DBC=30°,∴∠BDA=∠DBC﹣∠DAB=30°﹣15°=15°,∴∠BDA=∠DAB,∴AB=DB=2km,∴∠ADB=15°,∴∠DBC=∠ADB+∠DAC=15°+15°=30°;(2)如图,过B作BO⊥DC,交其延长线于点O,在Rt△DBO中,BD=2,∠DBO=60°,∴DO=2×sin60°=,BO=2×cos60°=1.在Rt△CBO中,∠CBO=30°,CO=BOtan30°=,∴CD=DO﹣CO=﹣=(km).即C,D之间的距离km.24.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.【考点】切线的判定.【分析】(1)利用圆内接四边形对角互补以及邻补角的定义得出∠FED=∠A,进而得出∠B+∠A=90°,求出答案;(2)利用相似三角形的判定与性质首先得出△FED∽△FAC,进而求出即可.【解答】(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵∠B+∠FED=90°,∴∠B+∠A=90°,∴∠BCA=90°,∴BC是⊙O的切线;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴=,∴=,解得:AC=9,即⊙O的直径为9.25.如图,已知直线y=﹣x+1与x轴交于A点,与y轴交于B点,P(a,b)为双曲线y=(x>0)上一动点,过P点分别作x轴、y轴的垂线,垂足分别为C、D,交直线AB于点E、F(1)用含b的代数式表示E点的坐标(1﹣b,b)用含a的代数式表示F点的坐标(a,1﹣a)(2)求证:△AOE∽△BFO(3)当点P在双曲线y=(x>0)上移动时,∠EOF也随之变化,试问∠EOF的大小是否变化,如果不变,求出其值,如果变化,说明理由.【考点】反比例函数综合题.【分析】(1)易得点E的纵坐标为b,点F的横坐标为a,代入直线的解析式y=﹣x+1,即可用a,b的式子表示出E、F两点的坐标;(2)由直线y=﹣x+1与x,y轴分别交于A、B两点可得OA=OB=1,从而得到∠OAB=45°,将OE2、EF、EA分别用a、b的代数式表示,可得OE2=EF•EA,可证明△EOF∽△EAO,可得到∠EOA=∠EFO,又∠EAO=∠FBO,可证明△AOE∽△BFO;(3)由(2)可得∠EOF=∠OAE=45°,其值不变.【解答】解:(1)如图1,∵PM⊥x轴与M,交线段AB于F,∴x F=x M=x P=a,∵PN⊥y轴于N,交线段AB于E,∴y E=y N=y P=b,∵点E、F在直线AB上,∴y E=﹣x E+1=b,y F=﹣x F+1=﹣a+1,∴x E=1﹣b,y F=1﹣a,∴点E的坐标为(1﹣b,b),点F的坐标为(a,1﹣a).故答案为:(1﹣b,b);(a,1﹣a);(2)证明:过点E作EH⊥OM,垂足为H,如图2,∵EN⊥ON,∴OE2=ON2+EN2=b2+(1﹣b)2=2b2+1﹣2b,∵EH⊥OM,EH=b,AH=1﹣(1﹣b)=b,∴EA==b,同理可得:FA=(1﹣a),∴EF=EA﹣FA=b﹣(1﹣a)=(b+a﹣1),∵2ab=1,∴EF•EA=(b+a﹣1)b=2(b2+ab﹣b)=2b2+2ab﹣2b=2b2+1﹣2b,∴OE2=EF•EA,∴=,∵∠OEF=∠AEO,∴△OEF∽△AEO,∴∠EFO=∠AOE,∵OA=OB=1,∠AOB=90°,∴∠OAB=∠OBA=45°,∴△AOE∽△BFO;(3)由(2)可知△OEF∽△AEO,∴∠EOF=∠EAO=45°,∴∠EOF的大小不变,始终等于45°.26.如图,二次函数y=a(x2﹣4x+3)(a>0)的图象与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)若△ABD为直角三角形,求此二次函数的解析式;(2)P为抛物线对称轴上一点,且P点的纵坐标t是大于3的常数,试问是否存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.(3)是否存在实数a,使得△OAC沿AC翻折后,点O的对应点O′落在△ABC的外部?若存在,求出a的范围,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)求出A、B、D坐标,理由等腰直角三角形性质即可解决问题.(2)存在.先求出直线CD解析式,再求出线段CD的垂直平分线的解析式,即可求出点P坐标,观察点P纵坐标即可解决问题.(3)存在.如图2中,作AF⊥BC,垂足为F,求出OA=AF时,OC的长即可解决问题.【解答】解:(1)令y=0,则x2﹣4x+3=0,解得x=3或1,∴A(1,0).B(3,0),又∵y=a(x﹣2)2﹣a,∴顶点D(2,﹣a),∵△ABD是直角三角形,DA=DB,∴|﹣a|=AB,|﹣a|=1,∵a>0,∴a=1,∴二次函数解析式为y=x2﹣4x+3,(2)存在.理由:如图1中,∵点P在对称轴上,∴PA=PB,∵四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等,∴PC=PD,设点P(2,t),∵C(0,3a),D(2,﹣a),∴直线CD解析式为y=﹣2ax+3a,线段CD的垂直平分线的解析式为y=x+a﹣,∴点P的纵坐标t=+a,∴当a=3时,t>3,∴存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等.(3)如图2中,作AF⊥BC,垂足为F,当OA=AF=1时,在RT△AFB中,∵AB=2,AF=1,∴AB=2AF,∴∠ABF=30°,∴在RT△BOC中,∵∠BOC=90°,∠OBC=30°,OB=3,∴OC=OB•tan30°=3×=,由图象可知当0<3a<时,即0<a时,点O的对应点O′落在△ABC的外部.。
3 2徐州市中考数学仿真模拟冲刺参考答案徐州王黎之老师解析14.将半径为 6cm 的圆形纸片沿 AB 折叠后,圆弧恰好能经过圆心 O ,用图中阴影部分的扇形围成一个圆锥的侧面,则一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分)这个圆锥的高为cm . 1.B ; 2.D ; 3.C ;4.D ;5.A ; 6.C 7. B .15.顺次连接四边形 ABCD 的各边中点得到的四边形是菱形, 则四边形 ABCD 应该满足的条件是 AC=BD .16.一次函数 y = -x + 1与反比例函数 y = - ,x 与 y 的对 x应值如下表:8.A .当 P 在 BC 边上运动时,∆BPD 的两个直边都与变量 X 有关,故不是一次关系,没见负数,故开口向上;不等式 -x + 1>- 2 x的解为 x<-1 或 0<x<2 .当 P 在 DA 边上运动时,∆BPD 的边都与变量 X 有关,故不是一次关系,不能是直线;综合,选 A .二、填空题(本大题共 8 题,每小题 3 分,共 30 分)9.因式分解:xy 2﹣4x= x(x+2)(x-2).x -117.如图,由 7 个形状、大小完全相同的正六边形组成网格, 正六边形的顶点称为格点.已知每个正六边形的边长为 1,△ABC 的顶点都在格点上,则△ABC 的面积是_2_.10.当 x= 2 时,分式x + 2无意义.11.说明命题“若 x >-3,则 x2>9”是假命题的一个反例, 可以取 x= 0 . 12.关于 x 的方程的解是不小于 1 的数,则 a 的取值范围是 a≤-3 且 a≠-4.13.如图是一个 3×2 的长方形网格,组成网格的小长方形长是宽的 2 倍,△A BC 的顶点都是网格中的格点,则 t a n ∠6 B A C 的值为.1718.在矩形 ABCD 中 ,AB=8 , BC=6, 点 P 在边 AB 上。
江苏省徐州市中考数学模拟试卷(九)一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×1063.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.11.计算:( +1)(﹣1)=.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.14.代数式有意义时,x应满足的条件为.15.若(m﹣1)2+=0,则m+n的值是.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.江苏省徐州市中考数学模拟试卷(九)参考答案与试题解析一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:B.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将110000用科学记数法表示为1.1×105.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥【考点】由三视图判断几何体.【分析】根据一个空间几何体的主视图和俯视图都是三角形,可判断该几何体是锥体,再根据左视图的形状,即可得出答案.【解答】解:∵几何体的主视图和俯视图都是三角形,∴该几何体是一个锥体,∵俯视图是一个圆,∴该几何体是一个圆锥;故选D.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.【解答】解;A、x4•x4=x8,故A错误;B、(a3)2=a6,故B错误;C、(ab2)3=a2b6,故C错误;D、a+2a=3a,故D正确.故选:D.【点评】本题主要考查了同底数幂相乘,幂的乘方的性质,积的乘方的性质,合并同类项,熟练掌握运算性质并理清指数的变化是解题的关键.5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°【考点】命题与定理.【分析】分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.【解答】解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =【考点】由实际问题抽象出分式方程.【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得,现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【解答】解:设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得, =.故选B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°【考点】正方形的性质;等腰三角形的性质;等边三角形的性质.【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题.【分析】作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A (2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=m(a+b).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这里的公因式是m,直接提取即可.【解答】解:ma+mb=m(a+b).故答案为:m(a+b)【点评】本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【考点】概率公式.【分析】根据不合格品件数与产品的总件数比值即可解答.【解答】解:∵在5个外观相同的产品中,有1个不合格产品,∴从中任意抽取1件检验,则抽到不合格产品的概率是:.故答案为:.【点评】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.计算:( +1)(﹣1)=1.【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:( +1)(﹣1)=.故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.14.代数式有意义时,x应满足的条件为x≠±1.【考点】分式有意义的条件.【分析】根据分式有意义,分母等于0列出方程求解即可.【解答】解:由题意得,|x|﹣1≠0,故答案为:x≠±1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.若(m﹣1)2+=0,则m+n的值是﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以m+n=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是20.【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.【点评】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是5.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.【专题】压轴题.【分析】根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.【解答】解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.【考点】正方形的性质;菱形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC=,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.故答案为:.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.【考点】实数的运算;整式的混合运算—化简求值;零指数幂.【分析】(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.【点评】本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.【考点】解一元二次方程-公式法;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)方程利用公式法求出解即可;(2)不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)这里a=2,b=4,c=﹣1,∵△=16+8=24,∴x==;(2)不等式移项合并得:2x≤2,解得:x≤1,【点评】此题考查了解一元二次方程﹣公式法,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.【考点】作图-轴对称变换;勾股定理;锐角三角函数的定义.【分析】①利用勾股定理得出AB的长,再利用锐角三角函数关系得出答案;②利用关于直线对称的性质得出对应点进而利用梯形面积求法得出答案.【解答】解:①∵AC=3,AB==5,∴sinB的值是: =.故答案为:;②如图所示:△A1B1C1,即为所求,梯形AA1B1B的面积为:×(2+8)×4=20.【点评】此题主要考查了轴对称变换和勾股定理以及锐角三角函数关系,正确掌握梯形面积公式是解题关键.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是: =50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】优选方案问题.【分析】(1)设A商品每件x元,B商品每件y元,根据关系式列出二元一次方程组.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件,根据关系式列出二元一次不等式方程组.求解再比较两种方案.【解答】解:(1)设A商品每件x元,B商品每件y元,依题意,得,解得.答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件解得5≤a≤6根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.【点评】此题主要考查二元一次方程组及二元一次不等式方程组的应用,根据题意得出关系式是解题关键.25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】(1)作辅助线,构造直角三角形,解直角三角形即可;(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C 相对于点A的方向.【解答】解:(1)如右图,过点A作AD⊥BC于点D,∠ABE=∠BAF=15°,由图得,∠ABC=∠EBC﹣∠ABE=∠EBC﹣∠BAF=75°﹣15°=60°,在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50,∴CD=BC﹣BD=200﹣50=150,在Rt△ACD中,由勾股定理得:AC==100≈173(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2,∴∠BAC=90°,∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.【点评】考查了解直角三角形的应用﹣方向角问题,关键是熟练掌握勾股定理,体现了数学应用于实际生活的思想.26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【考点】三角形的外接圆与外心;圆周角定理;解直角三角形.【分析】(1)根据题意得出AE的长,进而得出BE=AE,再利用tan∠ACB=,求出EC的长即可;(2)首先得出AC的长,再利用圆周角定理得出∠D=∠M=60°,进而求出AM的长,即可得出答案.【解答】解:(1)过点A作AE⊥BC,垂足为E,∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,∴AE=ABsinB=3sin45°=3×=3,∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,在Rt△ACE中,∵tan∠ACB=,∴EC====,∴BC=BE+EC=3+;(2)连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,∴AC=2,∵∠D=∠M=60°,∴sin60°===,解得:AM=4,∴⊙O的半径为2.【点评】此题主要考查了解直角三角形以及锐角三角函数关系应用,根据题意正确构造直角三角形是解题关键.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.【考点】相似形综合题.【专题】几何动点问题;压轴题.【分析】(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.【解答】(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•sin30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PEO,∴,即,化简得:AQ•PB=3.【点评】本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P 的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.。
2020-2021学年度初中毕业、升学第二次模拟检测九年级数学试题(全卷共140分,考试时间120分钟)一、选择题(本题共8个小题,每题3分,共24分) 1. ﹣31的相反数是 A .3B .﹣3C.31; D. ﹣31 2.下列计算正确的是 A .a +2a ==23aB .4a ÷2a =3a C .()2|b a +=2a +2bD .()32ab =833b a3.下列汉文化的标志图案中,是轴对称图形的是A .B .C .D .4.小明记录连续5天的天气预报最高温度数据如下(单位:°C):32,3l ,32, 27,30.关于这组数据,下列说法正确的是 A.均数是30°C B .中位数是32°C C.众数是32°CD .极差是3°C5.已知a =23﹣2,a 介于两个连续自然数之间,则下列结论正确的是 A .1<a <2 B .2<a <3 C .3<a <4D .4<a <<56.学校组织一次足球赛,要求每两队之间都要赛一场.若共赛了28场,则有几只 球队参赛?设有x 只球队参赛,则下列方程中正确的是 A .x(x +1)=28 B .x(x -1)=28 C. 21x(x +1)=28D·21x(x -1):287.如图,二次函数y =a 2x +bx +c 图像对称轴是直线x =1,下列说法正确的是A .a >0B .2a +b =0C .2b — 4ac <0D .a +b +c <08.函数y =3x 一3的图像与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若△ABC 为等腰三角形,则满足条件的点C 共有A .4个B .3个C 2个D .1个 (第7题) 二、填空题(本题共10个小题,每题3分,共30分) 9.1的平方根____▲____·10.成人血管的总长度大约96000千米,96000牛采用科学记数法表示为 ▲ 米 11.分解因式;3m —m =___▲ .12.若诉;2 x 在实数范围内有意义,则x 的取值范围为_____▲____ 13.一组数据如下:3、5、4、6、7,那么这组数据的方差是_____▲_______ . 14.已知一元二次方程2x 一5x +c =0有一个根为4,则另一个根为_____▲_________ . 15.若函数y =2x 一2x +b 的图像与坐标轴有两个公共点,则b 满足的条件______▲_______· 16.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D , 若∠A=40°,则∠C= ____▲____°.17.如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB , 若AD=2,BD=3,则AC 的长_____▲_______,(第16题) (第17题) (第18题)18.如图,△ABC 中,∠BCA=120°,BC =AC ,AB =6,以边AB 为斜边在△ABC 形外作Rt △ADB ,使得∠ADB =90°,则四边形ACBD 最大面积是 ▲ .三、解答题(本题共10个小题,共86分.请在答题卡指定区域内作答,答题时应写出文字说明、证明过程和演算步骤)19.(本题10分)(1)计算:4-1-31⎪⎭⎫⎝⎛-2cos 60°(2)化简:⎪⎭⎫⎝⎛m1-1÷mm12-,20.(本题10分)⑴解方程:2x—2x—4=0 ;⑵解不等式组:21.(本题7分)为了解本校学生对新闻(A)、体育(B)、动画(C)、娱乐(D)、戏曲(E)五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查,并根据调查结果绘制了两幅不完整的统计图,请根据统计图解答下列问题:(1)补全条形统计图;(2)扇形统计图中,C类节目所对应的扇形圆心角的度数为▲度;(3)该校共有1200名学生,根据调查结果估计该校最喜爱新闻节目的学生数.(第21题)22.(本题7分)一只不透明的箱子里有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任毒摸出一个球是红球的概率是▲;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,请用列表的方法,求两次摸出的球一白一红的概率.23.(本题8分)如图,在平面直角坐标系中,户是第三象限内一点.(1)尺规作图;请在图中作出经过O、P两点且圆心在x轴的⊙M;(不写作法,保留作图痕迹)(2)若点P的坐标为(-6,-3),点Q是⊙M上的点,且∠PMQ=90°,则点Q的坐标为▲·(第23题) 24.(本题8分)徐州为了加快城市道路交通建设,决定修建十条高架,为使工程提前6个月完成,需要将工作效率提高30%.原计划完成这项工程需要多少个月?25.(本题8分)如图,将平行四边形ABCD的四个角向内折起,恰好拼成一个无缝隙、无重壁四边彤EFGH.(1)请直接写出LHEF的度数▲;(2)判断HF与AD的数量关系,并说明理由.(第25题)26.(本题8分)如图1,和平大桥是徐州市地标建筑,也是国内跨铁路最多的大桥,某数学小组的同学利用课余时间对该桥进行了实地测量,如图2所示的测量示意图,测得产下数 据;∠A=27°,∠B=31°,斜拉主跨度AB =368米.(1)过点C 作CD ⊥AB ,垂足为D ,求CD 的长(结果精确到0.1);(2)若主塔斜拉链条上的LED 节能灯带每米造价90元,求斜拉链条AC 上灯带的总造价是多少元?(参考数据tan27°≈0.5,sin27°≈0.45,cos27°≈0.9:tan31°≈0.6)(图1) (图2)(第26题)27.(本题10分)某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =41x -42(x≥168)·若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠. (1)求入住房间z(间)与定价x (元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?28 (本题10分)如图,在平面直角坐标系中,抛物线y=a 2x +bx +c 经过 A(3,0)、 B.(-1,0)、 C (0,3). (1)求抛物线的函数表达式:(2)点D是线段BC上一动点,点D关于AC、AB的对称点分别为点M、N.连接MN交线段AC、AB于E、F.求MF·NE最小值;(3)点J是抛物线顶点,连接JC、JA,点H为抛物线对称轴上一动点,设纵坐标为m,过点H的直线交边CJ于P,交边JA于Q,若对于每个确定的m值,有且只有一个△JQ P与△JCA相似,请直接写出阴的取值范围.(第28题)。
2020徐州中考数学试卷答案及解析分析:科学记数法的表示方法为a×10^b,其中1≤a<10,b为整数。
因此,需要将化为科学记数法的形式。
解答:=6.15×10^4故答案为6.15×10^4.点评:此题考查了科学记数法的基本概念和表示方法,需要掌握科学记数法的转化方法。
11、已知函数y=2x-1,当x=3时,y=______________。
考点:函数的概念和运算分析:根据函数的定义,将x=3代入函数y=2x-1中即可求得y的值。
解答:y=2×3-1=5故答案为5.点评:此题考查了函数的基本概念和运算,需要掌握函数的定义和代入法求解函数值的方法。
12、已知三角形ABC,∠A=60°,AB=3,AC=4,BC=5,则△ABC的高为______________。
考点:三角形的基本概念和性质分析:根据三角形的性质,可以利用三角形的面积公式求解△XXX的高。
解答:设△ABC的高为AD,则△ABC的面积为S=1/2×BC×AD=1/2×5×AD。
又因为△ABC为等边三角形,所以BD=CD=BC/2=2.5.由勾股定理可得,AD^2=AC^2-BD^2=4^2-2.5^2=11.25,故AD=√11.25=3/2×√5.因此,△ABC的高为3/2×√5.故答案为3/2×√5.点评:此题考查了三角形的基本概念和性质,需要掌握三角形面积公式和勾股定理的应用。
13、已知正方体的棱长为3cm,则它的体积为______________。
考点:正方体的基本概念和计算分析:根据正方体的定义,可以利用正方体的体积公式求解正方体的体积。
解答:正方体的体积为V=a^3=3^3=27.故答案为27.点评:此题考查了正方体的基本概念和计算,需要掌握正方体的定义和体积公式。
14、已知函数y=2x-1和函数z=x^2-3x,当x=2时,y+z=______________。
2021年江苏省徐州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.⊙O 的半径为6,⊙O 的一条弦AB 长为,以3为半径的同心圆与AB 的位置关系是( )A .相离B .相切C .相交D .无法确定2.如图,点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫做黄金比,其比值是( )A.12 B.32- C.12 D.32+ 3.点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC =,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫做黄金比,其比值是( )A .215-B .253-C .215+D .253+ 4.如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A .60B .90C .120 D .180 5.21-的绝对值等于( ) A . 2 B .-2 C .22 D .-22 6.不等式4(2)2(35)x x -≥-的正整数解的个数为( ) A .0个B .1个C .2 个D .3 个 7.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .16 8.下列说法中,错误的是( )A .同旁内角互补,两直线平行B .两直线平行,内错角相等C .对顶角相等D .同位角相等9.下列事件中,必然事件是( ) A B CA .明天一定是晴天B .异号两数相乘积为负数C .买一张彩票中特等奖D .负数的绝对值是它本身10.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-11.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是( ) A . 4639611x y x y +=⎧⎨-=⎩ B . 6396222x y x y +=⎧⎨-=⎩ C . 4669633x y x y +=⎧⎨-=⎩ D . 6936411x y x y +=⎧⎨-=⎩12.如图,直线1l 、2l 、3l 相交于点0,下列结论正确的是( )A .∠l=90°,∠2=30°,∠3=90°,∠4=60°B .∠l=∠3=90°,∠2=∠4=30°C .∠l=∠3=90°,∠2=∠4=60°D .∠l=∠3=90°,∠2=60°,∠4=30°13.甲、乙两人骑自行车同时从相距78 km 的两地相向而行,3 h 相遇,若甲比乙每小时多骑2 km ,则乙每小时骑( )A .8 kmB .10 kmC .12 kmD .14 km 14.下列叙述正确的是( )A .5 不是代数式B .一个字母不是代数式C .x 的 5 倍与 y 的14的差可表示为 5x-14yD .2s R π=是代数式 二、填空题15.已知A 、B 、C 、D 点的坐标如图所示,E 是图中两条虚线的交点,若△ABC ∽△ADE ,则点 E 的坐标是 .16.如图所示,一人拿着一把刻有厘米刻度的小尺,他站在距电线杆 30m 的地方,把手臂向前伸直,小尺竖直看到尺上 12 cm 恰好遮住电线杆,已知臂长 60 cm ,则电线杆的高为 .17.如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,圆心角均为90,则铺上的草地共有 平方米.18.如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP'重合,若AP =3,则PP ′的长等于________.19.—函数的图祭经过点(3,0)和(-3,6),则这个一次函数的解析式是 .20.如图所示,不等式的解为 .21.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为____________.22.一个六棱柱的底面边长都是3 cm ,一条侧棱的长为5 cm ,那么它的所有棱长度之和为 cm ,侧面积为 cm 2.23.下列计算是否正确?如有错误请改正.(1)236()xy xy =;(2)236(3)9b b -=-24.如图是 2002 年 6 月份的日历,现用一矩形在日历中任意框出 4 个数,请用一个等式表示 a 、b 、c 、d 之间的关系: .25.如果正数m 的平方根为1x +和3x -,则m 的值是 .三、解答题26.为解决楼房之间的档光问题,•某地区规定:•两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40•米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.3≈1.732,2≈1.414).27.如图,△ABC 中,AB= 6 , BC=4 , AC=3 ,点 P 在 BC 上运动,不能到 B点,过 P作∠DPB=∠A,PD 交AB 于 D,设 PB =x,AD=y.(1)求y关于x 的函数关系式和自变量x的取值范围;(2)当 x 取何值时,y 最小,最小值是多少?28.已知0a ,试比较3a与2a的大小(用两种不同方法进行比较).29.如图是蝴蝶的部分示意图,请你在方格中画出另一半.30.如图,直线AB、CD相交于点0,OB平分∠DOE.如果∠COE=80°,求∠EOB与∠AOC的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.D5.C6.B7.A8.D9.B10.A11.C12.D13.C14.C二、填空题15.(4,-3)16.6 cm17.2πr18.3 219.3y x=-+20.1x≥21.0.522.66,9023.(1)不正确,改正为:2336()xy x y=;(2)不正确,改正为:236(3)27b b-=-24.a db c+=+25.4三、解答题26.约24米.27.(1)∵∠B=∠B,∠DPB=∠A,∴△BPD∽△BAC,∴BP BD AB BC=,即664x y-=,263y x=-(0<x≤4)(2)当 x=4 时,y 最小,最小值是103.28.方法一:∵3>2,∴a<0,∴3a<2a;方法二:∵3a-2a=a<0,∴3a<2a 29.图略30.∠BOE=50°,∠AOC=50°。
2020—2021学年度初中、毕业升学第一次模拟检测9. 4±10. 211. 6≥x 12. 8 13. -2 14. 12π 15. 316. 55º17. 3-18. 62519. (1) 原式= 2-4-1 ····················································································· 3分=-2-1 ························································································ 4分 =-3 . ··························································································· 5分(2) 原式 = 212()(1)(1)a a aa a a a +-⋅-⋅+ ·························································· 3分 = 2(1)(1)(1)a a a a a -⋅-⋅+ ···································································· 4分 =11a a -+ ··························································································· 5分20. (1) 解法一:(配方法)x 2-4x + 4 = 2. ························································································· 1分 (x -2)2=2. ······························································································· 2分 x -2=2±. ···························································································· 3分 x 1=22-,x 2=22+. ··············································································· 5分 解法二:(公式法)x 2-4x + 2 = 0. ························································································· 1分 ∵a =1,b =-4,c =2.b 2-4ac = 16-8 = 8. ················································································· 2分 ∴222224128)4(±=±=⨯±--=x ··········································· 3分∴.22,2221-=+=x x , (结果正确没化简,扣1分) . ···················· 5分 (2) 由① 得,x ≤-3, ················································································ 2分 由② 得,12x < . ······················································································ 4分所以不等式组的解集是:x ≤-3. ································································· 5分 21.···································································································· 2分 (2) 若王老师、张老师、李老师分别用A 、B 、C 表示,画树状图如下: ··············· 5分 共有9种等可能情况,其中都是王老师测体温的有1种情况,则都是王老师测体温 的概率是19. ······················································································ 7分22. (1) 100 ; ································································································ 3分(2) 补完条形图(如图 ). ·········································································· 5分 (3) =⨯%402000800 . ·········································································· 7分 23. (1) ∵AB ∥CD ,∴∠B =∠D . ····································································· 1分在△ABE 和△CDF 中,B D AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ).∴AE =CF .············································································································ 4分 (2) 由(1)△ABE ≌△CDF 得∠AEB =∠CFD . ·········································· 5分 ∴180°-∠AEB =180°-∠CFD ,即∠AEF =∠CFE .∴AE ∥CF . ································································ 7分 ∴四边形AECF 是平行四边形. ·································································· 8分 24.(1)设每副围棋x 元,则每副象棋(x ﹣8)元. ············································· 1分根据题意,得4207568x x=-. ········································································· 4分解得x =18.经检验x =18是所列方程的根. ·································································· 6分 所以x ﹣8=10. ······················································································ 7分( 第22题 ) ( 第21题)答:每副围棋18元,则每副象棋10元; ······················································ 8分 25.(1)证明:连接OD 、OE ,∵AD 切⊙O 于A 点,AB 是⊙O 的直径,∴∠DAB =90°. ·················································································································· 1分 ∵AD =DE ,OA =OE ,OD =OD ,∴△ADO ≌△EDO (SSS ). ································ 3分 ∴∠OED =∠OAD =90°,∴CD 是⊙O 的切线 . ················································· 4分 (2)解:过C 作CH ⊥AD 于H ,∵AB 是⊙O 的直径,AD 和BC 分别切⊙O 于A ,B 两点,∴∠DAB =∠ABC =∠CHA =∠CHD =90°,∴四边形ABCH 是矩形 .∴CH =AB =12,AH =BC =4 ·········································································· 6分 ∵CD 是⊙O 的切线,∴CE =BC ,∴DH =AD ﹣BC =AD ﹣4,CD =AD +4,∵∠CHD =90°,∴CH 2+DH 2=CD 2,∴122+(AD ﹣4)2=(AD +4)2,∴AD =9. ··· 8分 26.解:由题意得:AD ⊥CE ,过点B 作BF ⊥CE ,BG ⊥DA .垂足分别为F 、G ··········· 1分 则四边形BFDG 为矩形, ∴FD =BG , ······························································ 2分 在直角三角形CFB 中,∴sin 3030CF CFBC ︒==,∴CF =15 cm , ·································· 4分在直角三角形ABG 中,sin 60BG AB ︒=40BG,解得:BG = ····················· 6分∴CE =CF +FD +DE =CF +BG +ED =15+≈51.6(cm ). ································· 7分 答:此时灯罩顶端C 到桌面的高度CE 是51.6 cm . ··············································· 8分27. (1)由题意可知该函数关系为一次函数,其表达式为:y =500-20x ; ··············· 2分 (2)w =(10+x )(500-20x )=-20x 2+300x +5000=-20(x -7.5)2+6125, ··········· 4分 ∵a =-20<0,开口向下,∴当x =7.5时,w 最大,又∵x 为整数,∴当x =7或8时,w 最大,最大值为6120. ··································· 6分 答:当增加7或8条生产线时,每天生产的口罩数量最多,为6120个; ··················· 7分 (3)需要增加的生产线x 条的取值范围是:5≤x ≤10(x 为正整数). ····················· 10分28.(1) ····················································································· 2分 (2)由抛物线的对称性可知:点A 、B 关于y 轴对称,∴点A 、C 关于原点对称. 设点C 的坐标为(m ,-4),则点A 的坐标为(-m ,4)(m < 0).∵点A (-m ,4)在抛物线y =x 2 -4上,∴4=m 2-4,解得:m =-∴点C(--4). ·················································································· 4分 设直线AC 的表达式为y =k 1x ,将点C(--4)代入y =k 1x ,-4=-1,解得:k 1AC的表达式为y =. ························································· 5分 (3)设点A 的纵坐标为n (n >-4),则点A的坐标为)n , 点C 的坐标为()4,4-+-n , ······································································· 6分 设直线AC 的表达式为222(0)y k x b k =+≠,∴2222 4.k b n k b +=+=-⎪⎩,解得:224.2k n b ⎧=⎪⎪⎨-⎪=⎪⎩∴直线AC的表达式为42n y x -=+. ····························· 8分∴2424n y y x ⎧-=+⎪⎨⎪=-⎩,解得:11x y n ⎧=⎪⎨=⎪⎩11124x n y ⎧=⎪⎪⎨-⎪=⎪⎩,∴点E 12)4n -,. · 9分 过E 作EF ⊥BC ,垂足为F ,则AB ∥EF ∥CD ,∴CFBFCE AE =∴1231243124(4)4n n AE n n EC n --+===-+--. ∴在点A ,B 的运动过程中,AEEC为定值3. ······················································· 10分。
初中毕业、升学考试数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上.2.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的) 1.4的平方根是A.2±B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元 3.函数11y x =+中自变量x 的取值范围是 A. x ≥-1 B. x ≤-1 C. x ≠-1 D. x =-1 4.下列运算中,正确的是A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1 5.如果点(3,-4)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是 A.(3,4) B. (-2,-6) C.(-2,6) D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A B C D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A. 34B. 13C. 12D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......)11.因式分解:2x2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元.13.若12,x x为方程210x x+-=的两个实数根,则12x x+=___▲___.14.边长为a的正三角形的面积等于______▲______.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D.若,若∠C=18°,则∠CDA=______▲_______.(第10题图)16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分)17.计算:20080131(1)()83π--+-+.18.已知231,23.x x x =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m ) 参考数据:2B 1.414,3B 1.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) ADB14m6m30︒45︒(第20题图)(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目 月功能费基本话费长途话费短信费 金额/元5(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整. 50403020100项目金额/元月功能费4%短信费长途话费 36%基本话费 40%DCBA(第21题图)24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)行驶路程[来源:]收费标准调价前 调价后 不超过3km 的部分 起步价6元起步价a 元 超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD 的对角线AC 与BD 交于点O,给出下列四个论断① OA =OC ② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明; ②构造一个假命题...,举反例加以说明. FEDCB A 13.311.276763O xy七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′, 求△O A ′B ′的面积.28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30° 【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时E P 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)初中毕业、升学考试 数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14. 23a 15.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将31x =+代入到上式,则可得223(313)(311)(32)(32)1x x --=+-++=-+=-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩ 222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE 、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =73B 12.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)项目 月功能费基本话费 长途话费 短信费 ADCB14m6m30︒45︒E FDCBA(4)24. 解:如下图所示,(4)对称中心是(0,0)25.解:(1) a=7, b=1.4, c=2.150403020100项目金额/元(3)有交点为31(,9)7其意义为当317x<时是方案调价前合算,当317x>时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形.27.解:(1)223y x x=--+(2)(0,3),(-3,0),(1,0)(3)略。
2021年江苏省徐州市中考数学模拟试卷(四)一、选择题(本大题共8小题,共24.0分)1.−94绝对值是()A. −94B. −49C. 49D. 942.如图是一个机器的零件,则下列说法正确的是()A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 主视图、左视图与俯视图均不相同3.下列计算正确的是()A. (−2a3b)2=−4a6b2B. (−a−b)2=a2−2ab+b2C. 3a⋅(−a)2=3a3D. √5−√3=√24.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A. 6m2B. 7m2C. 8m2D. 9m25.某书店与一所山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量如下(单位:本):300,200,200,300,300,500,则这组数据的众数、中位数分别是()A. 300,150B. 300,200C. 300,300D. 600,3006.黄种人头发直径约为85微米,已知1纳米=10−3微米,数据“85微米”用科学记数法可以表示为()A. 8.5×10−3纳米B. 8.5×103纳米C. 8.5×104纳米D. 8.5×10−4纳米7.如图正方体纸盒,展开后可以得到()A.B.C.D.8.如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论:①ac<0;②当x≥1时,y随x的增大而减小;③2a+b=0;④b2−4ac<0;⑤4a−2b+c>0,其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,共30.0分)9.4的平方根为______.910. √x x 中x 的取值范围是______. 11. 如图,在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC交CD 于点E ,BC =5,DE =2,△BCE 的面积等于______.12. 已知方程组{x −y =53x −2y =0的解也是方程4x −3y +k =0的解,则k 的值为______. 13. 如图,四边形ABCD 为⊙O 的内接四边形,∠BOD =110°,则∠BCD 的度数是______ .14. 一个圆锥的底面半径是2cm ,母线长是6cm ,若将该圆锥侧面沿着母线剪开得到一个扇形,则该扇形的圆心角的度数是______.15. 若正比例函数y =2kx 与反比例函数y =kx (k ≠0)的图象交于点A(m,1),则k 的值是______ .16. 再如图,一艘船由A 港沿北偏东65°方向航行30√2km至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为多少______km .17. 如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以BE为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第2021个正方形的面积S 2021= ______ .18.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕点B顺时针旋转60°得到△BDE,连接AD,则AD的值是______.三、解答题(本大题共10小题,共86.0分)19.计算:(1)−2√2+|tan45°−√2|+(3.14−π)0+2−2;(2)x2+2x+1x2−1−xx−1.20.(1)解方程:3x(x−2)=x−2(2)解不等式组:{5x−3≤2x+9,①3x>x+102,②21.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是______;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.22.某校本学期开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______ 名;(2)扇形统计图中表示A级的扇形圆心角α的大小是______ ,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数是多少?23.如图,在菱形ABCD中,对角线AC,BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)连接CE,若AB=2√3,∠BCD=120°,求CE的长.24.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,用60平方米建A类摊位的个数恰好是用同样面积建B类.摊位个数的35(1)求每个A,B类摊位的占地面积各为多少平方米;(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类排位数量的3倍,求最多建多少个A类摊位.25.已知AB是圆O的直径,点C是圆O上一点,点P为圆O外一点,且OP//BC,∠P=∠BAC.(1)求证:PA为圆O的切线;(2)如果OP=AB=10,求AC的长.26.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.如图,煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系.已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400℃时,须停止操作.那么锻造的操作时间最多有多长?(3)如果加工每个零件需要锻造12分钟,并且当材料温度低于400℃时,需要重新煅烧.通过计算说明加工第一个零件,一共需要多少分钟.27.如图①,在矩形ABCD中,AB=6,BC=8.把矩形ABCD沿对角线AC剪开,得到△ABC和△ADC,并把△ADC沿线段CB平移得到△A′D′C′,A′C′与AB相交于点N,D′C′与AC相交于点M(如图②).(1)四边形AMC′N一定是______形;(2)当四边形AMC′N是菱形时求平移的距离;(3)如图③,把△ADC沿线段CB平移使DC与AB重合,得到△A′D′C′,再把△A′D′C′绕点B顺时针旋转,使点D′落在边AC上的点D1处,得到△A1D1B,求△FD1B的面积.28.如图,在平面直角坐标系中,矩形ABCD的三个顶点B(4,0),C(8,0),D(8,−8),抛物线y=ax2+bx经过A,C两点.动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,运动速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E.(1)求点A的坐标及抛物线的函数表达式;(2)过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG的长有最大值?最大值是多少?(3)连接EQ,是否存在t的值使△ECQ为等腰三角形?若存在,请求出t值;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:∵负数的绝对值等于它的相反数,∴|−94|=94,故选:D.根据负数的绝对值等于它的相反数即可解决.本题考查了绝对值的意义,准确掌握绝对值的意义是解题的关键.2.【答案】A【解析】解:该几何体的主视图与左视图相同,底层是一个矩形,上层的中间是一个矩形;俯视图是两个同心圆.故选:A.根据三视图的定义求解即可.此题主要考查了画几何体的三视图,熟记三视图的定义是解答本题的关键.3.【答案】C【解析】解:A.(−2a3b)2=4a6b2,故此选项不合题意;B.(−a−b)2=a2+2ab+b2,故此选项不合题意;C.3a⋅(−a)2=3a3,故此选项符合题意;D.√5−√3,无法计算,故此选项不合题意;故选:C.直接利用积的乘方运算法则以及完全平方公式和二次根式的加减法则分别计算得出答案.此题主要考查了积的乘方运算以及完全平方公式和二次根式的加减,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:假设不规则图案面积为x,由已知得:长方形面积为20,,根据几何概率公式小球落在不规则图案的概率为:x20当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,=0.35,解得x=7.综上有:x20故选:B.本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高5.【答案】C【解析】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,=300;所以中位数是300+3002故选:C.根据中位数、众数的概念求解即可.本题主要考查众数,中位数和平均数,掌握众数,中位数的概念和平均数的求法是解题的关键.6.【答案】C【解析】解:85微米=85×103纳米=8.5×104纳米.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:根据题意可知,有两个白色圆的面与有黑色圆的面相邻且有公共顶点.故选:A.根据折叠后白色圆与黑色圆所在的面的位置进行判断即可.本题主要考查了几何体的展开图,实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.8.【答案】C【解析】解:∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x≥1时,y随x的增大而增大,结论②错误;∵抛物线对称轴为直线x=1,=1,∴−b2a∴b=−2a,∴2a+b=0,结论③正确;∵抛物线与x轴有两个交点,∴b2−4ac>0,结论④错误;∵当x=−2时,y>0,∴4a−2b+c>0,结论⑤正确.故选:C.由抛物线的开口方向及与y 轴交点的位置,即可判断①;由二次函数的性质即可判断②;由抛物线对称轴为直线x =1,即可得出b =−2a ,进而可得出2a +b =0,即可判断③;④由抛物线与x 轴的交点情况即可判断④;⑤由当x =−2时,y >0可得出4a −2b +c >0,即可判断⑤.本题考查了二次函数图象与系数的关系以及二次函数的性质,逐一分析五条结论的正误是解题的关键.9.【答案】±23 【解析】解:49的平方根为±√49=±23. 故答案为:±23.根据平方根的定义求解.本题考查了平方根的知识,注意一个正数有两个平方根,它们互为相反数. 10.【答案】x >0【解析】解:由题意得x >0,解得x >0.故答案为:x >0.根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.本题主要考查二次根式有意义的条件,分式有意义的条件,掌握二次根式有意义的条件,分式有意义的条件是解题的关键.11.【答案】5【解析】解:作EF ⊥BC 交BC 于点F ,∵CD 是AB 边上的高,∴CD ⊥BA ,∵BE 平分∠ABC ,∴DE =EF ,∵DE =2,∵BC =5,∴S △BCE =BC⋅EF 2=5×22=5,故答案为:5.先作辅助线EF ⊥BC 交BC 于点F ,然后根据角平分线的性质,可以得到DE =EF ,再根据三角形的面积公式,即可求得△BCE 的面积.本题考查角平分线的性质,解答本题的关键是作辅助线EF ⊥BC ,求出EF 的长.12.【答案】−5【解析】解:{x −y =5①3x −2y =0②, ①×2得2x −2y =10③,③−②得x =−10,把x =−10代入①得y =−15,∴此方程组的解{x =−10y =−15; 把x =−10,y =−15,代入4x −3y +k =0得,4×(−10)−3×(−15)+k =0,解得k =−5;故答案为:−5先用加减消元法解方程组,再把x 、y 的值代入方程求出k 的值.题主要考查了二元一次方程组的解、二元一次方程的解,掌握二元一次方程组的解法是解题关键.13.【答案】125°【解析】解:由圆周角定理得,∠A =12∠BOD =12×110°=55°,∵四边形ABCD 为⊙O 的内接四边形,∴∠BCD =180°−∠A =180°−55°=125°,故答案为:125°.根据圆周角定理求出∠A ,根据圆内接四边形的性质计算,得到答案.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题14.【答案】120°【解析】解:设这个扇形的圆心角为n.由题意,n⋅π⋅6180=2⋅π⋅2,∴n=120°,故答案为:120°.利用弧长公式,构建方程求解即可.本题考查圆锥的计算,弧长公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】±√22【解析】解:∵点A(m,1)在反比例函数y=kx(k≠0)的图象上,∴k=m×1=m,∵点A(m,1)在正比例函数y=2kx的图象上,∴1=2km,即2m2=1,解得m=±√22,即k=±√22.先根据题意用m表示出k,再把点A的坐标代入正比例函数的解析式即可求出m的值,进而得出k的值.本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数中k=xy的知识是解答此题的关键.16.【答案】(30+10√3)【解析】解:如图,过B作BE⊥AC于E,过C作CF//AD,则CF//AD//BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°−20°=45°,AB=30√2km,在Rt △ABE 中,∵∠ABE =45°,∴△ABE 是等腰直角三角形,∵AB =30√2km ,∴AE =BE =√22AB =30(km),在Rt △CBE 中,∵∠ACB =60°,tan∠ACB =BE CE ,∴CE =BEtan60∘=√3=10√3(km),∴AC =AE +CE =30+10√3(km),∴A ,C 两港之间的距离为(30+10√3)km ,故答案为:(30+10√3).过B 作BE ⊥AC 于E ,过C 作CF//AD ,证出∠ACB =60°,由题意得∠CAB =65°−20°=45°,AB =30√2km ,解直角三角形求出AE 、CE 的长,即可得到答案.本题考查了解直角三角形的应用,方向角问题,等腰直角三角形的判定与性质等知识;熟练掌握解直角三角形,作出辅助线构造直角三角形是解题的关键.17.【答案】122020【解析】解:由题意可得,正方形ABCD 的面积是1,所作第二个正方形AEBO 1的面积是(√2)2=12,所作第三个正方形EFBO 2的面积是(√2×√2))2=122,…,则所作的第2021个正方形的面积S 2021=122020,故答案为:122020,根据题意可得,正方形ABCD 的面积是1,所作第二个正方形AEBO 1的面积是(√2)2=12,所作第三个正方形EFBO 2的面积是(√2×√2))2=122,进而可得结果.本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律. 18.【答案】√6+√2【解析】解:连接CD,设AD与BE交于H,如图:∵将△ABC绕点B顺时针旋转60°得到△BDE,∴BC=BD=2,∠DBC=∠ABE=60°,∴△BDC是等边三角形,∴∠BCD=60°,∵∠ACB=90°,∴∠ACD=∠ACB+∠BCD=150°,∴∠CAD=(180°−∠ACD)÷2=15°,∵∠ACB=90°,AC=BC=2,∴∠CAB=45°,AB=2√2,∴∠HAB=∠CAB−∠CAD=30°,∴∠AHB=180°−∠HAB−∠ABE=90°,在Rt△ABH中,AH=AB⋅cos∠HAB=2√2×√32=√6,在Rt△DBH中,DH=BD⋅sin∠DBH=2×√22=√2,∴AD=AH+DH=√6+√2,故答案为:√6+√2.连接CD,设AD与BE交于H,由将△ABC绕点B顺时针旋转60°得到△BDE,可知△BDC 是等边三角形,∠BCD=60°,从而可得∠CAD=15°,即得∠HAB=30°,故∠AHB=90°,在Rt△ABH中,可得AH=√6,在Rt△DBH中,DH=√2,即可得答案.本题考查等腰直角三角形的旋转,解题的关键是掌握旋转的性质,证明∠AHB=90°.19.【答案】解:(1)原式=−√2+|1−√2|+1+14=−√2+√2−1+1+14=14.(2)原式=(x+1)2(x−1)(x+1)−xx−1=x+1x−1−xx−1=x+1−xx−1=1x−1.【解析】(1)根据二次根式的性质、特殊角的锐角三角函数的值、零指数幂的意义以及负整数指数幂的意义.(2)根据分式的减法运算法则即可求出答案.本题考查二次根式的性质、特殊角的锐角三角函数的值、零指数幂的意义以及负整数指数幂的意义、分式的混合运算法则,本题属于基础题型.20.【答案】解:(1)3x(x−2)−(x−2)=0,(x−2)(3x−1)=0,x−2=0或3x−1=0,所以x1=2,x2=13.(2)解不等式①得:x≤4,解不等式②得:x>2,则不等式组的解集为2<x≤4.【解析】(1)先移项得到3x(x−2)−(x−2)=0,然后利用因式分解法求解.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查了解一元二次方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.21.【答案】(1)13(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率=69=23.【解析】解:(1)因为有A,B,C3种等可能结果,;所以八(1)班抽中歌曲《我和我的祖国》的概率是13.故答案为13(2)见答案【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.【答案】4054°【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;=54°,(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×640故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如图所示;(3)500×6=75(人),40答:估计该校八年级优秀的人数大约是75人.(1)根据B级的人数和所占的百分比,可以求得本次抽样测试的学生人数;(2)根据条形统计图中的数据,可以计算出扇形统计图中表示A级的扇形圆心角α的度数和C级的人数,即可将条形统计图补充完整;(3)根据题意和统计图中的数据,可以计算出优秀的人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是理解两个统计图中数量关系,利用数形结合的思想解答.23.【答案】(1)证明:∵DE//AC,AE//BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴平行四边形AODE是矩形;(2)解:∵四边形ABCD是菱形,∠BCD=120°,∴AD=AB=BC=2√3,OA=OC,OB=OD,AC⊥BD,∠ACB=12∠BCD=60°,∴△ABC是等边三角形,∠AOD=90°,∴AC=AB=2√3,∴OA=12AC=√3,∴OD=√AD2−OA2=√(2√3)2−(√3)2=3,由(1)得:四边形AODE是矩形,∴∠AOE=90°,AE=OD=3,∴CE=√AE2+AC2=√32+(2√3)2=√21.【解析】(1)先证四边形AODE为平行四边形,再由菱形的性质得∠AOD=90°,即可得出结论;(2)证△ABC是等边三角形,得出AC=AB=2√3,则OA=√3,再由勾股定理得出OD的长,然后由矩形的性质和勾股定理求出CE的长即可.本题考查了矩形的判定与性质、菱形的性质、平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等知识,熟练掌握矩形的判定与性质是解题的关键.24.【答案】解:(1)设每个A类摊位占地面积为x平方米,则每个B类摊位占地面积为(x−2)平方米,依题意得:60x =60x−2×35,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,则x−2=5−2=3.答:每个A类摊位占地面积为5平方米,每个B类摊位占地面积3平方米.(2)设A类摊位的数量为m个,则B类摊位的数量为(90−m)个,由题意得:90−m≥3m,解得:m≤22.5,答:A类摊位的数量最多为22个.【解析】(1)设每个A类摊位占地面积为x平方米,则每个B类摊位占地面积为(x−2)平.列出方米,由题意:用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35分式方程,解方程即可;(2)设A类摊位的数量为m个,则B类摊位的数量为(90−m)个,由题意:建造B类摊位的数量不少于A类排位数量的3倍,列出一元一次不等式,解不等式即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式.25.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,又∵OP//BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°,∵∠P=∠BAC,∴∠P+∠AOP=90°,∴∠PAO=90°,∴PA⊥OA,又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)得:∠PAO=∠ACB=90°,又∵∠P=∠BAC,OP=BA,∴△OAP≌△BCA(AAS),∴BC=OA=12AB=5,∴AC=√AB2−BC2=√102−52=5√3【解析】(1)先由圆周角定理得∠ACB=90°,则∠BAC+∠B=90°.再由平行线的性质得∠AOP=∠B,然后证∠P+∠AOP=90°,则∠PAO=90°,即可得证;(2)先证△OAP≌△BCA(AAS),得BC=OA=12AB=5,再由勾股定理求出AC的长即可.本题考查了切线的判定、圆周角定理、全等三角形的判定与性质、平行线的性质、勾股定理等知识;熟练掌握切线的判定和圆周角定理是解题的关键.26.【答案】解:(1)材料锻造时,设y=kx(k≠0),由题意得600=k8,解得k=4800,当y=800时,4800x=800,解得x=6,∴点B的坐标为(6,800)材料煅烧时,设y=ax+32(a≠0),由题意得800=6a+32,解得a=128,∴材料煅烧时,y与x的函数关系式为y=128x+32(0≤x≤6).∴锻造操作时y与x的函数关系式为y=4800x(x>6);(2)把y=400代入y=4800x中,得x=12,12−6=6(分),答:锻造的操作时间6分钟;(3)当y=800时,即4800x=800,∴x=6,从400升到800需要258min,再加上两次6分钟的锻造,加上煅烧的时间,一共是1698min,∴锻造每个零件需要煅烧两次共12分钟,∴加工第一个零件一共需要1698min.【解析】(1)首先根据题意,材料煅烧时,温度y与时间x成一次函数关系;锻造操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y=400代入y=4800x中,进一步求解可得答案;(3)根据题意列式计算即可.本题主要考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.27.【答案】平行四边【解析】解:(1)∵四边形ABCD是矩形,∴AB//CD,∴AB//C′D′,AC//A′C′,∴四边形AMC′N是平行四边形,故答案是:平行四边形;(2)如图1,∵tan∠ACD=AD′D′M =ADCD=86=43,∴设AD′=4x,D′M=3x,∴AM=5x,∵AM=C′M,∴5x=6−3x,∴x=34,∴AD′=4x=3,∴DD′=8−3=5,∴四边形AMC′N 是菱形时求平移的距离是:5;(3)如图2,作FG ⊥BD 1于G ,∵BD 1=AB =6,∴∠BD 1A =∠BAC ,∵∠A 1BD 1=∠ABA′=∠BAC ,∴∠A 1BD 1=∠AD 1B ,∴FB =FD 1,∴BG =GD 1=12BD 1=3, ∴FG =BG ⋅tan∠FBG =3×43=4,∴S △FD 1B =12BD 1⋅FG =12×6×4=12.(1)由AB//C′D′,AC//A′C′得四边形AMC′N 是平行四边形;(2)设AD′=4x ,D′M =3x ,AM =5x ,由AM =C′M 得5x =6−3x ,进而求得结果;(3)求得在△FBD 1中,tan∠FBD 1=tan∠BAC =43,BD 1=AB =6,FB =FD 1,进而求得结果.本题考查了平行四边形判定,菱形判定,全等三角形判定和性质,相似三角形判定和性质,锐角三角形函数等知识,解决问题的关键是熟练找到前后变换的边角. 28.【答案】解:(1)∵矩形ABCD 的三个顶点B(4,0),C(8,0),D(8,−8),∴AD//x 轴,AB//y 轴,点A 的坐标为(4,−8),将A(4,−8)、C(8,0)两点坐标分别代入y =ax 2+bx 得:{16a +4b =−864a +8b =0, 解得:{a =12b =−4, 故抛物线的解析式为:y =12x 2−4x ;(2)如图1,由题意得:AP =t ,∴PB =8−t ,设直线AC 的解析式为:y =kx +n ,则{8k +n =04k +n =−8,解得:{k =2n =−16, ∴直线AC 的解析式为:y =2x −16,∵PE//BC ,∴△APE∽△ABC ,∴PE BC =AP AB ,即PE 4=t 8,∴PE =12t ,当x =4+12t 时,y =2(4+12t)−16=t −8,∴E(4+12t,t −8),G(4+12t,18t 2−8), ∴EG =t −8−(18t 2−8)=−18t 2+t =−18(t −4)2+2,∵−18<0,∴当t =4时,EG 有最大值是2;(3)有三种情况:①当EQ =QC 时,∵Q(8,−t),E(4+12t,t −8),QC =t ,∴根据两点间距离公式,得:(4+12t −8)2+(t −8+t)2=t 2.整理得13t 2−144t +320=0,(t −8)(13t −40)=0,解得t =4013或t =8(此时E 、C 重合,不能构成三角形,舍去);②当EC =CQ 时,∵E(4+12t,t −8),C(8,0),QC =t , ∴根据两点间距离公式,得:(4+12t −8)2+(t −8)2=t 2, 整理得t 2−80t +320=0,解得:t 1=40−16√5,t 2=40+16√5>8(此时Q 不在矩形的边上,舍去); ③当EQ =EC 时,∵Q(8,−t),E(4+12t,t −8),C(8,0),∴根据两点间距离公式,得:(4+12t −8)2+(t −8+t)2=(4+12t −8)2+(t −8)2, 解得t =0(此时Q 、C 重合,不能构成三角形,舍去)或t =163.综上,t 的值是4013或40−16√5或163.【解析】(1)由于四边形ABCD 为矩形,所以A 点与D 点纵坐标相同,A 点与B 点横坐标相同,可得A(4,−8),将A(4,−8)、C(8,0)两点坐标代入抛物线的解析式可得结论;(2)根据相似三角形的性质求出PE 的长,可得E 和G 的横坐标表达式,代入二次函数解析式和直线AC 的解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答;(3)若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ =QC ,EC =CQ ,EQ =EC 三种情况讨论,根据两点的距离公式列方程即可解答.本题是二次函数的综合题,利用了矩形的性质,待定系数法求二次函数解析式;利用了相似三角形的性质,勾股定理,利用平行于坐标轴两点间的距离公式是第二问解题关键;利用了两点的距离公式列方程可解答第三问等腰三角形两边相等的问题.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
2020年江苏省徐州市中考数学测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知 PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,DB ⊥PC 于点B ,DB=3 ㎝,PB=4cm ,则⊙O 的直径为( )A .10 cmB .12 cmC .16 cmD .20 cm 2.若tan (α+10°)=3,则锐角α的度数是( )A .20°B .30°C .35°D .50° 3.抛物线y =x 2-2 a x +a 2的顶点在直线 y =2上,则a 的值为( ) A .2或-1B .-1<a<2C .2D .不能确定 4.如果抛物线21y x ax =-+的对称轴是y 轴,那么a 的值为( )A .0B .-2C .2D .士25.“高高兴兴上学来,开开心心回家去.”小王某天放学后,l7时从学校出发,回家途中离家的路程s (km )与所走的时间t (min )之间的函数关系如图所示,那么这天小明到家的时间为( )A .17 h15 minB .17 h14 minC .17 h12 minD .17 h11 min6.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( )A .6 折B .7 折C .8 折D .9 折7.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )A .2.95元,3元B .3元,3元C .3元,4元D .2.95元,4元8.在下图中,为多面体的是( )A .B .C .D .9.将一-直角三角板与两边平行的纸条按如图所示放置,有下列结论:(1)∠1 = ∠2;(2)∠3 =∠4;(3)∠2 +∠4 = 90°;(4)∠4 + ∠5 = 180°. 其中正确的个数为( )A .1B . 2C .3D . 410.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x -=D .15025%x -= 11.24a x +可表示为( )A .24a x x +B .24a x x x ⋅⋅C .22a x x +⋅D .24()a x x ⋅12.将长为1m 的绳子,截去一半,然后将剩下的再截去一半,如此下去,若余下的绳子长不足1cm ,则至少..需截几次( ) A .6次 B .7次 C .8次 D .9次二、填空题13.已知在Rt △ABC 中,∠C =90°,直角边AC 是直角边BC 的2倍,则sin ∠A 的值是 .14.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 (填 “相同”、“不一定相同”、“不相同”之一).15.小王去参军,需要一张身份证复印件,则身份证复印件和原身份证 相似形 ( 填“是”或“不是”).16.把抛物线y =2(x +1)2向下平移______单位后,所得抛物线在x 轴上截得的线段长为2 217. 方程2230x x --=的根是 .18.随机抽取某城市一年(以365天计)中的30天的日平均气温状况,统计如下: 温度(℃)10 14 18 22 26 30 32 天数(天) 3 5 5 7 6 2 2请根据上述数据填空:(1)该组数据的中位数是℃;(2)该城市一年中日平均气温为26℃的约有天;(3)若日平均气温在17℃~23℃为市民“满意温度”,则该城市一年中达到市民“满意温度”的约有天.19.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条路,他们仅仅少走了步路(假设2步为l m),却踩伤了花草.20.将一大块花布铺平,它上面的图案可以看做由一个基本图案通过不断地得到.21.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.22.-27 81的平方根之和为.23.数轴上有一点到原点的距离为 6.03,那么这个点表示的数是.三、解答题24.如图,∠PAQ是直角,⊙0与AP相切于点T,与AQ交B、C两点.(1)BT是否平分么OBA?说明你的理由.(2)若已知AT=4,弦BC=6,试求⊙0的半径R.25.如图,五边形ABCDE∽五边形 RSTUV,求∠R的度数和RS 的长.26.从有关方面获悉,在某市农村已经实行了农民新型合作医疗保险制度.享受医保的农民可以在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准: 医疗费 用范围 住院门诊0一5000元 5000— 20000元 20000元 以上 每年报销 比例标准 70% 30% 40% 50%30000元,则5000元按30%报销、l5000元按40%报销,余下的10000元按50%报销.题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2006年门诊看病自己共支付医疗费180元,则他这一年中门诊医疗费用共 元;(2)设某农民一年中住院的实际医疗费用为x 元(5001≤x ≤20000),按标准报销的金额为y 元,试求出y 与x 的函数解析式;(3)若某农民一年内本人自负住院医疗费17000元(自负医疗费=实际医疗费一按标准报销的金额),则该农民当年实际医疗费用共多少元?27.已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?28.已知:如图,△ABC 内接于⊙O,弦DE ‖BC,F 为ED 延长线上的一点,∠F=∠A, 求证:BF 为⊙O 的切线.·B CA O D EF29.某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.30.已知某工厂从1997年到2002年每年的年产值和利润依次分别为(单位:万元):80,8;95,10;100,15;100,20;95,15;110,20列出该工厂从l997年到2002年产值和利润统计表.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.A5.C6.B7.A8.A9.D10.C11.D12.B二、填空题13.14.相同15.是16.17.13x =,21x =-18.(1)22;(2)73;(3)14619.420.平移21.22.0或-623.6.03±三、解答题24.(1)BT 平分∠OBA ,理由如下:连结0T ,则OT ⊥AP ,∵∠PAQ=90°,∠PAQ+∠OTA=180°,∴OT ∥AQ , ∴∠0TB=∠ABT ,又∠0TB=∠OBT ,∴∠ABT=∠OBT ,∴BT 平分∠OBA .(2)作OE ⊥BC 于E 点,则BE=3,∴四边形AEOT 是矩形,∴OE=AT=4,∴R=53422=+.25.∵五边形 ABCDE ∽五边形RSTUV ,∴∠R=∠A= 128°.∴RS RV AB AE =,即446RS =,∴83RS = 26.(1)600;(2)25005y x =-;(3)29000 27.(1)y=15x+55;(2)145元,l2个月28.画直径BK ,连接AK ,证明∠ABF=∠C=∠K ,则∠OBF=∠OBA+∠ABF=∠OBA+∠K=90°,∴BF 为⊙O 的切线. 29.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人)“其他”人数=100-30-20-40=10 (人)“其他”在扇形统计图中所占的圆心角=360°×10100=36° (3) 略 30.1997~2002年产值和利润统计表 单位:万元。
2021年江苏省徐州市中考数学一模试卷1.−5的倒数是()A. −5B. 5C. 15D. −152.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.2011年徐州市接待国内外旅游人数约为24 800 000人次,该数据用科学记数法表示为()A. 2.48×107B. 2.48×106C. 0.248×108D. 248×1054.下列运算中,正确的是()A. x3+x3=x6B. x3⋅x9=x27C. (x2)3=x5D. x÷x2=x−15.如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A. 54°B. 36°C. 28°D. 18°6.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A. 21,21B. 21,21.5C. 21,22D. 22,227.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A. 10°B. 20°C. 30°D. 40°8.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A. −5B. −4C. −3D. −29.4是______的算术平方根.10.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为______ .11.使√x−6有意义的x的取值范围是______.12.若正多边形的一个内角等于140°,则这个正多边形的边数是______.13.已知关于x的一元二次方程x2−2x−a=0有两个相等的实数根,则a的值是______.AB的长为半14.如图,在△ABC中,BC=9,AC=4,分别以点A、B为圆心,大于12径画弧,两弧相交于点M、N,作直线MN,交BC边于点D,连接AD,则△ACD的周长为______.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为______ cm.16. 如图,直线y =52x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点B 逆时针旋转90°后得到△A 1O 1B ,则点A 1的坐标是______.17. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n 个图形中白色正方形的个数为______.18. 如图,抛物线y =ax 2+bx +c(a ≠0)与x 轴交于点A 、B ,顶点为C ,对称轴为直线x =1,给出下列结论:①abc <0;②若点C 的坐标为(1,4),则△ABC 的面积可以等于4;③M(x 1,y 1),N(x 2,y 2)是抛物线上两点(x 1<x 2),若x 1+x 2>2,则y 1<y 2;④若抛物线经过点(3,−1),则方程ax 2+bx +c +1=0的两根为−1,3.其中正确结论的序号为______ .19. 计算:(1)(−1)2020−(13)−1+3√8;(2)x 2−1x+1÷x 2−2x+1x 2−x .20. (1)解方程:x 2−2x −3=0;(2)解不等式组:{2x >1−x 2(2x +1)<x +4.21.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.22.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是______;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.23.如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:△BOE≌△COD;(2)当∠BOD=______ °时,四边形BECD是菱形.24.徐州至上海的铁路里程为650km.从徐州乘“C”字头列车A,“D”字头列车B都可到达上海,已知A车的平均速度为B车的2倍,且行驶时间比B车少2.5ℎ.(1)设A车的平均速度是xkm/ℎ,根据题意,可列分式方程:______;(2)求A车的平均速度及行驶时间.25.如图,梯子斜靠在与地面垂直(垂足为O)的墙上.当梯子位于AB位置时,它与地面所成的角∠ABO=60°,当梯子底端向右滑动0.5m(即BD=0.5m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′=0.780,cos51°18′=0.625,tan51°18′=1.248)26.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(ℎ)之间的函数关系.请你根据图象进行探究:(1)小王的速度是______ km/ℎ,小李的速度是______ km/ℎ;(2)求线段BC所表示的y与x之间的函数表达式,并写出自变量x的取值范围.(3)求当两人相距18千米时,小王行驶多少小时?27.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF 绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.(1)如图2,当CEEA =1时,EPEQ=______ ;(2)如图3,当CEEA=2时,①EP与EQ满足怎样的数量关系?并说明理由;②在旋转过程中,连接PQ,若AC=30cm,设EQ的长为xcm,△EPQ的面积为S(cm2).求S关于x的函数表达式,并求出x的取值范围.28.如图,已知二次函数y=ax2+bx+3的图象与x轴交于点A(−1,0)、B(4,0),与y轴交于点C.(1)二次函数的表达式为______ ;(2)点M在直线BC上,当△ABM为等腰三角形时,求点M的坐标;(3)若点E在二次函数的图象上,以E为圆心的圆与直线BC相切于点F,且EF=6,5请直接写出点E的坐标.答案和解析1.【答案】D;【解析】解:−5的倒数是−15故选:D.根据倒数的定义可直接解答.本题比较简单,考查了倒数的定义,即若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】B【解析】解:A、是中心对称图形,但不是轴对称图形,故本选项不符合题意;B、既是中心对称图形,又是轴对称图形,故本选项符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、是中心对称图形,但不是轴对称图形,故本选项不符合题意;故选:B.根据中心对称图形和轴对称图形的定义逐个判断即可.本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义是解此题的关键.3.【答案】A【解析】解:24800000=2.48×107,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.本题主要考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质和法则是解题的关键.【解答】解:A.应为x3+x3=2x3,故本选项错误;B.应为x3⋅x9=x12,故本选项错误;C.应为(x2)3=x6,故本选项错误;D.x÷x2=x1−2=x−1,正确.故选D.5.【答案】B【解析】解:∵∠AOB与∠ACB都对弧AB,∠AOB=72°,∠AOB=36°,∴∠ACB=12故选:B.利用圆周角定理求出所求即可.此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.6.【答案】C【解析】【分析】本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选:C.7.【答案】B【解析】【分析】本题考查的是角平分线定义,补角的相关知识,角的计算,熟练掌握角平分线的性质是解答此题的关键.根据平角的定义得到∠CEF=180°−∠FEA=180°−40°=140°,由角平分线的定义可∠CEF=70°,由∠GEB=∠CEB−∠CEG可得结果.得∠CEB=12【解答】解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°−∠FEA=180°−40°=140°,∠CEG=180°−∠AEF−∠GEF=180°−40°−90°=50°,∵射线EB平分∠CEF,∠CEF=70°,∴∠CEB=12∴∠GEB=∠CEB−∠CEG=70°−50°=20°,故选B.8.【答案】C【解析】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∠ABC=30°,∴∠ABO=12∵点A(1,1),∴OA=√2,OB,则OB=√6,∴OA=√33∵直线AC的解析式为y=x,∴直线BD的解析式为y=−x,∵OB=√6,∴点B的坐标为(−√3,√3),∵点B在反比例函数y=k的图象上,x∴√3=,−√3解得,k=−3.故选:C.根据题意可以求得点B的坐标,从而可以求得k的值.本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.9.【答案】16【解析】解:∵42=16,∴4是16的算术平方根.故答案为:16.如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.此题主要考查了算术平方根的概念,牢记概念是关键.10.【答案】13【解析】解:∵一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是黄球的概率为:23+2+1=13.故答案为:13.由一个不透明的盒子中装有3个红球,2个黄球和1个绿球,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】x≥6【解析】解:∵√x−6有意义,∴x的取值范围是:x≥6.故答案为:x≥6.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.12.【答案】9【解析】【分析】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°−140°=40°,360°÷40°=9.故答案为9.13.【答案】1【解析】解:根据题意得△=(−2)2−4(−a)=0,解得a=1.故答案为1.利用判别式的意义得到△=(−2)2−4(−a)=0,然后解关于a的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.【答案】13【解析】解:根据作图过程可知:MN是AB的垂直平分线,∴AD=BD,∴△ACD的周长=AD+DC+AC=BD+DC+AC=BC+AC=9+4=13.故答案为:13.根据作图过程可得,MN是AB的垂直平分线,所以得AD=BD,进而可得△ACD的周长.本题考查了作图−基本作图、线段垂直平分线的性质,解决本题的关键是掌握线段垂直平分线的性质.15.【答案】4√2【解析】【分析】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE= DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=12CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=√2CE=4√2cm,故答案为:4√216.【答案】(4,125)【解析】解:在y=52x+4中,令x=0得,y=4,令y=0,得0=52x+4,解得x=−85,∴A(−85,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=85,OB=O1B=4,∴∠OBO1=90°,∴O1B//x轴,∴点A1的纵坐标为OB−OA的长,即为4−85=125;横坐标为O1B=OB=4,故点A1的坐标是(4,125),故答案为:(4,125).首先根据直线AB来求出点A和点B的坐标,A1的横坐标等于OB,而纵坐标等于OB−OA,即可得出答案.本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.17.【答案】3n+2【解析】解:图(1)中白色正方形的个数为:2+3×1=5,图(2)中白色正方形的个数为:2+3×2=8,图(3)中白色正方形的个数为:2+3×3=11,…,则第n个图形中白色正方形的个数为:2+3n,故答案为:3n+2.根据题目中图形,可以发现白色正方形的个数的变化规律,从而可以求得第n个图形中白色正方形的个数.本题考查图形的变化类,解答本题的关键是明确题意,发现题目中白色正方形的个数的变化规律,利用数形结合的思想解答.18.【答案】①④【解析】解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故①正确;②△ABC的面积=12AB⋅y C=12×AB×4=4,解得:AB=2,则点A(0,0),即c=0与图象不符,故②错误;③函数的对称轴为x=1,若x1+x2>2,则12(x1+x2)>1,则点N离函数对称轴远,故y1>y2,故③错误;④抛物线经过点(3,−1),则y′=ax2+bx+c+1过点(3,0),根据函数的对称轴该抛物线也过点(−1,0),故方程ax2+bx+c+1=0的两根为−1,3,故④正确;故答案为:①④.根据函数的图象和性质即可求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.19.【答案】解:(1)原式=1−3+2=0;(2)原式=x2−1x+1×x2−xx2−2x+1=(x+1)(x−1)x+1×x(x−1)(x−1)2=x.【解析】(1)利用乘方、负整式指数幂的法则及立方根的性质分别求解,再进行加减运算即可;(2)将除法变乘法,再对分子、分母进行因式分解,最后约分即可.本题考查了有理数的乘方、负指数幂的运算和分式的除法运算,解题关键是能够利用相关法则和运算步骤进行计算.20.【答案】解:(1)∵x2−2x−3=0,∴(x−3)(x+1)=0,则x−3=0或x+1=0,解得x1=3,x2=−1;(2)解不等式2x>1−x,得:x>13,解不等式2(2x+1)<x+4,得:x<23,则不等式组的解集为13<x<23.【解析】(1)利用因式分解法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元二次方程和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50−15−20−5=10(名),补全条形统计图如图所示:(3)800×2050=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【解析】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的2050,因此估计总体800名的2050是最喜欢“舞蹈”的人数. 22.【答案】(1)12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=34.【解析】解:(1)第二个孩子是女孩的概率=12;故答案为12;(2)见答案.(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.23.【答案】90【解析】证明:(1)∵四边形ABCD为平行四边形,∴AB//DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,{∠OEB=∠ODC ∠BOE=∠COD BO=CO,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)当∠BOD=90°时,四边形BECD是菱形;理由:∵四边形BECD是平行四边形,∴当∠BOD=90°时,四边形BECD是菱形.故答案为:90.(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)对角线互相垂直平分的平行四边形是菱形.此题主要考查了菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.24.【答案】(1)650x2−650x=2.5;(2)650x2−650x=2.5,解得x=260,经检验,x=260是分式方程的根,650260=2.5小时,故A车的平均速度是260千米每小时,行驶的时间2.5小时.故答案为:650x2−650x=2.5.【解析】解:(1)设A车的平均速度是xkm/ℎ,650 x 2−650x=2.5;(2)见答案.【分析】设A车的平均速度是xkm/ℎ,根据徐州至上海的铁路里程为650km.从徐州乘“C”字头列车A,“D”字头列车B都可到达上海,已知A车的平均速度为B车的2倍,且行驶时间比B车少2.5ℎ可列出方程求出解.本题考查理解题意的能力,关键是设出A的速度,表示出B的速度,以时间做为等量关系列方程求解.25.【答案】解:设梯子的长为xm,在Rt△ABO中,cos∠ABO=OBAB∴OB=AB⋅cos∠ABO=x⋅cos60°=1 2 x在Rt△CDO中,cos∠CDO=OD CD∴OD=CD⋅cos∠CDO=x⋅cos51°18′≈0.625x.∵BD=OD−OB,BD=0.5m∴0.625x−12x=0.5,解得x=4.故梯子的长是4米.【解析】设梯子的长为xm,在Rt△ABO中,根据三角函数得到OD,在Rt△CDOR中,用含x的式子表示出OD,再根据BD=OD−OB,得到关于x的方程,解方程即可.本题考查了利用三角函数解直角三角形,数形结合、根据题意正确列式,是解题的关键.26.【答案】10 20【解析】解:(1)由图可得,小王的速度为:30÷3=10(km/ℎ),小李的速度为:(30−10×1)÷1=20(km/ℎ),答:小王和小李的速度分别是10km/ℎ、20km/ℎ,故答案为:10,20;(2)小李从乙地到甲地用的时间为:30÷20=1.5(ℎ),当小李到达甲地时,两人之间的距离为:10×1.5=15km,∴点C的坐标为(1.5,15),设线段BC所表示的y与x之间的函数解析式为y=kx+b,{k+b=01.5k+b=15,解得{k=30b=−30,即线段BC所表示的y与x之间的函数解析式是y=30x−30(1≤x≤1.5);(3)①(30−18)÷(20+10)=0.4(小时);②18÷10=1.8(小时).答:当两人相距18千米时,小王行驶0.4小时或1.8小时.(1)根据题意和函数图象中的数据可以分别求得王和小李的速度;(2)根据(1)中的结果和图象中的数据可以求得点C的坐标,从而可以解答本题;(3)根据题意列式计算即可解答.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.【答案】1【解析】解:(1)连接BE,如图2:证明:∵点E是AC的中点,△ABC是等腰直角三角形,∴BE=EC=AE,∠PBE=∠C=45°,∵∠PEB+∠BEQ=∠QEC+∠BEQ=90°,∴∠PEB=∠QEC,在△BEP和△CEQ中,{∠BEP=∠CEQ BE=CE∠PBE=∠C,∴△BEP≌△CEQ(ASA),∴EP=EQ,∴EPEQ=1,故答案为:1.(2)①作EM⊥AB于点M,EN⊥BC于点N,如图3:∵∠A=∠C=45°,∴EM=AM,EN=CN,∵∠MEP+∠PEN=∠NEQ+∠PEN=90°,∴∠MEP=∠NEQ,又∵∠EMP=∠ENQ=90°,∴△MEP∽△NEQ,∴EP:EQ=ME:NE=ME:CN=AE:CE=1:2,故E Q=2EP.②设EQ=x,由①得,EP=12x,∴S△EPQ=12EP×EQ=14x2,当EQ=EF时,EQ取得最大,此时EQ=DE×tan30°=30×√33=10√3;当EQ⊥BC时,EQ取得最小,此时EQ=EC×sin45°=20×√22=10√2;即10√2≤x≤10√3,综上可得:S=14x2(10√2≤x≤10√3).(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明DE=CE,∠PBE=∠C,根据等角的余角相等可以证明∠BEP=∠CEQ,即可得到全等三角形,从而证明结论;(2)①作EM⊥AB于点M,EN⊥BC于点N,证明△MEP∽△NEQ,发现EP:EQ=ME−NE=AE:CE,继而得出结果;②设EQ=x,根据上述结论,可用x表示出S,确定EQ的最大值,及最小值后,可得出x的取值范围.本题考查了几何变换综合题,涉及了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,综合考察的知识点较多,对于此类综合性较强的题目,关键还是需要同学们有扎实的基本功,注意培养自己的融会贯通能力.28.【答案】y=−34x2+94x+3【解析】解:(1)将A(−1,0),B(4,0)代入y=ax2+bx+3得:{a−b+3=016a+4b+3=0,∴a =−34,b =94, ∴y =−34x 2+94x +3, 故二次函数表达式为:y =−34x 2+94x +3;(2)当x =0时,y =3,∴点C 的坐标是(0,3),设直线BC 的表达式为:y =kx +c(k ≠0),将B(4,0),C(0,3)代入y =kx +c 得:{4k +3=0c =3, ∴{k =−34c =3, ∴直线BC 的解析式为:y =−34x +3,使得△ABM 为等腰三角形,存在如图所示的三种情况:过点M 1作M 1D ⊥AB ,∵A(−1,0),B(4,0),∴AD =12AB =52,∴OD =32, 设M 1(x,−34x +3),∴M 1(32,158), ∵△ABM 为等腰三角形,∴AB =BM 2=5或AB =BM 3=5,设M 2(x 1,−34x 1+3),∴BM 2=√(x 1−4)2+(−34x 1+3)2=5,解得x 1=8或0,当x 1=0时,y =3,当x 1=8时,y =−3,∴点M 为(0,3)或(8,−3)或(32,158); (3)过点E 作EP//BC ,交y 轴于点P ,这样的点有两个,分别记为P 1,P 2如图所示: ∵OB =4,OC =3, ∴BC =√OB 2+OC 2=5,∴点O 到直线BC 的距离为:OB⋅OCBC =125,∵以E 为圆心的圆与直线BC 相切于点F ,且EF =65,∴点E 到直线BC 的距离是65,∴点P 1为线段OC 的中点,∴CP 1=CP 2,∴P 2(0,92), ∵直线BC 的函数表达式为y =−34x +3,∴直线EP 的函数表达式为y =−34x +32或y =−34x +92,联立直线EP 和抛物线的表达式方程组,得:{y =−34x +32y =−34x 2+94x +3或{y =−34x +92y =−34x 2+94x +3, 得{x 1=2−√6y 1=3√64或{x 2=2+√6y 2=−3√64或{x 3=2−√2y 3=3+3√24或{x 4=2+√2y 4=3−3√24, ∴点E 的坐标为(2−√6,3√64)或(2+√6,−3√64)或(2−√2,3+3√24)或(2+√2,3−3√24).(1)根据AB 两点的坐标,应用待定系数法即可求出二次函数的表达式;(2)首先通过BC 两点坐标,求出直线BC 的解析式,再根据三角形△ABM 是等腰三角形,分3种情况考虑,得到关于M点横坐标x的方程,解之即可得到x的值,进而得到M 点坐标;(3)利用面积法求出O到直线BC的距离,结合EF的长度可知P1为线段OC中点,可得P1的坐标,进而可得P2坐标,结合直线BC的表达式,可求出直线EP的表达式,联立直线EP和抛物线的函数表达式,组成方程组,即可解得点E的坐标.本题主要考查了二次函数与三角形的综合应用.解题的关键要熟练掌握代入法求二次函数的解析式和一次函数的解析式、两点间的距离公式及勾股定理等.。
最新江苏省徐州市中考数学模拟试卷(一)一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项前的字母代号填在答题卡相应的位置上.1.下列各数中,最大的数是()A.﹣B.0 C.|﹣4| D.π2.下面是一位同学做的四道题:①a3+a3=a6;②(xy2)3=x3y6;③x2•x3=x6;④(﹣a)2÷a=﹣a.其中做对的一道题是()A.①B.②C.③D.④3.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4 D.75×10﹣64.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是()A.B.C.D.5.解一元二次方程(x﹣2)2=3时,最佳的求解方法是()A.配方法B.因式分解法C.求根公式法D.以上方法均可6.如图,⊙O的弦AB=8,P是劣弧AB中点,连结OP交AB于C,且PC=2,则⊙0的半径为()A.8 B.4 C.5 D.107.某种药品原价为35元/盒,经过连续两次降价后售价为26元/盒,设平均每次降价的百分率为x,根据题意所列方程正确的是()A.35(1﹣x)2=35﹣26 B.35(1﹣2x)=26 C.35(1﹣x)2=26 D.35(1﹣x2)=268.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C在x轴上,点D(3,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.若抛物线y=ax2﹣4ax+10(a≠0且a为常数)的顶点落在△ADE的内部,则a的取值范围是()A.B.C.D.二、填空题:本大题共10小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.9.= .10.正六边形的一个内角是.11.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)情况,投进篮筐的个数为6,10,5,3,4,8,4,这组数据的中位数是.12.抛物线y=(x+1)2﹣2的顶点坐标是.13.分解因式:x2﹣9x= .14.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是cm3(结果保留π)15.若x≠y,则x4+y4x3y+xy3(填“>”或“<”)16.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[2,m+1]的一次函数是正比例函数,则关于x的方程+=1的解为.17.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题:本大题共10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.19.计算:(5)0+(﹣1)2+|﹣2|﹣tan60°.20.(1)解方程x2﹣2x﹣3=0(2)解不等式组.21.如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.22.据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有名.23.老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.24.如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.(1)求证:AT平分∠BAC;(2)若AO=2,AT=2,求AC的长.25.某市因水而名,因水而美,因水而兴,市政府作出了“五水共治”决策:治污水、防洪水、排涝水、保供水、抓节水.某区某乡镇对某河道进行整治,由甲乙两工程队合作20天可完成.已知甲工程队单独整治需60天完成.(1)求乙工程队单独完成河道整治需多少天?(2)若甲乙两工程队合做a天后,再由甲工程队单独做天(用含a的代数式表示)可完成河道整治任务.(3)如果甲工程队每天施工费5000元,乙工程队每天施工费为1.5万元,先由甲乙两工程队合作整治,剩余工程由甲工程队单独完成,问要使支付两工程队费用最少,并且确保河道在40天内(含40天)整治完毕,问需支付两工程队费用最少多少万元?26.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c 的取值范围.27.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm (1)填空:AD= (cm),DC= (cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A →D,C→B方向运动,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)28.已知:如图在平面直角坐标系xOy中,矩形OABC的边OA在y轴的负半轴上,OC在x 轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交线段AB于点D,连接DC,过点D作DE⊥DC,交线段OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)如图2将∠EDC绕点D按逆时针方向旋转后,角的一边与y轴的负半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,求证:EF=2GO;(3)对于(2)中的点G,在位于第四象限内的该跑物像上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项前的字母代号填在答题卡相应的位置上.1.下列各数中,最大的数是()A.﹣B.0 C.|﹣4| D.π【考点】实数大小比较.【分析】利用任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进而比较即可.【解答】解:∵﹣<0,|﹣4|=4>π,∴各数中,最大的数是:|﹣4|.故选;C.2.下面是一位同学做的四道题:①a3+a3=a6;②(xy2)3=x3y6;③x2•x3=x6;④(﹣a)2÷a=﹣a.其中做对的一道题是()A.①B.②C.③D.④【考点】整式的混合运算.【分析】利用多项式的加法;积的乘方;同底数幂相乘;同底数幂相除的运算法则可对四个小题进行分析,即可的问题答案.【解答】解:①a3+a3=2a3,故该选项错误;②(xy2)3=x3y6,该选项正确;③x2•x3=x5,该选项错误;④(﹣a)2÷a=a,故该选项错误.故选B.3.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4 D.75×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000075用科学记数法表示为:7.5×10﹣5.故选B.4.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是()A.B.C.D.【考点】概率公式.【分析】先确定盒子里全部笔芯的总数及黑色笔芯的支数,再根据概率公式求解即可.【解答】解:因为全部是5支笔,2支黑色笔芯,所以从中任意拿出一支笔芯,拿出黑色笔芯的概率是.故选C.5.解一元二次方程(x﹣2)2=3时,最佳的求解方法是()A.配方法B.因式分解法C.求根公式法D.以上方法均可【考点】解一元二次方程-直接开平方法.【分析】根据因式分解法解方程的方法得出答案.【解答】解:解一元二次方程(x﹣2)2=3时,最佳的求解方法是:因式分解法.故选:B.6.如图,⊙O的弦AB=8,P是劣弧AB中点,连结OP交AB于C,且PC=2,则⊙0的半径为()A.8 B.4 C.5 D.10【考点】垂径定理;勾股定理.【分析】首先连接OA,由P是劣弧AB中点,可得OP⊥AB,且AC=4,然后设⊙0的半径为x,利用勾股定理即可求得方程:x2=42+(x﹣2)2,解此方程即可求得答案.【解答】解:连接OA,∵P是劣弧AB中点,∴OP⊥AB,AC=AB=×8=4,设⊙0的半径为x,则OC=OP﹣PC=x﹣2,在Rt△OAC中,OA2=OC2+AC2,∴x2=42+(x﹣2)2,解得:x=5,∴⊙0的半径为5.故选C.7.某种药品原价为35元/盒,经过连续两次降价后售价为26元/盒,设平均每次降价的百分率为x,根据题意所列方程正确的是()A.35(1﹣x)2=35﹣26 B.35(1﹣2x)=26 C.35(1﹣x)2=26 D.35(1﹣x2)=26【考点】由实际问题抽象出一元二次方程.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=26,把相应数值代入即可求解.【解答】解:第一次降价后的价格为35×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为35×(1﹣x)×(1﹣x),则列出的方程是35(1﹣x)2=26.故选C.8.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C在x轴上,点D(3,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.若抛物线y=ax2﹣4ax+10(a≠0且a为常数)的顶点落在△ADE的内部,则a的取值范围是()A.B.C.D.【考点】二次函数综合题.【分析】利用对折的性质,得到线段的关系,用勾股定理建立方程,最后用相似△AFG∽△ABD得到比例式,计算出点G,H的纵坐标即可..【解答】解:如图,过点E作EF⊥AB于F,EF分别与AD、OC交于点G、H,过点D作DP⊥EF于点P,则EP=PH+EH=DC+EH=1+EH,在Rt△PDE中,由勾股定理可得,DP2=DE2﹣PE2=9+(1+EH)2,∴BF2=DP2=9+(1+EH)2,在Rt△AEF中,AF=AB﹣BF=3﹣,EF=4+EH,AE=4,∵AF2+EF2=AE2,即:(3﹣)2+(4+EH)2=16,解得EH=1,∴AB=3,AF=2,E(2,﹣1).∵∠AFG=∠ABD=90°,∠FAG=∠BAD,∴△AFG∽△ABD.∴,即:=,∴FG=2.∴EG=EF﹣FG=3.∴点G的纵坐标为2.∵y=ax2﹣4ax+10=a(x﹣2)2+(10﹣20a),∴此抛物线y=ax2﹣4ax+10的顶点必在直线x=2上.又∵抛物线的顶点落在△ADE的内部,∴此抛物线的顶点必在EG上.∴﹣1<10﹣20a<2,∴.故选B.二、填空题:本大题共10小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.9.= 2 .【考点】算术平方根.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.正六边形的一个内角是120°.【考点】多边形内角与外角.【分析】利用多边形的内角和公式180°(n﹣2)计算出六边形的内角和,然后再除以6即可.【解答】解:由题意得:180°(6﹣2)÷6=120°,故答案为:120°.11.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)情况,投进篮筐的个数为6,10,5,3,4,8,4,这组数据的中位数是 5 .【考点】中位数.【分析】根据中位数的定义求出各数解答即可.【解答】解:按次序排列为3,4,4,5,6,8,10,故中位数为5.故答案为:5.12.抛物线y=(x+1)2﹣2的顶点坐标是(﹣1,﹣2).【考点】二次函数的性质.【分析】直接利用顶点式的特点可求顶点坐标.【解答】解:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).13.分解因式:x2﹣9x= x(x﹣9).【考点】因式分解的意义.【分析】首先确定多项式中的两项中的公因式为x,然后提取公因式即可.【解答】解:原式=x•x﹣9•x=x(x﹣9),故答案为:x(x﹣9).14.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是10πcm3(结果保留π)【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×2×5÷2=10π.故答案为:10π.15.若x≠y,则x4+y4>x3y+xy3(填“>”或“<”)【考点】因式分解的应用.【分析】首先作差,利用因式分解得出:(x4+y4)﹣(x3y+xy3)>0即可得出结论.【解答】解:(x4+y4)﹣(x3y+xy3)=x4+y4﹣x3y﹣xy3)=x3(x﹣y)﹣y3(x﹣y)=(x﹣y)(x3﹣y3)=(x﹣y)2(x2+xy+y2),∵x≠y,x2+y2≥2xy>0,∴2xy≥xy,∴x2+xy+y2>0,∴x4+y4>x3y+xy3.故答案为:>.16.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[2,m+1]的一次函数是正比例函数,则关于x的方程+=1的解为x=.【考点】解分式方程;正比例函数的定义.【分析】根据题中的新定义化简求出m的值,代入分式方程计算即可求出解.【解答】解:根据关联数”[2,m+1]的一次函数是正比例函数,得到m+1=0,即m=﹣1,则方程为﹣1=1,即x﹣1=,解得:x=,经检验是分式方程的解.故答案为:17.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.【考点】相似三角形的判定与性质;矩形的性质.【分析】首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CE•CA,AB2=AE•AC从而求得CE=,AE=,得到=,利用△CEF∽△AEB,求得=()2=.【解答】解:∵=,∴设AD=BC=a,则AB=CD=2a,∴AC=a,∵BF⊥AC,∴△CBE∽△CAB,△AEB∽△ABC,∴BC2=CE•CA,AB2=AE•AC∴a2=CE•a,2a2=AE•a,∴CE=,AE=,∴=,∵△CEF∽△AEB,∴=()2=,故答案为:.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行 3 次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是255 .【考点】估算无理数的大小.【分析】①根据规律依次求出即可;②要想确定只需进行3次操作后变为1的所有正整数,关键是确定二次操作后数的大小不能大于4,二次操作时根号内的数必须小于16,而一次操作时正整数255却好满足这一条件,即最大的正整数为255.【解答】解:①[]=9,[]=3,[]=1,故答案为:3;②最大的是255,[]=15,[]=3,[]=1,而[]=16,[]=4,[]=2,[]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.三、解答题:本大题共10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.19.计算:(5)0+(﹣1)2+|﹣2|﹣tan60°.【考点】实数的运算.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+1+2﹣=4﹣.20.(1)解方程x2﹣2x﹣3=0(2)解不等式组.【考点】解一元二次方程-因式分解法;解一元一次不等式组.【分析】(1)利用因式分解法解方程;(2)分别解两个不等式得到x<2和x≥﹣1,然后根据大于小的小于大的取中间确定不等式组的解集.【解答】解:(1)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1;(2),解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.21.如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.【考点】平行四边形的判定.【分析】利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.【解答】证明:∵∠A+∠B+∠C+∠D=360°,∠A=∠C,∠B=∠D,∴∠A+∠B=180°,又∵∠A=∠C,∴∠B+∠C=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).22.据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是12% ;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是36~45岁(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是5% ;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有700 名.【考点】条形统计图;扇形统计图;中位数.【分析】(1)本题需先根据已知条件,再结合图形列出式子,解出结果即可.(2)本题需先根据中位数的概念即可得出答案.(3)本题需先求出25岁以下的总人数,再用5除以总人数即可得出答案.(4)本题需先求出这次被调查公民中支持的人所占的百分比,再乘以总人数即可得出答案.【解答】解:(1)图2中所缺少的百分数是:1﹣39%﹣18%﹣31%=12%(2)∵共1000名公民,∴这个中位数所在年龄段是第500和第501个数的平均数,∴这个中位数所在年龄段是:36~45岁(3)∵年龄段是“25岁以下”的公民中“不赞成”的有5名,“25岁以下”的人数是1000×10%,∴它占“25岁以下”人数的百分数是×100%=5%,(4)∵所持态度中“很赞同”和“赞同”的人数所占的百分比分别是;39%,31%,∴这次被调查公民中“支持”的人有1000×(39%+31%)=700(人),故答案为:12%,36~45,5%,700.23.老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【考点】列表法与树状图法.【分析】(1)根据题意可得此题是放回实验,即可补全树状图;(2)由树状图可求得所有等可能的结果与小明同学两次抽到卡片上的数字之积是奇数的情况,再利用概率公式即可求得答案.【解答】解:(1)补全小明同学所画的树状图:(2)∵共有9种等可能的结果,小明同学两次抽到卡片上的数字之积是奇数的有4种情况,∴小明同学两次抽到卡片上的数字之积是奇数的概率为:.24.如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.(1)求证:AT平分∠BAC;(2)若AO=2,AT=2,求AC的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OT,如图,根据切线的性质得OT⊥PQ,加上AC⊥PQ,则可判断OT∥AC,所以∠TAC=∠OTA,而∠OTA=∠OAT,所以∠TAC=∠OAT;(2)连接BT,如图,证明Rt△ABT∽Rt△ATC,然后利用相似比克计算出AC的长.【解答】(1)证明:连接OT,如图,∵PQ切⊙O于T,∴OT⊥PQ,∵AC⊥PQ,∴OT∥AC,∴∠TAC=∠OTA,而OT=OA,∴∠OTA=∠OAT,∴∠TAC=∠OAT,∴AT平分∠BAC;(2)解:连接BT,如图,∵AB为直径,∴∠ATB=90°,∵∠TAC=∠BAT,∴Rt△ABT∽Rt△ATC,∴=,即=,∴AC=3.25.某市因水而名,因水而美,因水而兴,市政府作出了“五水共治”决策:治污水、防洪水、排涝水、保供水、抓节水.某区某乡镇对某河道进行整治,由甲乙两工程队合作20天可完成.已知甲工程队单独整治需60天完成.(1)求乙工程队单独完成河道整治需多少天?(2)若甲乙两工程队合做a天后,再由甲工程队单独做(60﹣3a)天(用含a的代数式表示)可完成河道整治任务.(3)如果甲工程队每天施工费5000元,乙工程队每天施工费为1.5万元,先由甲乙两工程队合作整治,剩余工程由甲工程队单独完成,问要使支付两工程队费用最少,并且确保河道在40天内(含40天)整治完毕,问需支付两工程队费用最少多少万元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙工程队单独完成河道整治需x天,根据工作量为“1”列出方程并解答;(2)设甲工程队单独做x天,根据甲的工作量+乙的工作量=1列出方程并解答;(3)利用(2)的结果求得a的取值范围.设费用为y,则由总费用=甲施工费+乙施工费列出方程并解答.【解答】解:(1)设乙工程队单独完成河道整治需x天,依题意得:(+)×20=1,解得x=30.经检验,x=30是原方程的根并符合题意.答:设乙工程队单独完成河道整治需30天;(2)设甲工程队单独做x天,依题意得:(+)×a+x=1,解得x=60﹣3a.故答案是:(60﹣3a);(3)由(2)得,一共用了a+60﹣3a=60﹣2a≤40,a≥10.设费用为y,则y=(0.5+1.5)a+0.5(60﹣3a)=0.5a+30.当a=10时,y最小值为35.答:最少费用为35万元.26.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c 的取值范围.【考点】勾股定理.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.27.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm (1)填空:AD= 2(cm),DC= 2(cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A →D,C→B方向运动,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)【考点】相似形综合题.【分析】(1)由勾股定理求出AC,由∠CAD=30°,得出DC=AC=2,由三角函数求出AD即可;(2)过N作NE⊥AD于E,作NF⊥DC,交DC的延长线于F,则NE=DF,求出∠NCF=75°,∠FNC=15°,由三角函数求出FC,得NE=DF=x+2,即可得出结果;(3)由三角函数求出FN,得出PF,△PMN的面积y=梯形MDFN的面积﹣△PMD的面积﹣△PNF的面积,得出y是x的二次函数,即可得出y的最大值.【解答】解:(1)∵∠ABC=90°,AB=BC=4cm,∴AC===4,∵∠ADC=90°,∠CAD=30°,∴DC=AC=2,∴AD=DC=2;故答案为:2,2;(2)过点N作NE⊥AD于E,作NF⊥DC,交DC的延长线于F,如图所示:则NE=DF,∵∠ABC=∠ADC=90°,AB=BC,∠CAD=30°,∴∠ACB=45°,∠ACD=60°,∴∠NCF=180°﹣45°﹣60°=75°,∠FNC=15°,∵sin∠FNC=,NC=x,∴FC=x,∴NE=DF=x+2,∴点N到AD的距离为x+2;(3)∵sin∠NCF=,∴FN=x,∵P为DC的中点,∴PD=CP=,∴PF=x+,∴△PMN的面积y=梯形MDFN的面积﹣△PMD的面积﹣△PNF的面积=(x+2﹣x)(x+2)﹣(2﹣x)×﹣(x+)(x)=x2+x+2,即y是x的二次函数,∵<0,∴y有最大值,当x=﹣=时,y有最大值为=.28.已知:如图在平面直角坐标系xOy中,矩形OABC的边OA在y轴的负半轴上,OC在x 轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交线段AB于点D,连接DC,过点D作DE⊥DC,交线段OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)如图2将∠EDC绕点D按逆时针方向旋转后,角的一边与y轴的负半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,求证:EF=2GO;(3)对于(2)中的点G,在位于第四象限内的该跑物像上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法求解抛物线解析式;(2)利用待定系数法求解直线解析式,得到F(0,3),EF=2,从而得出∠FDA=∠GDK,KG=AF 即可;(3)分三种情况,①PG=PC,②若PG=GC,③若PG=GC,由勾股定理解得即可.【解答】解:(1)由已知,得C(3,0),D(2,2),∵∠ADE90°﹣∠CDB=∠BCD,∴AD=BC,AD=2,∴E(0,1),设过点E,D,C的抛物线的解析式为y=ax2+bx+c(a≠0),将点E,D,C的坐标分别代入,得;解这个方程组,得,∴抛物线点的解析式为y=﹣x2+x+1;(2)证明:∵点M在抛物线上,且它的横坐标为,设DM的解析式为y=kx+m(k≠0),将点D,M的坐标分别代入,得,解得,,∴DM的解析式为y=﹣x+3,∴F(0,3),EF=2.过点D作DK⊥OC于K,∴DA=DK,∵∠ADK=∠FDG=90°,∴∠FDA=∠GDK,∴KG=AF=1,∵OC=3,∴EF=2GO.(3)如图:∵点P在AB上,G(1,0),C(3,0),则设P(t,2),∴PG2=(t﹣1)2+22,PC2=(3﹣t)2+22,CG=2 ①PG=PC,∴(t﹣1)2+22=(3﹣t)2+22,∴t=2∴P(2,2),此时点Q与点P重合,∴Q(2,2),②若PG=GC,∴(t﹣1)2+22=22,∴t=1,∴P(1,2),此时GP⊥x轴,GP与抛物线在第一象限内的交点Q的横坐标为1,∴Q的纵坐标为,∴Q(1,).③若PG=GC,∴(3﹣t)2+22=22,∴t=3,∴P(3,2),此时PC=GC=2,∴△PGC为等腰直角三角形,过点Q作QH⊥x轴于点H,∴QH=GH,SHE QH=h,∴Q(h+1,h),∴﹣(h+1)2+(h+1)+1=h,∴h=﹣2(舍)或h=7,∴Q(,),∴Q(2,2)或Q(1,)或Q(,).2016年6月9日。