重庆八中七年级下数学期末考试试题(2018年)
- 格式:doc
- 大小:278.50 KB
- 文档页数:8
七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.下列实数中不是无理数的是()A. −πB. √7C. √2018D. √42.19的平方根是()A. 13B. ±13C. −13D. ±1813.不等式组{x≤3x≤2的解集在数轴上表示正确的是()A. B.C. D.4.第四象限内的点P到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A. (3,4)B. (3,−4)C. (4,−3)D. (−4,3)5.下列调查中,最适宜采全面调查(普查)的是()A. 了解某市市民对中美贸易争端的知晓情况B. 了解一批导弹的杀伤半径C. 对“神州十一”号各零部件的检查D. 了解重庆市民生活垃圾分类情况6.3+√10的结果在下列哪两个整数之间().A. 6和7B. 5和6C. 4和5D. 3和47.如图,直线AB∥CD,BC平分∠ABD,若∠1=65°,则∠2的大小为()A. 35∘B. 40∘C. 50∘D. 65∘8.有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直其中所有正确的命题是()A. ①②B. ②③C. ①④D. ③④9.若a>b>0,则下列不等式不一定成立的是()A. ac>bcB. a+c>b+cC. 1a <1bD. ab>b210.若(a+2)x|a|-1-(b-1)y b2=7是关于x、y的二元一次方程,则a、b的值分别是()A. a=−2,b=−1B. a=−2,b=1C. a=2,b=1D. a=2,b=−111.观察下列图形规律,其中第1个图形由6个○组成,第2个图形由14个○组成,第3个图形由24个○组成,…,照此规律下去,则第8个图形○的个数一共是()A. 84B. 87C. 104D. 12312.若关于x的方程4(2-x)+x=ax的解为正整数,且关于x的不等式组{x−16+2>2x a−x≤0有解,则满足条件的所有整数a的值之和是()A. 4B. 0C. −1D. −3二、填空题(本大题共6小题,共24.0分)13.计算:√64+√643=______.14.如图是一种测量角的仪器,它依据的原理是______.15.七年级(1)班在一次数学抽测中某道选择题的答题情况的统计图如下所示,根据统计图可得选C的有______人.16.如果点P(a+2,a-3)向左平移2个单位长度正好落在y轴上,那么点P的坐标为______.17.如图,三条直线AB、CD、EF相交于O,且CD⊥EF,∠AOE=68°.若OG平分∠BOF,则∠DOG=______度.18.某校在“筑梦少年正当时,不忘初心跟党走”知识竟赛中,七年级(2)班2人获一等奖,1人获二等奖,3人获三等奖,奖品价值41元;七年级(7)班1人获一等奖,3人获二等奖,3人获三等奖,奖品价值37元;七年级(13)班5人获二等奖,3人获三等奖,奖品价值______元.三、计算题(本大题共1小题,共10.0分) 19. 解下列方程组、不等式组:(1){3x −2y =11x+2y=1(2){x −3(x −2)≤41+2x 3>x −1四、解答题(本大题共7小题,共68.0分) 20. 完成下面推理过程:如图,已知DE ∥BC ,DF 、BE 分别平分∠ADE 、∠ABC ,可推得∠FDE =∠DEB 的理由:∵DE ∥BC (已知)∴∠ADE =______.(______)∵DF 、BE 分别平分∠ADE 、∠ABC ,∴∠ADF =12______,∠ABE =12______.(______) ∴∠ADF =∠ABE∴DF ∥______.(______) ∴∠FDE =∠DEB .(______)21. 已知一个正数的两个平方根分别为a 和3a ﹣8.(1)求a 的值,并求这个正数;(2)求1﹣7a2的立方根.22.2018“体彩杯”重庆开州汉丰湖半程马拉松赛开跑前一周,某校七年级数学研究学习小组在某十字路口随机调查部分市民对“半马拉松赛”的了解情况,统计结果后绘制了如图的两副不完整的统计图,请结合图中相关数据回答下列问题:得分A50<n≤60B60<n≤70C70<n≤80D80<n≤90E90<n≤100(1)本次调查的总人数为______人,在扇形统计图中“C”所在扇形的圆心角的度数为______度;(2)补全频数分布图;(3)若在这一周里,该路口共有7000人通过,请估计得分超过80的大约有多少人?23.我区某中学体育组因高中教学需要本学期购进篮球和排球共80个,共花费5800元,已知篮球的单价是80元/个,排球的单价是50元/个.(1)篮球和排球各购进了多少个(列方程组解答)?(2)因该中学秋季开学准备为初中也购买篮球和排球,教学资源实现共享,体育组提出还需购进同样的篮球和排球共40个,但学校要求花费不能超过2810元,那么篮球最多能购进多少个(列不等式解答)?24.如图,已知BC∥GE,AF∥DE,∠1=56°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=14°,求∠ACB的度数.25.设x是实数,现在我们用{x}表示不小于x的最小整数,如{3.2}=4,{-2.6}=-2,{4}=4,{-5}=5.在此规定下任一实数都能写出如下形式:x={x}-b,其中0≤b<1.(1)直接写出{x}与x,x+1的大小关系是______(由小到大);(2)根据(1)中的关系式解决下列问题:①求满足{3x+11}=6的x的取值范围;.②解方程:{3.5x+2}=2x-1426.已知在平面直角坐标系中,O为坐标原点,点A的坐标为(1,a),点B的坐标为(b,1),点C的坐标为(c,0),其中a、b满足(a+b-8)2+|a-b+2|=0.(1)求A、B两点的坐标;(2)当△ABC的面积为6时,求点C的坐标;(3)当4≤S△ABC≤10时,求点C的横坐标c的取值范围.答案和解析1.【答案】D【解析】解:-π、、均为无理数,=2是整数,属于有理数,故选:D.根据无理数的概念及算术平方根可得.本题主要考查了无理数的定义:无理数就是无限不循环小数,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.2.【答案】B【解析】解:±=±.故选:B.根据一个正数有两个平方根,它们互为相反数进行解答即可.本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.【答案】C【解析】解:不等式组的解集在数轴上表示正确的是,故选:C.表示出不等式组的解集,表示在数轴上即可.此题考查了在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.4.【答案】C【解析】解:∵点P在第四象限且到x轴的距离是3,到y轴的距离是4,∴点P的横坐标为4,纵坐标为-3,∴点P的坐标是(4,-3).根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的横坐标和纵坐标,然后写出答案即可.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度以及第四象限内点的坐标特征求出点P的横坐标与纵坐标是解题的关键.5.【答案】C【解析】解:A、调查某市市民对中美贸易争端的知晓情况人数多,耗时长,应当使用抽样调查,故本选项错误;B、调查一批导弹的杀伤半径,具有破坏性,故应当采用抽样调查;C、调查对“神州十一”号各零部件的检查,应当采用全面调查,故本选项正确;D、调查重庆市民生活垃圾分类情况,范围广,耗时长,应当采用抽样调查的方式,故本选项错误.故选:C.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.6.【答案】A【解析】解:∵3<<4,∴6<3+<7,直接利用3<<4,进而得出答案.此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.7.【答案】C【解析】解:∵直线AB∥CD,若∠1=65°,∴∠1=∠ABC=∠DCB=65°,∠2=∠CDB,∵BC平分∠ABD,∴∠ABC=∠CBD,∴在三角形BCD中∠CBD+∠CDB+∠BCD=180°,∴∠CDB=180°-∠1-∠CBD=180°-65°-65°=50°,∴∠2=50°,故选:C.由平行线的性质得到∠ABC=∠1=67°,由BC平分∠ABD,得到∠ABD=2∠ABC,再由平行线的性质求出∠2的度数.本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.8.【答案】C【解析】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以①正确;两条平行直线被第三条直线所截,同旁内角互补,所以②错误;在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线平行,所以③错误;在同一平面内,过一点有且只有一条直线与已知直线垂直,所以④正确.故选:C.根据平行线的判定方法对①③进行判断;根据平行线的性质对②进行判断;根据垂直公理对④进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.【答案】A【解析】解:当c=0,则ac>bc不成立;当a>b>0,则a+c>b+c;<;ab>b2.故选:A.举特例如c=0,可对A进行判断;根据不等式性质,把a>b>0两边都加上c 得到B,都除以ab得到C,都乘以b得到D.本题考查了不等式性质:①在不等式两边同加上或减去一个数(或式子),不等号方向不改变;②在不等式两边同乘以或除以一个正数,不等号方向不改变;③在不等式两边同乘以或除以一个负数,不等号方向改变.10.【答案】D【解析】解:根据题意,得|a|-1=1,b2=1,且a+2≠0,b-1≠0,解得,a=2,b=-1.故选:D.根据二元一次方程的定义列出关于a、b的二元一次方程,通过解方程组来求a,b的值.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.11.【答案】C【解析】解:∵第1个图形由6个组成,6=1×(1+5),第2个图形由14个组成,14=2×(2+5),第3个图形由24个组成,24=3×(3+5),…∴第n个图形的个数是n(n+5),∴第8个图形的个数8×(8+5)=104.故选:C.根据第1个图形由6个组成,第2个图形由14个组成,第3个图形由24个组成,得出第n个图形的个数是n(n+5),进而得到第8个图形的个数.本题考查了规律型:图形的变化类,通过观察图形得出第n个图形的个数是n(n+5)是解题的关键.12.【答案】D【解析】解:4(2-x)+x=ax,8-4x+x=ax,ax-x+4x=8,(a+3)x=8,x=,∵关于x的方程4(2-x)+x=ax的解为正整数,∴a+3=1或a+3=2或a+3=4或a+3=8,解得:a=-2或a=-1或a=1或a=4;解不等式①得:x<1,解不等式②得:x≥a,∵关于x的不等式组有解,∴a<1,∴a只能为-1和-2,-1+(-2)=-3,故选:D.先求出方程的解x=,根据方程的解为正整数求出a的值,再根据不等式组有解得出a<1,得出a的值,即可得出选项.本题考查了解一元一次方程、解一元一次不等式和解一元一次不等式组等知识点,能得出a的取值范围和a的值是解此题的关键.13.【答案】12【解析】解:原式=8+4=12.故答案为:12.直接利用二次根式的性质以及立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.14.【答案】对顶角相等【解析】解:测量角的仪器依据的原理是:对顶角相等.故答案为:对顶角相等.根据对顶角相等的性质解答.本题考查了对顶角相等的性质,是基础题,熟记性质是解题的关键.15.【答案】28【解析】解:10÷20%×56%=28(人)故答案为28.根据D的人数除以D所占的百分比,可得抽测的总人数,再乘以C所占的百分比,可得答案.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.16.【答案】(2,-3)【解析】解:点P(a+2,a-3)向左平移2个单位长度所得点的坐标为(a,a-3),∵向左平移2个单位长度正好落在y轴上,∴a=0,则点P的坐标为(2,-3),故答案为:(2,-3).根据横坐标,右移加,左移减得到平移后点的坐标为(a+2-2,a-3),再根据y 轴上的点横坐标为0可得a+2-2=0,算出a的值,可得点P的坐标.此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y轴上的点横坐标为0的特征.17.【答案】56【解析】解:∵CD⊥EF,∴∠COE=90°,∵∠AOE=68°,∴∠AOC=∠BOD=22°,∠BOF=68°,∵OG平分∠BOF,∴∠BOG=∠BOF=34°,∴∠DOG=∠DOB+∠BOG=56°.故答案为:56.直接利用垂直的定义得出∠AOC=∠BOD的度数,再利用角平分线的定义得出答案.此题主要考查了垂线以及角平分线的定义和角的计算,正确应用垂直的定义是解题关键.18.【答案】33【解析】解:设一等奖奖品的单价为x元/个,二等奖奖品的单价为y元/个,三等奖奖品的单价为z元/个,根据题意得:,2×②-①,得:5y+3z=33.故答案为:33.设一等奖奖品的单价为x元/个,二等奖奖品的单价为y元/个,三等奖奖品的单价为z元/个,根据“2个一等奖、1个二等奖、3个三等将奖品价值41元;1个一等奖、3个二等奖、3个三等将奖品价值37元”,即可得出关于x 、y 、z 的三元一次方程组,利用2×②-①即可求出结论.本题考查了三元一次方程组,找准等量关系,正确列出三元一次方程组是解题的关键.19.【答案】解:(1){x +2y =1①3x −2y =11②, ①+②,得:4x =12,解得:x =3,将x =3代入①,得:3+2y =1,解得:y =-1,所以方程组的解为{y =−1x=3;(2)解不等式x -3(x -2)≤4,得:x ≥1, 解不等式1+2x3>x -1,得:x <4,则不等式组的解集为1≤x <4.【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可得.本题考查的是解一元一次不等式组与二元一次方程组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.【答案】∠ABC ;两直线平行,同位角相等;∠ADE ;∠ABC ;角平分线定义;BE ;同位角相等,两直线平行;两直线平行,内错角相等【解析】解:理由是:∵DE ∥BC (已知),∴∠ADE=∠ABC (两直线平行,同位角相等),∵DF 、BE 分别平分ADE 、∠ABC ,∴∠ADF=∠ADE ,∠ABE=∠ABC (角平分线定义),∴∠ADF=∠ABE ,∴DF ∥BE (同位角相等,两直线平行),∴∠FDE=∠DEB (两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等,∠ADE,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE 即可.本题考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.21.【答案】解:(1)根据题意,得:a+3a-8=0,解得:a=2,所以这个正数为22=4;(2)当a=2时,1-7a2=-27,则1-7a2的立方根为-3.【解析】(1)根据平方根的性质一个正数有两个平方根,它们互为相反数列出算式,求出a的值,进一步求解可得;(2)求出1-7a2的值,根据立方根的概念求出答案.本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.22.【答案】200;108【解析】解:(1)本次调查的总人数为20÷10%=200人,在扇形统计图中“C”所在扇形的圆心角的度数为360°×=108°,故答案为:200、108;(2)80<n≤90的人数为200-(10+20+60+20)=90,补全频数分布图如下:(3)估计得分超过80的大约有7000×=3850人.(1)由B 组人数及其所占百分比可得总人数,用360°乘以C 组的人数所占比例可得;(2)根据各组人数之和等于总人数求得D 组人数即可补全图形;(3)用总人数乘以样本中D 、E 组人数和所占比例.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件.利用数形结合的思想解答.23.【答案】解:(1)设购进篮球x 个,购进排球y 个,根据题意得:{80x +50y =5800x+y=80,解得:{y =20x=60.答:购进篮球60个,购进排球20个.(2)设购进篮球m 个,则购进排球(40-m )个,根据题意得:80m +50(40-m )≤2810,解得:m ≤27.答:篮球最多能购进27个.【解析】(1)设购进篮球x 个,购进排球y 个,根据“购进篮球和排球共80个,共花费5800元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论; (2)设购进篮球m 个,则购进排球(40-m )个,根据总价=单价×数量结合花费不能超过2810元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:(1)∵BC∥EG,∴∠E=∠1=56°.∵AF∥DE,∴∠AFG=∠E=56°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠FAM=∠AFG=56°.∵AM∥BC,∴∠QAM=∠Q=14°,∴∠FAQ=∠FAM+∠QAM=70°.∵AQ平分∠FAC,∴∠QAC=∠FAQ=70°,∴∠MAC=∠QAC+∠QAM=84°.∵AM∥BC,∴∠ACB=∠MAC=84°.【解析】(1)先根据BC∥EG得出∠E=∠1=56°,再由AF∥DE可知∠AFG=∠E=56°;(2)作AM∥BC,由平行线的传递性可知AM∥EG,故∠FAM=∠AFG,再根据AM∥BC可知∠QAM=∠Q,故∠FAQ=∠FAM+∠QAM,再根据AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=84°,根据AM∥BC即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.25.【答案】x≤{x}<x+1【解析】解:(1)∵x={x}-b,其中0≤b<1,∴b={x}-x,即0≤{x}-x<1,∴x≤{x}<x+1,故答案为:x≤{x}<x+1,(2)①∵{3x+11}=6,∴3x+11≤6<(3x+11)+1,解得:-2<x≤-,即满足{3x+11}=6的x的取值范围为:-2<x≤-,②∵{3.5x+2}=2x-,∴3.5x+2≤2x -<(3.5x+2)+1,且2x-为整数,解不等式组得:-<x≤-, ∴-<2x-≤-3,整数2x-为-4,解得:x=-,即原方程的解为:x=-. (1)x={x}-b ,其中0≤b <1,b={x}-x ,即0≤{x}-x <1,即可判断三者的大小关系,(2)根据(1)中的关系得到关于x 的一元一次不等式组,解之即可, ②根据(1)中的关系得到关于x 的一元一次不等式组,且2x-为整数,即可求解.本题考查解一元一次不等式组和解一元一次方程,根据题意找出符合要求的关系式并列出关于x 的一元一次不等式组是解题的关键.26.【答案】解:(1)∵(a +b -8)2+|a -b +2|=0.∴{a −b +2=0a+b−8=0,解得{b =5a=3,∴A (1,3),B (5,1);(2)①如图1中,当点C 在直线AB 的下方时,作AE ⊥x 轴于E ,BF ⊥x 轴于F .设C (c ,0).∵S △ABC =S 四边形AEFB -S △AEC -S △BCF =12×(1+3)×4-12×3×(c -1)-12×1×(5-c )=7-c ,∴7-c =6解得c =1.②如图2中,当点C 在直线AB 的上方时,作AE ⊥x 轴于E ,BF ⊥x 轴于F .设C (c ,0).∵S △ABC =S △AEC -S 四边形AEFB -S △BCF =12×3×(c -1)-12×(1+3)×4-12×1×(c -5)=c -7,∴c -7=6,解得c =13,∴满足条件的点C 坐标为(1,0)或(13,0).(3)由(2)可知,当点C 在直线AB 下方时,S △ABC =7-c ,∴4≤7-c ≤10,∴-3≤c ≤3,当点C 在直线AB 是上方时,S △ABC =c -7,∴4≤c -7≤10,∴11≤c ≤17,综上所述,满足条件的c 的取值范围为-3≤c ≤3或11≤c ≤17.【解析】(1)利用非负数的性质,把问题转化为方程组解决即可;(2)分两种情形画出图形,分别构建方程即可解决问题;(3)分两种情形分别构建不等式即可解决问题;本题考查三角形的面积、非负数的性质、坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.。
2018-2019学年重庆八中七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应选项的代号涂黑.1.(3分)下列各数中是无理数的是()A.B.C.0.32D.2.(3分)下列图形中是轴对称图形的是()A.B.C.D.3.(3分)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.(3分)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.(﹣a)2a4=a6C.﹣a4b÷a2b=﹣a2b D.3a﹣1=5.(3分)张老师出门散步时离家的距离y与时间x之间的函数图象如图所示,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()A.B.C.D.6.(3分)质检部门为检测某品牌电视机的质量,从同一批次共2000件品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是()A.30B.60C.3007.(3分)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油的技艺之高超如图,若铜钱半径为2cm,中间有边长为1cm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A.B.C.D.8.(3分)如图,△ABC中,∠A=30°,∠C=90°,AB的垂直平分线DE交AC于D点,交AB于E点,则下列结论错误的是()A.AD=BC B.AD=DB C.DE=DC D.BC=AE9.(3分)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21B.24C.27D.3010.(3分)如图,三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的E处,那么下列等式成立的是()A.AC=AD+BD B.AC=AB+BD C.AC=AD+CD D.AC=AB+CD二、填空题(本大题共6小题,每小题3分,共18分)请将每小题的答案直接填写在答题卷中对应的横线上11.(3分)9的算术平方根是.12.(3分)已知a2﹣3=2a,那么代数式(a﹣2)2+2(a+1)的值为.13.(3分)一个等腰三角形的两边长分别是2cm、5cm,则它的周长为cm.14.(3分)如图,在△ABC中,D、E分别为边BC,AC的中点,若S△ABC=48,则图中阴影部分的面积是.15.(3分)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.16.(3分)如图,在直角△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,若BC=10,S△BCD=15,则AD=.三、计算题:(本大题共2个小题,每小题8分,共16分)17.(8分)计算:(1)﹣(﹣)﹣1﹣(2015)0(2)(﹣1)2+(2)(2)18.(8分)化简:(1)(a+3b)(a﹣3b)﹣a(a﹣b)(2)(3a﹣b)2+(2a﹣b)(a+2b)四、解答题:(本大题共4个小题,19、20每小题8分,21、22每小题8分,共36分)19.(8分)如图,在正方形网格上有一个△ABC(1)作△ABC关于直线DE的轴对称图形△A′B′C′(不写作法);(2)若网格上的最小正方形边长为1,求△ABC的面积.20.(8分)如图,A、B、D、F在同直线上,AD=BF,AE=BC,AE∥BC,求证:EF=CD.21.(10分)化简求值:已知x、y满足:4x2+9y2﹣4x+6y+2=0,求代数式[(2x﹣y)2﹣2(x+2y)(2x﹣y)]÷(﹣y)的值.22.(10分)如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.(1)若∠BAN=15°,求∠N;(2)若AE=CF,求证:2AG=AF.五、填空题(本大题共5个小题,每小题4分,共20分)23.(4分)的整数部分是a,小数部分是b,则a﹣b=.24.(4分)将一个等腰直角三角形ABC如图放置,a∥b,∠1=105°,则∠2=.25.(4分)已知x2﹣2xy=6,2y2﹣xy=5.则x2﹣4y2=.26.(4分)如图,在直角三角形ABC中,∠A=90°,AB=8,AC=15,BC=17.D,P分别是线段AC,BC上的动点,则BD+DP的最小值是.27.(4分)一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是分.六、解答题:解答时必须给出必要的演算过程和推理步骤.(本大题共3个小题,每小题10分,共30分)28.(10分)对两实数x,y定义一种新运算,规定x⊕y=例如:1⊕2==3.(1)填空:2⊕(﹣3)=;⊕=.(2)若a⊕2=1,求a的值.(3)若m,n为整数,且m⊕n=1,求满足条件的所有m,n的值.29.(10分)如图①,在长方形ABCD中,AB=16cm,BC=10cm,动点P从A出发,匀速沿A→B→C→D运动,到点D停止;同时动点Q从D出发,匀速沿D→C→B运动,速度是动点P速度的一半,当其中一个点到达终点时,另一个点停止运动,如图②是点P出发后△ACP的面积S1(cm2)与运动时间t(s)之间的关系图象(1)图②中,a=;b=.(2)当P运动多少秒后,P,Q两点相遇.(3)在点Q从点D运动到点C的过程中,记点Q出发后△BCQ的面积为S2,当S1=S2时,求动点P运动的时间t.30.(10分)已知,在Rt△ABC中,∠BAC=90°,E为AB上一动点,以EC为斜边作Rt△EFC,∠EFC=90°,EF交AC于点M,且AM=MF.(1)如图①,若EF平分∠AEC,AM=4,求AC的长.(2)如图②,连接AF并延长,交BC的延长线于点D,过点C作CN⊥AD于N,求证:EC=AF+2FN.2018-2019学年重庆八中七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应选项的代号涂黑.1.【解答】解:A、是无理数,故本选项正确;B、不是无理数,故本选项错误;C、0.32不是无理数,故本选项错误;D、=2,不是无理数,故本选项错误;故选:A.2.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.3.【解答】解:∵32=9,42=16,∴估计在3和4之间.故选:C.4.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,故选项A错误;∵(﹣a)2a4=a2•a4=a6,故选项B正确;∵﹣a4b÷a2b=﹣a2,故选项C错误;∵3a﹣1=,故选项D错误;故选:B.5.【解答】解:由图象可知,张老师从家出发刚开始离家的距离在变大,然后较长一段时间离家的距离不变,然后回家,故选项A、B、C不符合题意,选项D符合题意,故选:D.6.【解答】解:∵随机抽取100件进行检测,检测出次品3件,∴次品所占的百分比是:,∴这一批次产品中的次品件数是:2000×=60(件).故选:B.7.【解答】解:∵铜钱的面积为4π,而中间正方形小孔的面积为1,∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是,故选:D.8.【解答】解:∵∠C=90°,∠A=30°,∴∠ABC=60°,AB=2BC,∵DE是AB的垂直平分线,∴DA=DB,故B正确,不符合题意;∵DA=DB,BD>BC,∴AD>BC,故A错误,符合题意;∴∠DBA=∠A=30°,∴∠DBE=∠DBC,又DE⊥AB,DC⊥BC,∴DE=DC,故C正确,不符合题意;∵AB=2BC,AB=2AE,∴BC=AE,故D正确,不符合题意;故选:A.9.【解答】解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选:B.10.【解答】解:∵△ADE是由△ADB沿直线AD折叠而成,∴AB=AE,BD=DE,∠B=∠AED.又∵∠B=2∠C,∠AED=∠C+∠EDC(三角形外角定理),∴∠EDC=∠C(等量代换),∴DE=EC(等角对等边).A、根据图示知:AC=AE+EC=AE+BD,则当AD≠AE时,AC≠AD+BD;故本选项错误;B、根据图示知:AC=AE+EC,因为AE+EC=AB+BD,所以AC=AB+BD;故本选项正确;C、在△ADC中,由三角形的三边关系知AC<AD+CD;故本选项错误;D、根据图示知:AC=AE+EC,因为AB+CD=AE+CD,所以当EC≠CD时,AC≠AB+CD;故本选项错误;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)请将每小题的答案直接填写在答题卷中对应的横线上11.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.12.【解答】解:∵a2﹣3=2a,∴a2﹣2a=3,∴(a﹣2)2+2(a+1)=a2﹣4a+4+2a+2=a2﹣2a+6=3+6=9,故答案为:9.13.【解答】解:分两种情况讨论①腰长为5时,三边为5、5、2,满足三角形的性质,周长=5+5+2=12cm;②腰长为2cm时,三边为5、2、2,∵2+2=4<5,∴不满足构成三角形.∴周长为12cm.故答案为:12.14.【解答】解:∵点D为BC中点,∴DC=BC,∵△ADC与△ABC的DC,BC边上的高相同,∴S△ADC=S△ABC=24,∵点E为AC中点,∴AE=AC,∵△ADC与△ADE的AC,AE边上的高相同,∴S△ADE=S△ADC=12,故答案为:12.15.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.16.【解答】解:如图,作DE⊥BC于E.∵BD平分∠ABC,DA⊥AB,DE⊥BC,∴AD=DE,∵S△BCD=×BC×DE=15,BC=10,∴DE=3,∴AD=DE=3,故答案为3.三、计算题:(本大题共2个小题,每小题8分,共16分)17.【解答】解:(1)原式=2﹣(﹣3)﹣1=2+3﹣1=2+2;(2)原式=3﹣2+1+3﹣4=3﹣2.18.【解答】解:(1)(a+3b)(a﹣3b)﹣a(a﹣b)=a2﹣9b2﹣a2+ab=﹣9b2+ab;(2)(3a﹣b)2+(2a﹣b)(a+2b)=9a2﹣6ab+b2+2a2+4ab﹣ab﹣2b2=11a2﹣3ab﹣b2.四、解答题:(本大题共4个小题,19、20每小题8分,21、22每小题8分,共36分)19.【解答】解:(1)△A′B′C′即为所求.(2)S△ABC=×4×=4.20.【解答】解:∵AE∥BC,∴∠A=∠B,∵AD=BF,∴AD+DF=BF+DF,即AF=BD,在△AEF和△BCD中,,∴△AEF≌△BCD(SAS),∴EF=CD.21.【解答】解:原式=[4x2﹣4xy+y2﹣4x2﹣6xy+4y2]÷(﹣y)=(﹣10xy+5y2)÷(﹣y)=30x﹣15y,已知等式整理得:(4x2﹣4x+1)+(9y2+6y+1)=0,即(2x﹣1)2+(3y+1)2=0,∴2x﹣1=0,3y+1=0,解得:x=,y=﹣,则原式=15+5=20.22.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AC∥BN,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN中,∠N=180°﹣∠ABN﹣∠BAN=180°﹣120°﹣15°=45°;(2)∵AC∥BN,∴∠N=∠GAE,∠NBG=∠AEG,又∵点G是线段BE的中点,∴BG=EG,∴△NBG≌△AEG(AAS),∴AG=NG,AE=BN,∵AE=CF,∴BN=CF,∵∠ACB=60°,∴∠ACF=180°﹣∠ACB=120°,∴∠ABN=∠ACF,又∵AB=AC,∴△ABN≌△ACF(SAS),∴AF=AN,∵AG=NG=AN,∴AF=2AG.五、填空题(本大题共5个小题,每小题4分,共20分)23.【解答】解:∵的整数部分是a,小数部分是b,∴a=1,b=﹣1,则a﹣b=1﹣(﹣1)=2﹣.故答案为:2﹣.24.【解答】解:∵∠1=105°,∴∠4=180°﹣105°=75°.∴∠3=180°﹣∠C﹣∠4=180°﹣45°﹣75°=60°.∵a∥b,∴∠2=∠3=60°.故答案为60°.25.【解答】解:x2﹣2xy=6①,2y2﹣xy=5②,②×2得:4y2﹣2xy=10③,①﹣③得:(x2﹣2xy)﹣(4y2﹣2xy)=﹣4,即x2﹣4y2=﹣4,故答案为:﹣4.26.【解答】解:作B关于AC的对称点E,过E作EP⊥BC于P,交AD于D,则AE=AB=8,此时,BD+DP的值最小,BD+DP的最小值=EP,∵∠BAC=∠BPE=90°,∠C=∠E,∴△ABC∽△PBE,∴,∴=,∴PE=,故答案为:.27.【解答】解:设裁判员有x名,那么总分为9.84x;去掉最高分后的总分为9.82(x﹣1),由此可知最高分为9.84x﹣9.82(x﹣1)=0.02x+9.82;去掉最低分后的总分为9.9(x﹣1),由此可知最低分为9.84x﹣9.9(x﹣1)=9.9﹣0.06x.因为最高分不超过10,所以0.02x+9.82≤10,即0.02x≤0.18,所以x≤9.当x取9时,最低分有最小值9.36分,故答案为:9.36.六、解答题:解答时必须给出必要的演算过程和推理步骤.(本大题共3个小题,每小题10分,共30分)28.【解答】解:(1)根据题中的新定义得:2⊕(﹣3)==1;⊕==;故答案为:1;;(2)已知等式利用新定义化简a⊕2=1得:=1,即(a+2)2=a2+2,解得:a=﹣.故答案为:.(3)根据题中的新定义得:m⊕n==1,化简得:mn=3﹣n2∴m=﹣n∵m,n为整数∴n的值为:±1,±3,m的值为:±2.29.【解答】解:(1)由题意点P的运动速度为=4cm/s,点Q的运动速度为2cm/s.a==s,b==s.故答案为s,s.(2)设t秒后,P,Q相遇.由题意:4t+2t=16+10+16,解得t=7.∴7秒后P,Q相遇.(3)当点P在线段AB上时,由题意:•4t•10=(16﹣2t)•10,解得t=.当等P在线段BC上时,由题意:•(26﹣4t)•16=(16﹣2t)•10,解得t=.综上所述,满足条件的t的值为s或s.30.【解答】解:(1)∵EF平分∠AEC,∴∠AEF=∠FEC,∵∠BAC=∠EFC=90°,AM=MF,∠AME=∠FMC∴△AEM≌△FCM(SAS)∴EM=MC∴∠MEC=∠MCE∴∠MEC=∠MCE=∠AEF,∵∠MEC+∠MCE+∠AEF=90°∴∠AEF=∠MCE=∠MEC=30°,且∠BAC=90°∴EM=2AM=8∴MC=8∴AC=AM+MC=12(2)如图,过点C作CG⊥AC交AD于点G,由(1)可知:EM=MC∵AM=MF∴AC=EF,∵∠BAC=∠EFC=90°∴点A,点F,点C,点E四点共圆∴∠CAG=∠FEC,且AC=EF,∠EFC=∠ACG=90°∴△ACG≌△EFC(ASA)∴AG=CE,CF=CG,∵CF=CG,CN⊥AG∴FG=2FN∴EC=AG=AF+FG=AF+2FN。
重庆市八中2017—2018学年北师版七年级(下)数学期末模拟卷2一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD 的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内.1. 气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是( )A.本市明天将有80%的地区降水 B.本市明天将有80%的时间降水C.明天肯定下雨 D.明天降水的可能性比较大2、下列计算正确的是( ).A . 326a a a ⋅= B.824a a a ÷= C.()33ab ab = D.()326aa -=- 3、下列图形中,不是轴对称图形的是( ).4.如图,在中,分别在上,且∥,要使∥,只需再有下列条件中的( )即可。
A .B .C .D . 5. 若分式方程2122m x x x +=--有增根,则m 的值为( ) A 、2 B 、4 C 、1 D 、06. 如图,在△ABC 中,,,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( )A 、5个B 、4个C 、3个D 、2个7.如图,在Rt △ABC 中,∠C =90°,以AC 、BC 为直径的半圆面积分别是12.5πcm2和cm2,则Rt △ABC 的面积为( )cm2.A .24B .30C .48D .608.若等腰三角形中有一个角等于,则这个等腰三角形的顶角的度数为( ) A . B . C .或 D .或9.甲地连降大雨,某部队前往救援。
乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队与甲地的距离s (千米)与时间t(小时)之间函数关系的大致图象是 ( ).10.等腰三角形一腰上的高与另一腰的夹角为20,则顶角的度数为( )A .70 B.55 C.110 D. 70或11011、已知等腰三角形的两边长分别为3cm 和8cm ,则此三角形的周长可能是( ).A . 14cm B. 16cm C. 19cm D. 14 cm 或19cm12、如图,,Rt ABC ∆中90,ACB ∠=分别以AB 、BC 、CA 为边向外作等边三角形ABD 、等边三角形BCE 、等边三角形ACF ,它们的面积分别记为123,,S S S ,则123,,S S S 的关系为( )A .123S S S >+ B.123S S S =+C.123S S S <+D.无法确定二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上.13、若a 2 -ka +9是一个完全平方式,则k 等于 .14、小明“五一”放假去成都看爷爷,他买的是11点的动车。
重庆八中初2020级2017-2018年七年级下学期期末数学试题数学试题(满分:120分 时间:150分钟)、选择题(本题共12小题,每题4分,共48分)1、下列汽车标志中,不是轴对称图形的是()2、在一个不透明的口袋里,装了若干个除颜色不同其余都相同的球,如果口袋中有1摸到红球的概率为,那么口袋中球的总个数为()4A . 28 个B . 21 个C . 14 个D . 7 个3、如图△ ABC 中,/ A =90。
点 D 在 AC 边上,DE/ BC若/仁155°,则/ B 的度数为()A 55 B. 65 C. 45 D. 754、如图所示的长方形纸片,先沿虚线向右对折,接着将对折后的纸片沿虚线剪下一个小圆x V26•在x = V,—1,0,3中,满足不等式组丿’的x 值是()C . 8, 15, 16D . 6, 8, 10 7个红球,且BC D和一个小三角形,然后将纸片打开,打开后的图形是(A . 10, 24, 26B . 9, 40, 41C D、2(x+1)>—2A. —4 和0B.—4和一1 C . 0和37、“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是 一男一女的概率是( A. - B6C . 49、万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地。
假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、 装货、加燃料等,)又顺水航行返回万州,若该轮船从万州出发后所用时间为x (小时),轮船距万州的距离为y (千米),则下列各图中,能反映 y 与x 之间函数关系的图象大致是 ()10、如图:在厶ABC 和△ ADE 中,①AB = AD ;②AC = AE ;③BC = DE ;④/ C = / E ;⑤ /B E AEF 列四个选项分别以其中三个为条件,剩下两个为结论,则其中错误的是()A .若①②③成立,则④⑤成立.B .若①②④成立,则③⑤成立. C. 若①③⑤成立,则②④成立. D. 若②④⑤成立,则①③成立. 11. 某大型超市从生产基地购进一批水果,运输过程中质量损失 10%假设不计超市其他费用,如果超市想要至少获得 种水果在进价的基础上至少提高( )A. 40%B . 33.4%C . 33.3%D . 30%12、如图,在梯形 ABCD 中,AD // BC ,Z ABC = 90。
FEDCBA七年级下期末考试数学试题及答案一、选择题(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列数中,是无理数的是A. 0B. 71-C. 3D. 2 2. 下面4个图形中,∠1与∠2是对顶角的是21212121A. B. C. D.3、已知点P 在第四象限,且P 到x 轴的距离为3,到y 轴的距离为4,则P 点的坐标为( )A .(3,-4)B .(-3,4)C .(4,-3)D .(-4,3) 4.下列调查中,适宜采用全面调查方式的是 A. 了解全国中学生的视力情况 B. 调查某批次日光灯的使用寿命 C. 调查市场上矿泉水的质量情况D. 调查机场乘坐飞机的旅客是否携带了违禁物品 5.已知正方形的面积是17,则它的边长在( )A .5与6之间B .4与5之间C .3与4之间D .2与3之间 6.下列说法错误..的是 A. 1的平方根是1 B. 0的平方根是0C. 1的算术平方根是1D. -1的立方根是-1 7.若a >b ,则下列不等式变形错误的是( )A .a+1>b+1B .C .3a ﹣4>3b ﹣4D .4﹣3a >4﹣3b8.如图1,下列条件能判定AD ∥BC 的是A. ∠C =∠CBEB. ∠C +∠ABC =180°C. ∠FDC =∠CD. ∠FDC =∠A 9.下列命题中,是真命题的是A . 若b a >,则a >b B. 若a >b ,则b a > C. 若b a =,则22b a = D. 若22b a =,则b a =图110.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是A. ⎪⎩⎪⎨⎧+=+=1215.4x y x yB. ⎪⎩⎪⎨⎧-=+=1215.4x y x yC. ⎪⎩⎪⎨⎧+=-=1215.4x y x yD. ⎪⎩⎪⎨⎧-=-=1215.4x y x y11.关于x 的不等式组21111x x a -⎧⎨+⎩≤>恰好只有两个整数解,则a 的取值范围为A. 56a ≤<B. 56a <≤C. 6a 4≤<D. 46a <≤ 12.已知点P (x ,y )的坐标满足|x|=3,且xy <0,则点P 的坐标是( )A .(3,-2)B .(-3,2)C .(3,-4)D .(-3,4)二、填空题(本大题有8小题,每小题3分,共24分) 12.不等式2x+5>4x ﹣1的正整数解是 .11. 若36.25=5.036,6.253=15.906,则253600=__________。
2018年初一数学第二学期期末考试试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题纸范围内,答在本试卷上无效。
2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。
一、选择题(本大题共8小题,每小题3分,共24分)把下列各题中正确答案前面的字母填涂在答题纸上.1.下列事件是必然事件的是A .三角形的内角和是360°B .打开电视机,正在直播足球比赛C .1+3 >2D .抛掷1个均匀的骰子,6点向上2.甲型H1N1.流感病毒的直径大约为0.00000008米,用科学记数法表示为A .0.8×10-7米B .8×10-8米C .8×10-9米D .8×10-7米3.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=414m;④(xy 2)3=x 3y 6,他做对的个数是 A .0 B .1 C .2 D .34.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于A .65°B .55°C .45°D .50°5.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法正确的是A .总体是300B .样本容量为30C .样本是30名学生D .个体是每个学生6.下列长度的三条线段,能组成三角形的是A .1,2,3B .1,4,2C .2,3,4D .6,2,37.如果100x 2-kxy +9y 2是一个完全平方式,那么K 的值为A .3600B .60C .±100D .±608.如图,在AB 、AC 上各取一点E 、D ,使AE =AD ,连结BD 、CE 相交于点O ,再连结AO 、BC ,若∠1=∠2,则图中全等三角形共有A .5对B .6对C .7对D .8对二、填空题(本大题共10小题,每小题3分,共30分)9.若一个多边形的内角和是它外角和的3倍,则这个多边形是 ▲ 边形.10.分解因式:a4-1=▲.11.计算:(-2a5)÷(-a)2=▲.12.如图,AB//CD,∠B=75°,∠D=35°,则∠E的度数为=▲.13.已知二元一次方程2x+3y=4,用x的代数式表示y,则y=▲.14.如图,△ABC中,∠C=90°,DB平分∠ABC,E为AB中点,DE⊥AB,若BC=5 cm,则AB=▲ cm.15.已知关于x、y的方程组3326x ayx by-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩则a+b=▲.16.化简:(x+y)2-3(x2-2y2)=▲.17.如果2x÷16y=8,则2x-8y=▲.18.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为▲.三、解答题(本大题共11小题,共76分)19.计算:(本题共2小题,每小题4分,满分8分)(1)-3(a4)3+(-2a3)2·(-a2)3(2)(-14)0+(-2)2+(13)-220.因式分解(本题共2小题,每小题4分,满分8分)(1)3a(x-y)-5b(y-x)(2)a3b+2a2b-3ab21.解下列方程组:(本题共2小题,每小题4分,满分8分)(1)5616795x yx y+=⎧⎨-=⎩(2)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩22.(本题满分5分)作图与探究(不写作法,保留作图痕迹,并用0.5毫米黑色签字笔描深痕迹)如图,∠DBC和∠ECB是△ABC的两个外角°(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(2)过点P分别画直线AB、AC、BC的垂线段PM、PN、PQ,垂足为M、N、Q;(3) PM、PN、PQ相等吗?(直接写出结论,不需说明理由)23.(本题满分5分)如图,AB=AD,AC=AE,∠BAD=∠CAE,则∠B与∠D相等吗?请说明理由.24.(本题共2小题,每小题5分,满分10分)(1)先化简,再求值:(2a+b)(2a-b)+3(2a-b)2+(-3a)(4a-3b),其中a=-1,b=2.(2)已知:a m=2,a n=4,a k=32,求a3m+2n-k的值25.(本题满分6分)把一堆书分给几名学生,如果每人分到4本,那么多4本;如果每人分到5本,那么最后1名学生只分到3本.问:一共有多少名学生?多少本书?26.(本题满分6分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)求证:△OAB≌△OCD;(2)过点O任意作一条与AB、CD都相交的直线MN,交点分别为M、N,试问:OM=ON成立吗?若成立,请进行证明;若不成立,请说明理由.27.(本题满分7分)某初中对该校八年级学生的视力进行了检查,发现学生患近视的情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分),如图所示(各组含最大年龄,不含最小年龄).(1)频率分布表中a、b、c的值分别为a=▲,b=▲,c=▲;(2)补全频率分布直方图;(3)初患近视两年内属于假性近视,若及时矫正,则视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力的人数占总人数的百分比.28.(本题满分6分)某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.29.(本题满分7分)已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:;BE=CF,EF=BE AF②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件▲,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).。
2018 年七年级数学期末模拟试卷四一、选择题:1.在同一个平面内,两条直线的位置关系是()A.平行或垂直B.相交或垂直C.平行或相交D.不能确定2.估计的值在()A.2 和3 之间B.3 和4 之间C.4 和 5 之间D.5 和6 之间3.点M(1,2)关于x轴对称点的坐标为()A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)4.下列方程组中,是二元一次方程组的是()A.5.把不等式 2 x<4 的解集表示在数轴上,正确的是()6.如图, 直线 a、b 被直线 c 所截, 若 a∥b,∠1=60 °,那么∠2 的度数为()A.120 °B. 90 ° C. 60 °D. 30 °7.已知正方形的边长为 a,面积 S,则()8.对某班最近一次数学测试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为 A 等(80 分以上,不含80 分)的百分率为( )A.24% B.40% C.42% D.50%9.若方程组的解满足x=y,则k 的值是()A.1 B.2 C.3 D.410.不等式无解,则a 的取值范围是()A.a<2 B.a>2 C.a≤2D.a≥2 11.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购 1副羽毛球拍和1 副乒乓球拍共需50 元,小强一共用320 元购买了6 副同样的羽毛球拍和10 副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A.B.C.D.12.一家服装商场,以1 000 元/件的价格进了一批高档服装,出售时标价为1 500 元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打折.A.9 B.8 C.7 D.6二、填空题:13.4 的平方根是.14.若关于的方程的解为负数,则m 的范围是15.若点(m-4,1-2m)在第三象限内,则m的取值范围是.16.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于.17.某校组织开展了“吸烟有害健康”的知识竞赛,共有 20 道题.答对一题加 10 分,答错(或不答)一题扣5 分,小明参加本次竞赛得分要不低于140 分.设他答对x道题,则根据题意,可列出关于x的不等式为.18.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数,-2017 应排在A.B、C、D、E 中的位置.三、解答题:19.计算:20.解方程组:21.解不等式组:,并在数轴上表示不等式组的解集.22.△ABC在平面直角坐标系中的位置如下图所示.(1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.23.试确定实数a 的取值范围,使不等式组恰有两个整数解.24.为了抓住文化艺术节的商机,某商店决定购进 A,B 两种艺术节纪念品.若购进 A 种纪念品 8 件, B 种纪念品 3 件,需要 950 元;若购进 A 种纪念品 5 件,B 种纪念品 6 件,需要 800 元.(1)求购进 A.B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共 100 件,考虑市场需求和资金周转,用于购买这 100 件纪念品的资金不少于 7500 元,但不超过 7650 元,那么该商店共有几种进货方案?(3)若销售每件 A 种纪念品可获利润 20 元,每件 B 种纪念品可获利润 30 元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?21 世纪教育网 21 世纪教育网25.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+b-2=0,过C作CB⊥x 轴于 B.(1)求△ABC的面积.(2)若过 B 作BD∥AC交y 轴于D,且 AE,DE 分别平分∠CAB,∠ODB,如图 2,求∠AED 的度数.(3)在y 轴上是否存在点 P,使得△ABC 和△ACP 的面积相等?若存在,求出 P 点坐标;若不存在,请说明理由.3 参考答案1.C2.C3.A4.A .5.C6.C7.B8.C.9.B. 10.C11.B. 12.C.13.答案为:±2. 14.答案为:m<1; 15.答案为:0.5<m<4 16.答案为:70°.17.答案为:10x ﹣5(20﹣x )≥140. 18.答案为:-29,A ;19.答案为: ;20.答案为:x=1,y=7/3. 21.答案为:-3<x <5.22.(1)A 1(0,4),B 1(2,2),C 1(1,1) (2)A 2(6,4),B 2(4,2),C 2(5,1)(3)△A 1B 1C 1 与△A 2B 2C 2 关于直线x=3 轴对称.23.答案为:0.5<a≤1.24. 解:(1)设该商店购进一件 A 种纪念品需要 a 元,购进一件 B 种纪念品需要 b 元,根据题意得方程组 8a+3b=950,5a+6b=800 解方程组得 a=100,b=50. ∴购进一件 A 种纪念品需要 100 元,购进一件 B 种纪念品需要 50 元. (2) 设该商店购进 A 种纪念品 x 个,则购进 B 种纪念品有(100-x ) ∴100x+50(100-x)≥7500,100x+50(100-x)≤7650 解得 50≤x≤53 ∵ x 为正整数,∴共有 4 种进货方案.(3)因为 B 种纪念品利润较高,故 B 种数量越多总利润越高,因此选择购 A 种50 件,B 种50 件.总利润=50×20+50×30=2500(元)∴当购进 A 种纪念品 50 件,B 种纪念品 50 件时,获最大利润是 2500 元.25.解:。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若关于x 的方程223242ax x x x +=--+有增根,则a 的值为( ) A .4B .6C .6或-4D .6或4【答案】C【解析】本题考点是分式方程的增根,知道何时分式方程有增根是解题关键;首先将分式方程通分,求出最简公分母,将分式方程化整式方程2(x+2)+ax=3(x-2),再根据分式方程有增根,令最简公分母为0,求出x 的值,最后带入整式方程中即可求出答案。
【详解】方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)。
因为原方程有增根,所以最简公分母(x+2)(x-2)=0,解得x=-2或2当x=-2,-2a=-12,a=6当x=2,a=-4,故a 的值是6或-4【点睛】学生们掌握增根,在分式方程化为整式方程的过程中,分式方程解的条件是使原方程分母不为零。
若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。
根据增根的定义求出a 值。
2.两个三角板按如图方式叠放,∠1=( )A .30B .45C .60D .75【答案】D 【解析】由∠ABD+∠CDB=90°可知AB ∥CD ,据此得∠ABE=∠C=30°,根据∠1=∠A+∠ABC 可得答案.【详解】解:如图,∵∠ABD+∠CDB=90°,∴∠ABD+∠CDB=180°,∴AB ∥CD ,∴∠ABE=∠C=30°,则∠1=∠A+∠ABC=75°,故选:D .【点睛】本题考查了三角形外角性质、平行线的判定和性质,解题的关键是先证明AB∥CD.3.下列A、B、C、D;四幅图案中,能通过平移左图案得到的是()A.B.C.D.【答案】A【解析】试题分析:依题意知,平移的概念是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,不改变图像大小与形状.故A图笑脸为原图以一定方向平移所得,不改变形状与大小.选A.考点:平移点评:本题难度较低,主要考查学生对平移知识点的掌握.根据平移的性质判定即可.4.下列各式计算结果正确的是()A.B.C.D.【答案】B【解析】根据幂的乘方,同底数幂的乘法、除法,合并同类项,对每个选项进行判断即可.【详解】A、,所以本项错误;B、,所以本项正确;C、,所以本项错误;D、,所以本项错误.故选择:B.【点睛】本题考查了幂的乘方,同底数幂的乘法、除法,合并同类项,解题的关键是熟练掌握它们的运算法则. 5.如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°【答案】C【解析】根据平行线的性质可知∠B与∠2互补,再根据对顶角的性质可知∠2=∠1=70°,据此即可得答案.【详解】解:如图,∵DE//BC,∴∠2+∠B=180°,∵∠2=∠1=70°,∴∠B=180°-70°=110°,故选C.【点睛】本题考查了平行线的性质、对顶角的性质,熟练掌握平行线的性质是解题的关键. 6.9的倒数等于( )A.3 B.-3 C.-13D.13【答案】D【解析】先求出9,再根据倒数的定义解答.【详解】解:∵9=3,3的倒数等于1 3 .∴9的倒数等于13.故选:D.【点睛】本题考查实数的性质,解题关键是倒数的定义和算术平方根的定义.7.方程组的解为,则被遮盖的两个数分别为()A.5,1 B.1,3 C.2,3 D.2,4【答案】A【解析】将x=2代入x+y=3中,即可求得y=1的值,再将代入到2x+y中即可得到另一个遮盖的数.【详解】解:根据题意,得2+y=3,解,得y=1.则2x+y=4+1=2.则第一个被遮盖的数是2,第二个被遮盖的数是1.故选:A.【点睛】本题主要考查了方程组的解的定义,方程组的解就是能够使方程组中的方程同时成立的未知数的解. 8.直角坐标系中点P(2,2)a a +-不可能所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题可知a 2a 2+>-,所以不可能在第二象限,即可得出答案 【详解】解:A.若点P 在第一象限,所以横纵坐标均为正,即2020a a +>⎧⎨->⎩,解得a>2;所以可以在第一象限;B.若点P 在第二象限,则有2020a a +<⎧⎨->⎩,无解,所以不可能在第二象限; C.若点P 在第三象限,则有2020a a +<⎧⎨-<⎩,解得a<-2,所以可以在第三象限 D. 若点P 在第四象限,则有2020a a +>⎧⎨-<⎩,解得2a 2-<<,所以可以在第四象限 故选B【点睛】此题考查四个象限中点的符号,熟练掌握四个象限中点的坐标正负是解题关键9.已知220192a a -=,则240382a a --的值是( )A .2019B .-2019C .4038D .-4038 【答案】A【解析】由220192a a -=知−a 2−2a=−2019,代入原式=4038+(−a 2−2a)计算可得答案.【详解】∵220192a a -=,∴−a 2−2a=−2019,则原式=4038+(−a 2−2a)=4038−2019,=2019,故选:A .【点睛】此题考查代数式求值,解题关键在于掌握运算法则.10.如图是5×5的正方形网络,以点D ,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A.2个B.4个C.6个D.8个【答案】B【解析】试题分析:观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.根据题意,运用SSS可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点.故选B.考点:本题考查三角形全等的判定方法点评:解答本题的关键是按照顺序分析,要做到不重不漏.二、填空题题11.有三种物品,每件的价格分别是2 元、4 元和6 元.现在用60 元买这三种物品,总共买了16 件,而钱恰好用完,则价格为6 元的物品最多买___ 件.【答案】7【解析】设6元的物品买了x件,4元的y件,2元的z件,根据题意列出方程,得到x,y,z的关系,再根据总共16件确定x的最大值.【详解】设6元的物品买了x件,4元的y件,2元的z件,由题意得6426016x y zx y z++=⎧⎨++=⎩①②由②得y=16-x-z③把③代入①得6x+4(16-x-z)+2z=60得2x-2z=-4,∴x-z=-2,即z=x+2∵x+z≤16,∴x+x+2≤16解得x≤7故价格为 6 元的物品最多买7件,故填:7【点睛】此题主要考查三元一次方程的应用,解题的关键是根据题意列出方程与不等式进行求解.12.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为______.【答案】100°【解析】利用三角形的外角性质列方程计算,再根据三角形内角与外角的关系得到它的最大内角度数.【详解】解:设三角形三个外角的度数分别为2x ,3x ,4x .根据多边形的外角和是360度,列方程得:2x +3x +4x =360°,解得:x =40°,则最小外角为2×40°=80°,则最大内角为:180°−80°=100°.故答案为:100°.【点睛】由多边形的外角和是360°,可求得最大内角的相邻外角是80°.13.将直尺和直角三角板按如图方式摆放,已知125∠=︒,则2∠=________.【答案】65°【解析】根据两角互余先求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:如图,1390,125∠+∠=︒∠=︒,365∴∠=︒,∵直尺的两直角边互相平行,2365∴∠=∠=︒;故答案为:65°.【点睛】本题考查的是平行线的性质、直角的定义,掌握平行线的性质是解决问题的关键,注意直角三角板中90°角的这个条件.14.若x y t 、、满足方程组23532x t y t x=-⎧⎨-=⎩,则x 和y 之间应满足的关系是_____. 【答案】156y x -= 【解析】要想得到x 和y 之间满足的关系,应把t 消去.【详解】解:由235x t =-得:t =325x -, 代入32y t x -=中得:32325x y x --⨯=, 整理得:156y x -=,故答案为:156y x -=.【点睛】本题考查了消元法,解题的关键是消去无关的第三个未知数,得到x 和y 之间满足的关系.15.如图所示,已知∠C=100°,若增加一个条件,使得AB ∥CD ,试写出符合要求的一个条件: .【答案】∠BEC=80°【解析】试题分析:欲证AB ∥CD ,在图中发现AB 、CD 被一直线所截,且已知一同旁内角∠C=100°,故可按同旁内角互补两直线平行补充条件.∵∠1=100°,要使AB ∥CD ,则要∠BEC=180°-100°=80°(同旁内角互补两直线平行).考点:本题考查的是平行线的判定点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.16.某商店老板为了吸引顾客,想设计一个可以自由转动的转盘,并规定凡购物的顾客都可转动一次转盘.如果转盘停止后,指针正好对准阴影区域,则可以获得9折优惠.老板设计了一个如图所示的转盘,则顾客转动一次可以打折的概率为________________.【答案】2 3【解析】根据240360︒︒可得阴影部分面积占总面积的23,进而即可得到答案.【详解】∵2402 3603︒=︒,∴阴影部分面积占总面积的23,即:顾客转动一次可以打折的概率为23.故答案是:23.【点睛】本题主要考查几何图形与概率,掌握概率公式是解题的关键.17.“若两条直线不相交,则这两条直线平行”是_____命题.(填“真”或“假”)【答案】假【解析】若空间中两条直线不相交,则这两条直线平行,也有可能异面.【详解】解:若空间中两条直线不相交,则这两条直线平行,也有可能异面,故是假命题.故答案为:假.【点睛】本题考查命题真假的判断,考查学生的推理能力,属于基础题.三、解答题18.某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?【答案】(1)足球的单价是70元,篮球的单价是100元;(2)有2种不同的购买方案.【解析】(1)设足球的单价为x元/个,篮球的单价为y元/个,根据“购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个足球,则购买篮球(24-m)个,根据总价=单价×数量结合购买篮球的个数大于足球个数的2倍且购买球的总费用不超过2220元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各购买方案.【详解】(1)设购买一个足球需要x元,一个篮球需y元,则有x +2y =2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。
1
A B
C
D E 重庆八中初2020级2017-2018年七年级
下学期期末数学试题
数学试题 (满分:120分 时间:150分钟)
一、选择题(本题共12小题,每题4分,共48分)
1、下列汽车标志中,不是轴对称图形的是( )
A B C D
2、在一个不透明的口袋里,装了若干个除颜色不同其余都相同的球,如果口袋中有7个 红球,且摸到红球的概率为1
4
,那么口袋中球的总个数为( ) A .28个
B .21个
C .14个
D .7个
3、如图△ABC 中,∠A =90°点D 在AC 边上,DE ∥BC ,
若∠1=155°, 则∠B 的度数为( )
.55.65.45.75A B C D ︒︒︒︒
4、如图所示的长方形纸片,先沿虚线向右对折,接着将对折后的纸片沿虚线剪下一个小圆 和一个小三角形,然后将纸片打开,打开后的图形是( )
A B C D 5、下列几组线段中,不能构成直角三角形的是( )
A .10,24,26
B .9,40,41
C .8,15,16
D .6,8,10
6.在4,1,0,3x =--中,满足不等式组⎩
⎨
⎧->+<2)1(2,
2x x 的x 值是( )
A .-4 和 0
B .-4和-1
C .0和3
D .-1和0
7、“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)
B
成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )
A .16
B .15
C .25
D .35
8、若22
4445m n m n +=--,则m ·n 的值为( )
A .1
B .-1
C .4
D .-4
9、万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地。
假设轮船在静水中的速度
不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等,)又顺水航行返回万州,若该轮船从万州出发后所用时间为x (小时),轮船距万州的距离为y (千米),则下列各图中,能反映y 与x 之间函数关系的图象大致是( )
10、如图:在△ABC 和△ADE 中,①AB = AD ;②AC = AE ;③BC = DE ;④∠C = ∠E ;⑤B ADE ∠=∠.
下列四个选项分别以其中三个为条件,剩下两个为结论,则其中错误的是( ) A .若①②③成立,则④⑤成立. B .若①②④成立,则③⑤成立. C .若①③⑤成立,则②④成立. D .若②④⑤成立,则①③成立.
11.某大型超市从生产基地购进一批水果, 第10题图 运输过程中质量损失10%,假设不计超市其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高( )
A .40%
B .33.4%
C .33.3%
D .30%
12、如图,在梯形ABCD 中,AD ∥BC ,∠ABC = 90°,∠DCB = 60°,AC 平分∠BCD ,DE ⊥AC
于点F ,交BC 于点G ,交AB 延长线于点E ,且AE = AC ,4AFG S ∆=.则下列四个结论: ①GC =EG ; ②AGB ADF ∠=∠; ③:1:4DF DE =; ④20ABCD S =梯形. 其中正确的有( )个
a b
c
d 2
1
E
D B C A
A .1
B .2
C .3
D .4
二、填空题(本题共12小题,每题3分,共36分)
13、周末小华在家做作业时,在镜子里看到后面墙上电子钟的示数如下图所示,那么此刻的时间为 .
第13题 第14题 第15题 第17题
14、如图,a ∥b ,c ⊥d ,∠1 = 40°,则∠2 = ___________.
15、如图,△ABC 中,∠B = 40°,AC 的垂直平分线交AC 于点D ,交BC 于点E ,且
∠EAB ∶∠CAE = 3∶1,则∠C = ___________.
16、一个等腰三角形的两边长分别为3和4,则此三角形的周长为______________. 17、如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为______ 18、若2
91x kx -+是完全平方式,则k 的值为_______________. 19.若不等式组3
x x m
>⎧⎨>⎩的解集是3x >,则m 的取值范围是______.
20、若312
2192m m ++-=,则m 的值为________________.
21、如图(1),直线l 上有12,A A 两点,它们与直线外一点P 能组成1个三角形;
如图(2),直线l 上有123,,A A A 三点,它们与直线外一点P 能组成3个三角形; 按这样的规律,如图(3),如果直线l 上有123,,n A A A A ⋅⋅⋅共n 个不重合的点,那么 它们与直线外一点P 能组成__________________(用含n 的代数式表示)个三角形.
图(1) 图(2) 图(3)
22、下列四种说法:①等腰三角形是轴对称图形,它的对称轴是顶角的平分线;②三角形的三条高
都在三角形内,且都相交于一点;③在△ABC 中,若11
23
A B C ∠=
∠=∠,则△ABC 一定是直角三角形;④一个三角形的两边长为8和10,那么它的第三边b 的取值范围是218b <<.其中正确的是_______________(填序号). 23、如图,正方形ABCD 的边长为4, E 是BC 边的点,且1BE =,F 是AC 边上 一动点,则FE +FB 的最小值是___________. 24、如图,将一张矩形纸片ABCD 沿对角线
BD 折叠,点C 的对应点为C′ , 第23题图 第24题图
AD BC '与E 交于 。
若AB = 6,BC = 8,则点C '到DE 的距离为___________.
三、计算题:
25
、计算(每小题4分共8分) (1)、 0120161)2()(1)102π
-+-++- (2)、243238252(2)()()2x x x x x x ⎛⎫
-⋅----+÷ ⎪⎝⎭
26、(每小题6分共12分)
(1).解不等式组3(2) 4 121 3x x x x --≤⎧⎪
⎨+>-⎪⎩
①
②,并用数轴表示解集.
(2).若关于x 、y 的二元一次方程组⎩
⎨
⎧-=+-=+221
32y x k y x 的解满足y x +﹥1,求k 的取值范围。
F
E
D A C
四、解答题
27、(6分)如图,在△ABC 中,D 是BC 上一点,BE ⊥AD 于点E ,CF ⊥AD 交AD 延长线于点F ,且BE = CF .请你判断AD 是△ABC 的中线还是角平分线?并证明你的结论.
28、(6分)如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°
到△CBE '的位置.若AE=1,BE=2,CE=3,求BE C '∠的度数.
29、(8分)先化简,再求值:()2
()(3)(3)2x y x y y x y y x ---+--,其中x 是不等式组⎩⎨
⎧<+>+1
520
4x x 的整数解,2016y = 。
30、(8分)“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 分别表示了“龟
(1)线段OD 表示赛跑过程中_____________ (填“兔子”或“乌龟”)运动的路程与时间关 系,赛跑的全程是___________米. (2)兔子在睡觉前每分钟跑___________米,
乌龟每分钟爬____________米.
(3)乌龟用了___________(4)兔子醒来,以160米/中间停下睡觉用了___________分钟.
五、解答题(共18分)
31、(8分)如图,四边形ABCD 中,AB ⊥BC 于点B ,CD ⊥BC 于点C ,M 为BC 上一点, MA = MD ,75,45AMB DMC ∠=︒∠=︒,
判断: 线段,,BM AB MC 之间的等量关系,并说明理由。
B
32、(10分)如图1,△ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE
为边作等边△DEF,连接CF.
(1)当点D与点B重合时,如图2,求证:CE + CF = CD;
(2)当点D运动到如图3的位置时,猜想CE、CF、CD之间的等量关系,并说明理由;
图1 图2 图3
(3)只将条件“点D是BC边上的一个动点”改为“点D是BC延长线上的一个动点”,如图4,猜想CE、CF、CD之间的等量关系为___________________(不必证明).
图4。