2010年中考数学模拟试题及答案(2)
- 格式:doc
- 大小:395.00 KB
- 文档页数:14
2010 年中考数学模拟试题卷(满分 :120 分考试时间 :100 分钟 )一、选择题(共 10 道小题,每题 3 分,共 30 分)1、 2的倒数是 () A.1B . 1C . 2D .2B222、以下各式计算正确的选项是( )AC3262 3524 843A .a +a =aB. ( - a ) =-aC. a ·a =aD. a ÷a =aOx1,第 4 题为解的二元一次方程组是 ( )3、以1yx y 0B .x y 0C .x y 0 D.x y 0 A .x y1x y 2x y2x y 14、如图,把一种量角器搁置在BAC 上边,请你依据量角器上的平分刻度判断BAC 的度数是( )A . 15 B . 20 C . 30 D .455、以下图是同一副扑克中的 4 张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出 一张,则抽到偶数的概率是 ( )A .1B .1C .3D .2324 3 6、如图,数轴上点P 表示的数可能是 ( )A .7B .7C . 3.2D .10第 5 题7、一天,小王和爸爸去爬山,已知山底到山顶的 行程为 300 米,小王先走了一段行程, 爸爸才开始出发, 图中两条线段表示小王和爸爸走开山脚爬山的行程 S( 米 ) 与爬山所用时间t( 分钟 ) 的关系s( 从爸爸开始爬山时计时) 依据图像, 以下说300 法错误的选项是()..P-4-3-2-11234第 6 题AA'A .爸爸爬山时,小王已走了 50 米B .爸爸走了 5 分钟时,小王仍在爸爸的前面C .小王比爸爸晚到山顶D .爸爸前 10 分钟爬山的速度比小王慢, 10 分钟后爬山的速度比小王快50 o510第 7 题DtBC(B')C'第 8 题y8、已知:如图,△ABC 的面积为 12,将△ ABC 沿 BC 方向移到△ A ’ B ’C ’ 的地点, 使 B ’与 C 重合,连结 AC ’交 A ’ C 于D ,则△ C ’DC 的面积为( )10 B .8 C .6 D .49、已知,抛物线 y=ax 2+bx+c 的部分图像如图,则以下说法①对称轴是直线 x = 1;②当- 1< x < 3 时, y < 0;-1 o1 x-3第 9 题③ a+b+c =- 4 ; ④方 程 ax 2+bx+c+5=0 无 实数 根其 中正 确的 有 A( )A.1个B .2个C .3个D .4个B10、在一平直河岸 l 同侧有 A 、B 两乡村, A 、 B 到 l 的距离 AM 、BN分别是 3km , 2km ,且 MN 为 3km ,现计划在河岸上建一抽水站 P , 用输水管向两个乡村A 、B 供水,则水管长度最少为 ( )km ( 精 确到 0.1km)A .4.8B .5.2C .5.8D.6.2二、填空题(共 4 道小题,每题4 分,共 16 分)11、2010 年上海世界展览会马上举行,各项准备工作马上达成,此中中国馆计 lMN第 10题划投资 1095600000 元,将 1095600000 保存两个有效数字的近似数应为_________________ .12、某一十字路口的交通讯号灯每分钟红灯亮30 秒,绿灯亮25 秒,黄灯亮 5第 11 题秒,当你仰头看信号灯时,是黄灯的概率为 ________.DC13、如图是圆锥的主视图 ( 单位 cm),则其表面积为 _________cm 2.14、某商铺老板将一件进价为800 元的商品先抬价 50%,再打 8 折卖出,则卖出这件商品所获收益是_______元.15、如图,正方形 ABCD 的面积为1,M 是 AB 的中点,连结 AC 、DM ,AM第15题则图中暗影部分的面积是.16、如图,平面直角坐标系中,A(4,2) 、 B(3,0) 将△ ABC 绕 OA 中点 C逆时针旋转 90°获得△ A ’ B ’ O ’ 则 A ’的坐标为 _________ .三、解答题(共8 道小题)1 117、( 此题 6 分) 计算: 12cos453 .3第 16 题18、( 此题 6 分) 先化简,再求值:(3x 1)x 2 ,此中 x 是方程 x 2 x 0的解 .x 1x 2x19、( 此题 6 分) 已知:如图,在 O 中,弦 AB 、CD 交于点 E , AD CB .求证: AECE .A20、( 此题 8 分) 请阅读以下资料:E我们规定一种运算:a b ad bc , 例 如 :c dOD2 35 3 4 10 12 2 .24 5BCB依据这类运算的规定, 请解答以下问题:( 1)直接写出122的计算结果;0.5( 2)当x取何值时 ,x0.5x12x0 ;0.5x 1y x y ( 3)若30.57,直接写出 x 和y的值.8121、( 此题8 分 ) 如图,在一旗杆AB 上系一活动旌旗C,在某一时辰,旗杆的影子落在平川BD和一坡度为1∶ 3 的斜坡DF 上,拉动旌旗使其影子正好落在斜坡极点 D 处,若测得旗高BC=4m,影长 BD= 8m,影长 DE= 6m, ( 假定旗杆AB与地面垂直, B、D、 G三点共线, AB、BG、 DF 在同一平面内 ) 。
2010年中考模拟试卷 数学参考答案及评分标准三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分) 17、(本题满分6分) 解:∵方程2233x mx x -=--无解∴方程2233x mx x -=--有增根x=3------------2分∴方程两边同乘以(x-3),得:26x m -=------------2分∴当x=3时,m =分 18、(本题满分6分)解:过C 点作BA 的延长线交于点E ,------------1分∵AB =AC =10,∠B =022.5 ∴∠EAC =045∴△EAC 为等腰直角三角形------------1分设AE =EC =X,则AB =AC =10∴x =∴111022S A B E C ∆=⋅=⨯⨯=≈35.42m ------------2分又∵53.610⨯2cm =362m >35.42m ------------1分 ∴预订草皮够用------------1分19、(本题满分6分)解:答案不唯一,酌情给分。
20、(本题满分8分)解:(1)18 0.55------------各1分(2)图略--------------共4分(虚设组不设各扣1分)(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数a y x=,y 随x 增大而减小-----2分22、(本题满分10分)解:(1)如右图------------共6分(030,045角,线段a 各1分,余酌情给分)(2)设AB =x,则R t △ABC 中,OB =x ,由题意得:6+ x ------------1分得,1)x =≈8米------------2分 答:旗杆高度约为8米。
二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。
考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。
2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。
2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。
2010年武邑县第二中学中考模拟考试数学试题注意事项:1. 本试卷共8页,总分120分,考试时间120分钟。
2. 答题前请将密封线左侧的项目填写清楚。
一项是符合题目要求的) 1. 17-的绝对值是 ( )A .7B .7-C .17D .71-2. 下列计算正确的是 ( )A. 22x x x +=B. 2x x x +=C. 321xy xy -=D. 220xy x y -=3. 下列几何体的正视图与众不同的是 ( )4. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于 y 轴对称,那么点 A 的对应点 A' 的坐标为 ( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2) 5. 小明和爸爸一起做投篮游戏,两人商定:小明投中13分,爸爸投中1个得1分,结果两人一共投中20人的得分恰好相等.设小明投中x 个,爸爸投中y 个,根据题意列方程组为 ( ) A .20,3.x y x y +==⎧⎨⎩B. 20,3.x y x y +==⎧⎨⎩ C. 320,.x y x y +==⎧⎨⎩ D. 320,.x y x y +==⎧⎨⎩6. 三人同行,其中两个性别相同的概率是 ( )A .1B .0C .13D .237. 小红的衣服被铁钉划了一个呈直角三角形的洞,其中三角形的两边长分别为lcm 和2cm ,若用同色圆形布将此洞全部覆盖,那么这块圆布的直径最小应等于 ( )A B C Dx15题图下午5时早上10时A. 2cmB. 3cmC. 2cm 或3cmD. 2cm 或 5 cm8. 如图,将非等腰A B C △的纸片沿D E 折叠后,使点A 落在B C 边上的点F 处.若点D 为A B 边的中点,则下列结论:① BD F △是等腰三角形;②D FE C FE ∠=∠;③D E 是A B C △的中位线,成立的有 ( )A .①②B .①③C .②③D .①②③9. 边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋 转75o ,使点B 落在抛物线y = ax 2(a < 0)的图像上. 则抛物线y = ax 2的函数解析式为 ( ) A. y=232x -B. y=-232xC. y=-22xD. y=-221x10. 如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,P 点在AD 边上以每秒1 cm 的速度从A 向D运动,点Q 在BC 边上,以每秒4 cm 的速度从C 点出发,在CB 间往返运动,二点同时出发,待P 点到达D 点为止,在这段时间内,线段PQ 有 次平行于AB( )A .1 B. 2 C. 3 D. 4二、填空题(本大题共8个小题,每小题3分,共24分.请把答案写在题中横线上) 11. 已知不等式3x-a ≤0的解集为x ≤5,则a 的值为 . 12. 已知22125a b a b a b -=+=+,,的值为____________.13. 如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE=125°, 则∠DBC的度数为_________.14. 如图,早上10点小东测得某树的影长为2m ,到了下午5时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度约为_____m.AC8题图9题图10题图16题图 15. 如图,AB 为⊙O 的直径,OE ⊥AB 交⊙O 于点E ,点D 是弧BE 上的一个动点(可与B 、E 重合),若弧AD 所对的圆周角∠C 的度数为α,则α的取值范围是 . 16. 若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为_________.17. 如图,把两幅完全相同的长方形图片粘贴在一矩形宣传板EFGH 上,除D 点外,其他顶点均在矩形EFGH 的边上.AB=50cm ,BC=40cm ,55BAE ∠=︒,则EF 的长为 cm .(参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.43)18. 希希为了美化家园、迎接奥运,她准备把自己家的一块三角形荒地种上芙蓉花和菊花,并在中间开出一条小路把两种花隔开(如图),同时也方便浇水和观赏. 小路的宽度忽略不计,且两种花的种植面积相等(即S △AED =S 四边形DCBE ). 若小路DE 和边BC 平行,边BC 的长为8米,则小路DE 的长为 米(结果精确到0.1m).三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.DBAF CEH G17题图18题图18题图东 北20. (本题满分8分)一艘渔船正以30海里/小时的速度由西向东追赶鱼群,渔船在A 处看见小岛B 在船的北偏东60°. 40分钟后,渔船行至O 处,此时看见小岛B 在船的北偏东30°.在如图所示的坐标系中,点O 为坐标原点,点A 位于x 轴上.(1)根据上面的信息,请在图中画出表示北偏东60°、北偏东30°方向的射线,并标出小岛B 的位置;(2)点A 坐标为 ,点B 坐标为 ;(3)已知以小岛B 为中心,周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能?21. (本题满分8分)为积极响应市教育局倡导的“阳光体育运动”的号召,某校九年级全体同学参加了一分钟跳绳比赛.九年级共有600名同学(其中女同学320名),从中随机抽取部分同学的成绩,绘制频数分布直方图如下:男同学一分钟跳绳成绩频数分布直方女同学一分钟跳绳成绩频数分布直方129.5109.5119.5109.5149.5139.599.5149.5139.5129.5119.599.5159.51514131211109865432170159.5151413121110986543217人数成绩成绩人数21题图(1)共抽取了 名同学的成绩.(2)若规定男同学的成绩在130次以上(含130次)为合格,女同学的成绩在120次以上(含120次)为合格.①在被抽取的成绩中,男、女同学各有多少名成绩合格; ②估计该校九年级约有多少名同学成绩合格?22. (本题满分9分)如图,菱形ABCD 的边长为6,∠BAD=60°,AC 为对角线.将A C D ∆绕点A 逆时针旋转60°得到A C D ''∆,连结D C '. (1)求证:A D C ∆≌A D C '∆.(2)求在旋转过程中线段CD 扫过图形的面积.(结果保留π).ABCDC 'D '22题图24题图 图1 图223. (本题满分10分) 家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R(k Ω)随温度t (℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加154k Ω.(1)求当10≤t ≤30时,R 和t 之间的关系式;(2)求温度在30℃时电阻R 的值;并求出t ≥30时,R 和t 之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 k Ω?24. (本题满分10分)把两个正方形纸片在相同的顶点A 处钉上一个钉子,然后旋转小正方形AEFG. 已知大正方形的边长为4,小正方形的边长为a (2≤a ).(以下答案可以用含a 的代数式表示)(1)把小正方形AEFG 绕A 点旋转,让点F 落在正方形ABCD 的边AD 上得图1,求B DF ∆的面积BDF S ∆;(2)把小正方形AEFG 绕A 点按逆时针方向旋转45°得图2,求图中BDF ∆的面积BDF S ∆;(3)把小正方形AEFG 绕A 点旋转任意角度,在旋转过程中,设BDF ∆的面积为BDF S ∆,试求BDF S ∆的取值范围,并说明理由.23题图25. (本题满分12分)“清新特”花卉养护服务中心是一家专门从事花卉定期养护、花卉寄养的专业纯服务型企业. 此企业信息部进行市场调查时发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间的关系式为y A =0.4x ;信息二:如果单独投资B 种产品,所获利润y B (万元)与投资金额x (万元)之间的关系如图所示:(1)请求出y B 与x 的函数表达式;(2)如果单独投资B 种产品,要使所获利润不低于3万元,投资金额应控制在什么范围?(3)如果企业同时对A ,B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?26. (本题满分12分)如图,在矩形A B C D 中,9A B =,AD =P 是边B C 上的动点(点P 不与点B 、点C 重合),过点P 作直线PQ BD ∥,交C D 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,设C P 的长度为x ,PQR △与矩形x25题图A B C D 重叠部分的面积为y .(1)求CQP ∠的度数;(2)当x 取何值时,点R 落在矩形A B C D 的A B 边上? (3)求y 与x 之间的函数关系式;参考答案一、1-5 CBDDA 6-10 AABBD二、11. 15 12.±7 13. 55O14. 4 15. 45O≤α≤90O16. b>a>c 17. 63.8 18. 5.7 三、19. 原式21(1)x x x x -=⨯-11x =-.当2x =-时,原式13=-20.(1)如图所示,所作射线为AM ,ON ,它们的交点即为所求小岛B 的位置;(2)(20-,0);(,103;(3)∵小岛B 到x 轴的最短距离为10, ∴渔船继续向东追赶鱼群,没有进入危险区的可能.DQC BP RA26题图 BADC(备用图1)BADC(备用图2)21.(1)60(2)①由统计图可知,男同学有21名成绩合格,女同学有27名成绩合格. ②21272803204843030⨯+⨯= (名) ∴估计该校九年级约有484名同学成绩合格.22.(1)由旋转可知:AC AC '=,60C AC '∠=︒.在菱形ABCD 中,∠BAD=60°∴1302D A C D A B ∠=∠=︒∴D AC D AC '∠=∠.又∵,AC AC AD AD '== ∴A D C ∆≌A D C '∆. (2)连结BD 交AC 于点O ,则BD ⊥AC ,2AC AO =. 在Rt A O D ∆中,30D AO ∠=︒,6A D =,∴AO =.∴2AC AO ==∴26018360AC C S ππ'⨯⨯==扇形.∵26066360ADD S ππ'⨯⨯==扇形,∴CD 扫过图形的面积为186ππ-=12π. 23.(1)当10≤t ≤30时,t60R =(2)温度在30℃时,电阻R =2(k Ω),当t ≥30时,R =2+6-t 154)30t (154=-(3)把R=6 (k Ω),代入R 6-t 154=得,t=45(℃),所以,温度在10℃~45℃时, 电阻不超过6 k Ω.24.(1)BDF S ∆=ABD S ∆-ABF S ∆ ∵小正方形的边长为a,∴AF =a 2 ∴BDF S ∆=ABD S ∆-ABF S ∆ =4×4×21-21×4×a 2=8-2a 2(2)如图1,BDF S ∆=ABD S ∆+AGFD S 梯形-BGFS ∆24题图1=21×4×4+21×a (4+a )-21×a (4+a )= 8(3)如图2,作FH ⊥BD 于H 点,连结AF. 则 BDF S ∆=21×BD ×FH因为小正方形AEFG 绕A 点旋转任意角度,所以点F 离线段 BD 的距离是变化的,即FH 的长度是变化的.由于BD 得长度是 定值,所以当FH 取得最大值时BDF S ∆最大,当FH 取得最小值时BDF S ∆最小.所以当点F 离BD 最远时,FH 取得最大值,此时点F 、A 、H 在同一条直线上(如图3所示); 当点F 离BD 最近时,FH 取得最小值,此时点F 、A 、H 也在同一条直线上(如图4所示). 在图3中,BDF S ∆=21BD ×FH=21×= 8 + 4a 在图4中, BDF S ∆=12BD ×FH=12×a)= 8-4a∴BDF S ∆的取值范围是: 8-4a ≤BDF S ∆≤ 8+4a 25.(1)设y B =a(x-4)2+3.2 ∴16a+3.2=0解之得a=-0.2∴y B =-0.2(x-4)2+3.2 (0 ≤x ≤ 8)(2)由题意得-0.2(x-4)2+3.2=3,解之得x 1=3,x 2=5 由图像可知当3≤x ≤5时y B ≥3∴单独投资B 种产品,要使所获利润不低于3万元,投资金额应控制在3≤x ≤5范围. (3)设投资B 种产品x 万元,则投资A 种产品(10-x )万元,获得利润W 万元, 根据题意可得W=-0.2x 2+1.6x+0.4(10-x )=-0.2x 2+1.2x+4, ∴W=-0.2(x -3)2+5.8,当投资B 种产品3万元时,可以获得最大利润5.8万元,所以投资A 种产品7万元,B 种产品3万元,这样投资可以获得最大利润5.8万元. 26.(1)如图, 四边形A B C D 是矩形,A B C D A D B C ∴==,.又9A B =,AD =90C ∠=,9C D ∴=,BC =tan 3BC C D B C D∴∠==,30CDB ∴∠=.PQ BD∥,30C Q P CD B ∴∠=∠=.(2)如图1,由轴对称的性质可知,RPQ CPQ△≌△,RPQ CPQ∴∠=∠,R P C P =.DQC BPRA26题图24题图424题图3由(1)知30C Q P ∠= ,60RPQ CPQ ∴∠=∠= , 60RPB ∴∠= ,2RP BP ∴=.C P x = ,P R x ∴=,PB x =.在R P B △中,根据题意得:)x x =,解这个方程得:x =(3)当点R 在矩形A B C D 的内部或A B 边上时,0x <≤21133222C PQ S C P C Q x x x=⨯⨯== △×x 3RPQ CPQ △≌△,∴当0x <≤22y x =当R 在矩形A B C D 的外部时(如图2),33x <<, 在R t PFB △中,60RPB ∠= ,2)P F B P x ∴==,又RP C P x == ,3RF RP PF x ∴=-=-在R t E R F △中,30EFR PFB∠=∠=,6ER ∴=-. 211822ERF S ER FR x x ∴=⨯=-+△,RP Q E R F y S S =- △△,∴当x <<时,218y x =+-.综上所述,y 与x 之间的函数解析式是:22(0218x x y x x <=⎨⎪+-<<⎩≤.D Q C B P A 26题图1 D Q C B P R A 26题图2 F E。
中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 以下哪个方程是一元一次方程?A. 2x + 3 = 0B. x^2 - 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A4. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 以下哪个选项是整式的乘法?A. (x + 2)(x - 2)B. x^2 + 2x + 1C. x/(x + 1)D. x^2 - 4x + 4答案:A7. 一个圆的半径为3,那么这个圆的面积是:A. 9πB. 18πD. 36π答案:C8. 如果一个角的补角是120°,那么这个角是:A. 60°B. 30°C. 90°D. 120°答案:B9. 以下哪个选项是不等式?A. x + 2 = 3B. 2x - 3 > 0C. 4x^2 - 9 = 0D. 3x + 2y = 510. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 1/xD. y = √x答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。
答案:±512. 一个角的余角是30°,那么这个角是______。
答案:60°13. 一个数的平方是16,这个数是______。
答案:±414. 一个等腰直角三角形的斜边长为5,那么这个三角形的面积是______。
D BAOC 第8题2010年中考数学模拟试题(二)(新人教版)(考试时间:120分钟 满分120分)一、填空:(每小题2分,共20分) 1.计算:(-1) ×(-2) = . 2.如图,已知AB ∥CD ,则∠A = 度. 3.分解因式 x 3-xy 2= 。
4.在函数y =x 的取值范围是 。
5.截至2009年6月5日止,全球感染H1N1流感病毒有21240人,感染人数用科学计数法表示为 人.6.方程2 x 2-18=0的解是 .7.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 .8.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知 AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m .9.一个扇形所在圆的半径为3cm ,扇形的圆心角为120°,则扇形的面积是 cm 2. (结果保留π)10.如图,是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )二、选择题(每小题3分,共24分)11.-8的相反数是( )CDB第2题.80A第10题 ……n =1 n =2n =3A .8B .-8C .18 D .18- 12.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ).A.外离B. 相交C.外切D.内切13.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( )A .①②③B .①②C .①③D .②③14.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,9.1,6.5,7.7,则这四人中,射击成绩最稳定的是( ) A .甲B .乙C .丙D .丁15、tan 30°的值等于( )A. 21B. 22C.23 D.33 16图1中几何体的主视图是( )17.若分式 x 2-1x +1的值为零,则x 的值是( )A .1B .0C .-1D .±118.如图,抛物线y =ax 2+bx +c 的对称轴是x = 13,小亮通过观察得出了下面四条信息:①c <0,②abc <0,③a -b +c >0,④2a -3b =0. 你认为其中正确的有( )A .1个B .2个C .3个D .4 三、解答题:(共76分)19、(本题7分)计算:112sin 602-⎛⎫- ⎪⎝⎭ACBDx第18题20、(本题7分)解方程: 0)3(2)3(2=-+-x x x21.(本题8分)如图,E 是正方形ABCD 的边DC 上的一点,过A 作A F ⊥AE ,交CB 延长线于点F ,求证:△ADE ≌△ABF .22.(本题10分)已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π)._F _E _ C _ D _ B _A 第21题 第22题23、(本题10分)右边下面两图是根据某校初三(1)班同学的上学方式情况调查所制作的条形和扇形统计图,请你根据图中提供的信息,解答以下问题: (1) 求该班学生骑自行车的人数有(2)求该班学生人数 人.并将条形统计图补充完整; (3)若该校初三年有600名学生, 试估计该年级乘车上学的人数.24.(本题10分)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 47500元,不高于48000元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?骑自行车20%乘车步行50%第23题25、(本题12分)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N .(1)求证MN 是O ⊙的切线;(2)若1202B A C A B ∠==°,,求以直径AB ,弦BC 和⌒AM 围成图形的面积(结果保留π).、第25题26.(本题12分)如图,抛物线21222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标; (2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.参考答案一、1.2 2.120 3.x (x +y )(x -y )4.x≥12 5.2.124×104 6.3和-3 7.1208.4 9.3π 10.2n(n+1)二.11. A 12.C 13.B 14. C 15. D 16.D 17.A18.B19.20.X 1=3,X 2=121.证明:∵ABCD 是正方形 ∴AB AD = ︒=∠=∠=∠90DAB ABF D ∵A F ⊥AE ∴DAE EAB BAF ∠=∠-︒=∠90.在ADE ∆和ABF ∆中∵AE AD BAF DAE ABF D =∠=∠∠=∠,, ∴△ADE ≌△ABF 22.解:(1)()04A ,、()31C ,(2)图略(3)AC =⌒AA' π= 23.解:(1)8 (2)该班学生人数为40%5020=(人) 图画对(略) (3)该年级乘车上学的人数约为1806004012=⨯ 24..解:(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意得:47500(28002200)(30002600)(100x x -+-⨯-≤≤解得:37.540x ≤≤ x 是正整 ∴x 取38,39或40.(2)设投入成本为y 元,由题意有: 22002600(100)400260000y x x x =+-=-+4000-< ∴y 随x 的增大而减小∴当40x =时,y 有最小值.即生产A 型冰箱40台,B 型冰箱50台,该厂投入成本最少此时,政府需补贴给农民(280040300060)13%37960()⨯+⨯⨯=元 25.(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线(2)S =164π+26.解:(1)抛物线21222y x x =-++与x 轴交于A B 、两点,21202x x ∴-++=.即240x -=.解之得:12x x ==∴点A B 、的坐标为(A B ) ,将0x =代入21222y x x =-++, 得C 点的坐标为(0,2)(2)6AC BC AB ===,222AB AC BC ∴=+,则90ACB ∠=°,ABC ∴△是直角三角形.(3)将2y =代入21222y x x =-++,得212222x x -++=,120x x ∴==,P ∴点坐标为.。
中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。
选择题(共10小题,每小题3分,共30分)1.求-3的倒数。
()A。
-1/3 B。
-1/-3 C。
1/-3 D。
1/32.函数y=1/(x-8),x的取值范围是()。
A。
x8 D。
x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。
A。
2.6×10^5 B。
26×10^4 C。
0.26×10^6 D。
2.6×10^64.下列简单几何体的左视图是()。
A。
B。
C。
D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。
A。
32、31 B。
31、32 C。
31、31 D。
32、356.下列命题中,错误的是()。
A。
矩形的对角线互相平分且相等 B。
对角线互相垂直的四边形是菱形 C。
等腰梯形的两条对角线相等 D。
等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。
A。
B。
C。
D.8.下列各式计算结果正确的是()。
A。
2a+a=3a B。
(3a)^2=9a^2 C。
(a-1)^2=a^2-1 D。
a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。
10.已知函数y=2x^2-x-3,求其对称轴的方程。
答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。
11、一对互为相反数的数为x和-x。
12、b²-2b可以分解为b(b-2)。
机密★考试结束前 衢江区2008年初中毕业生学业水平考试数 学 模 拟 试 卷(命题人:胡荣进、徐卫华、余正龙)考生须知:1. 本卷共三大题,24小题. 全卷满分为150分,考试时间为120分钟.2. 答题前,请用蓝、黑墨水的钢笔或圆珠笔将学校、姓名、准考证号分别填在密封线内相应的位置上,不要遗漏.3. 本卷不另设答题卡和答题卷,请在本卷相应的位置上直接答题. 答题必须用蓝、黑墨水的钢笔或圆珠笔(画图请用铅笔),答题 时允许使用计算器. 参考公式:二次函数2(0)y axbx c a =++≠图象的顶点坐标是24(,)24b ac b a a--一.选择题(本题共10小题,每小题4分,共40分)请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、 多选、错选均不给分.1. 2-的相反数是 A.2-B.12-C.2D.122. 如图,梯子的各条横档互相平行,若180∠=,则2∠的度数是 A.80B.100C.120D.1503. 如果1x =是关于x 的一元二次方程220mx x m --=的一个解,那么m 的值是 A.1 B.1-C.0D.1±4. 从2008年起,清明、端午、中秋被增设为国家法定节假日. 小明打算在今年的端午节送给奶奶的礼盒如下图所示,那么这个礼盒的主视图是5. 若函数(21)y m x=-是正比例函数,且y 随着x 的增大而减小,则m 的取值范围是 A. 12m ≥B. 12m >C. 12m ≤D. 12m <6. 衢江区教育局于2008年4月16日对某校九年级学生进行了体育测试,测得该校10名男生引体向上的成绩如下(单位:次):18 20 20 21 22 23 21 20 22 21,则这10名男生引体向上成绩的中位数是 A. 19B. 20C. 20.5D. 217. “世界上最后一滴水也许将会是你的眼泪”,水资源的严重溃乏是全人类面临的共同问题. 某市为了鼓励居民节约用水,出台了新的用水收费标准,如下表:如果该市某户居民5月份用水x m 3,水费支出为y 元,则y 关于x 的函数图象大致是8.某校九(2)班数学课外活动小组用如下方法测量一座移动信号塔的高度:如图,先把一面镜子放在离信号塔(AB )20m 的点E 处,再沿直 线BE 后退到点D ,这时恰好从镜子里看到了信号塔的 塔尖A ,然后用皮尺量得DE =1m. 若观测者的目高CD=1.5m ,则该信号塔的高度约为 A.403m B.30m C.20m D.40m 9. 如图,在矩形OABC 中,点D 是BC 的中点,反比例函数(0)ky x x=>的图象经过点D ,交AB 于点E ,则 A.AE BE = B.AE BE >C.AE BE <D.无法确定AE 与BE 的大小关系10.如图,把正ABC ∆的外接圆对折,使点A 与劣弧 BC的中点 M 重合,若5BC =,则折痕在ABC ∆内的部分DE 的长为用心思考,细心答题,相信你是最棒的!……………………………… 密……………………………… 封 ……………………………… 线 …………………………………………(第2题)( m 3) 5 ( m 3)5( m 3)5( m 3)5A. B.C.D.(第8题)yx(第9题)C.103D.52二.填空题(本题共6小题,每小题5分,共30分) 11.函数y =自变量x 的取值范围是 .12.分解因式:328a a -= .13.观察下列数表可知,该数表中第2008行与2008列的交叉点上的数为.第1列第2列第3列… 第n 列… 第1行 11 1213 … 1n … 第2行 212223… 2n (3)31 32 33 … 3n…… … … … ………14.请写出一个图象开口向上、且经过第四象限,形状与函数22y x =-的图象相同的二次函数:.15.如图,把一块含300角的三角尺与一副量角器叠合在一 起(三角尺的斜边恰好与量角器的直径完全重合),过 点C 作射线CE 交量角器的圆弧于点E ,当CE 绕点C 旋转时,通过点E 处的读数可得出ACE ∠的大小(A 点为0). 若四边形ACBE 为矩形,则点E 处的读数 是 度.16.如图,四边形OABC 是平行四边形,点A 坐标为 (8,0),点B 坐标为(10,. 动点P 沿O—A —B —C —O 运动,若PBC ∆为直角三角形,则点P 的坐标为___ ___ ____. 三.解答题(本题共8小题,共80分. 请务必写出解答过程) 17.(本题8分)计算:1011)2cos 452-⎛⎫++- ⎪⎝⎭.18.(本题8分)如图,在△ABC 中,BD 、CE 分别是AC 、AB 上的高线,BD 、CE 相交于点O ,在不添加任何辅助线和字母的条 件下,请你添加一个条件,使AB =AC ,并完成证明过程. (1)我添加的条件是: ;(2)证明:19.(本题8分)如图,马路边的路灯AB 高为8米,在灯光下,福娃贝贝在点D 处的影长DE =1米;当贝贝沿BD 方向走2米到达点G 时.(1)请画出贝贝到达点G 时在地面上的投影GH ;(2)若贝贝的身高为1.6米,则他的投影GH 的长为多少米?………………………… 密 ………………………………… 封 …………………………………线 ……………………………………………xy(第16题)(第15题)(第18题)(第19题)20.(本题8分)如图,在正方形网格内有一个图形T . (1)请将网格中的某一个小正方形涂成阴影(所涂小正方形与构成图形T 的小正方形至少有一条边重 合),使整个阴影图形是一个轴对称图形; (2)小明按第(1)小题的要求,任意涂了一个小正方形,求小明得到的阴影图形恰好是轴对称图形 的概率.21. (本题10分)为了创建“省教育强镇”,峡川镇中心学校准备添置A 、B 、C 、D 四种图书,小亮同学通过调查全校师生对各种图书的爱好情况,绘制了两幅不完整的统计图表(如下图).请你根据图表中的信息,解答下列三个问题:(1)填充频数分布表,并补全频数分布直方图;(2)若学校计划采购四种图书共5000册,请你计算四种图书各应采购多少册? (3)针对小亮的调查结果,请你帮助小亮给学校提出一条合理化的建议.22.(本题12分)阅读下面材料,并解答问题:与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n 边形各边都相切的圆叫做正n 边形的内切圆. 设正n (3n ≥)边形的面积为S正n 边形,其内切圆半径为r ,试探索正n 边形的面积S 正n 边形与它的内切圆半径r 之间的关系. 如图①,当3n =时,设AB 切⊙O 于点C ,连结OC ,OA ,OB. ∴ 30OAC OBC ∠=∠=,∴O A O B =,∴2A B A C =,1602AOC AOB ∠=∠= . 在Rt AOC ∆中,∵ tan ACAOC OC∠=, ∴ tan tan 60ACOC AOCr =⋅∠=⋅, ∴ 2tan 60tan 60AOB S AC OC r r r ∆=⋅=⋅⋅=⋅, ∴ 233tan 60AOB S S r ∆==⋅正三角形.(1)如图②,当4n =时,仿照上面的方法可求得:4AOB S S ∆==正四边形 ; (2)如图③,当5n =时,仿照上面的方法和过程求S 正五边形; (3)根据以上探索过程,请直接写出:S 正n 边形= .…………………………… 密 ………………………………… 封 ………………………………… 线 ……………………………………………(第20题)频数分布表图书种类频数(人)频数分布直方图图②图③图①23.(本题12分)衢州东方商厦专销某品牌的计算器,已知每只计算器的进价是l2元,售价是20元.为了促销, 商厦决定:凡是一次性购买10只以上(不含10只)的顾客,每多买1只计算器,其购买的每只计算器的售价就降低O.10元(假设顾客购买了18只计算器,则每只计算器售价为:20-0.10×(18-10)=19.20元,顾客应付的购货款为:18×19.20=345.60元),但最低售价为16元/只. (1)求顾客至少一次性购买多少只计算器,才能以最低价购买?(2)设顾客一次性购买x (1050x <≤)只计算器时,东方商厦可获利润y (元),试求y 与x 之间的函数关系式及商厦的最大利润;(3)有一天,一位顾客一次性购买了46只计算器,另一位顾客一次性购买了50只计算器,结果商厦发现卖50只反而比卖46只赚的钱少. 为了使每次获利随着销量的增大而增大,在其他促销条件不变的情况下,商厦应将最低价16元/只至少提高到多少?为什么?24.(本题14分)如图,在直角坐标系中,AOB ∆为直角三角形,90ABO ∠= ,点A 在x 轴的负半轴上,点B 坐标为(-1,2). 将AOB ∆绕点O 顺时针旋转90得A OB ''∆.(1)求点A '的坐标;(2)将AOB ∆以每秒1个单位的速度沿着x 轴向右平移,问:几秒钟后,点B 移动到直线''B A 上?; (3)在第(2)小题的移动过程中,设移动x 秒后,AOB ∆与A OB ''∆的重叠部分的面积为y ,试求y 关于x 的函数关系式.…………………………… 密 ………………………………… 封 ………………………………… 线 ………………………………………………(第24题)xy衢江区2008年初中毕业生学业水平考试数学模拟试卷参考答案及评分标准一.选择题(本题共10小题,每小题4分,共40分)二.填空题(本题共6小题,每小题5分,共30分)11. 2x≥- 12. 2(2)(2)a a a+-13.20082008(或填1) 14. 答案例举:221y x=-(答案不唯一)15. 60 16. (2,0)或(4,0),(8,0)(第16题注:写出一个得2分,写出二个得4分,写出3个得5分)三.解答题(本题共8小题,共80分)17. 解:原式1222=+-⨯……… 4分(每个1分)3=……… 8分18. 解:(1)BD CE=(答案不唯一);……… 3分(2)略. ……… 8分19. 解:(1)图略;……… 3分(2)由题意得,ABE CDE Rt∠=∠=∠,AEB CED∠=∠∴ABE∆∽CDE∆∴AB BECD DE=,即81.61BE=,解得5BE=(米)……… 5分而211EG DG DE=-=-=(米)∴516BG BE EG=+=+=(米)……… 6分∵ABH FGH Rt∠=∠=∠,AHB FHG∠=∠∴ABH∆∽FGH∆∴AB BH BG GHFG GH GH+==,即861.6GHGH+=,解得 1.5GH=(米).答:如果贝贝的身高为1.6米,则他在地面上的投影GH的长为1.5米. … 8分20. 解:(1)如图所示(只要涂出其中的一种即可);……… 4分(2)49P=. ……… 8分21. 解:(1)频数分布表与频数分布直方图如图所示:……… 5分(2)由第(1)小题可知:全校师生对A、B、C、D四种图书喜爱的频率分别为:0.25,0.20,0.15,0.40∴ A类图书应采购:50000.251250⨯=(册);B类图书应采购:50000.201000⨯=(册);C类图书应采购:50000.15750⨯=(册);D类图书应采购:50000.402000⨯=(册);……… 9分(3)答案例举:学校应多采购D类图书(答案不唯一). ……… 10分频数分布表22. 解:(1)24tan 45r ⋅(或填24r ); ……… 3分(2)如图,当5n =时,设AB 切⊙O 于点C ,连结OA 、OB 、OC . 则 360725AOB ∠==, ∴ 1362AOC AOB ∠=∠= . ……… 4分 在Rt AOC ∆中, ∵ tan ACAOC OC∠=, ∴ tan tan36AC OC AOC r =⋅∠=⋅, ……… 6分 ∴ 2tan 36tan 36AOB S AC OC r r r ∆=⋅=⋅⋅=⋅, ……… 7分∴ 255tan 36AOB S S r ∆==⋅ 正五边形. ……… 9分(3)2180tan nr n⋅. ……… 12分23. 解:(1)设顾客购买x 只计算器时,恰好可以按最低价付款. 根据题意,得200.1(10)16x --= ……… 2分 解这个方程,得 50x =答:顾客至少一次性购买50只计算器,才能以最低价购买. ……… 4分 (2)由题意,得 []200.1(10)12y x x x =---,即 220.190.1(45)202.5y x x x =-+=--+. ……… 6分 ∵ 这里0.10a =-<,且45x =(只)符合自变量的取值范围,∴ 当45x =(只),202.5y =最大值(元). ……… 8分 答:y 与x 间的函数关系式为:20.19y x x =-+;商厦的最大利润是202.5元. (3)由第(2)小题可知,当45x =(只),202.5y =最大值(元),且当4550x ≤≤时,y 随着x 的增大而减少. ……… 9分 此时,售价为:200.1(4510)16.5-⨯-=(元), ……… 11分 ∴ 当最低售价提高到16.5元时,y 会随着x 的增大而增大. ……… 12分24. 解:(1)如图①,过点B 作BC x ⊥轴于点C .∵ 点B 的坐标为(-1,2),∴ OC=1,BC=2. ……… 1分∵ BC x ⊥轴, ∴ BCA OCB Rt ∠=∠=∠, ∴ 90A ABC ∠+∠=.又∵ 90ABC OBC ABO ∠+∠=∠=, ∴ A OBC ∠=∠, ∴ △OBC ∽△BAC , ……… 2分∴OC BC BC AC =, 即 122AC=, ∴ 4AC =. ∴ 145OA OA OC AC '==+=+=, ……… 3分∴ 点A '的坐标为(0,5). ……… 4分 (2)∵ 点B 的坐标为(-1,2), ∴点B '的坐标为(2,1). ……… 5分设直线A B ''的解析式为y kx b =+,把点A '与点B '的坐标值分别代入,得215k b b +=⎧⎨=⎩,解这个方程组,得25k b =-⎧⎨=⎩.∴ 直线A B ''的解析式为25y x =-+. ……… 6分 当2y =时,有252x -+=,解得32x = ……… 7分 ∴ 点B 平移的距离为:35122+=, 即经过2.5秒后,点B 平移到直线A B ''上. ……… 8分(3)(略解)如图②,当01x <≤时,245y x =; ……… 10分 如图③,当512x <≤时, 29552024y x x =-+-; ……… 12分如图④,当552x <<时,211152024y x x =--+. ……… 14分图 ①图 ② 图 ③ 图 ④。
中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。
2010年中考数学模拟试卷(二)一、选择题 1.2010的相反数是() A .2010B .-2010C .12010D .12010-2.下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--3.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米 4.如图所示几何体的左视图是( )A.B. C. D.5.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34C .23D .2二、填空题6.分解因式:29x -= .7.如图3,AB O 是⊙的直径,弦,,则弦CD 的长为____cm8.孔明同学买铅笔m 支,每支0.4元,买练习本n 本,每本2元.那么他买铅笔和练习本一共花了 元.正面A′DC10.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________三、解答题(一) 11.202-153-5cos60°.12.解分式方程:2131x x =--.13.如图,一次函数的图象过点P (2,3),交x 轴的正半轴与A ,交y 轴的正半轴与B ,求△AOB 面积的最小值.14.如图,一盏路灯沿灯罩边缘射出的光线与地面BC 交于点B 、C ,测得∠ABC =45°,∠ACB =30°,且BC =20米.(1)请用圆规和直尺.....画出路灯A 到地面BC 的距离AD ;(不要求写出画法,但要保留作图痕迹) (2)求出路灯A 离地面的高度AD .(精确到0.1米)(参考数据:414.12≈,732.13≈)15.2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1)在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?(2)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(3)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天..传染后共有9人患了甲型H1N1流感,每天..传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?四、解答题(二)16.如图11是在地上画出的半径分别为2m和3m的同心圆.现在你和另一人分别蒙上眼睛,并在一定距离外向圈内掷一粒较小的石子,规定一人掷中小圆内得胜,另一人掷中阴影部分得胜,未掷入半径为3m的圆内或石子压在圆周上都不算.(1)你会选择掷中小圆内得胜,还是掷中阴影部分得胜?为什么?(2)你认为这个游戏公平吗?如果不公平,那么大圆不变,小圆半径是多少时,使得仍按原规则进行,游戏是公平的?(只需写出小圆半径,不必说明原因)D CAGHF累计确诊病例人数新增病例人数4 2196163 193267177567307416 17 18 19 20 21日本2009年5月16日至5月21日甲型H1N1流感疫情数据统计图人数(人)10015020025030017.晓跃汽车销售公司到某汽车制造厂选购A、B两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆,用300万元也可以购进A型轿车8辆,B型轿车18辆.(1)求A、B两种型号的轿车每辆分别为多少万元?(2)若该汽车销售公司销售1辆A型轿车可获利8000元,销售1辆B型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A、B两种型号的轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元?18、学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图12,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线的交点,确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH;(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的13到B2处时,求其影子B2C2的长;当小明继续走剩下路程的14到B3处,…按此规律继续走下去,当小明走剩下路程的11n到B n处时,其影子B n C n的长为___m(直接用n的代数式表示).EHA1B1 BAC19.如图13①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=3 5 .(1)求点M离地面AC的高度BM(单位:厘米);(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘米).五、解答题(三)(27分)20、如图14,在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸翻折后,使点B恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=3 4 .(1)求出B′点的坐标;(2)求折痕CE所在直线的解析式;(3)作B′G∥AB交CE于G,已知抛物线y=18x2-143通过G点,以O为圆心OG的长为半径的圆与抛物线是否还有除G点以外的交点?若有,请找出这个交点坐标.MO F②①H N图1321.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将ABE△沿BC方向平移,使点E与点C重合,得GFC△.(1)求证:BE=DG;(2)若60B∠=°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.22、如图12,已知直线L过点(01)A,和(10)B,,P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OP t=,OPQ△的面积为S,求S关于t的函数关系式;并求出当02t<<时,S的最大值;(3)直线1L过点A且与x轴平行,问在1L上是否存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.LAO M P ByL1Q参考答案一、1、B 2、D 3、B 4、C 5、C 二、6、()()33x x +-7、38、0.42m n + 9、2510、15 ,2n+5三、11、原式=-12+35×1212、解:去分母得:()213x x -=-解得1x =-检验1x =-是原方程的解 所以,原方程的解为1x =-13、解:设一次函数解析式为y kx b =+,则32k b =+,得32b k =-,令0y =得b x k =-,则OA =b k-. 令0x =得y b =,则OA =b .222()21(32)2141292124]212.AOB S b kk kk k k∆=⨯-⨯-=⨯--+=⨯-=⨯+≥ 所以,三角形AOB 面积的最小值为12. 14、解:(1)见参考图(不用尺规作图,一律不给分。
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 6 . 12. 67 . 13. 2π14. 50 ,40 15. y=31x-4或y=-31x-3 16. 2548 , n2543⎪⎭⎫ ⎝⎛⨯三. 解答题(8小题共66分) 17. (本题满分6分) 解:(1)223. …………………………………………2分 (2)n a = 214-n . …………………………………………4分 (3)∵71=4×18-1 ,∴271=21184-⨯, ∴271为数列当中第18个数. …………………………………………6分 18. (本题满分6分) 解:① 2532,1±=x (利用公式法解决) ②512,1±=x (利用开平方法) ③3,021==x x (利用因式分解法) ④512,1±=x (利用配方法或者公式法等) (说明:没有说明具体解题思路,只有答案得3分) 19. (本题满分6分)解:在Rt △ADC 中,∠DAC=45°,CD=15 m ,∴AD=CD=15 m , …………………………………………2分在Rt △NDC 中,∠DNC=30°,CD=15 m ,∴DN=315 m , ……………………………………………4分∴AN=DN-DA=315-15=)13(15- m.≈11m答:所求AN 之间的距离约为11 m. ………………………………………6分 20. (本题满分8分)解: (1)31.6%; ……………………………………………2分(2)补全统计图; ……………………………………………6分 (说明:①补全“上网”给2分;②补全“健身游戏”给2分.)(3)答案不惟一,如:适当减少看电视的时间,多做运动,有益健康.(合理即给分)……………………………………………8分21. (本题满分8分)解: (1)5; ……………………2分(2)如图:……………………6分 (3)32(a 2+b 2) ………………8分22.(本题满分10分)解:⑴ 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°. …………………………1分∵∠D =30°,∴∠COD =60°. …………………2分 ∵OA=OC ,∴∠A=∠ACO=30°. ………………4分 ⑵ ∵CF ⊥直径AB , CF =34,∴CE=5分 ∴在Rt △OCE 中,OE =2,OC =4. ……………………6分∴2BOC 60483603S ππ⨯扇形==,EOC122S ⨯⨯=……………………8分∴EOCBOC S S Sπ阴影扇形8=-=-3……………………………………………10分 23.(本题满分10分)解:(1)由图象知:当x =10时,y =10;当x =15时,y =5.设y =kx+b ,根据题意得:⎩⎨⎧=+=+5151010b k b k ,解得⎩⎨⎧=-=201b k ,∴y =-x +20. ……………………………………………2分 (2)当y =4时,得x =16,即A 零售价为16元. ………………………………3分 设这次批发A 种文具a 件,则B 文具是(100-a )件,由题意,得⎩⎨⎧≥-+≤-+296)100(241000)100(812a a a a ,解得48≤a ≤50 ……………………………………………5分 ∴有三种进货方案,分别是①进A 种48件,B 种52件;②进A 种49件,B 种51件;③进A 种50件,B 种50件. ……………………………………………8分 (3)W =(x -12)(-x +20)+(x -10)(-x +22),整理,得W =-2x 2+64x -460.当x =-b2a =16,W 有最大值,即每天销售的利润最大. …………………………10分24. (本题满分12分)解:(1)由已知得:C (0,-3),A (-1,0)将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a解得:⎪⎩⎪⎨⎧-=-==321c b a所以这个二次函数的表达式为:322--=x x y ……………………………2分 (2)存在,F 点的坐标为(2,-3)易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0)∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) ………………………………………………4分 (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),代入抛物线的表达式,解得2171+=R ②当直线MN 在x 轴下方时,设圆的半径为r (r>0)则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-. ……………………8分(4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. ……………12分。
2010年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个‧‧是符合题意的.1.2-的倒数是 A .12- B .12C .2-D .22.2010年6月3日,人类首次模拟火星载人航天飞行试验“火星 — 500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12 480小时的“火星之旅”. 将12 480用科学记数法表示应为 A .312.4810⨯ B .50.124810⨯ C .41.24810⨯ D .31.24810⨯ 3.如图,在△ABC 中,点D E 、分别在边上,DE ∥BC ,若:3:4AD AB =,6AE =,则AC 等于AB AC 、A. 3B. 4C. 6D. 8 4.若菱形两条对角线的长分别为6和8,则这个菱形的周长为A .20B .16C .12D .105.从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是A .15B .310C .13 D .126.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为A .2(1)4y x =++B .2(1)4y x =-+C .2(1)2y x =++D .2(1)2y x =-+ 7.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 队员5 甲队 177 176 175 172 175 乙队170175173174183设两队队员身高的平均数依次为x 甲,x乙,身高的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是 A .x x =甲乙,22S S>乙甲B .x x =甲乙,22S S<乙甲 C.x x >甲乙,22S S >乙甲D .x x <甲乙,22S S<乙甲8.美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个‧‧‧‧符合上述要求,那么这个示意图是A BC D 二、填空题(本题共16分,每小题4分)9.若二次根式21x -有意义,则x 的取值范围是 . 10.分解因式:34m m -= .11.如图,AB 为⊙O 的直径,弦CD AB ⊥,垂足为点E ,连结OC ,若5OC =,8CD =,则AE = .12.右图为手的示意图,在各个手指间标记字母 A ,B ,C ,D.请你按图中箭头所指方向(即 A →B →C →D →C→B →A →B →C → … 的方式)从 A 开始数连续的正整数 1,2,3,4,…,当数到 12 时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).三、解答题(本题共30分,每小题5分) 13.计算:101201043tan 603-⎛⎫-+--︒ ⎪⎝⎭.14.解分式方程 312422x x x -=--.15.已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =. 求证:ACE DBF ∠=∠.16.已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.17.列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18.如图,直线23y x =+与x 轴交于点A ,与y 轴交于点B .(1) 求A ,B 两点的坐标;(2) 过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求△ABP 的面积.四、解答题(本题共20分,每小题5分)19.已知:如图,在梯形ABCD 中,AD ∥BC ,2AB DC AD ===,4BC =.求B ∠的度数及AC 的长.20.已知:如图,在△ABC 中,D 是AB 边上一点,⊙O 过D B C 、、三点,290DOC ACD ∠=∠=︒.(1)求证:直线AC 是⊙O 的切线;(2)如果75ACB ∠=︒,⊙O 的半径为2,求BD 的长.21.根据北京市统计局公布的2006—2009年空气质量的相关数据,绘制统计图如下: 2006—2009年北京全年市区空气质量达到二级和好于二级的天数统计图由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是 年,增加了 天;(2) 表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表城 市北京上海天津昆明 杭州广州南京成都沈阳西宁百分比91% 84% 100% 89% 95% 86% 86% 90% 77%(3) 根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市 数量在这十个城市中所占的百分比为 %;请你补全右边的 扇形统计图.22.阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,8AD =cm ,6AB =cm . 现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种 方式不停地运动,即当P 点碰到BC 边,沿与BC 边夹角为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45︒的方向作直线运动,…,如图1所示.问P 点第一次与D 点重合前‧‧‧与边相碰几次,P 点第一次与D 点重‧合时‧‧所经过的路径的总长是多少.小贝的思考是这样开始的 : 如图2,将矩形ABCD 沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A PE =. 请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前‧‧‧与边相碰 次;P 点从A 点出发到第一次与D 点重合时‧‧‧所经过的路径的总长是 cm ; (2) 进一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD AB >.动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上. 若P 点第一次与B 点重合前‧‧‧与边相碰7次,则:A B A D 的值为 .2009年十个城市空气质量达到 二级和好于二级的天数占全年天数百分比分组统计图图1图2五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知反比例函数ky x=的图象经过点(31)A -,. (1) 试确定此反比例函数的解析式;(2) 点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由;(3) 已知点(36)P m m +, 也在此反比例函数的图象上(其中 0m <),过P 点作x 轴的垂线,交x 轴于点M . 若线段PM 上存在一点Q ,使得△OQM 的面积是12,设Q 点的纵坐标为n ,求2239n n -+的值.24.在平面直角坐标系xOy 中,抛物线22153244m my x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点(2,)B n 在这条抛物线上.(1) 求B 点的坐标;(2) 点P 在线段 OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线 OB 交于点E ,延长PE 到点D ,使得ED PE =,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形 PCD 的顶点 C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM QF =,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到 t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.25.问题:已知△ABC 中,2B A C A C B ∠=∠,点D 是△ABC 内的一点,且AD CD =,BD BA =.探究DBC∠与ABC ∠度数的比值. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当90BAC ∠=︒时,依问题中的条件补全右图.观察图形,AB 与AC 的数量关系为 ;当推出15DAC ∠=︒时,可进一步可推出DBC ∠的度数为 ;可得到DBC ∠与ABC ∠度数的比值为 .(2) 当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC ∠度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.2010年北京市高级中等学校招生考试数学试卷答案一、选择题 1.A , 2.C , 3.D , 4.A , 5.B , 6.D , 7.B , 8.B , 二、填空题 9. x ≥21, 10. m (m +2)(m -2), 11. 2, 12. B 、603、6n +3; 三、解答题13. 解:原式=3-1+43-3=2+33。
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。
深圳市2010年初中毕业生学业考试数 学 试 卷第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项中,其中只有一个是正确的) 1.-2的绝对值等于( )A .2B .-2C .12 D .42.为保护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/年。
这个数据用科学记数法表示为(保留两个有效数字)( )A .58×103B .5.8×104C .5.9×104D .6.0×104 3.下列运算正确的是A .(x -y )2=x 2-y 2B .x 2·y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 4t )5.下列说法正确的是( ) A .“打开电视机,正在播世界杯足球赛”是必然事件B .“掷一枚硬币正面朝上的概率是12 ”表示每抛掷硬币2次就有1次正面朝上C .一组数据2,3,4,5,5,6的众数和中位数都是5D .甲组数据的方差S 甲2=0.24,乙组数据的方差S 甲2=0.03,则乙组数据比甲组数据稳定 6.下列图形中,是.中心对称图形但不是..轴对称图形的是( )7.已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(阴影部分)( )8.观察下列算式,用你所发现的规律得出22010的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, A .2 B .4 C .6 D .89.如图1,△ABC 中,AC =AD =BD ,∠DAC =80º,则∠B 的度数是( ) A B D AB C DABCD10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( ) A .13 B .12 C .23 D .3411.某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。
年北京市高级中等学校招生考试2010 数学试卷准考证号姓名学校分钟。
120分。
考试时间120道小题,满分25页,共五道大题,6本试卷共1. 考在试卷和答题卡上准确填写学校名称、姓名和准考证号。
2. 生试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
3. 须其它试题用黑色字迹签字笔作答。
铅笔作答,B2作图题用选择题、在答题卡上,4. 知考试结束,将本试卷、答题卡和草稿纸一并交回。
5. ) 分4分,每小题32本题共( 一、选择题下面各题均有四个选项,其中只有一个是符合题意的 11 。
的倒数是22正式启动。
包括中国500”-火星“ 日,人类首次模拟火星载人航天飞行试验3月6年2. 2010 志愿用科学记数法12480。
将”火星之旅“ 小时的12480名志愿者踏上了为期6者王跃在内的表示应为。
,4:=3AB:AD,若BC//DE边上,AC、AB分E、D中,点ABC如图,在△3. 。
(D) 8 (C) 6 (B) 4 (A) 3 等于AC,则=6AE (B) 16 (A) 20 ,则这个菱形的周长为8和6若菱形两条对角线的长分别为4. (C) 12 。
(D) 10 这十个数中随机取出一个数,取出10、9、8、7、6、5、4、3、2、1从5. 1113的倍数的概率是3的数是。
(D) ) C( (B) (A) 的形式,结果为化为将二次函数。
如下表所示:)cm单位:(名同学分成甲、乙两队进行篮球比赛,它们的身高7. 10 5队员4 队员3 队员2 队员1 队员 175 172 175 176 177 甲队 183 174 173 175 170 乙对22SxSx,则下列关系中完,,身高的方差依次为,设两队队员身高的平均数依次为乙乙甲甲全正222222SxSxSxSxSxSx (D) >,>(C) <,=(B) >,=(A) 确的是乙乙乙乙乙乙甲甲甲甲甲甲xx ,<乙甲22S S。
r hO r hOrhOrhO (A)(B)(C )(D )2010年浙江省嘉兴市中考数学模拟试题及答案一、选择题(每题3分,共36分.每小题有四个选项,其中只有一个选项是正确1、 最低温度高A、5˚C B、9˚C C、-2˚C D、-9˚C 2、下列各式的计算结果是a 6的是A .23)(a - B.33a a + C.212a a ÷ D.a 2· a 3 3、若点P (1-m ,m )在第二象限,则下列关系式正确的是A .0<m <1B .m >0C .m >1D .m <04、学校商店销售一种练习本所获的总利润y(元)与销售单价x(元)之间的函数关系式为y =-2(x -2)2+48,则下列叙述正确的是A 、当x =2时,利润有最大值48元B 、当x =-2时,利润有最大值48元C 、当x =2时,利润有最小值48元D 、当x =-2时,利润有最小值48元 5、下列有关概率的叙述,正确的是 ( ) (A)投掷一枚图钉,针尖朝上、朝下的概率一样(B)投掷一枚均匀硬币,正面朝上的概率是21(C)统一发票有“中奖”与“不中奖”二种情形,所以中奖概率是21(D)投掷一枚均匀骰子,每一种点数出现的概率都是61,所以每投六次,必会出现一次“1点”6、相信同学们都玩过万花筒,如上图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG 可以看成是把菱形ABCD 以点A 为旋转中心A 、顺时针旋转60°得到B 、顺时针旋转120°得到C 、逆时针旋转60°得到D 、逆时针旋转120°得到7、如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =30°,则∠CAD 等于 (A )30° (B )40° (C )50° (D )60°8、已知菱形的边长为6,一个内角为600, 则菱形较短的对角线长是 A 、33 B 、36 C 、3 D 、69、已知圆柱的侧面积是10πcm 2,若圆柱底面半径为r (cm ),高线长为h (cm ),则h 关于r 的函数的图象大致是10、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛.A 、平均数B 、众数C 、中位数D 、最高分数11、一张桌子上摆放着若干个碟子,从三个方向上看在眼里,三种视图如下图所示,则这张桌子上共有碟子为B 、8个C 、12个D 、17个12、红星中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有多少人?A .13个B .12个C .11个D .10个 二、填空题 (每题4分,共24分.) 13、一粒纽扣式电池能够污染60..万.升水,我市每年报废的纽扣式电池约400000粒,如果废旧电池不回收,我县一年报废的纽扣式电池所污染的水约有 升(用科学记数法表示).14、在抛掷两枚普通的正方体骰子的实验中,列举一个不可能事件:_______________________________________________________________.15、如图,当半径为30cm 的传送带转动轮转过120︒角时,传送带上的物体A 平移的距离为 _____cm(保留π)。
2010年中考模拟题数 学 试 卷(二)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.“比a 的45大2的数”用代数式表示是( ) A. 45a +2 B. 54a +2 C. 49a +2 D. 45a -22.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .2,3,4B .5,5,6C .8,15,17D .9,12,133.计算tan60452cos30︒+︒-︒的结果是( )A .2BC .1D4.已知⊙O 1的半径r 为8cm ,⊙O 2的半径R 为2cm ,两圆的圆心距O 1O 2为6cm ,则这两圆的位置关系是( )A .相交 B.内含 C.内切 D.外切5.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍.如果设甲植树x 棵,乙植树y 棵,那么可以列方程组( ). A.⎩⎨⎧==+y x y x 5.2,20 B.⎩⎨⎧=+=y x y x 5.1,20 C.⎩⎨⎧==+y x y x 5.1,20 D.⎩⎨⎧+==+5.1,20y x y x6.如图△AOB 中,∠AOB =120°,BD ,AC 是两条高,连接CD ,若AB =4,则DC 的长为( )A .3B .2C .233 D .433 7. 若3a+2b=2,则直线y=kx+b一定经过点( )A .(0,2)B .(3,2)C .(-32,2) D .(32,1)8. 若函数y =222x x x c--+ 的自变量x 的取值范围是全体实数,则c 的取值范围是A .c <1B .c =1C .c >1D .c≤1 二、填空题(每小题3分,共24分)9和85b -互为相反数,则5()2ab-=___________。
10.以长为8,宽为6的矩形各边中点为顶点的四边形的周长为_________.11.一项工程,甲独做需12小时完成,若甲、乙合做需4小时完成,则乙独做需 小时完成。
12.三角形的两边长为2cm 和,则这个三角形面积的最大值为_____________cm 2.13.如图,已知平行四边形ABCD 中, ∠BCD 的平分线 交边AD 于E ,∠ABC 的平分线交AD 于F .若AB =8,AE =3,则DF = .14. 如图,△ABC 中,D 为BC 边上一点,∠BAD =∠C , AD ∶AC =3∶5, △ABC 的面积为25,则△ACD 的面积为 .15. 如图,直线y=-32与x轴相交于点A ,与y轴相交于点B ,将△ABO 沿着AB 翻折,得到△ABC , 则点C 的坐标为 .16.如图,AB 是半圆⊙O 的直径,半径OC ⊥AB ,⊙O 的直径是OC ,AD 切⊙O 1于D ,交OC 的延长线于E .设⊙O 1的半径为r ,那么用含r 的代数式表示DE ,结果是DE =三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.先化简,再求值(2a+3)(a-1)-3224,22a a a a +=+其中,18.解不等式组 3(2)451214x x x x x ⎧⎪⎨⎪⎩-+<-+≥-并把不等式的解集在数轴上表示出来19.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形. (1)用a ,b ,x 表示纸片剩余部分的面积; (2)当a=8,b=6,且剪去部分的面积等于剩余部分的面积的一半时,求正方形的边长.20.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号)。
四、(每小题10分,共20分)21.甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:乙超市:(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.22.汶川大地震发生后,某中学八年级(一)班共40名同学开展了“我为灾区献爱心”的活动.活动结束后,班长将捐款情况进行了统计,并绘制成下面的统计图.(1)求这40 名同学捐款的平均数;(2)这组数据的众数是,中位数是.(3)该校共有学生1200名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?五、(本题12分)23.如图1,四边形ABCD是矩形,P是BC边上的一点,连接PA、PD(1)求证:PA2+PC2=PB2+PD2证明:作PE⊥AD于点E(2)如图2,当点A在矩形ABCD的内部时,连接PA、PB、PC、PD.上面的结论是否还成立?说明理由.(3)当点A在矩形ABCD的外部时,连接PA、PB、PC、PD.上面的结论是否还成立?(不必说明理由)六、(本题12分)24.如图,A(2,1)是矩形OCBD的对角线OB上的一点,点E在BC上,双曲线y=k x经过点A,交BC于点E,交BD于点F,若CE=2 3(1)求双曲线的解析式;(2)求点F的坐标;(3)连接EF、DC,直线EF与直线DC是否一定平行?(只答“一定”或“不一定”)七、(本题12分)25.四边形ABCD中,点E在边CD上,连接AE、BE.设∠EAD=∠1,∠EAB=∠2,∠ABE=∠3,∠CBE=∠4,给出下列五个关系式,①AD∥BC;②DE=CE;③∠1=∠2④∠3=∠4;⑤AD+BC=AB;将其中的三个关系作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果xxx,那么xxx),并给出证明;(2)用序号写出三个真命题(不需要证明)(3)在本题可以书写的命题中,只有一个是假命题,是哪一个?说明理由.八(本题14分)26.如图,在平面直角坐标系中,点O是原点,点A的坐标为(4,0),以OA为一边,在第一象限作等边△OAB(1)求点B的坐标.(2)求经过O、A、B三点的抛物线的解析式.C,求点C的坐标;(4)在(3)中,直线AC上方的抛物线上,是否存在一点D,使得△OCD的面积最大?如果存在。
求出点D的坐标和面积的最大值,如果不存在,请说明理由.2010年中考模拟题数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.A;2.C;3.C;4.C;5.C;6.B;7.D;8.C二、填空题(每小题3分,共24分)9.254;10.20;11.6;12.13.3;14.16;15.3);16.43r . 三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.解:原式=(2a +3)(a -1)-)2()2(22++a a a=(2a +3)(a -1)-2a 2 =a -3......................4分.当a =2-3时,原式的值为-3-1 ......................6分.18. 解:由3(x-2)+4<5x得: 3x-5x<6-4 -2x<2 x>-1 由1214xx x -+≥-得: 1-x+4x≥8x-4 -5x≥-5 x≤1∴11x -<≤......................6分.......................8分.19.解:(1)剩余部分的面积为ab-4x2......................2分.(2)由题意得:4x2=12(ab-4x2) ∴6x2=12ab......................6分. 当a=8,b=6时,x2=4x=±2 x=-2不合题意,舍去 ∴x=2 ∴正方形的边长为2.......................8分.20.解:过点A 作AH ⊥CD ,垂足为H由题意可知四边形ABDH 为矩形,∠CAH =30°,∴AB =DH =1.5,BD =AH =6 在Rt △ACH 中,=∠CAH tan AHCH3233630tan 6tan =⨯=︒=∠⋅=∴CAH AH CH∵DH =1.5,∴5.132+=CD......................5分.在Rt △CDE 中,CECDCED CED =∠︒=∠sin 60,)34(235.13260sin +=+=︒=∴CD CE (米)答:拉线CE 的长为(34+)米 ......................10分.四.(每小题10分,共20分) 21.(1)树状图为:········ 4分 (2)∵ 去甲超市购物摸一次奖获10元礼金券的概率是P (甲)4263==, ············ 7分 去乙超市购物摸一次奖获10元礼金券的概率是P (乙)2163==, ············ 9分∴ 我选择去甲超市购物. ······························································· 10分22.解:(1)1(2073015401810010)57.75()40x =⨯+⨯+⨯+⨯=元 这40 名同学捐款的平均数是57.75元;......................3分.(2)40元,15元;......................6分.(3)57.75×1200=69300(元)答:估计这个中学的捐款总数大约是69300元......................10分.五、(本题12分)23.(1)证明:作PE⊥AD于点E∵四边形ABCD是矩形∴∠B=∠C=∠BAD=∠ADC=90°∴四边形ABPE是矩形∴AB=PE=CD∴PA2=PB2+AB2PD2=PC2+CD2∴PA2+PC2=PB2+AB2+PC2PB2+PD2=PB2+PC2+CD2=PB2+PC2+AB2∴PA2+PC2=PB2+PD2......................5分.(2)成立过点P作AD的垂线,交AD于点E,交BC于点F则四边形ABFE和CDEF为矩形∴AE=BF,DE=CF由勾股定理得:则AP2=AE2+PE2,PC2=PF2+CF2BP2=BF2+PF2,PD2=DE2+PE2∴PA2+PC2=AE2+PE2+PF2+CF2PB2+PD2=BF2+PF2+DE2+PE2∴PA2+PC2=PB2+PD2......................10分.(3)成立.......................12分.六、(本题12分)24.解:(1)∵双曲线y=kx经过点A(2,1)∴1=2k ∴k=2∴双曲线的解析式为y=2 x(2)设直线OB的解析式为y=ax∵直线y=ax经过点A(2,1)∴a=1 2∴直线的解析式为y=12x∵CE=23,代入双曲线解析式得到点E的坐标为(3,23)∴点B的横坐标为3代入直线解析式,得到点B的坐标为(3,32)∴点F的纵坐标为3 2代入双曲线的解析式,得到点F的坐标为(43,32)(3)一定.七、25.解:(1)如果①②③,那么④⑤证明:延长AE交BC的延长线于点F(如图)∵AD∥BC∴∠1=∠F,∠ADE=∠FCE又CE=DE∴△ADE≌△FCEAE=FE,AD=CF∠1=∠2=∠FBA=BFBA=BC+CF=BC+ADAE=EF∴∠3=∠4......................5分.(2)如果①②④,那么③⑤;如果①②⑤,那么③④;如果①③④,那么②⑤......................9分.(3)如果②③④,那么①⑤如图,ABE和BCE和AED是全等的等边三角形,此时C、D、E 在同一直线上,CE=DE,∠DAE=∠BAE=∠CBE=∠ABE=60°,但AD与BC 不平行.......................12分.八、(本题14分)26.(1)解:过点B作BE⊥x轴于点E∵△OAB是等边三角形∴OE=2,BE=∴点B的坐标为(2,......................3分.(2)根据抛物线的对称性可知,点B(2,2)是抛物线的顶点设抛物线的解析式为y=a(x-2)2+当x=0时,y=0∴0=a(0-2)2+2∴抛物线的解析式为y=-2(x-2)2+即:y=-2x2+.....................6分.(3)设点C即点C 2+ 解得:x=0或x=3∵点C 在第一象限,∴x=3,∴点C 的坐标为(3,2)......................10分.(4)存在设点D 2+,△OCD 的面积为y过点D 作DF ⊥x轴于点F ,交OC 于点G ,则点G x) 作CM ⊥DF 于点M则OF +DM =3,DG =-2x2+2x=-2x2+2x∴S =12(-2x2+2×3∴S 232)2∴△OCD ,此时点D 的坐标为(32).................14分.。