2005-2007年数学二答案
- 格式:doc
- 大小:1.10 MB
- 文档页数:16
2005—数二真题、标准答案及解析2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xx xdx ______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D)32ln 8+.[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( (A)πab . (B)π2ab . (C)π)(b a +. (D)π2ba + .[ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ ]字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy=dxπ- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim 23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x x xdx 4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰10221)2(xxxdx⎰-22cos )sin 2(cos sin πdttt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程xx y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= 43 . 【分析】 题设相当于已知1)()(lim 0=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 2==-+→k x x x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→nnn x x f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C)32ln 8+-. (D)32ln 8+.[ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()((A)πab . (B)π2ab . (C)π)(b a +. (D) π2ba + .[ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 =++⎰⎰σd y f x f y f b x f aD)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D⎰⎰+++++])()()()()()()()([21=.2241222ππσba b a d b a D+=⋅⋅+=+⎰⎰ 应选(D).(11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u ∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1-=-x x ex f 则(A) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则22211211=++αλαλαk k k ,)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得BA E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→xx x x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f (16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y Sx S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有 ⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--y xdtt t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ 两边对y 求导得)(ln )11(21y y yϕ-=-,故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2,.0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,得022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f2=∂∂,y yf2-=∂∂, 于是 )(),(2y C x y x f +=,且yy C 2)(-=',从而 Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=xfA ,)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,42>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D∈≤+=, }),(,1),{(222D y x y x y x D ∈>+=,于是 σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x =⎰⎰--221)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j jβ不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有1=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。
考研数二历年真题答案为了帮助考研数学二科目的学生更好地备考,以下整理了近几年的考研数学二历年真题及其详细答案。
通过仔细研究和解析这些真题,考生们可以更好地了解考试内容和出题思路,从而更有针对性地复习和备考。
一、2000年考研数学二真题及答案(下面是2000年考研数学二的真题及其答案,请考生查看。
)二、2001年考研数学二真题及答案(下面是2001年考研数学二的真题及其答案,请考生查看。
)三、2002年考研数学二真题及答案(下面是2002年考研数学二的真题及其答案,请考生查看。
)四、2003年考研数学二真题及答案(下面是2003年考研数学二的真题及其答案,请考生查看。
)五、2004年考研数学二真题及答案(下面是2004年考研数学二的真题及其答案,请考生查看。
)六、2005年考研数学二真题及答案(下面是2005年考研数学二的真题及其答案,请考生查看。
)七、2006年考研数学二真题及答案(下面是2006年考研数学二的真题及其答案,请考生查看。
)八、2007年考研数学二真题及答案(下面是2007年考研数学二的真题及其答案,请考生查看。
)九、2008年考研数学二真题及答案(下面是2008年考研数学二的真题及其答案,请考生查看。
)十、2009年考研数学二真题及答案(下面是2009年考研数学二的真题及其答案,请考生查看。
)十一、2010年考研数学二真题及答案(下面是2010年考研数学二的真题及其答案,请考生查看。
)十二、2011年考研数学二真题及答案(下面是2011年考研数学二的真题及其答案,请考生查看。
)十三、2012年考研数学二真题及答案(下面是2012年考研数学二的真题及其答案,请考生查看。
)十四、2013年考研数学二真题及答案(下面是2013年考研数学二的真题及其答案,请考生查看。
)十五、2014年考研数学二真题及答案(下面是2014年考研数学二的真题及其答案,请考生查看。
)十六、2015年考研数学二真题及答案(下面是2015年考研数学二的真题及其答案,请考生查看。
1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(x xx x e y x x +⋅++⋅='+,从而π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得x xx x y ysin 1cos )sin 1ln(1+++=', 于是]sin 1cos )sin 1[ln()sin 1(x xx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→x x x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限x x f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线,本题定义域为x>0,所以只考虑+∞→x 的情形. 3..【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt t t tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t tt d【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等. 4...【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y x y ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x x C dx ex ey dxx dxx=2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即 x x y x ln ][22=',两边积分得Cx x x xdx x y x +-==⎰332291ln 31ln ,再代入初始条件即可得所求解为.91ln 31x x x y -=5…【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(limkx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim20x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k x x x x x ,得.43=k 【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算.6…【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。
2005年全国硕士研究生入学统一考试理工数学二试题详解及评析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 设x x y )sin 1(+=,则π=x dy = ______【答】 dx π−.【详解】 dy =()ln(1sin )(1sin )ln(1sin )x x x de x d x x +=++cos ln(1sin )ln(1sin )1sin x x x dx x ⎛⎞=+++⎜⎟+⎝⎠π=x dy=.)(dx dx y ππ−=′(2) 曲线xx y 23)1(+=的斜渐近线方程为______.【答】 23+=x y 【详解】 因为a=32limlim 1,x x y x →+∞== []23)1(lim)(lim 2323=−+=−=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y(3)=−−∫1221)2(xx xdx ______【答】4π.【详解】 令t x sin =,则=−−∫1221)2(x xxdx∫−202cos )sin 2(cos sin πdt tt tt =.4)arctan(cos cos 1cos 20202πππ=−=+−∫t ttd(4)微分方程x x y y x ln 2=+′满足91)1(−=y 的解为______.【答】 .91ln 31x x x y −=【详解】 原方程等价为x y x y ln 2=+′,于是通解为 ∫∫+⋅=+∫⋅∫=−]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +−, 由91)1(−=y 得C=0,故所求解为.91ln 31x x x y −=(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(−+=β是等价无穷小,则k= ______【答】 43.【详解】 200cos arcsin 1lim )()(limkxx x x x x x x −+=→→αβ =)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++−+→=k 21143cos 1arcsin lim 20==−+→k xx x x x , 得.43=k(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B . 【答】 2【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=×=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞−∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.【 】【答】 应选(C )【详解】 先求出f(x)的表达式.()()()()()130101333lim lim 1111,lim lim 11211,1lim lim 11.n nn n nn n nn n n xx x x x x x →∞→∞→∞=+==<=+===⎛⎞=⎜+⎟=>⎜⎟⎝⎠因此,31, 1,(), 1.x f x x x ⎧≤⎪=⎨>⎪⎩由()y f x =的表达式及它的函数图形可知,()f x 在1x =±处不可导(图形是尖点),其余点()f x 均可导,因此选(C ).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数.【 】【答】 应选(A )【详解】 已知,∫+=xC dt t f x F 0)()(若()F x 为奇函数⇒()0xf t dt ∫为偶函数⇒()F x 的全体原函数为偶函数.又若()F x 为偶函数,则()()'F x f x =为奇函数,因此选(A ).(9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+−.(C) 32ln 8+−. (D) 32ln 8+.【 】【答】 应选(B )【详解】 当x=3时,有322=+t t ,得3,1−==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy , 可见过点x=3(此时y=ln2)的法线方程为:)3(82ln −−=−x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+,故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++∫∫σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2ba + . 【 】【答】 应选(D ) 【详解】 由轮换对称性,有=++∫∫σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D∫∫++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D ∫∫+++++)()()()()()()()([21=.2241222ππσb a b a d b a D +=⋅⋅+=+∫∫ 应选(D).(11)设函数∫+−+−++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂−=∂∂. (B )2222y u x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. 【 】【答】 应选(B )【详解】)()()()(y x y x y x y x xu−−++−′++′=∂∂ψψϕϕ,)()()()(y x y x y x y x yu−+++−′−+′=∂∂ψψϕϕ, )()()()(22y x y x y x y x xu−′−+′+−′′++′′=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u−′++′+−′′−+′′=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x y u−′−+′+−′′++′′=∂∂ψψϕϕ, 可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1−=−x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.【 】【答】 应选(D )【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(lim 1=+→x f x ,1)(lim 1−=−→x f x , 所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.【 】【答】 应选(B )【详解】 按特征值特征向量定义,有()12121122.A A A ααααλαλα+=+=+1α,)(21αα+A 线性无关⇔0)(21211=++αααA k k ,12,k k 恒为0 ⇔()11212220,k k k λαλα++=12,k k 恒为0 由于不同特征值的特征向量线性无关,所以21,αα线性无关.于是 ⎩⎨⎧==+.0,022121λλk k k 12,k k 恒为0而齐次方程组 ⎩⎨⎧==+.0,022121λλk k k 只有零解⇔ 122100.0λλλ≠⇒≠所以应选(B ).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B −. (D) 交换*A 的第1行与第2行得*B −.【 】 【答】 应选(C )【详解】 为书写方便,不妨考查A 为3阶矩阵,因为A 做初等行变换得到B ,所以用初等矩阵左乘A 得到B ,按已知有。
1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(x xx x e y x x +⋅++⋅='+,从而π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得x xx x y ys i n 1c o s )s i n 1l n (1+++=', 于是]sin 1cos )sin 1[ln()sin 1(x xx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→x x x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限x x f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线,本题定义域为x>0,所以只考虑+∞→x 的情形. 3..【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt t t tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t tt d【评注】 本题为广义积分,但仍可以与普通积分一样对待作变量代换等. 4...【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y x y ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x x C dx ex ey dxx dxx=2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即x x y x ln ][22=',两边积分得 Cx x x xdx x y x +-==⎰332291ln 31ln ,再代入初始条件即可得所求解为.91ln 31x x x y -=5…【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(limkx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim20x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k x x x x x ,得.43=k 【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算.6…【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。
考研数学二(函数、极限、连续)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2005年试题,二)设F(x)是连续函数f(x)的一个原函数,“”表示“M 的充分必要条件是N”,则必有( )。
A.F(x)是偶函数f(x)是奇函数B.F(x)是奇函数(x)是偶函数C.F(x)是周期函数f(x)是周期函数D.F(x)是单调函数f(x)是单调函数正确答案:A解析:由题意可知于是f(x)为奇函数为偶函数的全体原函数为偶函数;F(x)为偶函数f’(x)=f(x)为奇函数所以选A。
[评注]考虑当f(x)具有函数的某种性质时,它的原函数F(x)是否也具有这种性质?反过来考虑呢? 知识模块:函数、极限、连续2.(2001年试题,二)设则f{[f(x)]}等于( ).A.0B.1C.D.正确答案:由题设,则由于f(x)只能取0,1两个值,即|f(x)|≤1,x∈(一∞,+∞),所以f[f(x)]≡1,x∈(一∞,∞),因而f{f(x)]}=f(1)=1选B。
涉及知识点:函数、极限、连续3.(1999年试题,二)设f(x)是连续函数,F(x)是f(x)的原函数,则( ).A.当f(x)是奇函数时,F(x)必是偶函数B.当f(x)是偶函数时,(x)必是奇函数C.当f(x)是周期函数时,F(x)必是周期函数D.当f(x)是单调增函数时,F(x)必是单调增函数正确答案:A解析:由已知f(x)是连续函数,则是f(x)的一个原函数,从而f(x)的任一原函数F(x)可表示为即其中C为任意常数,且有当f(x)是奇函数时,即F(x)为偶函数,A成立;当f(x)是偶函数时,所以B不成立;关于选项C,D可举反例予以排除,如令f(x)=1+cosx,则周期为2π,F(x)=x+sinx+C不是周期函数;又令f(x)=x,为单调增函数,但不是单调函数,综上,选A.[评注]是函数f(x)的原函数中的一个,所以f(x)的原函数才为F(x)=,然后再用函数性质的定义进行判定.知识模块:函数、极限、连续4.(1997年试题,二)设则g[f(x)]=( ).A.B.C.D.正确答案:D解析:由已知由f(x)≤0,知x≥0且f(x)=一x;由f(x)>0,知x选D.知识模块:函数、极限、连续5.(2012年试题,一)设an>0(n=1,2,3,…),sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的( )。
2005年数学二试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= .(2) 曲线xx y 23)1(+=的斜渐近线方程为.(3)=--⎰1221)2(xxxdxFor personal use only in study and research; not for commercial use(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yux u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2Ta =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.以下题型均在05年考研文登数学辅导班中讲过1..【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.完全类似例题见《数学复习指南》(理工类)P.55【例2.15】2..【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x []23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
2005年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 设x x y )sin 1(+=,则π=x dy= ________________ .(2) 曲线xx y 23)1(+=的斜渐近线方程为___________.(3)=--⎰1221)2(xxxdx______________(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为________________. (5) 当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k =________________ .(6) 设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题:7-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内 ( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.(8) 设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”, 则必有 ( )(A)()F x 是偶函数⇔()f x 是奇函数. (B)()F x 是奇函数⇔()f x 是偶函数. (C)()F x 是周期函数⇔()f x 是周期函数. (D)()F x 是单调函数⇔()f x 是单调函数.(9) 设函数()y y x =由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线()y y x =在3x =处的法线与x轴交点的横坐标是 ( )(A) 1ln 238+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+.(10) 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( ( )(A) πab . (B) π2ab . (C) π)(b a +. (D) π2b a + .(11) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有 ( )(A) 2222y u x u ∂∂-=∂∂. (B) 2222yux u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂.(12) 设函数,11)(1-=-x xex f 则 ( ) (A) 0x =,1x =都是()f x 的第一类间断点. (B) 0x =,1x =都是()f x 的第二类间断点.(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点. (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. (13) 设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是 ( )(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.(14) 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,B A 分别为,A B的伴随矩阵,则 ( )(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分11分)设函数()f x 连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21x e y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点(,)M x y 分别作垂直于x 轴和y 轴 的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0))与(3,2)处的切线,其交点为(2,4). 设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:)(I)存在),1,0(∈ξ 使得ξξ-=1)(f ;(II)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(20)(本题满分10分)已知函数(,)z f x y =的全微分ydy xdx dz 22-=,并且(1,1)2f =. 求(,)f x y 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D(22)(本题满分9分)确定常数a ,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且0AB =, 求线性方程组0AX =的通解.2005年全国硕士研究生入学统一考试数学二试题解析一、填空题(1)【详解】先求出函数的导数,再求函数在某点的微分. 方法1:利用恒等变形得x x y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法2:两边取对数,)sin 1ln(ln x x y +=,对x 求导,得1cos ln(1sin )1sin x xy x y x'=+++, 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故 π=x dy =.)(dx dx y ππ-='(2)曲线xx y 23)1(+=的斜渐近线方程为___________.【详解】由求斜渐近线公式y ax b =+(其中()limx f x a x→∞=,lim[()]x b f x ax →∞=-),得:32())limlim 1,x x f x a x →+∞=== []23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y(3)【详解】通过还原变换求定积分 方法1:令t x sin = (0)2t π<<,则=--⎰10221)2(x x xdx⎰-202cos )sin 2(cos sin πdt t t t t 220sin 2sin t dt t π=-⎰22200cos arctan(cos )1cos 4d t t t πππ=-=-=+⎰方法2t ,有221,x t =-所以有xdx tdt =-,其中01t <<.112001arctan 014dtt t π-===+⎰⎰(4)【答案】.91ln 31x x x y -=【详解】求方程()()dyP x y Q x dx+=的解,有公式 ()()()P x dx P x dx y e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ (其中C 是常数). 将原方程等价化为 x y xy ln 2=+',于是利用公式得方程的通解 22[ln ]dx dxx x y e x e dx C -⎰⎰=⋅+⎰221[ln ]x xdx C x =⋅+⎰=211ln 39C x x x x -+, (其中C 是常数) 由91)1(-=y 得0C =,故所求解为.91ln 31x x x y -=(5)【详解】由题设,00()lim()x x x x βα→→=)cos arcsin 1(cos 1arcsin lim 20x x x kx x x x x ++-+→ 201arcsin 1cos lim 2x x x x k x →+-=2001arcsin 1cos lim lim 2x x x x k x x →→-⎡⎤=+⎢⎥⎣⎦, 又因为 201cos 1lim 2x x x →-=,00arcsin lim arcsin lim 1sin x u x ux u xu →→ = = 所以 0()11lim(1)()22x x x k βα→=+34k =由题设0→x 时()~()x x αβ,所以314k =,得.43=k(6)【答案】2 【详解】方法1:因为1231231()(,,)11αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(24)(,,)24αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(39)(,,)39αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,故 123123123(,24,39)B ααααααααα=++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 记123(,,)A ααα=,两边取行列式,于是有.221941321111=⨯=⋅=A B方法2:利用行列式性质(在行列式中,把某行的各元素分别乘以非零常数加到另一行的对应元素上,行列式的值不变;从某一行或列中提取某一公因子行列式值不变)123123123,24,39B ααααααααα=++++++[2][1]1232323[3][1],3,28ααααααα--====++++[3]2[2]123233====,3,2αααααα-+++123233=2,3,αααααα+++[1][3]1223[2]3[3]====2,,αααα--+[1][2]123====2,,ααα-又因为123,,1A ααα==,故B 2A =2=.二、选择题 (7)【答案】C【详解】分段讨论,并应用夹逼准则,当||1x <时,有≤≤,命n →∞取极限,得1n =,1n =,由夹逼准则得()1n f x =;当||1x =时,()1n n f x ===;当||1x >时,33|||x x =<=,命n →∞取极限,得3||n x =,由夹逼准则得13331()lim ||(1)||.||n n n f x x x x →∞=+= 所以 31,||1(),||1x f x x x <⎧⎪=⎨≥⎪⎩再讨论()f x 的不可导点. 按导数定义,易知1x =±处()f x 不可导,故应选(C).(8)【答案】A 【详解】方法1:应用函数奇偶性的定义判定,函数()f x 的任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;反过来,若()f x 为奇函数,则0()()xF x f t dt C --=+⎰,令t k =-,则有dt dk =-,所以 0()()()()()xxx F x f t dt C f k dk C f k dk C F x --=+=--+=+=⎰⎰⎰,从而 ⎰+=xC dt t f x F 0)()( 为偶函数,可见(A)为正确选项.方法2:排除法,令()1f x =, 则取()1F x x =+, 排除(B)、(C); 令()f x x =, 则取21()2F x x =, 排除(D);(9)【答案】A【详解】当3x =时,有322=+t t ,得121,3t t ==-(舍去,此时y 无意义),曲线()y y x =的导数为 2111222(1)dy dy dt t dx dx t t dt+===++, 所以曲线()y y x =在3x =(即1t =)处的切线斜率为18于是在该处的法线的斜率为8-, 所以过点(3,ln 2)的法线方程为)3(82ln --=-x y ,令y =0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)【答案】D【详解】由于积分区域D 是关于y x =对称的, 所以x 与y 互换后积分值不变, 所以有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=12D d σ⎰⎰ =212.2242Da b a b a b d σππ+++=⋅⋅⋅=⎰⎰ 应选(D).(11)【答案】B 【详解】因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B).(12)【答案】D【详解】由于函数()f x 在0x =,1x =点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以0x =为第二类间断点;0)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以1x =为第一类间断点,故应选(D).(13)【答案】B 【详解】方法1:利用线性无关的定义12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.设有数12,k k ,使得0)(21211=++αααA k k ,则022211211=++αλαλαk k k 1211222()0k k k λαλα⇒++=.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,则⎩⎨⎧==+.0,022121λλk k k 当122100λλλ=≠时,方程只有零解,则0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法2:将向量组的表出关系表示成矩阵形式12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由于 ()()()1112111221221,(),,0A λααααλαλαααλ⎛⎫+=+=⎪⎝⎭, 因12λλ≠,因不同特征值对应的特征向量必线性无关,知21,αα线性无关. 若1α,)(21αα+A 线性无关,则()112,()2r A ααα+=,则()()11112122221112,min ,,2000r r r r λλλααααλλλ⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=≤≤≤ ⎪⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭, 故121220r λλ⎛⎫≤≤ ⎪⎝⎭,从而12120r λλ⎛⎫= ⎪⎝⎭,从而122100λλλ=≠ 若122100λλλ=≠,则12120r λλ⎛⎫= ⎪⎝⎭,又21,αα线性无关,则()11122211,200r r λλααλλ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()()11121221,(),20r A r λαααααλ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).方法3:利用矩阵的秩12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,又121122()A ααλαλα+=+,故1α,)(21αα+A 线性无关112(,())2r A ααα⇔+=又因为()()211122122,,αλαλαλααλα+=11将的-倍加到第列则111221222(,)(,)20r r αλαλααλαλ+==⇔≠(若20λ=,与122(,)2r αλα=矛盾) 方法4:利用线性齐次方程组12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,112,()A ααα+线性无关11122,αλαλα⇔+线性无关⇔11122,0αλαλα+≠,⇔()11122,0X αλαλα+=只有零解,又()()1111221221,,0λαλαλαααλ⎛⎫+= ⎪⎝⎭⇔()1112221,00x x λααλ⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭只有零解⇔12,αα线性无关时()12,0Y αα=只有零解,故1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,只有零解,⇔1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭的系数矩阵是个可逆矩阵,⇔122100λλλ=≠,故应选(B)方法5:由12λλ≠,21,αα线性无关12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.向量组()12I :,αα和向量组()1121122II :,()A αααλαλα+=+. 显然向量组()II 可以由向量组()I 线性表出;当20λ≠时,不论1λ的取值如何,向量组()I 可以由向量组()II 线性表出11αα=,112111*********11()()()A λλααλαλααααλλλλ=-++=-⋅++, 从而()I ,()II 是等价向量组⇒当20λ≠时,()()1211122,,2r r αααλαλα=+=(14)【答案】(C) 【详解】方法1:由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,(A 进行行变换,故A 左乘初等矩阵),于是 ****1212()B E A A E ==,又初等矩阵都是可逆的,故 *1121212E E E -=, 又121E E =-=-(行列式的两行互换,行列式反号),11212E E -=,故****1*1*1212121212B A E A E E A E A E --==⋅=-=-,即*12*B E A -=,可见应选(C).方法2:交换A 的第一行与第二行得B ,即12B E A =.又因为A 是可逆阵,121E E =-=-,故12120B E A E A A ===-≠, 所以B 可逆,且1111212()B E A A E ---==.又11,A B A B A B **--==,故12B A E B A**=,又因B A =-,故*12*B E A -=.三、解答题(15)【详解】 作积分变量代换,命x t u -=,则00()()()()xxxf x t dt f u du f u du -=-=⎰⎰⎰,于是⎰⎰⎰⎰⎰-=--→→xx xx xx x duu f x dt t tf dt t f x dt t x f x dt t f t x 0)()()(lim )()()(lim =洛必达法则⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=整理⎰⎰+→xxx x xf du u f dt t f 000)()()(lim0001()lim 1()()xx xx f t dt x f x f t dtx →=+⎰⎰上下同除而 0000(())1lim()limlim ()(0)xxx x x f t dt f t dt f x f x x →→→'==='⎰⎰所以由极限的四则运算法则得,原式0001()lim1()()xx x f t dt x f x f t dt x →=+⎰⎰00001lim ()1lim ()lim ()x x x x f t dt x f x f t dtx →→=+⎰⎰(0)(0)(0)f f f =+(0)012f ≠=.(16) 【详解】由题设图形知,3C 在1C 的左侧,根据平面图形的面积公式得,⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydt t t y S 12))((ln )(ϕ,由)()(21y S x S =,得⎰-=--y xdt t t x e 1))((ln )1(21ϕ,注意到(,)M x y 是xe y =的点,于是 ⎰-=--y dt t t y y 1))((ln )1ln (21ϕ两边对y 求导得)(ln )11(21y y yϕ-=-, 整理上面关系式得函数关系为:.21ln )(yy y y x --==ϕ(17)【详解】由直线1l 过(0,0)和(2,4)两点知直线1l 的斜率为2. 由直线1l 是曲线C 在点(0,0)的切线,由导数的几何意义知(0)2f '=. 同理可得(3)2f '=-. 另外由点(3,2)是曲线C 的一个拐点知(3)0.f ''=由分部积分公式,)332200()()()()x x f x dx x x df x '''''+=+⎰⎰3320()()()(21)x x f x f x x dx ''''=+-+⎰3220(33)(3)(00)(0)()(21)f f f x x dx ''''''=+-+-+⎰=dx x f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(3(231)(3)(201)(0)2()f f f x dx '''=-⨯++⨯++⎰=.20)]0()3([216=-+f f(18)【详解】 由题设)0(cos π<<=t t x ,有sin dxt dt=-,由复合函数求导的链式法则得 dt dy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,2222cos 111(1cos )[]()cos ()0sin sin sin sin t dy d y dyt t y t dt t dt t t dt--⋅---+=, 化简得022=+y dty d ,其特征方程为210r +=,特征根1,2r i =±, 通解为12cos sin y C t C t =+所以 221211sin cos x C x C t C t C y -+=+=,将初始条件01,x y==代入得,1210C C C =⨯+=,即21C =.而121y C x C C '''=+=+,将2x y ='=代入得112C C =+=,即12C =.将122,1C C ==代入通解公式得满足条件的特解为21 1.y x x =+-<<(19)【详解】(I) 令x x f x F +-=1)()(,则()F x 在[0,1]上连续,且(0)10F =-<, (1)10F =>,于是由闭区间连续函数的介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II) 在],0[ξ和]1,[ξ上对()f x 分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)【详解】由ydy xdx dz 22-=知2,2z zx y x y∂∂==-∂∂.对2z x x ∂=∂两边积分得2(,)()z f x y x c y ==+. 将2(,)()z x y x c y =+代入2zy y∂=-∂得()2c y y '=. 所以2()c y y c =+. 所以22z x y c =-+.再由1,1x y ==时2z =知, 2c =. 于是所讨论的函数为222z x y =-+.求z 在2214y x +<中的驻点. 由2,2z z x y x y∂∂==-∂∂得驻点(0,0),对应的(0,0)2z f ==.讨论222z x y =-+在D 的边界22=14y x +上的最值,有两个方法. 方法1:把224(1)y x =-代入z 的表达式,有2222=52z x y x =-+-,11x -≤≤10x z x '=命0x z '=解得0x =,对应的2y =±,0,22x y z ==±=-还要考虑11x -≤≤的端点1x =±,对应的0y =,1,03x y z =±==由2,2,3z z z ==-=比较大小,故min 2z =-(对应于0x =,2y =±),max 3z =(对应于0x =,2y =±)方法2:用拉格朗日乘数法,作函数2222(,,)2(1)4y F x y x y x λλ=-+++-解方程组 2222(1)0,12022104xy f F x x x f y F y y y y F x λλλλλ⎧∂'=+=+=⎪∂⎪∂⎪'=+=-+=⎨∂⎪⎪'=+-=⎪⎩由上面的第一个方程解得0x =或1λ=-:当0x =时由最后一个方程解得2y =±;当1λ=-是由第二个方程解得0y =,这时由最后一个方程解得1x =±. 故解得4个可能的极值点(0,2),(0,2),(1,0),(1,0)--.计算对应z 的值:(0,2)(0,2)(1,0)(1,0)2,2,3,3zzzz--=-=-==再与(0,0)2z=比较大小,结论同方法1.(21) 【详解】D :2210x y +-=为以O 为中心半径为1 的圆周,划分D 如下图为1D 与2D .这时可以去掉绝对值符号222222211,(,)11,(,)x y x y D x y x y x y D ⎧+-∈⎪+-=⎨--∈⎪⎩方法1:221Dx y d σ+-⎰⎰=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x后一个积分用直角坐标做,21122220(1)1)D x y dxdy dx x y dy +-=+-⎰⎰⎰312222011[(1)((1-)]33x x x dx =----⎰ 33221111222200002222[()(1)](1)3333x x dx x dx dx x dx =-+-=-+-⎰⎰⎰⎰ 42012cos 33tdt π=-+⎰220121cos 2()332t dt π+=-+⎰2+y 2=1220121(12cos 2cos 2)334t t dt π=-+⨯++⎰201211cos 4(12cos 2)3342t t dt π+=-+⨯++⎰201211cos 4(12cos 2)33422t t dt π=-+⨯+++⎰20121321cos 4(2cos 2)33422342tt dt ππ=-+⨯⨯⨯+⨯+⎰12103834π=-++⨯⨯138π=-+.前一个积分用极坐标做,112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 所以221Dx y d σ+-⎰⎰=8π+138π-+=.314-π方法2:由于区域2D 的边界复杂,计算该积分较麻烦,可以将2D 内的函数“扩充”到整个区域D =12D D ,再减去“扩充”的部分,就简化了运算. 即222(1)d D x y σ+-=⎰⎰22(1)D x y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 因此221Dx y d σ+-⎰⎰=122(1)D x y d σ--⎰⎰222(1)D x y d σ++-⎰⎰122(1)D x y d σ=--⎰⎰+22(1)D x y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 1222(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰由极坐标112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 而 3111222220001(1)(1)[(1)]03Dx x y d dy x y dx y x dy σ+-=+-=+-⎰⎰⎰⎰⎰311220011221[1]()[]033333y y dy y dy y =+-=-=-=-⎰⎰ 所以221Dx y d σ+-⎰⎰=28π⨯13-=.314-π(22)【详解】方法1:记123123(,,),(,,)A B αααβββ==. 由于123,,βββ不能由123,,ααα线性表出,故()3r A <,(若()3r A =,则任何三维向量都可以由123,,ααα线性表出),从而111111a A a a =2222311111a a a a a+++把第、行加到第行1111(2)11(2)11a a a a ++提取第行的公因子11121(2)01031100a a a - +---行行行行13013(2)(1)110a a a +-+⋅-⨯⨯-按第列展开2(2)(1)a a =-+-0=(其中13(1)+-指数中的1和3分别是1所在的行数和列数)从而得1a =或2a =-.当1a =时,1231[1,1,1]T αααβ====,则12312300αααβββ===+⋅+⋅,故123,,ααα可由123,,βββ线性表出,但2[2,1,4]T β=-不能由123,,ααα线性表出(因为方程组2123211111114111k k k β-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即123123123214k k k k k k k k k ++=-⎧⎪++=⎨⎪++=⎩无解),故1a =符合题意.当2a =-时,由于122112[]122121242211B A ---⎡⎤⎢⎥=---⎢⎥⎢⎥---⎣⎦12211221000033312006000---⎡⎤-⎢⎥--⎢⎥+⨯⎢⎥-⎣⎦行行,行行 因2()2()3r B r Bα=≠=,系数矩阵的秩和增广矩阵的秩不相等,故方程组2BX α=无解,故2α不能由123,,βββ线性表出,这和题设矛盾,故2a =-不合题意.因此1a =.方法2:对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a 1221121022010*********a a a a a a a a a --⎡⎤-⎢⎥++-⎢⎥-⨯⎢⎥+--⎣⎦行行,行行 1221132202201000403(1)1a a a a a a a --⎡⎤⎢⎥-⨯++-⎢⎥⎢⎥---⎣⎦行行, 当2a =-时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 不存在非零常数123,,k k k ,使得123112230003006k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,2α不能由321,,βββ线性表示,因此2-≠a ;当4a =时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,3α不能由321,,βββ线性表示,不存在非零常数123,,k k k ,使得123412200663000k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭. 因此4≠a . 而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示. 又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα21112221011022310110423a a a a a a a aa a --⎡⎤-⎢⎥--++⎢⎥-⨯⎢⎥--+⎣⎦行行,行行2111223201102200206342a a a a a a a a a --⎡⎤⎢⎥+--++⎢⎥⎢⎥--++⎣⎦行行, 由题设向量组321,,βββ不能由向量组321,,ααα线性表示,则方程组()1231x αααβ =或()1232x αααβ =或()1233x αααβ =无解,故系数矩阵的秩≠增广矩阵的秩,故()123()r B r ααα≠ .又当2-≠a 且4≠a 时,()3r B =,则必有01=-a 或022=--a a ,即1a =或2-=a .综上所述,满足题设条件的a 只能是:1a =.方法3:记()()123123,,,,,A B αααβββ==,对矩阵()A B 作初等行变换,得()12312311122(,,,,)111114aA B a a a a a a αααβββ--⎡⎤⎢⎥ ==⎢⎥⎢⎥⎣⎦ 21112221011022310110423a a a a a a a a a a --⎡⎤-⎢⎥--++⎢⎥-⨯⎢⎥--+⎣⎦行行,行行 2111223201102200206342a a a a a a a a a --⎡⎤⎢⎥+--++⎢⎥⎢⎥--++⎣⎦行行, 由于123,,βββ不能由123,,ααα线性表出,故()3r A <,(若()3r A =,则任何三维向量都可以由123,,ααα线性表出),从而111111a A a a =2222311111a a a a a +++把第、行加到第行1111(2)11(2)11a a a a ++提取第行的公因子 11121(2)01031100a a a -+---行行行行13013(2)(1)110a a a +-+⋅-⨯⨯-按第列展开2(2)(1)a a =-+-0=从而得1a =或2a =-.当1a =时,()111122000033000096A B -⎛⎫ ⎪ = ⎪ ⎪⎝⎭,则12312300αααβββ===+⋅+⋅,123,,ααα可由123,,βββ线性表出,但由于()()212r A r A β=≠ =,系数矩阵的秩和增广矩阵的秩不相等,方程组2Ax β=无解,2[2,1,4]T β=-不能由123,,ααα线性表出. 或由于()()312r A r A β=≠ =,系数矩阵的秩和增广矩阵的秩不相等,方程组3Ax β=无解,3β不能由123,,ααα线性表出,即123,,βββ不能由123,,ααα线性表出,故1a =符合题意.当2a =-时,()112122033000000006A B --⎛⎫ ⎪ =- ⎪ ⎪-⎝⎭,因()()323r A r A β=≠ =,,系数矩阵的秩和增广矩阵的秩不相等,123,,βββ不能由123,,ααα线性表出,但()()223r B r B α=≠ =(或()33r B α =),系数矩阵的秩和增广矩阵的秩不相等,即2BX α=(或3BX α=)无解,即123,,ααα不能由123,,βββ线性表出,与题设矛盾,故2a =-不合题意.故1a =.(23)【详解】 由0AB =知,B 的每一列均为0Ax =的解,且.3)()(≤+B r A r (3是A 的列数或B 的行数)(1) 若9k ≠, 13,ββ不成比例,12,ββ成比例,则()2r B =, 方程组0Ax =的解向量中至少有两个线性无关的解向量,故它的基础解系中解向量的个数2≥,又基础解系中解向量的个数=未知数的个数()r A -3()r A =-,于是()1r A ≤.又矩阵A 的第一行元素(),,a b c 不全为零,显然()1r A ≥, 故()1r A =. 可见此时0Ax =的基础解系由3()2r A -= 个线性无关解向量组成,13,ββ是方程组的解且线性无关,可作为其基础解系,故0Ax = 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若9k =,则123,,βββ均成比例,故()r B =1, 从而.2)(1≤≤A r 故()1r A =或()2r A =.①若()2r A =, 则方程组的基础解系由一个线性无关的解组成,1β是方程组0Ax =的基础解系, 则0Ax =的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.②若()1r A =, 则A 的三个行向量成比例,因第1行元素(),,a b c 不全为零,不妨设0a ≠,则0Ax =的同解方程组为:0321=++cx bx ax , 系数矩阵的秩为1,故基础解系由312-=个线性无关解向量组成,选23,x x 为自由未知量,分别取231,0x x ==或230,1x x ==,方程组的基础解系为121,001b c a a ξξ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则其通解为121210,,01b c a a x k k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.。
2005年全国硕士研究生入学统一考试数学二试题答案一、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)设x x y )sin 1(+=,则x dy π== . 【答案】dx π-【考点】复合函数的微分法 【难易度】★★ 【详解】解析:方法一: x x y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得1cos ln(1sin )1sin x x y x y x'=+++, 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2)曲线xx y 23)1(+=的斜渐近线方程为 .【答案】.23+=x y 【考点】斜渐近线 【难易度】★★ 【详解】解析:因为32())limlim 1,x x f x k x →+∞=== []23)1(lim)(lim 2323=-+=-=+∞→+∞→xx x kx x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(xxxdx.【答案】4π 【考点】定积分的换元法 【难易度】★★ 【详解】解析:方法一:令t x sin =,则=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt tt tt =.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttdt =,有221,x t xdx tdt =-=-,1122101arctan 0114dt dt t t t π-====++⎰⎰⎰.(4)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为 . 【答案】.91ln 31x x x y -=【考点】一阶线性微分方程【难易度】★★ 【详解】解析:原方程变形为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得0C =,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k = . 【答案】34【考点】等价无穷小 【难易度】★★ 【详解】解析:由题设,200cos arcsin 1lim )()(limkxxx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim20x x x kx xx x x ++-+→=k 2120arcsin 1cos lim x x x x x →+- 2011cos arcsin 113lim()(1)2224x x x k x x k k →-=+=+= 34k ⇒=.(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .【答案】2【考点】行列式的基本性质;抽象型行列式的计算 【难易度】★★ 【详解】解析:方法一:由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B方法二:利用行列式性质123123123,24,39B ααααααααα=++++++[2][1]1231323[3][1],3,28ααααααα--====++++3[2]2[2]123233====,3,2αααααα-+++1232332,3,αααααα=+++[1][3]1223[2]3[3]====2,,αααα--+[1][2]123====2,,ααα-因123,,1A ααα==,故2B =.二、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7)设函数()n f x =,则()f x 在),(+∞-∞内( )(A ) 处处可导. (B ) 恰有一个不可导点.(C ) 恰有两个不可导点. (D ) 至少有三个不可导点. 【答案】(C )【考点】分段函数的导数 【难易度】★★★ 【详解】解析:当1<x 时,≤≤,令n →∞取极限,得()1n f x ==;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,3x <命n →∞取极限,得13331()lim (1).nnn f x x x x→∞=+=即31,1(),1x f x x x ⎧<⎪=⎨≥⎪⎩再讨论()f x 的不可导点.按导数定义,易知1x =±处()f x 不可导,故应选(C). (8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有( )(A )()F x 是偶函数⇔()f x 是奇函数. (B )()F x 是奇函数⇔()f x 是偶函数. (C ) ()F x 是周期函数⇔()f x 是周期函数.(D ) ()F x 是单调函数⇔()f x 是单调函数. 【答案】(A )【考点】积分上限的函数及其导数 【难易度】★★ 【详解】解析:方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;反过来,若()f x 为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令()1f x =, 则取()1F x x =+, 排除(B)、(C); 令()f x x =, 则取21()2F x x =, 排除(D); 故应选(A). (9)设函数()y y x =由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线()y y x =在3x =处的法线与x 轴交点的横坐标是( )(A ) 1ln 238+. (B ) 32ln 81+-.(C ) 32ln 8+-. (D ) 32ln 8+.【答案】(A )【考点】导数的几何意义;由参数方程所确定的函数的导数 【难易度】★★ 【详解】解析:当3x =时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是曲线()y y x =在3x =处的切线斜率为311111228t x x t t y dyt dxx t ==='+==='+, 于是在该处的法线方程为:)3(82ln --=-x y ,令y =0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()(( )(A )πab . (B )π2ab . (C )π)(b a +. (D )π2b a + . 【答案】(D )【考点】二重积分的计算 【难易度】★★★ 【详解】解析:由轮换对称性,有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=12D d σ⎰⎰=.2241222ππσb a b a d b a D +=⋅⋅+=+⎰⎰ 应选(D). (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(A ) 2222y u x u ∂∂-=∂∂. (B ) 2222y ux u ∂∂=∂∂.(C ) 222yuy x u ∂∂=∂∂∂. (D )222x u y x u ∂∂=∂∂∂. 【答案】(B )【考点】多元复合函数的求导法 【难易度】★★ 【详解】 解析:因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B ).(12)设函数,11)(1-=-x xex f 则( ) (A ) 0x =,1x =都是()f x 的第一类间断点. (B ) 0x =,1x =都是()f x 的第二类间断点.(C ) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点. (D ) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 【答案】(D )【考点】第一类间断点;第二类间断点 【难易度】★★ 【详解】解析:由于函数()f x 在0x =,1x =点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以0x =为第二类间断点;0)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以1x =为第一类间断点,故应选(D ).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是( )(A )01≠λ. (B )02≠λ. (C )01=λ. (D )02=λ. 【答案】(B )【考点】矩阵的特征向量的性质;向量组线性无关的判别法; 【难易度】★★ 【详解】解析:方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 因12λλ≠,故21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B ).方法二: 由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 由12λλ≠,知21,αα线性无关,从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B ).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,B A 分别为A , B 的伴随矩阵,则( )(A )交换*A 的第1列与第2列得*B . (B )交换*A 的第1行与第2行得*B .(C )交换*A 的第1列与第2列得*B -. (D )交换*A 的第1行与第2行得*B -. 【答案】(C )【考点】矩阵的初等变换 【难易度】★★★ 【详解】解析:方法一: 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).方法二:交换A 的第一行与第二行得B ,即12B E A =. 其中12E 是E 的第1行与第2行交换后得到的互换初等阵.A 是可逆阵,且12120B E A E A A ===-≠,故B 可逆且1111212(),B E A A E ---==又11,A B A B A B**--==故,12B A E B A**=,又因B A =-,故*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分)设函数()f x 连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【考点】定积分的换元法;洛必达法则 【难易度】★★ 【详解】解析:作积分变量变换,命x t u -= 则000()()()()xxxf x t dt f u du f u du -=-=⎰⎰⎰,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim(1)方法1:由(1)用积分中值定理原式=0001()lim 1()()xxx f t dt x f x f t dtx →+⎰⎰ (2)而 0()1()lim ()(0)xxx f t dt f t dt f x f x x→==⎰⎰洛代入(2)得原式12=.方法2:设()F x 是()f x 的一个原函数,则()()-(0)limlim(0)(0)0xx x f t dt F x F F f xx →→'===-⎰代入(2)得原式12=. (16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的 曲线3C 是一单调增函数的图象. 过2C 上任一点(,)M x y 分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ; 32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线 3C 的方程).(y x ϕ=【考点】定积分的几何应用—平面图形的面积 【难易度】★★ 【详解】解析:由题设图形知,3C 在1C 的左侧,由题设1()S x =2()S y 知⎰--=+-=xx tt x e dt e e x S 01)1(21)]1(21[)(, ⎰-=ydt t t y S 12))((ln )(ϕ,由题设,得 ⎰-=--y xdt t t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ两边对y 求导得)(ln )11(21y y yϕ-=-, 故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f (x ),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f (x )具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【考点】导数的几何意义;函数图形的拐点;定积分的分部积分法 【难易度】★★ 【详解】解析:由题设图形知,直线1l 的方程为,2y x =所以(0)2f '=.直线2l 的方程为2(4)y x =--,所以(3)2f '=-,(3)0.f ''=(因为点(3,2)为曲线()y f x =的拐点)由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.【考点】二阶常系数齐次线性微分方程 【难易度】★★ 【详解】解析:由题设)0(cos π<<=t t x ,有sin dxx dt=,及 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,将原方程化简为 022=+y dtyd . 其特征方程为210r +=,特征根1,2r i =±,通解为12cos sin y C t C t =+解此微分方程,得 221211s i n c o s x C x C t C t C y -+=+=, 将初始条件2,10='===x x y y代入,有1,221==C C . 故满足条件的特解为21 1.y x x =-<<(19)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【考点】零点定理;拉格朗日中值定理 【难易度】★★ 【详解】解析:(I ) 令x x f x F +-=1)()(,则()F x 在[0,1]上连续,且(0)10F =-<,(1)10F =>,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对()f x 分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (20)(本题满分10分)已知函数(,)z f x y =的全微分ydy xdx dz 22-=,并且(1,1)2f =. 求(,)f x y 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【考点】拉格朗日乘数法;多元函数的极值;多元函数的最大值、最小值 【难易度】★★★ 【详解】解析:由ydy xdx dz 22-=易知 22()z f x x y C ==-+.再由(1,1)2f =知,2C =.于是所讨论的函数为22()2z f x x y ==-+.求z 在2214y x +<中的驻点. 由 20z x x ∂==∂,20zy y∂=-=∂ 得驻点(0,0),对应的(0,0)2z f ==.为讨论22(,)2z f x y x y ==-+在D 的边界22=14y x +上的情况,有两个方法. 方法一:以224(1)y x =-代入z 的表达式,有222()2=52z f x x y x ==-+-,11x -≤≤ 10x z x '⇒=令0x z '=得0x =,对应的2y =±,0,22x y z==±=-还要考虑11x -≤≤的端点1x =±,对应的0y =,1,03x y z =±==由2,2,3z z z ==-=比较大小,故min 2z =-(对应于0x =,2y =±),ma x 3z =(对应于0x =,2y =±)方法二:讨论222z x y =-+在D 的边界22=14y x +上的情况,用拉格朗日乘数法,作函数 2222(,,)2(1)4y F x y x y x λλ=-+++- 再考虑其在边界曲线1422=+y x 上的情形:作拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解方程组 2222(1)0,12022104x y fF x x x f y F y y y y F x λλλλλ⎧∂'=+=+=⎪∂⎪∂⎪'=+=-+=⎨∂⎪⎪'=+-=⎪⎩解得4个可能的极值点(0,2),(0,2),(1,0),(1,0)--.计算对应的z 的值:(0,2)(0,2)(1,0)(1,0)z2,z2,z3,z3--=-=-==再与(0,0)z2=比较大小,结论同方法1.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【考点】二重积分的性质;利用直角坐标计算二重积分;利用 极坐标计算二重积分 【难易度】★★ 【详解】解析:D 如图.2210x y +-=为以O 为中心半径为1 的圆周, 划分D 如图为 1D 与2D .222222211,(,)11,(,)x y x y D x y x y x y D ⎧+-∈⎪+-=⎨--∈⎪⎩方法1:221Dxy d σ+-⎰⎰=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x前一个积分用直角坐标做,21122220(1)1)D xy dxdy dx x y dy +-=+-⎰⎰⎰312222011[(1)((1-)]33x x x dx =----⎰ 33221111222200002222[()(1)](1)3333x x dx x dx dx x dx =-+-=-+-⎰⎰⎰⎰ 4201212311cos 333342238tdt πππ=-+=-+=-+⎰.后一个积分用极坐标做,112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. =⎰⎰--2021)1(πθrdrr d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+2010*******)1()1(πθrdr r d dy y x dx =.314-π方法2:由于区域2D 的边界复杂,计算该积分较麻烦,可以将2D 内的函数“扩充”到整个区域D =12D D ⋃,再减去“扩充”的部分,就简化了运算.即222(1)d D xy σ+-=⎰⎰22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰因此221Dx y d σ+-⎰⎰=122(1)D x y d σ--⎰⎰222(1)D x y d σ++-⎰⎰122(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 1222(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰由极坐标11222220011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 而3111222220001(1)(1)[(1)]03Dx x y d dy x y dx y x dy σ+-=+-=+-⎰⎰⎰⎰⎰311220011221[1]()[]033333y y dy y dy y =+-=-=-=-⎰⎰ 所以221Dx y d σ+-⎰⎰=.314-π(22)(本题满分9分)确定常数a ,使向量组,),1,1(1Ta =α,)1,,1(2Ta =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【考点】向量的线性表示;非齐次线性方程组解的判定 【难易度】★★★ 【详解】解析:方法1:记123123(,,),(,,)A B αααβββ==由于123,,βββ不能由123,,ααα线性表出,故()3r A <,(若()3r A =,则任何三维向量都可以由123,,ααα线性表出),从而21111111(2)010(2)(1)111a A a a a a a a a a ==+-=-+--从而得1a =或2a =-.当1a =时,1231[1,1,1]T αααβ====显然123,,ααα可由123,,βββ线性表出但T2[2,1,4]β=-不能由123,,ααα线性表出,故1a =符合题意.当2a =-时,由于122112[]122121242211B A ---⎡⎤⎢⎥=---⎢⎥⎢⎥---⎣⎦122112000033006000---⎡⎤⎢⎥→--⎢⎥⎢⎥-⎣⎦因2()2()3r A r Bα=≠=.故方程组2BX α=无解,故2α不能由123,,βββ线性表出,这和题设矛盾,故2a =-不合题意.因此1a =.方法2:对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当2a =-时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当4a =时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有01=-a 或022=--a a ,即1a =或2-=a .综上所述,满足题设条件的a 只能是:1a =.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且0AB =, 求线性方程组0Ax =的通解.【考点】齐次线性方程组解的判定 【难易度】★★★ 【详解】解析:由0AB =知,B 的每一列均为0AX =的解,且.3)()(≤+B r A r(1)若9k ≠, 则()2r B =, 于是()1r A ≤, 显然()1r A ≥, 故()1r A =. 可见此时0Ax =的基础解系所含解向量的个数为3-()r A =2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故0Ax = 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若9k =,则()r B =1, 从而.2)(1≤≤A r1) 若()2r A =, 则0Ax =的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.2) 若()1r A =,则0Ax =的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。
2005考研数学二真题及答案一、填空题〔此题共6小题,每题4分,总分值24分. 把答案填在题中横线上〕〔1〕设x x y )sin 1(+=,那么|x dy π==______ .〔2〕 曲线xx y 23)1(+=的斜渐近线方程为______ .〔3〕=--⎰1221)2(xxxdx______ .〔4〕 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . 〔5〕当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,那么k= ______ .〔6〕设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题〔此题共8小题,每题4分,总分值32分. 每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内〕 〔7〕设函数n nn xx f 31lim )(+=∞→,那么f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ]〔8〕设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N 〞,那么必有(A) F(x)是偶函数⇔f(x)是奇函数. 〔B 〕 F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ]〔9〕设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,那么曲线y=y(x)在x=3处的法线与x轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-.(C) 32ln 8+-. (D) 32ln 8+. [ ]〔10〕设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,那么=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B) π2ab . (C) π)(b a +. (D) π2b a + . [ ]〔11〕设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,那么必有(A) 2222y u x u ∂∂-=∂∂. 〔B 〕 2222yux u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] 〔12〕设函数,11)(1-=-x xex f 那么 (A) x=0,x=1都是f(x)的第一类连续点. 〔B 〕 x=0,x=1都是f(x)的第二类连续点.(C) x=0是f(x)的第一类连续点,x=1是f(x)的第二类连续点.(D) x=0是f(x)的第二类连续点,x=1是f(x)的第一类连续点. [ ]〔13〕设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,那么1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.[ ]〔14〕设A 为n 〔2≥n 〕阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,那么(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题〔此题共9小题,总分值94分.解容许写出文字说明、证明过程或演算步骤.〕〔15〕〔此题总分值11分〕设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x〔16〕〔此题总分值11分〕如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=〔17〕〔此题总分值11分〕如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x〔18〕〔此题总分值12分〕用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.〔19〕〔此题总分值12分〕函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: 〔I 〕存在),1,0(∈ξ 使得ξξ-=1)(f ;〔II 〕存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 〔20〕〔此题总分值10分〕函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.〔21〕〔此题总分值9分〕 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .〔22〕〔此题总分值9分〕 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.〔23〕〔此题总分值9分〕3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321〔k 为常数〕,且AB=O, 求线性方程组Ax=0的通解.参考答案一、填空题〔此题共6小题,每题4分,总分值24分. 把答案填在题中横线上〕〔1〕设x x y )sin 1(+=,那么π=x dy= dx π- .【分析】 此题属基此题型,幂指函数的求导〔或微分〕问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='〔2〕 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 此题属基此题型,直接用斜渐近线方程公式进展计算即可. 【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x []23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y 〔3〕=--⎰1221)2(x xxdx4π .【分析】 作三角代换求积分即可. 【详解】 令t x sin =,那么=--⎰1221)2(x xxdx⎰-202cos )sin 2(cos sin πdt tt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd〔4〕 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=〔5〕当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,那么k=43 . 【分析】 题设相当于1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim)()(limkx xx x x x x x -+=→→αβ =)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k x x x x x ,得.43=k 〔6〕设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进展计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B二、选择题〔此题共8小题,每题4分,总分值32分. 每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内〕〔7〕设函数n nn xx f 31lim )(+=∞→,那么f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.[ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形.【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).〔8〕设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N 〞,那么必有(B) F(x)是偶函数⇔f(x)是奇函数. 〔B 〕 F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 此题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,假设f(x)为奇函数,那么⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 那么取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 那么取F(x)=221x , 排除(D); 故应选(A).〔9〕设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,那么曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-.(C) 32ln 8+-. (D) 32ln 8+. [ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t ,得3,1-==t t 〔舍去,此时y 无意义〕,于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为: )3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).〔10〕设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b为常数,那么=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 此题可考虑用轮换对称性.【详解】 由轮换对称性,有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D ⎰⎰+++++])()()()()()()()([21 =.2241222ππσb a b a d b a D+=⋅⋅+=+⎰⎰ 应选(D). 〔11〕设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,那么必有(A) 2222y u x u ∂∂-=∂∂. 〔B 〕 2222yux u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu ∂∂、y x u∂∂∂2,再比拟答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ,可见有2222y u x u ∂∂=∂∂,应选(B).〔12〕设函数,11)(1-=-x xex f 那么 (B) x=0,x=1都是f(x)的第一类连续点. 〔B 〕 x=0,x=1都是f(x)的第二类连续点.(C) x=0是f(x)的第一类连续点,x=1是f(x)的第二类连续点. (E) x=0是f(x)的第二类连续点,x=1是f(x)的第一类连续点. [ D ]【分析】 显然x=0,x=1为连续点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是连续点.且 ∞=→)(lim 0x f x ,所以x=0为第二类连续点;0)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类连续点,故应选(D). 〔13〕设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,那么1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,那么022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,假设1α,)(21αα+A 线性无关,那么必然有02≠λ(,否那么,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).〔14〕设A 为n 〔2≥n 〕阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,那么(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ] 【分析】 此题考察初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进展分析即可.【详解】 由题设,存在初等矩阵12E 〔交换n 阶单位矩阵的第1行与第2行所得〕,使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题〔此题共9小题,总分值94分.解容许写出文字说明、证明过程或演算步骤.〕〔15〕〔此题总分值11分〕设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法那么,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f〔16〕〔此题总分值11分〕 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y S x S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系.【详解】 如图,有⎰--=+-=xx tt x e dt e e x S 01)1(21)]1(21[)(, ⎰-=ydt t t y S 12))((ln )(ϕ,由题设,得 ⎰-=--y xdt t t x e 1))((ln )1(21ϕ,而x e y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ两边对y 求导得)(ln )11(21y y yϕ-=-, 故所求的函数关系为:.21ln )(yy y y x --==ϕ 〔17〕〔此题总分值11分〕如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f 〔18〕〔此题总分值12分〕用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dty d dt dy ,再用二阶常系数线性微分方程的方法求解即可. 【详解】 dtdy t dx dt dt dy y sin 1-=⋅=', )sin 1(]sin 1sin cos [222t dt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,得 022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y代入,有1,221==C C . 故满足条件的特解为.122x x y -+=〔19〕〔此题总分值12分〕函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: 〔I 〕存在),1,0(∈ξ 使得ξξ-=1)(f ;〔II 〕存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一局部显然用闭区间上连续函数的介值定理;第二局部为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一局部已得结论.【详解】 〔I 〕 令x x f x F +-=1)()(,那么F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .〔II 〕 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 〔20〕〔此题总分值10分〕函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部到达,也可能在区域的边界上到达,且在边界上的最值又转化为求条件极值..【详解】 由题设,知x x f 2=∂∂,y yf 2-=∂∂, 于是 )(),(2y C x y x f +=,且 y y C 2)(-=',从而 C y y C +-=2)(, 再由f(1,1)=2,得 C=2, 故 .2),(22+-=y x y x f令0,0=∂∂=∂∂y fx f 得可能极值点为x=0,y=0. 且 2)0,0(22=∂∂=xf A ,0)0,0(2=∂∂∂=y x f B ,2)0,0(22-=∂∂=yfC ,042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.〔21〕〔此题总分值9分〕 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数对待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π〔22〕〔此题总分值9分〕 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j j β不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有01=-a 或022=--a a ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.〔23〕〔此题总分值9分〕3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321〔k 为常数〕,且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的根底解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r〔1〕假设k 9≠, 那么r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的根底解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其根底解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 假设k=9,那么r(B)=1, 从而.2)(1≤≤A r1) 假设r(A)=2, 那么Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 假设r(A)=1,那么Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,那么其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。
2005年普通高等学校招生全国统一考试数学(全国2理科卷)试题精析详解一、选择题(5分⨯12=60分)(1)函数f(x )=|sinx+cosx |的最小正周期是(A )4π (B )2π (C )π (D )2π 【思路点拨】本题考查三角函数的化简和绝对值的概念和数形结合的思想。
【正确解答】()|sin cos ||)|f x x x x ϕ=+=+,f(x)的最小正周期为π。
选C【解后反思】三角函数的周期可以从图象上进行判断,但是一个周期函数加绝对值后的周期不一定减半.如tan y x =的最小正周期为π,但是,|tan |y x =的最小正周期也是π,因此,对函数的性质的运用必须从定义出发,要学会用定义来研究问题。
(2)正方体ABCD -A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点。
那么,正方体的过P 、Q 、R 的截面图形是(A )三角形 (B)四边形(C )五边形 (D )六边形【思路点拨】本题考查平面的作法和空间想象能力,根据公理1可从P 、Q 在面内作直线,根据公理2,得到面与各棱的交点,与棱相交必与棱所在的两个面都有交线段.【正确解答】画图分析。
作直线PQ 交CB的延长线于E ,交CD 的延长F ,作直线ER交1CC 的延长线于G,交1BB 于S ,作直线GF交1DD 于H,交11C D H ,连结PS,RT ,HQ ,则过P 、Q 、R 的截面图形为六边形PQHTRS ,故选D.【解后反思】要理解立体几何中的三个公理及3个推论是确定平面的含义,但不必深入研究。
(3)函数y=32x -1(x ≤0)的反函数是C C 1G(A)y=3)1(+x (x ≥-1) (B )y=-3)1(+x (x ≥-1)(C )y=3)1(+x (x ≥0) (D)y=-3)1(+x (x ≥0)【思路点拨】本题考查反函数的求法。
要求反函数的三步曲(一是反解、二是x 、y 对调,三是求出反函数的定义域,即原函数的值域)进行,或用互为反函数的性质处理.【正确解答】解法1:由y=32x -1,且x ≤0,解得x =1y ≥-。
2005年数学二试题解析1..填空题. (1)【详解】xx y )s i n 1(+==)sin1ln(x x e +,于是]s i n 1c o s )s i n 1[l n ()s i n 1l n (xx x x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='.(2)【详解】 因为a=,1)1(lim)(lim23=+=+∞→+∞→xx x xx f x x[]23)1(lim )(lim 2323=-+=-=+∞→+∞→xx x ax x f b x x ,于是所求斜渐近线方程为.23+=x y(3)【详解】 令t x sin =,则=--⎰1221)2(xx xdx ⎰-22cos )sin2(cos sin πdttt t t =.4)arctan(cos cos 1cos 2202πππ=-=+-⎰t tt d4 【分析】(同2005年数学一题一(2),这里从略) 5…【详解】 由题设,2cos arcsin 1lim)()(lim kxxx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k21143cos 1arcsin lim2==-+→kxxx x x ,得.43=k6….【分析】(同2005年数学一题一(5),这里从略) 二、选择题 7….【分析】(同2005年数学一题二(7),这里从略) 8…【分析】(同2005年数学一题二(8),这里从略)9..【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为: )3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A). 10…【详解】 由轮换对称性,有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f aD⎰⎰+++++])()()()()()()()([21=.2241222ππσb a b a d ba D+=⋅⋅+=+⎰⎰ 应选(D).11…【分析】 (同2005年数学一题二(9),这里从略)12...【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(l i m 1=+→x f x ,1)(lim1-=-→x f x ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:+∞=-+→1lim1x xx ,.1lim1-∞=--→x xx 从而+∞=-→+11limx xx e ,.0lim 11=-→-x xx e13….【分析】 (同2005年数学一题二(11),这里从略) 14…【分析】 (同2005年数学一题二(12),这里从略) 三、解答题 15…【分析】 此类未定式极限,典型方法是用洛必塔法则,但分子分母求导前应先变形. 【详解】 由于⎰⎰⎰=-=-=-00)())(()(xxxut x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→x xx x xxx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f xduu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f16….【详解】 如图,有⎰--=+-=xxttx e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--yxdtt t x e 1))((ln )1(21ϕ,而xey=,于是⎰-=--ydtt t y y 1))((ln )1ln(21ϕ两边对y 求导得)(ln )11(21y y yϕ-=-, 故所求的函数关系为:.21ln)(yy y y x --==ϕ17…【分析】(同2005年数学一题三(17),这里从略) 18…【分析】 先将y y ''',转化为22,dty d dt dy,再用二阶常系数线性微分方程的方法求解即可.【详解】dtdyt dxdt dt dy y sin 1-=⋅=',)s i n 1(]s i n 1s i n c o s [222t dt y d t dtdy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,得022=+y dty d .解此微分方程,得 221211s i n c o s xC x C t C t C y -+=+=,将初始条件2,10='===x x y y代入,有1,221==C C .故满足条件的特解为.122x x y-+=19…【分析】(同2005年数学一题三(8),从这里略) 20….【详解】 由题设,知 x xf 2=∂∂,yyf2-=∂∂,于是)(),(2y C x y x f +=,且 yy C 2)(-=',从而Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故 .2),(22+-=y x y x f令0,0=∂∂=∂∂yf xf得可能极值点为x=0,y=0. 且 2)0,0(22=∂∂=xfA ,0)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,042>=-=∆AC B ,所以点(0,0)不是极值点,从而也非最值点.再考虑其在边界曲线1422=+yx 上的情形:令拉格朗日函数为)14(),(),,(22-++=yx y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF yx λλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=yx y x D内的最大值为3,最小值为-2.21【详解】 记}),(,1),{(221D y x yx y x D ∈≤+=,}),(,1),{(222D y x yx y x D ∈>+=,于是σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x=⎰⎰--2021)1(πθrdrrd ⎰⎰-++Ddxdy y x)1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20122121)1()1(πθrdr r d dy y x dx =.314-π22…【详解】 对矩阵),,,,(321321αααβββ =A作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221aaa a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a aaa a a a 11032401022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(304010********,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----336030000211221, 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----39030660411221,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a aaa a a a B 41111122111),,,,(321321βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a aaaa a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→2436020220110221112a aaa a a a a a,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有01=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.23…【分析】(2005年数学一题三(21),这里从略2006年数学二试题解析1…..【分析】 直接利用曲线的水平渐近线的定义求解即可. 【详解】4s i n 14s i n 1l i m l i m 2c o s 52c o s55x x x x xx x x x x→∞→∞++==--. 故曲线的水平渐近线方程为 15y =.2…【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可. 【详解】 由题设知,函数()f x 在 0x =处连续,则lim ()(0)x f x f a→==,又因为2232sin d sin 1lim()limlim33x x x x t t x f x xx→→→===⎰.所以13a =.3….【分析】利用凑微分法和牛顿-莱布尼兹公式求解. 【详解】20222222d 1d(1+)111111limlimlim(1)2(1)21+21+22b bb b b x x x x x xb+∞→∞→∞→∞==-=-+=++⎰⎰.4…..【分析】(同2006年数学一题一(2),这里从略)5……【分析】本题为隐函数求导,可通过方程两边对x 求导(注意y 是x 的函数),一阶微分形式不变性和隐函数存在定理求解.【详解】 方法一:方程两边对x 求导,得e e y y y xy ''=--. 又由原方程知,0,1x y ==时.代入上式得d e d x x y y x=='==-.方法二:方程两边微分,得d e d e d yy y x x y =--,代入0,1xy ==,得d e d x y x==-.方法三:令(,)1eyF x y y x =-+,则 ()0,10,10,10,1ee,1e 1yyx y x y x y x y FF x xy========∂∂===+=∂∂,故 0,10,1d e d x y x x y FyxFxy=====∂∂=-=-∂∂.6…..【分析】(同2006年数学一(5),这里从略) 二、选择题 7…..【分析】(同2006年数学一题二(7),这里从略)8….【分析】由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去计算0()()d x F x f t t=⎰,然后选择正确选项.【详解】取 ,0()1,0x x f x x ≠⎧=⎨=⎩. 则当0x ≠时,()2220011()()d lim d lim 22x xF x f t t t t x xεεεε++→→===-=⎰⎰,而0(0)0lim ()x F F x →==,所以()F x 为连续的偶函数,则选项(B)正确,故选(B).9…【分析】题设条件1()()eg x h x +=两边对x 求导,再令1x =即可.【详解】1()()e g x h x +=两边对x 求导,得 1()()e ()g x h x g x +''=.上式中令1x =,又(1)1,(1)2h g ''==,可得1(1)1(1)1(1)e (1)2e (1)ln 21g g h g g ++''===⇒=--,故选(C ).10…..【分析】本题考查二阶常系数线性非齐次微分方程解的结构及非齐次方程的特解与对应齐次微分方程特征根的关系.故先从所给解分析出对应齐次微分方程的特征方程的根,然后由特解形式判定非齐次项形式.【详解】由所给解的形式,可知原微分方程对应的齐次微分方程的特征根为121,2λλ==-.则对应的齐次微分方程的特征方程为 2(1)(2)0,20λλλλ-+=+-=即. 故对应的齐次微分方程为20y y y '''+-=.又*e x y x =为原微分方程的一个特解,而1λ=为特征单根,故原非齐次线性微分方程右端的非齐次项应具有形式()e x f x C =(C 为常数).所以综合比较四个选项,应选(D ). 11…【分析】(同2006年数学一题二(8),这里从略) 12…【分析】(同2006年数学一题二(10),这里从略) 13….【分析】(同2006年数学一题二(11),这里从略) 14…【分析】(同2006年数学一题二(12),这里从略) 三、解答题15….【分析】题设方程右边为关于x 的多项式,要联想到e x 的泰勒级数展开式,比较x 的同次项系数,可得,,A B C 的值.【详解】将e x 的泰勒级数展开式233e 1()26xxxx o x =++++代入题设等式得233231()[1]1()26x x x o x Bx Cx Ax o x ⎡⎤++++++=++⎢⎥⎣⎦整理得233111(1)()1()226B B x B C x C o x Ax o x ⎛⎫⎛⎫+++++++++=++ ⎪ ⎪⎝⎭⎝⎭比较两边同次幂系数得 11021026B AB C B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩,解得 132316A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩.16…..【分析】题设积分中含反三角函数,利用分部积分法.【详解】2arcsin e ed arcsine de e arcsin e e d e1exx x x x x xx xx x--=-=-+⋅-⎰⎰⎰-21earcsin e d 1exxxx -=-+-⎰.令21ext =-,则221ln(1),d d 21t xt x tt=-=--, 所以2211111d d d 12111exx t t tt t ⎛⎫==- ⎪--+⎝⎭-⎰⎰⎰221111e 1ln ln2121e1x xt C t ---=+=+-+.17…【分析】 (同2006年数学一题三(15),这里从略)18….【分析】(同2006年数学一题三(16),这里从略)19….【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<,则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,si n 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a aππ++>++.20……【分析】.(同2006年数学一题三(18),这里从略)21…..【分析】 (I )利用曲线凹凸的定义来判定;(II )先写出切线方程,然后利用 (1,0)-在切线上 ; (III )利用定积分计算平面图形的面积.【详解】 (I )因为d d d d 422d 2,421d d d d 2d yx y y t t t t x ttxttt-==-⇒===-2223d d d 12110,(0)d d d d 2d y y t x x t x t t t t⎛⎫⎛⎫=⋅=-⋅=-<> ⎪ ⎪⎝⎭⎝⎭故曲线L 当0t ≥时是凸的. (II )由(I )知,切线方程为201(1)y x t⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则22000241(2)tt t t ⎛⎫-=-+ ⎪⎝⎭,即23200004(2)(2)t t t t -=-+整理得20000020(1)(2)01,2(t t t t t +-=⇒-+=⇒=-舍去). 将01t =代入参数方程,得切点为(2,3),故切线方程为231(2)1y x ⎛⎫-=-- ⎪⎝⎭,即1y x =+.(III )由题设可知,所求平面图形如下图所示,其中各点坐标为(1,0),(2,0),(2,3),(1,0)A B C D -,设L 的方程()x g y =,则()30()(1)d S g y y y =--⎡⎤⎣⎦⎰ 由参数方程可得24t y =±-,即()2241x y=±-+.由于(2,3)在L 上,则()2()241924x gy yy y ==--+=---.于是 ()3944(1)d S y y y y ⎡⎤=-----⎣⎦⎰33(102)d 44d y y y y =---⎰⎰()()323328710433y y y =-+-=.22…【分析】(同2006年数学一题三(20),这里从略) 23….【分析】(同2006年数学一题三(21),这里从略)2007年数学二试题解析一、选择题1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可. 【详解】当0x +→时,1exx -- ,1112x x+-,()2111cos22x xx-=,故用排除法可得正确选项为(B ). 事实上,1111lnln(1)ln(1)1112lim lim lim 112x x x x x x xxx x x xx+++→→→++⋅+--+--==, 或1ln ln(1)ln(1)()()()1x x x x o x x o x x o x xx+=+--=+++=+-.所以应选(B )2…【分析】因为函数为初等函数,则先找出函数的无定义点,再根据左右极限判断间断点的类型.【详解】函数在0,1,2x x x π===±均无意义,而11(e e)tan (e e)tan lim ()lim 0,lim ()lim 1e e e e xxx x x x x x x x f x f x x x ++--→→→→++====-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;111(e e)tan lim ()lime e xx x x x f x x →→+==∞⎛⎫- ⎪⎝⎭;122(e e)tan lim ()lime e xx x x x f x x ππ→±→±+==∞⎛⎫- ⎪⎝⎭.所以0x =为函数()f x 的第一类间断点,故应选(A ). 3……【分析】本题实质上是求分段函数的定积分. 【详解】利用定积分的几何意义,可得 221113(3)12228F πππ⎛⎫=-=⎪⎝⎭,211(2)222F ππ==,2022211(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰.所以33(3)(2)(2)44F F F ==-,故选(C ).4……【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去进行判断,然后选择正确选项.【详解】取()||f x x =,则0()()lim0x f x f x x→--=,但()f x 在0x =不可导,故选(D ).事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f =.在(C )中,0()limx f x x→存在,则0()(0)()(0)0,(0)limlim00x x f x f f x f f x x→→-'====-,所以(C)项正确,故选(D)5……【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断. 【详解】()()11limlim ln 1e ,lim lim ln 1e 0x x x x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以 0y =是曲线的水平渐近线;()001lim lim ln 1e x x x y x →→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线;()()1eln 1eln 1e1elim lim 0limlim 11x xxxx x x x y xxxx →+∞→+∞→+∞→+∞++++==+==,[]()1l i m l i m l n 1e 0xx x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线.故选(D ). 6……【分析】本题依据函数()f x 的性质,判断数列{}()n u f n =. 由于含有抽象函数,利用赋值法举反例更易得出结果.【详解】选(D ).取()ln f x x =-,21()0f x x''=>,12ln 10ln 2u u =-=>-=,而()ln f n n =-发散,则可排除(A );取21()f x x=,46()0f x x''=>,12114u u =>=,而21()f n n=收敛,则可排除(B );取2()f x x =,()20f x ''=>,1214u u =<=,而2()f n n =发散,则可排除(C );故选(D ).事实上,若12u u <,则211(2)(1)()02121u u f f f ξ--'==>--.对任意()1,x ξ∈+∞,因为()0f x ''>,所以1()()0f x f c ξ''>>>,对任意()21,ξξ∈+∞,()121()()()()f x f f x x ξξξ'=+-→+∞→+∞. 故选(D ). 7…….【分析】本题考查二元函数可微的充分条件. 利用可微的判定条件及可微与连续,偏导的关系.【详解】本题也可用排除法,(A )是函数在()0,0连续的定义;(B )是函数在()0,0处偏导数存在的条件;(D )说明一阶偏导数(0,0),(0,0)x y f f ''存在,但不能推导出两个一阶偏导函数(,),(,)x y f x y f x y ''在点(0,0) 处连续,所以(A )(B )(D )均不能保证(,)f x y 在点()0,0处可微. 故应选(C ).事实上, 由()22(,)0,0(,)(0,0)limx y f x y f x y→-=+可得222(,0)(0,0)(,0)(0,0)limlim00x x f x f f x f x xxx →→--=⋅=+,即(0,0)0,x f '=同理有 (0,0)0.y f '=从而[(,)(0,0)]((0,0)(0,0))l i mxy f x y ff x f y ρρ→''∆∆--∆+∆=22(,)(0,0)(,)(0,0)limlim()()f x y f f x y f x y ρρρ→→∆∆-∆∆-==∆+∆.根据可微的判定条件可知函数(,)f x y 在点()0,0处可微,故应选(C). 8,……【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分.【详解】由题设可知,,sin 12x x y ππ≤≤≤≤,则01,arcsin y y x ππ≤≤-≤≤, 故应选(B ).9……..【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性. 一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关. 但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ). 或者因为()()122331123101,,,,110011ααααααααα-⎛⎫⎪---=- ⎪⎪-⎝⎭,而1011100011--=-,所以122331,,αααααα---线性相关,故选(A ).10….【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】 由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B 合同,故选(B ).二、填空题11…【分析】本题为0未定式极限的求解,利用洛必达法则即可.【详解】2321cos arctan sin 1limlim 3x x xx xxxx→→--+= 221cos (1)lim3x x x x→-+=22cos sin (1)111lim6366x x x x x x→-++==-+=-.12…..【分析】本题考查参数方程的导数及导数的几何意义. 【详解】因为44d cos 2d sin 2cos sin 22t t ytxt t tππ====---+,所以曲线在对应于4t π=的点的切线斜率为222-+,故曲线在对应于4t π=的点的法线斜率为222+.13….【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式. 【详解】()212,2323y y x x '==-++,则()1(1)2!()(23)n nn n n yx x +-=+,故()1(1)2!(0)3n nn n n y +-=. 14…..【分析】本题求解二阶常系数非齐次微分方程的通解,利用二阶常系数非齐次微分方程解的结构求解,即先求出对应齐次方程的通解Y ,然后求出非齐次微分方程的一个特解*y ,则其通解为 *y Y y =+.【详解】对应齐次方程的特征方程为2124301,3λλλλ-+=⇒==, 则对应齐次方程的通解为312e exxy C C =+.设原方程的特解为 2*e xy A =,代入原方程可得22224e 8e 3e 2e 2x x xxA A A A -+=⇒=-, 所以原方程的特解为2*2exy =-,故原方程的通解为 3212e e 2e x x x y C C =+-,其中12,C C 为任意常数. 15……【分析】本题为二元复合函数求偏导,直接利用公式即可. 【详解】利用求导公式可得1221z y f f x xy∂''=-+∂,1221z x f f yxy∂''=-∂,所以122zzy x x yf f xy x y ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭.16……【分析】先将3A 求出,然后利用定义判断其秩.【详解】30100000100100000()1000100000000A A r A ⎛⎫⎛⎫⎪ ⎪⎪⎪=⇒=⇒= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 17…….【分析】对含变上限积分的函数方程,一般先对x 求导,再积分即可. 【详解】()1cos sin ()d d sin cos f x x t t ft t tt t t--=+⎰⎰两边对x 求导得1(c o s s i n )(())()s i n c o sx x x f f x f x x x --'=+(cos sin )cos sin ()()sin cos sin cos x x x x x xf x f x x xx x--''⇒=⇒=++,(0x ≠)两边积分得()ln |sin cos |f x x x C ⇒=++. (1)将0x =代入题中方程可得(0)01cos sin ()d d 0sin cos f t t ft t tt t t--==+⎰⎰.因为()f x 是区间0,4π⎡⎤⎢⎥⎣⎦上单调、可导的函数,则1()fx -的值域为0,4π⎡⎤⎢⎥⎣⎦,单调非负,所以(0)0f =. 代入(1)式可得0C =,故()ln |sin cos |f x x x =+.18…..【分析】V (a )的可通过广义积分进行计算,再按一般方法求V (a ) 的最值即可 【详解】(Ⅰ)0()d d ln x x aaa V a xax x aaππ--+∞+∞==-⎰⎰2222d ln ln ln ln x x x aaaa x a a a aa x aaaaaππππ---+∞+∞+∞=-+=-=⎰.(Ⅱ)令224312ln 2ln 2(ln 1)()0ln ln a a a a a a a V a aaπππ⋅-⋅⋅-'===,得e a =.当e a >时,()0V a '>,()V a 单调增加; 当1e a <<时,()0V a '<,()V a 单调减少.所以()V a 在e a =取得极大值,即为最大值,且最大值为2(e)e V π=.19…...【分析】本题为不含y 的可降阶方程,令y p '=,然后求解方程.【详解】本题不含y ,则设y p '=,于是y p '''=,原方程变为 2()p x p p '+=, 则 d d x x p pp=+,解之得()x p p C =+,将(1)1p =代入左式得 0C =,于是 2x p =3223y x y x C'⇒=⇒=+,结合(1)1y =得0C =,故3223y x =.20……【分析】本题实质上是二元复合函数的求导,注意d d y x需用隐函数求导法确定..【详解】令ln sin u y x =-,则0d d d d x x zfu u y xu x y x ==⎛⎫∂∂∂=⋅+⋅ ⎪∂∂∂⎝⎭.1e1y y x --=两边对x 求导得1111eee01ey y y y y x y y x ----'''--=⇒=-,又(0)1y =,可得 (0)1y '=在11e1ey y y x --'=-两边对x 求导得()()()1111121e1ee e e21e y y y y y x x y y x x y y x -----==-''----''==-.所以0d d 1d (0)cos d d d x x x zf u u y y f x xu x y x y x ===⎛⎫⎛⎫∂∂∂'=⋅+⋅=-+⋅ ⎪ ⎪∂∂∂⎝⎭⎝⎭111e(0)cos 01e y x y f x y x -=-⎛⎫'=-+⋅= ⎪-⎝⎭.222222222d 1d 1d 1d cos sin d d d d x x z fy fy y x x xu y x u y x y x ==⎡⎤⎛⎫⎛⎫∂∂⎛⎫=⋅-+⋅+⋅--+⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦22221d 1d (0)sin 1d d x y y f x y x y x =⎛⎫⎛⎫'=--+= ⎪ ⎪ ⎪⎝⎭⎝⎭.21……【分析】由所证结论()()f g ξξ''''=可联想到构造辅助函数()()()F x f x g x =-,然后根据题设条件利用罗尔定理证明. 【详解】令()()()F x f x g x =-,则()F x 在[],a b 上连续,在(,)a b 内具有二阶导数且()()0F a F b ==. (1)若(),()f x g x 在(,)a b 内同一点c 取得最大值,则()()()0f c g c F c =⇒=, 于是由罗尔定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==. 再利用罗尔定理,可得 存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. (2)若(),()f x g x 在(,)a b 内不同点12,c c 取得最大值,则12()()f c g c M ==,于是 111222()()()0,()()()F c f c g c F c f c g c =->=-<, 于是由零值定理可得,存在312(,)c c c ∈,使得3()0F c =于是由罗尔定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 ,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. 22…..【分析】由于积分区域关于,x y 轴均对称,所以利用二重积分的对称性结论简化所求积分.【详解】因为被积函数关于,x y 均为偶函数,且积分区域关于,x y 轴均对称,所以1DD (,)d (,)d f x y f x y σσ=⎰⎰⎰⎰,其中1D 为D 在第一象限内的部分.而1222D 1,0,012,0,01(,)d d d x y x y x y x y f x y x x yσσσ+≤≥≥≤+≤≥≥=++⎰⎰⎰⎰⎰⎰112222222201111d d d d d d x xx x x x y x y x y x yx y ---⎛⎫ ⎪=++⎪++⎝⎭⎰⎰⎰⎰⎰⎰()12ln 1212=++.所以()D1(,)d 42ln 123f x y σ=++⎰⎰.23……【分析】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a .【详解】将方程组和方程合并,后可得线性方程组12312321231230204021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩其系数矩阵22111011101200110140031012110101a a A aa a a ⎛⎫⎛⎫⎪ ⎪-⎪⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭. 211101110011001100032000110110(1)(2)0a a a a a a aa a a ⎛⎫⎛⎫ ⎪ ⎪-- ⎪⎪→→ ⎪ ⎪-+-- ⎪ ⎪----⎝⎭⎝⎭. 显然,当1,2a a ≠≠时无公共解.当1a =时,可求得公共解为 ()T1,0,1k ξ=-,k 为任意常数;当2a =时,可求得公共解为 ()T0,1,1ξ=-.(24)【分析】本题考查实对称矩阵特征值和特征向量的概念和性质. 【详解】(I )()()5353531111111111144412B A A E ααλαλααλλαα=-+=-+=-+=-,则1α是矩阵B 的属于-2的特征向量.同理可得()532222241B αλλαα=-+=,()533333341B αλλαα=-+=.所以B 的全部特征值为2,1,1 设B 的属于1的特征向量为T2123(,,)x x x α=,显然B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T 120αα=.即 1230x x x -+=,解方程组可得B 的属于1的特征向量 T T 212(1,0,1)(0,1,0)k k α=-+,其中12,k k 为不全为零的任意常数. 由前可知B 的属于-2的特征向量为 T 3(1,1,1)k -,其中3k 不为零. (II )令,p=(⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-112,101011111),,1321BP P 则ααα得1112-⎪⎪⎪⎭⎫⎝⎛-=P P B =⎪⎪⎪⎭⎫ ⎝⎛--101011111⎪⎪⎪⎭⎫ ⎝⎛-11231⎪⎪⎪⎭⎫⎝⎛--211121111=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---01110111021112111131102012112方法二:将αα32,正交化得,()(),21121,,,011222233322⎪⎪⎪⎭⎫⎝⎛-=-=⎪⎪⎪⎭⎫⎝⎛==ββββααβαβ将,,单位化得⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-=0112111131,,21321γγββα 令()P P ,BP BP BPPT⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-==⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-11211262031612131-61-2131P 1321故,则,,γγγ=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--6261610212131313111262031612131612131=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0111011106261610212131313162032612132612132。