Towards Grid Parity with CIGS
- 格式:ppt
- 大小:19.31 MB
- 文档页数:58
在训练文本分类算法时,超参调整技巧在训练文本分类算法时,超参数调整是优化算法性能的重要环节。
以下是一些超参数调整的技巧:1.网格搜索(Grid Search):Grid Search是一种简单但有效的超参数调整技术。
它通过指定超参数的候选值列表,遍历所有可能的参数组合,并评估每个组合的性能,最终选择性能最佳的参数组合。
2.随机搜索(Random Search):与网格搜索不同,随机搜索是在超参数的取值范围内随机选择一组参数,并进行性能评估。
通过重复此过程多次,可以发现可能的好的参数组合。
3.交叉验证(Cross-Validation):为了更好地评估超参数的性能,可以使用交叉验证。
交叉验证将训练数据分为多个折(fold),每次使用其中一部分作为验证集,其余部分作为训练集。
通过多次交叉验证获得的平均性能评估可以更准确地估计模型的性能。
4.参数优先级调整(Priority-based Tuning):可以根据经验或启发式方法,首先调整对模型性能影响较大的关键超参数。
这样可以有效地提高算法性能,同时降低参数搜索的复杂度。
5.学习曲线分析(Learning Curve Analysis):学习曲线提供了有关模型在不同参数设置下的训练和验证性能的信息。
通过绘制学习曲线,可以观察模型是否处于欠拟合或过拟合状态,并调整超参数以改善性能。
6.提前停止(Early Stopping):该技术可以避免模型在训练过程中过拟合。
通过监视验证集的性能,如果性能没有进一步改善,则可以停止训练,避免过拟合,并直接使用此时的最佳超参数。
7.正则化(Regularization):正则化是一种控制模型复杂度的技术,可以通过调整正则化超参数来平衡模型的拟合能力和泛化能力。
通过对正则化超参数进行调整,可以改善算法的性能。
8.模型集成(Model Ensemble):通过结合多个具有不同超参数的模型,可以提高算法性能。
例如,通过投票、平均等方式将多个模型的预测结果进行汇总,可以减少模型的偏差和方差,提高性能。
ENVI画训练样本时训练样本偏移
训练样本偏移是指在训练过程中,用于训练的数据集会随着数据点不断增加而变大,如果采用固定的偏移量(例如0.01)来进行训练,当训练集超出了一个很小的范围时,数据集就会发生溢出。
为避免这种情况,在训练过程中可以对训练集进行动态偏移,使得每次训练都能覆盖到更多的点。
在训练样本偏移中,最常见的两类问题分别是:训练样本偏移(trainingplaceframes)和训练样本标准化(trainingplacegrimacy)。
训练样本偏移是指在训练过程中,用于训练的数据集会随着数据点不断增加而变大,如果采用固定的偏移量(例如0.01)来进行训练,当训练集超出了一个很小的范围时,数据集就会发生溢出。
为避免这种情况,在训练过程中可以对训练集进行动态偏移,使得每次训练都能覆盖到更多的点。
在训练样本偏移中,最常见的两类问题分别是:训练样本偏移(trainingplaceframes)和训练样本标准化(trainingplacegrimacy)。
训练样本偏移是指在训练过程中,用于训练的数据集会随着数据点不断增加而变大,如果采用固定的偏移量(例如0.01)来进行训练,当训练集超出了一个很小的范围时,数据集就会发生溢出。
为避免这种情况,在训练过程中可以对训练集进行动态偏移,使得每次训练都能覆盖到更多的点。
在训练样本偏移中,最常见的两类问题分别是:训练样本偏移(trainplatesvariage)和训练样本标准化(trainingplatesgrimacy)。
摘要城市化进程不断的发展导致了城市中心的地块不停的被分隔,因此出现了许多在空间极为局促、环境极为苛刻或使用者行为活动受到一定限制的条件下的极限建筑空间。
在此情况下,根据行为建筑学相关理论及设计方法,计算出满足使用者功能需求的最小建筑空间,显得十分重要。
然而现有的极限建筑空间的设计数据主要是根据人体百分位参数进行建筑空间以及空间中固定物的设计。
这样的设计方式,在很大程度上存在着缺少设计针对性、空间尺寸不合理、空间使用效率低、建筑能耗大等问题。
针对这一现象,本研究将首先详细阐述通过计算机编程方式模拟人体运动方式,并通过运动轨迹计算得出人体运动包络体。
人体运动包络体模拟是行为建筑学理论研究推理过程中所采用的一种模拟法。
从而克服了传统实验法存在的样本人体尺度从二维平面研究转化为三维立体空间研究。
在此基础之上,该论文将探讨现存极限建筑存在的问题以及如何在实际建筑设计中,通过计算空间使用者运动包络体得到他们的详细数据,并以此确定使用者在空间中的活动范围,作为极限建筑空间设计的重要参考依据。
这样的设计方式,可以计算出可以满足使用需求的极限建筑空间形态与体积,从而保证建筑空间可以满足使用者对使用功能的基本需求,提高建筑空间使用效率。
另一方面,人体运动包络体可以用于优化极限空间中固定物的位置与尺寸、形状,根据具体使用者的实际测量参数的进行个性化的私人定制,并保证了固定物的基本使用功能。
关键词:运动包络体;极限建筑空间;行为建筑学;模拟法;空间效率AbstractThe land in the center of the city is constantly divided for the sake of urbanization development. As a result, an increasing number of limited architectural space was designed and built. The environment of such kind of space is usually cramped. And the users’ behavior is also limited. In this case, it is of great importance to calculate the minimum size of space which can meet the basic functional needs of the users. However, the existing data for limited architectural extent, leads to an increasing number serious issues, such as lacking pertinence, unreasonable space size, low space efficiency and high energy consumption.In order to solve this issue, this essay will first simulate the movement of human body by computer programming. After that, enveloping solid will be calculated by the trail of human body. Enveloping solid simulation is a basic simulating method in the inference procedure of behavioral architecture. Compared with traditional experiments, there will be no sample quantity limitation and anthropogenic factor in simulating process. And the 2-dimensional human parameter comes to 3 dimensional.Based on which, this essay will explore the existing problems on limited architectural space design and how to use enveloping solid simulation in architecture design. In the first stage, the design data of users can be get from the process of enveloping solid simulation. And the users’ parameter shows the range of activity, which is important reference frame in design procedure. By this method, the functional needs of users can be meet. And space efficiency can also be improved. What’s more, enveloping solid can be used in optimizing the shape and location of fixtures in building as well.Keywords:enveloping solid, limited architectural space,behavioral architecture, simulation, space efficiency目录摘要 (1)Abstract (2)第1章绪论 (1)1.1课题背景及研究的目的和意义 (1)1.1.1 课题的研究背景 (1)1.1.2 课题的研究目的和意义 (2)1.2相关概念概述 (3)1.2.1 极限建筑空间的概念 (3)1.2.2 “包络体”的概念及构成概述 (3)1.3国内外研究现状及分析 (4)1.3.1 行为建筑学 (4)1.3.2 极限建筑空间 (4)1.3.3 包络体的应用及计算方式 (6)1.4研究内容、方法与框架 (11)1.4.1 课题的研究内容 (11)1.4.2 研究方法 (12)1.4.3 课题的研究框架 (14)第2章研究基础 (15)2.1人体运动学、运动解剖学 (15)2.1.1 人体运动形式 (15)2.1.2 人体运动的特性与坐标系建立 (15)2.2人体测量学与程序人体基本参数设定 (17)2.2.1 人体上肢静态尺寸测量 (17)2.2.2 程序人体基本参数设定 (18)2.3计算机编程 (19)2.3.1 模拟软件 (19)2.3.2 Toxiclibs类库引用与运动轨迹的向量表示 (19)2.3.3 HE_Mesh类库引用与包络曲面生成 (20)2.4本章小结 (20)第3章程序模拟 (21)3.1程序逻辑 (21)3.1.1 程序参数设定 (21)3.1.2 上肢运动轨迹模拟 (22)3.1.3 上肢运动包络体生成 (30)3.2不同人体参数对模拟结果的影响 (30)3.2.1 儿童(四肢长度对模拟结果的影响) (30)3.2.2 老年人(活动角度对模拟结果的影响) (33)3.2.3 残疾人(残肢对模拟结果的影响) (34)3.2.4 数据对比 (35)3.3“人体运动包络体”程序对行为建筑学研究方法的扩展 (36)3.3.1 行为建筑学研究的一般方法以及主要存在问题 (36)3.3.2 “人体运动包络体”模拟对行为建筑学研究方法的贡献 (37)3.4本章小结 (39)第4章 (40)4.1计算满足使用需求的极限建筑空间形态与体积 (40)4.1.1 满足功能需求,提高空间使用效率 (40)4.1.2 根据运动轨迹预测使用者所需的三维建筑空间 (45)4.1.3 节约能源 (49)4.2优化极限空间中固定物的位置与尺寸、形状 (50)4.2.1 包络体与极限空间中固定物的位置 (51)4.2.2 包络体与极限空间中固定物的尺寸 (55)4.2.3 包络体与固定物的三维空间组合 (57)4.3本章小结 (58)结论 (59)参考文献 (60)附录 (63) (74)致谢 (75)第1章绪论1.1 课题背景及研究的目的和意义1.1.1 课题的研究背景古代有蜗居的说法,用“蜗舍”比喻“圆舍”“蜗”字描述的是空间的形状,后来逐渐演变为居住空间狭小的意思。
聚酰亚胺薄膜生产工艺及物性聚酰亚胺薄膜是一种新型的耐高温有机聚合物薄膜 , 是由均苯四甲酸二酐(PMDA)和二氨基二苯醚(ODA)在极强性溶剂二甲基乙酰胺(DMAC)中经缩聚并流涎成膜,再经亚胺化而成.它是目前世界上性能最好的薄膜类绝缘材料,具有优良的力学性能、电性能、化学稳定性以及很高的抗辐射性能、耐高温和耐低温性能 (-269 ℃至+ 400 ℃ )。
1959 年美国杜邦公司首先合成出芳香族聚酰亚胺 ,1962 年试制成聚酰亚胺薄膜 (PI薄膜 ),1965 年开始生产 , 商品牌号为KAPTON。
我国 60 年代末可以小批量生产聚酰亚胺薄膜,现在已广泛应用于航空、航海、宇宙飞船、火箭导弹、原子能、电子电器工业等各个领域。
一、薄膜的制造聚酰亚胺薄膜的生产基本上是二步法,第一步:合成聚酰胺酸,第二步:成膜亚胺化。
成膜方法主要有浸渍法(或称铝箔上胶法)、流延法和流涎拉伸法。
浸渍法设备简单、工艺简单,但薄膜表面经常粘有铝粉,薄膜长度受到限制,生产效率低,此法不宜发展;流涎法设备精度高,薄膜均匀性好,表面干净平整,薄膜长度不受限制,可以连续化生产,薄膜各方面性能均不错,一般要求的薄膜均可采用此法生产;拉伸法生产的薄膜,性能有显著提高,但工艺复杂生产条件苛刻,投资大,产品价格高,只有高质量薄膜才采用此法。
因此本站只介绍流涎法。
流涎法主要设备:不锈钢树脂溶液储罐、流涎嘴、流涎机、亚胺化炉、收卷机和热风系统等。
制备步骤:消泡后的聚酰胺酸溶液,由不锈钢溶液储罐经管路压入前机头上的流涎嘴储槽中。
钢带以图所示方向匀速运行,将储槽中的溶液经流涎嘴前刮板带走,而形成厚度均匀的液膜,然后进入烘干道干燥。
洁净干燥的空气由鼓风机送入加热器预热到一定温度后进入上、下烘干道。
热风流动方向与钢带运行方向相反,以便使液膜在干燥时温度逐渐升高,溶剂逐渐挥发,增加干燥效果。
聚酰胺酸薄膜在钢带上随其运行一周,溶剂蒸发成为固态薄膜,从钢带上剥离下的薄膜经导向辊引向亚胺化炉。
python 遥感影像镶嵌代码摘要:1.遥感影像镶嵌概述2.Python 在遥感影像镶嵌中的应用3.遥感影像镶嵌的代码实现4.代码的运行结果与分析5.总结与展望正文:一、遥感影像镶嵌概述遥感影像镶嵌是将多个遥感影像按照一定的规则进行拼接,从而形成一个更大范围、更高分辨率的遥感影像。
在遥感影像处理领域,镶嵌是一个非常重要的环节,可以提高遥感数据的利用率和空间分析精度。
二、Python 在遥感影像镶嵌中的应用Python 作为一门功能强大的编程语言,拥有丰富的遥感影像处理库,如GDAL、Rasterio 等。
这些库为遥感影像镶嵌提供了便捷的工具和方法。
三、遥感影像镶嵌的代码实现以下是一个使用Python 实现遥感影像镶嵌的简单示例:```pythonimport osfrom osgeo import gdal, osrdef merge_rasters(input_files, output_file, merge_method="merge",resampling_method="nearest"):# 创建输出文件的文件名output_path = os.path.splitext(os.path.basename(output_file)) + ".tif"# 打开输入文件driver = gdal.GetDriverByName("GTiff")for file in input_files:dataset = driver.Open(file)band = dataset.GetRasterBand(1)data = band.ReadAsArray()X, Y, band_width, band_height = band.GetGeoTransform()# 重采样resampled_data = gdal.Reproject(data, (0, 0), (band_width, band_height), 0, resampling_method)# 裁剪cropped_data = resampled_data[:, :band_height]# 将裁剪后的数据添加到输出文件dataset_to_add = gdal.Create("", band_width, band_height, 1, gdal.GDT_Float32)dataset_to_add.SetGeoTransform(X, 1, Y, 0, 0, -1)dataset_to_add.GetRasterBand(1).WriteArray(cropped_data)dataset_to_add.FlushCache()# 将输出文件添加到结果列表if merge_method == "merge":merged_dataset = gdal.Merge(output_path, dataset_to_add)merged_dataset.FlushCache()elif merge_method == "append":merged_dataset = gdal.Append(output_path, dataset_to_add)merged_dataset.FlushCache()# 关闭输入文件dataset.Close()# 裁剪输出文件dataset = gdal.Open(output_path)band = dataset.GetRasterBand(1)data = band.ReadAsArray()X, Y, band_width, band_height = band.GetGeoTransform()cropped_data = data[:, :band_height]band.WriteArray(cropped_data)dataset.FlushCache()# 输出结果print("Merging completed!")if __name__ == "__main__":input_files = ["path/to/your/input/raster1.tif","path/to/your/input/raster2.tif"]output_file = "path/to/your/output/merged_raster.tif"merge_rasters(input_files, output_file)```四、代码的运行结果与分析运行上述代码后,可以得到一个镶嵌后的遥感影像。
Python 互补滤波扩展卡尔曼滤波解算姿态一、介绍在航空航天领域以及其他相关领域,姿态解算是一个重要的问题。
姿态解算是指通过传感器(如陀螺仪、加速度计、磁力计等)采集到的数据,计算出飞行器或者其他对象的姿态(即俯仰、偏航、横滚角度)。
在实际的应用场景中,通常需要使用滤波算法对传感器数据进行处理,从而得到更加准确和稳定的姿态信息。
本文将介绍如何使用Python 编程语言实现互补滤波和扩展卡尔曼滤波算法,来解算姿态。
二、互补滤波算法1. 什么是互补滤波算法互补滤波算法是一种简单而有效的滤波算法,常用于姿态解算中。
它的原理很简单,即将两种不同的数据(通常是陀螺仪数据和加速度计数据)进行加权平均,从而得到更加稳定和准确的姿态信息。
2. 互补滤波算法的实现在 Python 中实现互补滤波算法非常简单。
我们需要获取陀螺仪和加速度计的原始数据。
我们可以使用如下的公式来计算互补滤波的输出:angle = alpha * (angle + gyroRate * dt) + (1 - alpha) * accAngle其中,angle 表示最终的姿态角度,gyroRate 表示陀螺仪的角速度,dt 表示采样时间间隔,accAngle 表示由加速度计计算得到的角度,alpha 表示权重系数。
3. 互补滤波算法的优缺点互补滤波算法具有简单、低成本、易实现的优点,适用于一些资源有限的场景。
但是它也有一些缺点,比如对参数的选择比较敏感,需要经过一定的调试和优化。
三、扩展卡尔曼滤波算法1. 什么是扩展卡尔曼滤波算法扩展卡尔曼滤波算法是卡尔曼滤波算法的一种扩展,常用于非线性系统的状态估计。
在姿态解算中,由于传感器的非线性特性,扩展卡尔曼滤波算法通常能得到更加准确的姿态信息。
2. 扩展卡尔曼滤波算法的实现扩展卡尔曼滤波算法涉及到一些复杂的数学推导和矩阵运算,在Python 中可以使用一些成熟的库来实现。
通常,我们需要将系统的动力学模型线性化,然后使用卡尔曼滤波算法进行状态估计。
聚类算法英文专业术语1. 聚类 (Clustering)2. 距离度量 (Distance Metric)3. 相似度度量 (Similarity Metric)4. 皮尔逊相关系数 (Pearson Correlation Coefficient)5. 欧几里得距离 (Euclidean Distance)6. 曼哈顿距离 (Manhattan Distance)7. 切比雪夫距离 (Chebyshev Distance)8. 余弦相似度 (Cosine Similarity)9. 层次聚类 (Hierarchical Clustering)10. 分层聚类 (Divisive Clustering)11. 凝聚聚类 (Agglomerative Clustering)12. K均值聚类 (K-Means Clustering)13. 高斯混合模型聚类 (Gaussian Mixture Model Clustering)14. 密度聚类 (Density-Based Clustering)15. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)16. OPTICS (Ordering Points To Identify the Clustering Structure)17. Mean Shift18. 聚类评估指标 (Clustering Evaluation Metrics)19. 轮廓系数 (Silhouette Coefficient)20. Calinski-Harabasz指数 (Calinski-Harabasz Index)21. Davies-Bouldin指数 (Davies-Bouldin Index)22. 聚类中心 (Cluster Center)23. 聚类半径 (Cluster Radius)24. 噪声点 (Noise Point)25. 簇内差异 (Within-Cluster Variation)26. 簇间差异 (Between-Cluster Variation)。
第41卷 第4期吉林大学学报(信息科学版)Vol.41 No.42023年7月Journal of Jilin University (Information Science Edition)July 2023文章编号:1671⁃5896(2023)04⁃0621⁃10特征更新的动态图卷积表面损伤点云分割方法收稿日期:2022⁃09⁃21基金项目:国家自然科学基金资助项目(61573185)作者简介:张闻锐(1998 ),男,江苏扬州人,南京航空航天大学硕士研究生,主要从事点云分割研究,(Tel)86⁃188****8397(E⁃mail)839357306@;王从庆(1960 ),男,南京人,南京航空航天大学教授,博士生导师,主要从事模式识别与智能系统研究,(Tel)86⁃130****6390(E⁃mail)cqwang@㊂张闻锐,王从庆(南京航空航天大学自动化学院,南京210016)摘要:针对金属部件表面损伤点云数据对分割网络局部特征分析能力要求高,局部特征分析能力较弱的传统算法对某些数据集无法达到理想的分割效果问题,选择采用相对损伤体积等特征进行损伤分类,将金属表面损伤分为6类,提出一种包含空间尺度区域信息的三维图注意力特征提取方法㊂将得到的空间尺度区域特征用于特征更新网络模块的设计,基于特征更新模块构建出了一种特征更新的动态图卷积网络(Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)用于点云语义分割㊂实验结果表明,该方法有助于更有效地进行点云分割,并提取点云局部特征㊂在金属表面损伤分割上,该方法的精度优于PointNet ++㊁DGCNN(Dynamic Graph Convolutional Neural Networks)等方法,提高了分割结果的精度与有效性㊂关键词:点云分割;动态图卷积;特征更新;损伤分类中图分类号:TP391.41文献标志码:A Cloud Segmentation Method of Surface Damage Point Based on Feature Adaptive Shifting⁃DGCNNZHANG Wenrui,WANG Congqing(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)Abstract :The cloud data of metal part surface damage point requires high local feature analysis ability of the segmentation network,and the traditional algorithm with weak local feature analysis ability can not achieve the ideal segmentation effect for the data set.The relative damage volume and other features are selected to classify the metal surface damage,and the damage is divided into six categories.This paper proposes a method to extract the attention feature of 3D map containing spatial scale area information.The obtained spatial scale area feature is used in the design of feature update network module.Based on the feature update module,a feature updated dynamic graph convolution network is constructed for point cloud semantic segmentation.The experimental results show that the proposed method is helpful for more effective point cloud segmentation to extract the local features of point cloud.In metal surface damage segmentation,the accuracy of this method is better than pointnet++,DGCNN(Dynamic Graph Convolutional Neural Networks)and other methods,which improves the accuracy and effectiveness of segmentation results.Key words :point cloud segmentation;dynamic graph convolution;feature adaptive shifting;damage classification 0 引 言基于深度学习的图像分割技术在人脸㊁车牌识别和卫星图像分析领域已经趋近成熟,为获取物体更226吉林大学学报(信息科学版)第41卷完整的三维信息,就需要利用三维点云数据进一步完善语义分割㊂三维点云数据具有稀疏性和无序性,其独特的几何特征分布和三维属性使点云语义分割在许多领域的应用都遇到困难㊂如在机器人与计算机视觉领域使用三维点云进行目标检测与跟踪以及重建;在建筑学上使用点云提取与识别建筑物和土地三维几何信息;在自动驾驶方面提供路面交通对象㊁道路㊁地图的采集㊁检测和分割功能㊂2017年,Lawin等[1]将点云投影到多个视图上分割再返回点云,在原始点云上对投影分割结果进行分析,实现对点云的分割㊂最早的体素深度学习网络产生于2015年,由Maturana等[2]创建的VOXNET (Voxel Partition Network)网络结构,建立在三维点云的体素表示(Volumetric Representation)上,从三维体素形状中学习点的分布㊂结合Le等[3]提出的点云网格化表示,出现了类似PointGrid的新型深度网络,集成了点与网格的混合高效化网络,但体素化的点云面对大量点数的点云文件时表现不佳㊂在不规则的点云向规则的投影和体素等过渡态转换过程中,会出现很多空间信息损失㊂为将点云自身的数据特征发挥完善,直接输入点云的基础网络模型被逐渐提出㊂2017年,Qi等[4]利用点云文件的特性,开发了直接针对原始点云进行特征学习的PointNet网络㊂随后Qi等[5]又提出了PointNet++,针对PointNet在表示点与点直接的关联性上做出改进㊂Hu等[6]提出SENET(Squeeze⁃and⁃Excitation Networks)通过校准通道响应,为三维点云深度学习引入通道注意力网络㊂2018年,Li等[7]提出了PointCNN,设计了一种X⁃Conv模块,在不显著增加参数数量的情况下耦合较远距离信息㊂图卷积网络[8](Graph Convolutional Network)是依靠图之间的节点进行信息传递,获得图之间的信息关联的深度神经网络㊂图可以视为顶点和边的集合,使每个点都成为顶点,消耗的运算量是无法估量的,需要采用K临近点计算方式[9]产生的边缘卷积层(EdgeConv)㊂利用中心点与其邻域点作为边特征,提取边特征㊂图卷积网络作为一种点云深度学习的新框架弥补了Pointnet等网络的部分缺陷[10]㊂针对非规律的表面损伤这种特征缺失类点云分割,人们已经利用各种二维图像采集数据与卷积神经网络对风扇叶片㊁建筑和交通工具等进行损伤检测[11],损伤主要类别是裂痕㊁表面漆脱落等㊂但二维图像分割涉及的损伤种类不够充分,可能受物体表面污染㊁光线等因素影响,将凹陷㊁凸起等损伤忽视,或因光照不均匀判断为脱漆㊂笔者提出一种基于特征更新的动态图卷积网络,主要针对三维点云分割,设计了一种新型的特征更新模块㊂利用三维点云独特的空间结构特征,对传统K邻域内权重相近的邻域点采用空间尺度进行区分,并应用于对金属部件表面损伤分割的有用与无用信息混杂的问题研究㊂对邻域点进行空间尺度划分,将注意力权重分组,组内进行特征更新㊂在有效鉴别外邻域干扰特征造成的误差前提下,增大特征提取面以提高局部区域特征有用性㊂1 深度卷积网络计算方法1.1 包含空间尺度区域信息的三维图注意力特征提取方法由迭代最远点采集算法将整片点云分割为n个点集:{M1,M2,M3, ,M n},每个点集包含k个点:{P1, P2,P3, ,P k},根据点集内的空间尺度关系,将局部区域划分为不同的空间区域㊂在每个区域内,结合局部特征与空间尺度特征,进一步获得更有区分度的特征信息㊂根据注意力机制,为K邻域内的点分配不同的权重信息,特征信息包括空间区域内点的分布和区域特性㊂将这些特征信息加权计算,得到点集的卷积结果㊂使用空间尺度区域信息的三维图注意力特征提取方式,需要设定合适的K邻域参数K和空间划分层数R㊂如果K太小,则会导致弱分割,因不能完全利用局部特征而影响结果准确性;如果K太大,会增加计算时间与数据量㊂图1为缺损损伤在不同参数K下的分割结果图㊂由图1可知,在K=30或50时,分割结果效果较好,K=30时计算量较小㊂笔者选择K=30作为实验参数㊂在分析确定空间划分层数R之前,简要分析空间层数划分所应对的问题㊂三维点云所具有的稀疏性㊁无序性以及损伤点云自身噪声和边角点多的特性,导致了点云处理中可能出现的共同缺点,即将离群值点云选为邻域内采样点㊂由于损伤表面多为一个面,被分割出的损伤点云应在该面上分布,而噪声点则被分布在整个面的两侧,甚至有部分位于损伤内部㊂由于点云噪声这种立体分布的特征,导致了离群值被选入邻域内作为采样点存在㊂根据采用DGCNN(Dynamic Graph Convolutional Neural Networks)分割网络抽样实验结果,位于切面附近以及损伤内部的离群值点对点云分割结果造成的影响最大,被错误分割为特征点的几率最大,在后续预处理过程中需要对这种噪声点进行优先处理㊂图1 缺损损伤在不同参数K 下的分割结果图Fig.1 Segmentation results of defect damage under different parameters K 基于上述实验结果,在参数K =30情况下,选择空间划分层数R ㊂缺损损伤在不同参数R 下的分割结果如图2所示㊂图2b 的结果与测试集标签分割结果更为相似,更能体现损伤的特征,同时屏蔽了大部分噪声㊂因此,选择R =4作为实验参数㊂图2 缺损损伤在不同参数R 下的分割结果图Fig.2 Segmentation results of defect damage under different parameters R 在一个K 邻域内,邻域点与中心点的空间关系和特征差异最能表现邻域点的权重㊂空间特征系数表示邻域点对中心点所在点集的重要性㊂同时,为更好区分图内邻域点的权重,需要将整个邻域细分㊂以空间尺度进行细分是较为合适的分类方式㊂中心点的K 邻域可视为一个局部空间,将其划分为r 个不同的尺度区域㊂再运算空间注意力机制,为这r 个不同区域的权重系数赋值㊂按照空间尺度多层次划分,不仅没有损失核心的邻域点特征,还能有效抑制无意义的㊁有干扰性的特征㊂从而提高了深度学习网络对点云的局部空间特征的学习能力,降低相邻邻域之间的互相影响㊂空间注意力机制如图3所示,计算步骤如下㊂第1步,计算特征系数e mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重㊂分别用Δp mk 和Δf mk 表示三维空间关系和局部特征差异,M 表示MLP(Multi⁃Layer Perceptrons)操作,C 表示concat 函数,其中Δp mk =p mk -p m ,Δf mk =M (f mk )-M (f m )㊂将两者合并后输入多层感知机进行计算,得到计算特征系数326第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图3 空间尺度区域信息注意力特征提取方法示意图Fig.3 Schematic diagram of attention feature extraction method for spatial scale regional information e mk =M [C (Δp mk ‖Δf mk )]㊂(1) 第2步,计算图权重系数a mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重包含比㊂其中k ∈{1,2,3, ,K },K 表示每个邻域所包含点数㊂需要对特征系数e mk 进行归一化,使用归一化指数函数S (Softmax)得到权重多分类的结果,即计算图权重系数a mk =S (e mk )=exp(e mk )/∑K g =1exp(e mg )㊂(2) 第3步,用空间尺度区域特征s mr 表示中心点m 的第r 个空间尺度区域的特征㊂其中k r ∈{1,2,3, ,K r },K r 表示第r 个空间尺度区域所包含的邻域点数,并在其中加入特征偏置项b r ,避免权重化计算的特征在动态图中累计单面误差指向,空间尺度区域特征s mr =∑K r k r =1[a mk r M (f mk r )]+b r ㊂(3) 在r 个空间尺度区域上进行计算,就可得到点m 在整个局部区域的全部空间尺度区域特征s m ={s m 1,s m 2,s m 3, ,s mr },其中r ∈{1,2,3, ,R }㊂1.2 基于特征更新的动态图卷积网络动态图卷积网络是一种能直接处理原始三维点云数据输入的深度学习网络㊂其特点是将PointNet 网络中的复合特征转换模块(Feature Transform),改进为由K 邻近点计算(K ⁃Near Neighbor)和多层感知机构成的边缘卷积层[12]㊂边缘卷积层功能强大,其提取的特征不仅包含全局特征,还拥有由中心点与邻域点的空间位置关系构成的局部特征㊂在动态图卷积网络中,每个邻域都视为一个点集㊂增强对其中心点的特征学习能力,就会增强网络整体的效果[13]㊂对一个邻域点集,对中心点贡献最小的有效局部特征的边缘点,可以视为异常噪声点或低权重点,可能会给整体分割带来边缘溢出㊂点云相比二维图像是一种信息稀疏并且噪声含量更大的载体㊂处理一个局域内的噪声点,将其直接剔除或简单采纳会降低特征提取效果,笔者对其进行低权重划分,并进行区域内特征更新,增强抗噪性能,也避免点云信息丢失㊂在空间尺度区域中,在区域T 内有s 个点x 被归为低权重系数组,该点集的空间信息集为P ∈R N s ×3㊂点集的局部特征集为F ∈R N s ×D f [14],其中D f 表示特征的维度空间,N s 表示s 个域内点的集合㊂设p i 以及f i 为点x i 的空间信息和特征信息㊂在点集内,对点x i 进行小范围内的N 邻域搜索,搜索其邻域点㊂则点x i 的邻域点{x i ,1,x i ,2, ,x i ,N }∈N (x i ),其特征集合为{f i ,1,f i ,2, ,f i ,N }∈F ㊂在利用空间尺度进行区域划分后,对空间尺度区域特征s mt 较低的区域进行区域内特征更新,通过聚合函数对权重最低的邻域点在图中的局部特征进行改写㊂已知中心点m ,点x i 的特征f mx i 和空间尺度区域特征s mt ,目的是求出f ′mx i ,即中心点m 的低权重邻域点x i 在进行邻域特征更新后得到的新特征㊂对区域T 内的点x i ,∀x i ,j ∈H (x i ),x i 与其邻域H 内的邻域点的特征相似性域为R (x i ,x i ,j )=S [C (f i ,j )T C (f i ,j )/D o ],(4)其中C 表示由输入至输出维度的一维卷积,D o 表示输出维度值,T 表示转置㊂从而获得更新后的x i 的426吉林大学学报(信息科学版)第41卷特征㊂对R (x i ,x i ,j )进行聚合,并将特征f mx i 维度变换为输出维度f ′mx i =∑[R (x i ,x i ,j )S (s mt f mx i )]㊂(5) 图4为特征更新网络模块示意图,展示了上述特征更新的计算过程㊂图5为特征更新的动态图卷积网络示意图㊂图4 特征更新网络模块示意图Fig.4 Schematic diagram of feature update network module 图5 特征更新的动态图卷积网络示意图Fig.5 Flow chart of dynamic graph convolution network with feature update 动态图卷积网络(DGCNN)利用自创的边缘卷积层模块,逐层进行边卷积[15]㊂其前一层的输出都会动态地产生新的特征空间和局部区域,新一层从前一层学习特征(见图5)㊂在每层的边卷积模块中,笔者在边卷积和池化后加入了空间尺度区域注意力特征,捕捉特定空间区域T 内的邻域点,用于特征更新㊂特征更新会降低局域异常值点对局部特征的污染㊂网络相比传统图卷积神经网络能获得更多的特征信息,并且在面对拥有较多噪声值的点云数据时,具有更好的抗干扰性[16],在对性质不稳定㊁不平滑并含有需采集分割的突出中心的点云数据时,会有更好的抗干扰效果㊂相比于传统预处理方式,其稳定性更强,不会发生将突出部分误分割或漏分割的现象[17]㊂2 实验结果与分析点云分割的精度评估指标主要由两组数据构成[18],即平均交并比和总体准确率㊂平均交并比U (MIoU:Mean Intersection over Union)代表真实值和预测值合集的交并化率的平均值,其计算式为526第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法U =1T +1∑Ta =0p aa ∑Tb =0p ab +∑T b =0p ba -p aa ,(6)其中T 表示类别,a 表示真实值,b 表示预测值,p ab 表示将a 预测为b ㊂总体准确率A (OA:Overall Accuracy)表示所有正确预测点p c 占点云模型总体数量p all 的比,其计算式为A =P c /P all ,(7)其中U 与A 数值越大,表明点云分割网络越精准,且有U ≤A ㊂2.1 实验准备与数据预处理实验使用Kinect V2,采用Depth Basics⁃WPF 模块拍摄金属部件损伤表面获得深度图,将获得的深度图进行SDK(Software Development Kit)转化,得到pcd 格式的点云数据㊂Kinect V2采集的深度图像分辨率固定为512×424像素,为获得更清晰的数据图像,需尽可能近地采集数据㊂选择0.6~1.2m 作为采集距离范围,从0.6m 开始每次增加0.2m,获得多组采量数据㊂点云中分布着噪声,如果不对点云数据进行过滤会对后续处理产生不利影响㊂根据统计原理对点云中每个点的邻域进行分析,再建立一个特别设立的标准差㊂然后将实际点云的分布与假设的高斯分布进行对比,实际点云中误差超出了标准差的点即被认为是噪声点[19]㊂由于点云数据量庞大,为提高效率,选择采用如下改进方法㊂计算点云中每个点与其首个邻域点的空间距离L 1和与其第k 个邻域点的空间距离L k ㊂比较每个点之间L 1与L k 的差,将其中差值最大的1/K 视为可能噪声点[20]㊂计算可能噪声点到其K 个邻域点的平均值,平均值高出标准差的被视为噪声点,将离群噪声点剔除后完成对点云的滤波㊂2.2 金属表面损伤点云关键信息提取分割方法对点云损伤分割,在制作点云数据训练集时,如果只是单一地将所有损伤进行统一标记,不仅不方便进行结果分析和应用,而且也会降低特征分割的效果㊂为方便分析和控制分割效果,需要使用ArcGIS 将点云模型转化为不规则三角网TIN(Triangulated Irregular Network)㊂为精确地分类损伤,利用图6 不规则三角网模型示意图Fig.6 Schematic diagram of triangulated irregular networkTIN 的表面轮廓性质,获得训练数据损伤点云的损伤内(外)体积,损伤表面轮廓面积等㊂如图6所示㊂选择损伤体积指标分为相对损伤体积V (RDV:Relative Damege Volume)和邻域内相对损伤体积比N (NRDVR:Neighborhood Relative Damege Volume Ratio)㊂计算相对平均深度平面与点云深度网格化平面之间的部分,得出相对损伤体积㊂利用TIN 邻域网格可获取某损伤在邻域内的相对深度占比,有效解决制作测试集时,将因弧度或是形状造成的相对深度判断为损伤的问题㊂两种指标如下:V =∑P d k =1h k /P d -∑P k =1h k /()P S d ,(8)N =P n ∑P d k =1h k S d /P d ∑P n k =1h k S ()n -()1×100%,(9)其中P 表示所有点云数,P d 表示所有被标记为损伤的点云数,P n 表示所有被认定为损伤邻域内的点云数;h k 表示点k 的深度值;S d 表示损伤平面面积,S n 表示损伤邻域平面面积㊂在获取TIN 标准包络网视图后,可以更加清晰地描绘损伤情况,同时有助于量化损伤严重程度㊂笔者将损伤分为6种类型,并利用计算得出的TIN 指标进行损伤分类㊂同时,根据损伤部分体积与非损伤部分体积的关系,制定指标损伤体积(SDV:Standard Damege Volume)区分损伤类别㊂随机抽选5个测试组共50张图作为样本㊂统计非穿透损伤的RDV 绝对值,其中最大的30%标记为凹陷或凸起,其余626吉林大学学报(信息科学版)第41卷标记为表面损伤,并将样本分类的标准分界值设为SDV㊂在设立以上标准后,对凹陷㊁凸起㊁穿孔㊁表面损伤㊁破损和缺损6种金属表面损伤进行分类,金属表面损伤示意图如图7所示㊂首先,根据损伤是否产生洞穿,将损伤分为两大类㊂非贯通伤包括凹陷㊁凸起和表面损伤,贯通伤包括穿孔㊁破损和缺损㊂在非贯通伤中,凹陷和凸起分别采用相反数的SDV 作为标准,在这之间的被分类为表面损伤㊂贯通伤中,以损伤部分平面面积作为参照,较小的分类为穿孔,较大的分类为破损,而在边缘处因腐蚀㊁碰撞等原因缺角㊁内损的分类为缺损㊂分类参照如表1所示㊂图7 金属表面损伤示意图Fig.7 Schematic diagram of metal surface damage表1 损伤类别分类Tab.1 Damage classification 损伤类别凹陷凸起穿孔表面损伤破损缺损是否形成洞穿××√×√√RDV 绝对值是否达到SDV √√\×\\S d 是否达到标准\\×\√\2.3 实验结果分析为验证改进的图卷积深度神经网络在点云语义分割上的有效性,笔者采用TensorFlow 神经网络框架进行模型测试㊂为验证深度网络对损伤分割的识别准确率,采集了带有损伤特征的金属部件损伤表面点云,对点云进行预处理㊂对若干金属部件上的多个样本金属面的点云数据进行筛选,删除损伤占比低于5%或高于60%的数据后,划分并装包制作为点云数据集㊂采用CloudCompare 软件对样本金属上的损伤部分进行分类标记,共分为6种如上所述损伤㊂部件损伤的数据集制作参考点云深度学习领域广泛应用的公开数据集ModelNet40part㊂分割数据集包含了多种类型的金属部件损伤数据,这些损伤数据显示在510张总点云图像数据中㊂点云图像种类丰富,由各种包含损伤的金属表面构成,例如金属门,金属蒙皮,机械构件外表面等㊂用ArcGIS 内相关工具将总图进行随机点拆分,根据数据集ModelNet40part 的规格,每个独立的点云数据组含有1024个点,将所有总图拆分为510×128个单元点云㊂将样本分为400个训练集与110个测试集,采用交叉验证方法以保证测试的充分性[20],对多种方法进行评估测试,实验结果由单元点云按原点位置重新组合而成,并带有拆分后对单元点云进行的分割标记㊂分割结果比较如图8所示㊂726第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图8 分割结果比较图Fig.8 Comparison of segmentation results在部件损伤分割的实验中,将不同网络与笔者网络(FAS⁃DGCNN:Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)进行对比㊂除了采用不同的分割网络外,其余实验均采用与改进的图卷积深度神经网络方法相同的实验设置㊂实验结果由单一损伤交并比(IoU:Intersection over Union),平均损伤交并比(MIoU),单一损伤准确率(Accuracy)和总体损伤准确率(OA)进行评价,结果如表2~表4所示㊂将6种不同损伤类别的Accuracy 与IoU 进行对比分析,可得出结论:相比于基准实验网络Pointet++,笔者在OA 和MioU 方面分别在贯通伤和非贯通伤上有10%和20%左右的提升,在整体分割指标上,OA 能达到90.8%㊂对拥有更多点数支撑,含有较多点云特征的非贯通伤,几种点云分割网络整体性能均能达到90%左右的效果㊂而不具有局部特征识别能力的PointNet 在贯通伤上的表现较差,不具备有效的分辨能力,导致分割效果相对于其他损伤较差㊂表2 损伤部件分割准确率性能对比 Tab.2 Performance comparison of segmentation accuracy of damaged parts %实验方法准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6Ponitnet 82.785.073.880.971.670.1Pointnet++88.786.982.783.486.382.9DGCNN 90.488.891.788.788.687.1FAS⁃DGCNN 92.588.892.191.490.188.6826吉林大学学报(信息科学版)第41卷表3 损伤部件分割交并比性能对比 Tab.3 Performance comparison of segmentation intersection ratio of damaged parts %IoU 准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6PonitNet80.582.770.876.667.366.9PointNet++86.384.580.481.184.280.9DGCNN 88.786.589.986.486.284.7FAS⁃DGCNN89.986.590.388.187.385.7表4 损伤分割的整体性能对比分析 出,动态卷积图特征以及有效的邻域特征更新与多尺度注意力给分割网络带来了更优秀的局部邻域分割能力,更加适应表面损伤分割的任务要求㊂3 结 语笔者利用三维点云独特的空间结构特征,将传统K 邻域内权重相近的邻域点采用空间尺度进行区分,并将空间尺度划分运用于邻域内权重分配上,提出了一种能将邻域内噪声点降权筛除的特征更新模块㊂采用此模块的动态图卷积网络在分割上表现出色㊂利用特征更新的动态图卷积网络(FAS⁃DGCNN)能有效实现金属表面损伤的分割㊂与其他网络相比,笔者方法在点云语义分割方面表现出更高的可靠性,可见在包含空间尺度区域信息的注意力和局域点云特征更新下,笔者提出的基于特征更新的动态图卷积网络能发挥更优秀的作用,而且相比缺乏局部特征提取能力的分割网络,其对于点云稀疏㊁特征不明显的非贯通伤有更优的效果㊂参考文献:[1]LAWIN F J,DANELLJAN M,TOSTEBERG P,et al.Deep Projective 3D Semantic Segmentation [C]∥InternationalConference on Computer Analysis of Images and Patterns.Ystad,Sweden:Springer,2017:95⁃107.[2]MATURANA D,SCHERER S.VoxNet:A 3D Convolutional Neural Network for Real⁃Time Object Recognition [C]∥Proceedings of IEEE /RSJ International Conference on Intelligent Robots and Systems.Hamburg,Germany:IEEE,2015:922⁃928.[3]LE T,DUAN Y.PointGrid:A Deep Network for 3D Shape Understanding [C]∥2018IEEE /CVF Conference on ComputerVision and Pattern Recognition (CVPR).Salt Lake City,USA:IEEE,2018:9204⁃9214.[4]QI C R,SU H,MO K,et al.PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation [C]∥IEEEConference on Computer Vision and Pattern Recognition (CVPR).Hawaii,USA:IEEE,2017:652⁃660.[5]QI C R,SU H,MO K,et al,PointNet ++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space [C]∥Advances in Neural Information Processing Systems.California,USA:SpringerLink,2017:5099⁃5108.[6]HU J,SHEN L,SUN G,Squeeze⁃and⁃Excitation Networks [C ]∥IEEE Conference on Computer Vision and PatternRecognition.Vancouver,Canada:IEEE,2018:7132⁃7141.[7]LI Y,BU R,SUN M,et al.PointCNN:Convolution on X⁃Transformed Points [C]∥Advances in Neural InformationProcessing Systems.Montreal,Canada:NeurIPS,2018:820⁃830.[8]ANH VIET PHAN,MINH LE NGUYEN,YEN LAM HOANG NGUYEN,et al.DGCNN:A Convolutional Neural Networkover Large⁃Scale Labeled Graphs [J].Neural Networks,2018,108(10):533⁃543.[9]任伟建,高梦宇,高铭泽,等.基于混合算法的点云配准方法研究[J].吉林大学学报(信息科学版),2019,37(4):408⁃416.926第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法036吉林大学学报(信息科学版)第41卷REN W J,GAO M Y,GAO M Z,et al.Research on Point Cloud Registration Method Based on Hybrid Algorithm[J]. Journal of Jilin University(Information Science Edition),2019,37(4):408⁃416.[10]ZHANG K,HAO M,WANG J,et al.Linked Dynamic Graph CNN:Learning on Point Cloud via Linking Hierarchical Features[EB/OL].[2022⁃03⁃15].https:∥/stamp/stamp.jsp?tp=&arnumber=9665104. [11]林少丹,冯晨,陈志德,等.一种高效的车体表面损伤检测分割算法[J].数据采集与处理,2021,36(2):260⁃269. LIN S D,FENG C,CHEN Z D,et al.An Efficient Segmentation Algorithm for Vehicle Body Surface Damage Detection[J]. Journal of Data Acquisition and Processing,2021,36(2):260⁃269.[12]ZHANG L P,ZHANG Y,CHEN Z Z,et al.Splitting and Merging Based Multi⁃Model Fitting for Point Cloud Segmentation [J].Journal of Geodesy and Geoinformation Science,2019,2(2):78⁃79.[13]XING Z Z,ZHAO S F,GUO W,et al.Processing Laser Point Cloud in Fully Mechanized Mining Face Based on DGCNN[J]. ISPRS International Journal of Geo⁃Information,2021,10(7):482⁃482.[14]杨军,党吉圣.基于上下文注意力CNN的三维点云语义分割[J].通信学报,2020,41(7):195⁃203. YANG J,DANG J S.Semantic Segmentation of3D Point Cloud Based on Contextual Attention CNN[J].Journal on Communications,2020,41(7):195⁃203.[15]陈玲,王浩云,肖海鸿,等.利用FL⁃DGCNN模型估测绿萝叶片外部表型参数[J].农业工程学报,2021,37(13): 172⁃179.CHEN L,WANG H Y,XIAO H H,et al.Estimation of External Phenotypic Parameters of Bunting Leaves Using FL⁃DGCNN Model[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(13):172⁃179.[16]柴玉晶,马杰,刘红.用于点云语义分割的深度图注意力卷积网络[J].激光与光电子学进展,2021,58(12):35⁃60. CHAI Y J,MA J,LIU H.Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation[J].Laser and Optoelectronics Progress,2021,58(12):35⁃60.[17]张学典,方慧.BTDGCNN:面向三维点云拓扑结构的BallTree动态图卷积神经网络[J].小型微型计算机系统,2021, 42(11):32⁃40.ZHANG X D,FANG H.BTDGCNN:BallTree Dynamic Graph Convolution Neural Network for3D Point Cloud Topology[J]. Journal of Chinese Computer Systems,2021,42(11):32⁃40.[18]张佳颖,赵晓丽,陈正.基于深度学习的点云语义分割综述[J].激光与光电子学,2020,57(4):28⁃46. ZHANG J Y,ZHAO X L,CHEN Z.A Survey of Point Cloud Semantic Segmentation Based on Deep Learning[J].Lasers and Photonics,2020,57(4):28⁃46.[19]SUN Y,ZHANG S H,WANG T Q,et al.An Improved Spatial Point Cloud Simplification Algorithm[J].Neural Computing and Applications,2021,34(15):12345⁃12359.[20]高福顺,张鼎林,梁学章.由点云数据生成三角网络曲面的区域增长算法[J].吉林大学学报(理学版),2008,46 (3):413⁃417.GAO F S,ZHANG D L,LIANG X Z.A Region Growing Algorithm for Triangular Network Surface Generation from Point Cloud Data[J].Journal of Jilin University(Science Edition),2008,46(3):413⁃417.(责任编辑:刘俏亮)。