[CQH-B]HS-B滑动轴承实验台使用说明书 指导书 报告
- 格式:pdf
- 大小:1013.89 KB
- 文档页数:24
13 滑动轴承实验指导书一、实验目的1.观察滑动轴承的液体摩擦现象。
2.按油压分布曲线求轴承油膜的承载能力。
二、试验机结构图1试验机结构如图1所示,它包括以下几部分:1、轴与轴瓦轴8材料为45钢、轴颈经表面淬火、磨光,通过滚动轴承安装在支座上。
轴瓦7材料为锡青铜。
在轴瓦的中间界面处,沿半圆周均布七个小孔,分别与压力表相连。
2、加载系统由砝码17,通过由杆件12、13、14、15、16组成的杠杆系统,及由杆件3、10、11组成的平行四边形机构,将载荷加到瓦轴上。
3、传动系统由直流电动机,通过三角带传动,驱动轴逆时针转动,直流电动机用硅整流电源实现无级调速。
4、供油方法轴转动时,将润滑油均匀的涂在轴的表面上,由油带入轴与瓦之间的楔形间隙中,形成压力油膜。
5、测摩擦力装置轴转动时,对轴瓦产生周向摩擦力F ,其摩擦力矩2d F 使构件3翻转。
由固定在构件3上的百分表2测出弹簧片在百分表出的变形量。
作用在支点1处的反力Q 与弹簧片的变形成正比。
可根据变形测出反力Q ,进而可推算出摩擦力F 。
6、摩擦状态指示装置图2图2为摩擦状态指示电路。
将轴与轴瓦串联在指示灯电路中,当轴与轴瓦之间被润滑油完全分开,即处于液体摩擦状态时,指示灯熄灭,当轴与瓦之间为非液体摩擦状态时,指示灯亮或闪动。
三、使用方法及注意事项1、启动:接通电源,将调速旋钮置“0”,按启动钮(绿色),绿灯亮。
旋转调速旋钮,则可启动电机。
2、为保持轴与轴瓦的精度,实验机应在卸载下启动或停止。
3、禁止用力按砝码盘,以保护加载刃口。
四、实验步骤1、观察滑动轴承的液体摩擦现象启动电机,加二至三块砝码,逐渐升速,再逐渐减速,观察摩擦状态指示灯及百分表指针变化情况。
2、测油膜压力分布将试验机调到最高转速,加6至8块砝码,在形成完全液体摩擦状态时,记录各压力表指示的数值。
3、卸载、减速、停机、实验结束。
五、数据处理1、求油膜的承载能力①、绘制油压分别曲线根据测得的油膜压力,以一定的比例在座标纸上绘制油膜压力分布曲线。
液体动压滑动轴承实验报告一、 实验目的1、测量轴承的径向和轴向油膜压力分布曲线。
2、观察径向滑动轴承液体动压润滑油膜的形成过程和现象。
3、观察载荷和转速改变时的油膜压力的变化情况。
4、观察径向滑动轴承油膜的轴向压力分布情况。
5、测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。
6、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线λ的绘制方法。
二、 实验设备及工具 滑动轴承实验台 三、 实验原理1、油膜压力的测量轴承实验台结构如图1所示,它主要包括:调速电动机、传动系统、液压系统和 实验轴承箱等部分组成。
在轴承承载区的中央平面上,沿径向钻有8个直径为1mm 的小孔。
各孔间隔为22.50,每个小孔分别联接一个压力表。
在承载区内的径向压力可通过相应的压力表直接读出。
将轴径直径(d=60mm )按比例绘在纸上,将1~8个压力表读数按比例相应标出。
(建议压力以1cm 代表5kgf/cm 2)将压力向量连成一条光滑曲线,即得到轴承中央剖面油膜压力分布曲线)。
同理,读出第4和第8个压力表示数,由于轴向两端端泄影响,两端压力为零。
光滑连结0‘,8’,4‘,8’和0‘各点,即得到轴向油膜压力分布曲线。
2、摩擦系数的测量图1 轴承实验台结构图1、操纵面板2、电机3、三角带4、轴向油压传感器接头5、外加载荷传感器6、螺旋加载杆7、摩擦力传感器测力装置8、径向油压传感器(8只)9、传感器支撑板 10、主轴 11、主轴瓦 12、主轴箱径向滑动轴承的摩擦系数f 随轴承的特性系数λ(λ=ηn/p )值的改变而改变。
在边界摩擦时,f 随λ值的增大而变化很小,进入混合摩擦后,λ值的改变引起f 急剧变化,在刚形成液体摩擦时f 达到最小值,此后,随λ值的增大油膜厚度亦随之增大,因而f 亦有所增大。
摩擦系数f 之值可通过测量轴承的摩擦力矩而得到。
轴转动时,轴对轴瓦产生周向摩擦力F ,其摩擦力矩为Fd2,它能使空套在轴上的轴瓦随轴转动,由于在轴瓦的外表面上固定一个测力杆,测力杆一端与轴瓦连接,另一端与弹簧片接触。
滑动轴承实验台使用说明书本实验台用于液体动压滑动轴承实验,主要利用它来观察滑动轴承的结构及油膜形成的过程,测量其径向油膜压力分布,通过测定可以绘制出摩擦特性曲线、径向油膜压力分布曲线和测定其承载量。
一、实验台结构简介与工作原理l. 本实验台主要结构图1所示:图1 滑动轴承实验台结构简图1. 操纵面板2. 电机3. V带4. 轴向压力传感器5. 螺旋加载杆6. 摩擦力传感器7. 径向压力传感器(7只)8. 传感器支承板 9. 主轴 10. 主轴瓦 11. 主轴箱2. 结构特点该实验台主轴9由两个高精度的深沟球轴承支承。
直流电机2通过V 带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。
主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加载大小由负载传感器测出,由面板上右数码管显示。
主轴瓦上装有测力杆,通过摩擦力传感器6可得出摩擦力值。
主轴瓦前端装有1号—7号七只测径向压力传感器7,传感器的进油口在轴瓦的21处。
在轴瓦全长的41处装有一个测轴向油压的压力传感器。
即第8号压力传感器,传感器的进油口在轴瓦的41处。
此外,还设置有转速传感器和油温传感器,共12个传感器。
二、主要技术参数试验轴瓦 内径 d =60mm 长度 B =120mm表面粗糙度 ∇7)材料 ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0—1000N(0~100kg ⋅f) 负载传感器精度0.01 量程0~10mm 压力传感器精度2.5% 量程0~0.6MPa 测力杆上测力点与轴承中心距离 L =120mm 测力计标定值 K =0.098N/格 电机功率 355W 调速范围:2~400rpm 试验台重量:52kg该实验台的操作面板如图2所示。
图2 实验台面板布置图1. 序号2. 转换按钮3. 压力显示4. 转速显示5. 摩擦力显示6. 外加载荷显示7. 油膜指示灯8. 调速旋钮9. 电源开关三、电气装置技术性能l. 直流电动机功率:355W2. 测速部份:a. 测速范围:2rpm~400rpmb. 测速精度:±1rpm3. 加载部份:a. 调整范围:O~1000N(0~100kg)b. 传感器精度: ±0.2%(读数)4. 工作条件:a. 环境温度:-10℃~+50℃b. 相对湿度:≤80%c. 电源:~200V土10%50Hzd. 工作场所:无强烈电磁干扰和腐蚀气体四、使用步骤1. 开机前的准备:a. 用汽油将油箱清理干净,加入N68(40#)机油至圆形油标中线。
目录一、适用范围.........................................................1二、技术条件.........................................................1三、产品特点.........................................................1四、实验台总体布局.........................................................1五、主要部件说明.........................................................2六、上电操作步骤.........................................................13七、断电操作步骤.........................................................13八、注意事项.........................................................13九、简易故障维修.........................................................14一、适用范围本实验装置主要依据《电机学》、《电机及电力拖动》和《工厂电气控制设备》等课程实验大纲的要求,同时也参考了近几年有关院校使用的电机及拖动实验教材的要求而研制。
因此该实验装置基本能满足各有关院校电机、电气技术实验设备的新建和改造。
二、技术条件1、整机容量: 1.5kVA2、尺寸:160cm×75cm×150cm3、重量:450kg4、工作电源:~3N/380V/50Hz/3A三、产品特点a) 测量仪表采用指针式和数字式相结合,保护功能齐全。
试验二滑动轴承试验指导书一、试验目的1、观看载荷和转速转变时油膜压力的变化状况。
2、把握径向滑动轴承的油压及摩擦系数的测定方法,了解摩擦系数与轴承单位压力,滑动速度以及润滑油粘度之间的关系,绘制轴承摩擦特性曲线。
3、测定并绘出滑动轴承油膜压力径向分布曲线及承载曲线,并近似计算出轴承的承载量。
二、试验设备及原理1、主要技术参数(1)直流电动机功率:750W(2)加载局部:a〕调整范围:0─300kgb〕传感器精度:±0.2%〔读数〕〔3〕工作条件:a〕环境温度:-10℃─ +50℃b〕相对湿度:≤80%c〕电源:~220V±10%50Hz d〕工作场所:无猛烈电磁干扰和腐蚀气体(4)试验轴瓦:内直径d=70mm 有效长度B=100mm光泽度▽7〔1.6 〕材料ZQSn6─6─3测力杆上测力点与轴承中心距离L=120mm(5)试验台重量:52kg。
2、试验台构造及工作原理该试验台主轴由两个高精度的单列向心球轴承支承。
直流电机通过三角带带动传动主轴,主轴顺时针旋转,主轴上装有周密加工制造的主轴瓦和光电传感器,轴的转速由掌握箱面板上的右数码管直接读出。
主轴瓦外圆被加载装置〔未画〕压住,旋转加载杆即可对轴瓦加载,加载大小由荷重传感器测得,由掌握箱面板上左数码管读出。
主轴瓦上装有测力杆,通过测力压力传感器检测压力,经过计算可直接得到摩擦力矩值。
主轴瓦前端装有7只测径向压力的油压传感器,在轴瓦的一个径向平面内沿圆周钻有7 个小孔,每个小孔沿圆周相隔20º,每个小孔联接一个压力传感器,用来测量该径向平面内相应点的油膜压力,由此可绘制出径向油膜压力分布曲线。
沿轴瓦的一个轴向剖面装有两个压力传感器,用来观看有限长滑动轴承沿轴向的油膜压力状况。
3、加载装置油膜的径向压力分布曲线是在肯定的载荷和肯定的转速下绘制的。
当载荷转变或轴的转速转变时测出的压力值是不同的,所绘出的压力分布曲线的外形也是不同的。
实验四滑动轴承实验实验项目性质:验证性实验计划学时:1一、实验目的1.观察径向滑动轴承液体动压油膜的形成过程与现象;2.观察载荷和转速改变时,径向和轴向油膜压力的变化情况;3.测定和绘制径向滑动轴承径向油膜压力分布曲线;4.测定径向滑动轴承的摩擦系数f和绘制摩擦特性曲线。
二、实验台的构造与工作原理(一)滑动轴承实验台1.实验台的构造实验台的构造如图所示。
实验台的传动装置由直流电机1通过v带传动2驱动轴4沿顺时针方向转动,由无级调速器实现轴4的无级调速,轴的转的转速由数码管直接读出。
2.轴与轴瓦间油膜压力测量装置轴由流动轴承支承在箱体3上,轴的下阗部泡浸在润滑油中。
在轴瓦5的一径向平面内沿周向钻有7个小孔,彼此相隔20每个小孔联接一个压力表6,用来测量该相应点的油膜压力,由此可以绘出径向油膜压力分布曲线。
沿轴瓦的一个轴瓦的一个轴向剖面内装有两个压力表,用来观察有限长度内滑动轴承沿轴向的油膜压力分布情况。
3.加载装置油膜的径向压力分布曲线是在一定的载荷和一定的转带下绘制的。
当载荷改变或轴的转速改变时测出的油膜压力值就不同,所绘出的压力分布曲线的形状也不同。
本实验台采用螺旋加载,转动螺杆7可改变载荷的大小,所加载荷之值通过传咸器用数码管数字显示,直接在实验台的操纵面板上读出(取中间值)。
4.实验台主要参数图4-1 滑动轴承实验台(1)轴的直径d=70mm(2)轴瓦的宽度B=125mm(3)测力杆长度(测力点到轴承中心距离)L=120(4)测力计(百分表)标定值K=0.098N/格(5)加载系统初始载荷W=40N(轴瓦重量)(6)加载系统的加载范围0~1000N;调速范围3~500r/min(7)油压表量程0~0.6Mpa(0.025Mpa/格)(8)润滑油,夏季用L---AN46(30号机油)、动力粘度n40=0.04lPa.S:冬季用L---AN22(15号机油),动力粘度n40=0.020Pa.S.5.摩擦系数f测量装置径向滑动轴承的摩擦系数f随轴承的特性数ήn/p值的改变而改变。
目录摘要: ......................................................... - 1 - Abstract: ...................................................... - 2 - 1 绪论 ......................................................... - 3 -1.1 选题的背景和意义........................................ - 3 -1.2 滑动轴承试验台的研究现状................................ - 4 -1.3 设计的主要内容及要求.................................... - 6 -1.3.1 被测轴承的尺寸..................................... - 6 -1.3.2 测试条件........................................... - 6 -1.3.3 测试对象........................................... - 6 -2 滑动轴承的作用机理及相关参数估算 ............................. - 7 -2.1 滑动轴承动压形成的基本原理.............................. - 7 -2.2 滑动轴承试验台相关参数的估算............................ - 8 -2.2.1燃油泵滑动轴承的相关参数估算....................... - 8 -2.2.2 试验台摩擦转矩的估算............................... - 9 -3 滑动轴承试验台的设计 ........................................ - 10 -3.1 试验台总体布局及设计................................... - 10 -3.1.1 驱动系统.......................................... - 11 -3.1.2 润滑系统.......................................... - 11 -3.1.3 加载系统.......................................... - 12 -3.1.4 测量系统.......................................... - 12 -3.2 试验台主体台架及相关零件的设计......................... - 12 -3.2.1 支撑轴承座的设计.................................. - 13 -3.2.2 主轴的设计........................................ - 14 -3.2.3 联轴器的设计...................................... - 17 -3.2.4 油封设计:...................................... - 17 -3.3 驱动系统设计........................................... - 18 -3.3.1 变频电机的选择.................................... - 18 -3.3.2 变频器的选择...................................... - 20 -3.3.3 增速齿轮箱的设计.................................. - 20 -3.3.4 联轴器的选择...................................... - 22 -3.4 润滑系统设计........................................... - 23 -3.3.1 燃油泵中滑动轴承的润滑机理........................ - 23 -3.3.2 润滑系统原理...................................... - 24 -3.3.3 润滑系统液压泵的设计和选型........................ - 26 -3.3.4 液压泵驱动电机的选择.............................. - 27 -3.3.5 比例溢流阀的选择.................................. - 27 -3.3.6 比例流量阀的选择.................................. - 28 -3.4 加载系统设计........................................... - 29 -3.4.1 加载方案的选择.................................... - 29 -3.4.2 液压加载系统的原理................................ - 30 -3.4.3 液压系统主要元件的设计............................ - 32 -3.4.4 加载系统机构的设计................................ - 36 -3.5 测量系统设计........................................... - 37 -3.5.1 油膜压力分布的测量................................ - 37 -3.5.2 油膜温度分布的测量................................ - 40 -3.5.3 轴心轨迹测量...................................... - 41 -3.5.4 摩擦力矩测量...................................... - 42 -3.5.5 集流器的设计...................................... - 42 - 总结 .......................................................... - 44 - 致谢 .......................................................... - 45 - [参考文献] .................................................... - 46 -燃油泵滑动轴承试验台设计摘要:滑动轴承试验台通过模拟滑动轴承的工作情况,测试滑动轴承的各项性能参数,为分析影响滑动轴承润滑性能的因素,改善滑动轴承的润滑条件,优化轴承设计和延长轴承寿命等有重要作用。
滑动轴承实验实验项目性质:验证性实验计划学时:1一、实验目的1.观察径向滑动轴承液体动压油膜的形成过程与现象;2.观察载荷和转速改变时,径向和轴向油膜压力的变化情况;3.测定和绘制径向滑动轴承径向油膜压力分布曲线;4.测定径向滑动轴承的摩擦系数f和绘制摩擦特性曲线。
二、实验台的构造与工作原理(一)滑动轴承实验台1.实验台的构造实验台的构造如图所示。
实验台的传动装置由直流电机1通过v带传动2驱动轴4沿顺时针方向转动,由无级调速器实现轴4的无级调速,轴的转的转速由数码管直接读出。
图4-1 滑动轴承实验台2.轴与轴瓦间油膜压力测量装置轴由流动轴承支承在箱体3上,轴的下阗部泡浸在润滑油中。
在轴瓦5的一径向平面内沿周向钻有7个小孔,彼此相隔20每个小孔联接一个压力表6,用来测量该相应点的油膜压力,由此可以绘出径向油膜压力分布曲线。
沿轴瓦的一个轴瓦的一个轴向剖面内装有两个压力表,用来观察有限长度内滑动轴承沿轴向的油膜压力分布情况。
3.加载装置油膜的径向压力分布曲线是在一定的载荷和一定的转带下绘制的。
当载荷改变或轴的转速改变时测出的油膜压力值就不同,所绘出的压力分布曲线的形状也不同。
本实验台采用螺旋加载,转动螺杆7可改变载荷的大小,所加载荷之值通过传咸器用数码管数字显示,直接在实验台的操纵面板上读出(取中间值)。
4.实验台主要参数(1)轴的直径d=70mm(2)轴瓦的宽度B=125mm(3)测力杆长度(测力点到轴承中心距离)L=120(4)测力计(百分表)标定值K=0.098N/格(5)加载系统初始载荷W=40N(轴瓦重量)(6)加载系统的加载范围0~1000N;调速范围3~500r/min(7)油压表量程0~0.6Mpa(0.025Mpa/格)(8)润滑油,夏季用L---AN46(30号机油)、动力粘度n40=0.04lPa.S:冬季用L---AN22(15号机油),动力粘度n40=0.020Pa.S.5.摩擦系数f测量装置径向滑动轴承的摩擦系数f随轴承的特性数ήn/p值的改变而改变。
滑动轴承实验一、概述滑动轴承用于支承转动零件,是一种在机械中被广泛应用的重要零部件。
根据轴承的工作原理,滑动轴承属于滑动摩擦类型。
滑动轴承中的润滑油若能形成一定的油膜厚度而将作相对转动的轴承与轴颈表面分开,则运动副表面就不发生接触,从而降低摩擦、减少磨损,延长轴承的使用寿命。
根据流体润滑形成原理的不同,润滑油膜分为流体静压润滑(外部供压式)及流体动压润滑(内部自生式),本章讨论流体动压轴承实验。
流体动压润滑轴承其工作原理是通过韧颈旋转,借助流体粘性将润滑油带人轴颈与轴瓦配合表面的收敛楔形间隙内,由于润滑油由大端人口至小端出口的流动过程中必须满足流体流动连续性条件,从而润滑油在间隙内就自然形成周向油膜压力(见图1),在油膜压力作用下,轴颈由图l(a)所示的位置被推向图1(b)所示的位置。
图1 动压油膜的形成当动压油膜的压力p 在载荷F 方向分力的合力与载荷F 平衡时,轴颈中心处于某一相应稳定的平衡位置O 1,O 1位置的坐标为O 1(e ,Φ)。
其中e =OO 1,称为偏心距;Φ为偏位角(轴承中心O 与轴颈中心O 1连线与外载荷F 作用线间的夹角)。
随着轴承载荷、转速、润滑油种类等参数的变化以及轴承几何参数(如宽径比、相对间隙)的不同.轴颈中心的位置也随之发生变化。
对处于工况参数随时间变化下工作的非稳态滑动轴承,轴心的轨迹将形成一条轴心轨迹图。
为了保证形成完全的液体摩擦状态,对于实际的工程表面,最小油膜厚度必须满足下列条件:()21min Z z R R S h += (1)式中,S 为安全系数,通常取S ≥2;R z1,R Z2分别为轴颈和铀瓦孔表面粗糙度的十点高度。
滑动轴承实验是分析滑动轴承承载机理的基本实验,它是分析与研究轴承的润滑特性以及进行滑动轴承创新性设计的重要实践基础。
根据要求不同,滑动轴承实验分为基本型、综合设计型和研究创新型三种类型。
(1)掌握实验装置的结构原理,了解滑动轴承的润滑方式、轴承实验台的加载方法以及轴承实验台主轴的驱动方式及调速的原理。
实验台(使⽤说明书)RTPLC-4型可编程控制器实验台使⽤说明书1. 概述RTPLC型可编程控制器实验台根据⽬前我国⾼等院校⾃动控制专业及相关专业课程的实验内容,采⽤新型⼯艺精⼼设计⽽成。
本产品选⽤优质材料及元器件,保证了产品的可靠性和使⽤寿命。
本产品⼴泛适⽤于教学、PLC控制实验、科研开发等领域。
1.1 实验台分类实验台按结构分为三种类型:RTPLC-1型:演⽰实验采⽤挂箱结构;RTPLC-2型:演⽰实验采⽤挂箱和⾯板混合结构;RTPLC-3型:演⽰实验采⽤⾯板结构;RTPLC-4型:演⽰实验采⽤⾯板结构,整体为矮式。
实验台按PLC主机分为三种型号:RTPLC-A型:采⽤三菱FX系列PLC主机,点数为24~60点;RTPLC-B型:采⽤欧姆龙CPM1A系列PLC主机,点数为20~40点;RTPLC-C型:采⽤西门⼦S7-200系列PLC主机,点数为24~40点。
1.2 整机结构整机由实验桌和实验屏两部分组成,便于运输。
实验桌的右半部分可加装键盘和⿏标托板,右侧可加装显⽰器托板,在使⽤计算机时,使整体布局紧凑美观。
实验桌下部为⼤容积柜体,可放置相关实验挂箱及仪器设备等。
整机⾯板采⽤2.0mm厚单⾯环氧树酯敷铜板和铝板为基板,正⾯为彩⾊喷塑;外形美观,坚固耐⽤。
⾯板接线插座采⽤⾃锁紧式镀⾦迭插插座(弱电)或⾃锁紧式⾹蕉插座(强电),接触电阻⼩、防氧化、防锈蚀,使⽤寿命长。
实验插接线采⽤⾼纯度多股铜线,⼿感好、耐弯折,插头采⽤可拆装式结构,便于维修。
实验台提供220AC电源、24VDC稳压电源、0~12VDC可调电源和0~20mA直流可调电源(选配),采⽤电流型鉴幅鉴相漏电保护器(4型⽆)、优质漏电保护开关、电压型漏电保护电路(4型⽆)等多重防护措施,使实验安全得到充分保障,并能充分满⾜实验要求。
1.3 实验项⽬⽬前可提供的实验清单如下:基本指令编程练习抢答器数码显⽰礼花之光⼗字路⼝交通灯⽔塔⽔位控制(实物模拟)⾃动轧钢机⾃动装配流⽔线四相步进电机(实物模拟)液体⾃动混合三相异步电动机星/三⾓换接启动四节传送带(实物模拟)机械⼿动作模拟邮件分拣直流电机正反转加⼯中⼼⼑具库⾃控成型机电梯控制系统⽴体车库(注:可根据⽤户具体要求进⾏其它实验项⽬的开发)以上实验⼤部分配有主流⼯控组态软件演⽰(MCGS 5.1),使演⽰实验更加⽣动、形象且更加贴近实际的⽣产控制过程(注:以上软件需另购)2. 技术指标2.1 物理特性整机重量:约120Kg外形尺⼨:1200 (W;加装显⽰器托板后为1480)×680(T)×1270 (H)2.2 整机电源⼯作电源:单相三线 AC 220V±5% 50Hz±5%整机容量:660kVA熔丝规格:5×20-3A2.3 环境条件⼯作温度:-10~40℃贮存温度:-10~60℃⼯作湿度上限:90%RH(40℃)贮存湿度上限:90%RH(40℃)其它要求:避免频繁振动和冲击,周围空⽓⽆酸、碱、盐等腐蚀性⽓体。
本科毕业论文(设计)( 2013届 )题目:滑动轴承试验机实验及改进设计学院:专业:学生姓名:学号:指导教师:职称(学位):合作导师:职称(学位):完成时间:成绩:XXX教务处制学位论文原创性声明兹呈交的学位论文,是本人在指导老师指导下独立完成的研究成果。
本人在论文写作中参考的其他个人或集体的研究成果,均在文中以明确方式标明。
本人依法享有和承担由此论文而产生的权利和责任。
声明人(签名):年月日目录摘要 (1)英文摘要 (2)1 概述 (2)1.1 课题研究的目的和意义 (3)1.2 本课题在国内外的研究现状 (3)2 轴承试验机常用技术 (3)2.1 试验机主体 (4)2.2 测试技术 (4)2.3 测试参数 (4)2.4 加载技术 (5)2.5驱动技术 (5)3 ZCS-Ⅱ液体动压轴承实验台实验 (6)3.1 试验机实验仪器、系统组成以及主要参数 (6)3.2 油膜压力仿真与测试 (7)3.2.1实验操作系统界面介绍 (7)3.2.2油膜压力仿真与测试实验 (8)3.2.3 实验数据及分析 (8)4 ZCS-Ⅱ液体动压轴承实验机的改进 (15)4.1 ZCS-Ⅱ液体动压轴承实验机改进方案 (15)4.2温控器的选择 (15)4.3温度传感器的选择 (17)4.4 温升装置设计 (18)4.5温控装置工作原理 (20)5 总结 (25)致谢 (26)参考文献 (27)滑动轴承试验机实验及改进设计摘要:滑动轴承是指在滑动摩擦下工作的轴承。
在液体润滑条件下,滑动表面因被润滑油分开而并不直接接触,可以很大程度减小摩擦损失和表面磨损,油膜还能吸振。
ZCS-Ⅱ液体动压轴承实验台可用来观察滑动轴承的结构,做有关油膜压力和摩擦特性的实验,测定其摩擦特性曲线。
但润滑油的润滑性能受温度变化影响,研究和设计滑动轴承试验机的温控装置,使得润滑油保持恒温状态具有现实意义。
本设计依据国内外滑动轴承试验机的常用技术,提出了对滑动轴承试验机温控装装置的设计。
滑动轴承试验台主轴初步计算1. 试验台要求:1)主轴直径:40-60mm 。
2)转速: 由轴颈最大线速度S V =70m/s ,轴颈线速度计算公式:60S dnV π=;的主轴最高转速60SV n dπ=。
3)载荷:轴承最大比亚p=12Mpa ,轴承比亚计算公式:FP Bd=加载力: F P B d = ;4)材料: 主轴选择材料40Cr , []1σ- =70Mpa ,在200℃时,材料的弹性模量E = 202Gpa 。
5)强度及刚度:图中F 为加载力,R A 和R B 为 滚动轴承A 、B 处的支反力,T 为摩擦力矩。
F PBd =2A B FR R ==f F μ=11f F μ=122fd f d T =+ 其中f 、f 1为分别为滑动轴承和滚动轴承的摩擦力,取μ=0.02、1μ=0.002。
在垂直面内的弯矩:AC 段:2AC FxM =, (0≤x ≤/2L )BC 段:()2CB F L x M -=,(/2L ≤x ≤L ) 弯扭合成,计算当量弯矩 22)(T M M v α+=,轴单向稳定运转,去α=0.3。
由于摩擦系数很小,为了便于计算,取V M M ≈,对结果影响不大。
主轴中部: 44V FL PBdL M M ≈==。
轴颈尺寸变化处:2V FxM M ≈=。
2. 试验台结构:试验台两端有两滚动轴承支承,试验用轴承位于主轴中部,加载时直接加载于轴瓦上。
初选轴结构如下:初选主轴直径d=40mm ,d 1=35mm 。
主轴中部疲劳强度:ca σ =30.1V M d=20.4PBLd ≤[σ-1]=70Mpa , 得到 20.40.4407012ca d d L PB Bσ⨯⨯≤=⋅ 当/1B d =时,L ≤0.4407012⨯⨯=93.3mm ;当/1/2B d =时,L ≤0.44070212⨯⨯⨯=186.7mm 。
上述两种情况得出的主轴跨度不满足使用要求。
现考虑增加主轴直径,同时为使滚动轴承m D n ⋅值不致太大,故选择如下形式阶梯轴。
滑动轴承实验台使用说明书本实验台用于液体动压滑动轴承实验,主要利用它来观察滑动轴承的结构及油膜形成的过程,测量其径向油膜压力分布,通过测定可以绘制出摩擦特性曲线、径向油膜压力分布曲线和测定其承载量。
一、实验台结构简介与工作原理l. 本实验台主要结构图1所示:图1 滑动轴承实验台结构简图1. 操纵面板2. 电机3. V带4. 轴向压力传感器5. 螺旋加载杆6. 摩擦力传感器7. 径向压力传感器(7只)8. 传感器支承板 9. 主轴 10. 主轴瓦 11. 主轴箱2. 结构特点该实验台主轴9由两个高精度的深沟球轴承支承。
直流电机2通过V 带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。
主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加载大小由负载传感器测出,由面板上右数码管显示。
主轴瓦上装有测力杆,通过摩擦力传感器6可得出摩擦力值。
主轴瓦前端装有1号—7号七只测径向压力传感器7,传感器的进油口在轴瓦的21处。
在轴瓦全长的41处装有一个测轴向油压的压力传感器。
即第8号压力传感器,传感器的进油口在轴瓦的41处。
此外,还设置有转速传感器和油温传感器,共12个传感器。
二、主要技术参数试验轴瓦 内径 d =60mm 长度 B =120mm表面粗糙度 ∇7)材料 ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0—1000N(0~100kg ⋅f) 负载传感器精度0.01 量程0~10mm 压力传感器精度2.5% 量程0~0.6MPa 测力杆上测力点与轴承中心距离 L =120mm 测力计标定值 K =0.098N/格 电机功率 355W 调速范围:2~400rpm 试验台重量:52kg该实验台的操作面板如图2所示。
图2 实验台面板布置图1. 序号2. 转换按钮3. 压力显示4. 转速显示5. 摩擦力显示6. 外加载荷显示7. 油膜指示灯8. 调速旋钮9. 电源开关三、电气装置技术性能l. 直流电动机功率:355W2. 测速部份:a. 测速范围:2rpm~400rpmb. 测速精度:±1rpm3. 加载部份:a. 调整范围:O~1000N(0~100kg)b. 传感器精度: ±0.2%(读数)4. 工作条件:a. 环境温度:-10℃~+50℃b. 相对湿度:≤80%c. 电源:~200V土10%50Hzd. 工作场所:无强烈电磁干扰和腐蚀气体四、使用步骤1. 开机前的准备:a. 用汽油将油箱清理干净,加入N68(40#)机油至圆形油标中线。
b. 面板上调速旋钮逆时针旋到底(转速最低),加载螺旋杆旋至与负载传感器脱离接触。
2. 通电后,面板上两组数码管亮(左—转速,右—负载),调节调零旋钮使负载数码管清零。
3. 旋转调速旋钮,使电机在100~200rpm运行,此时油膜指示灯应熄灭。
稳定运行3~4分钟。
4. 即可按实验指导书的要求操作。
五、注意事项l. 使用的机油必须通过过滤才能使用,使用过程中严禁灰尘及金属屑混入油内。
2. 由于主轴和轴瓦加工精度高,配合间隙小,润滑油进入轴和轴瓦间隙后,不易流失,在做摩擦系数测定时,负载传感器的压力不易回零,为了使其迅速回零。
需人为把轴瓦抬起,使油流出。
3. 所加负载不允许超过1200N(即120kg),以免损坏负载传感器元件。
4. 机油牌号的选择可根据具体环境温度,在20#~40#内选择。
5. 为防止主轴瓦在无油膜运行时烧坏,在面板上装有油膜报警指示灯,正常工作时指示灯熄灭,严禁在指示灯亮时主轴高速运转。
6. 实验台应在卸载下启动或停止。
滑动轴承实验指导书一、实验目的1. 观察径向滑动轴承液体动压润滑油膜的形成过程和现象。
2. 观察载荷和转速改变时径向油膜压力的变化情况。
3. 观察径向滑动轴承油膜的轴向压力分布情况。
4. 测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。
5. 了解径向滑动轴承的摩擦系数f的测量方法和摩擦特性曲线λ的绘制方法。
二、实验台的构造与工作原理实验台的构造如图1所示。
1. 实验台的传动装置由直流电动机1通过V带2驱动主轴9沿顺时针(面对实验台面板)方向转动,由无级调速器实现无级调速。
本实验台主轴的转速范围为2~400rpm,主轴的转速由数码管直接读出。
图1 滑动轴承实验台构造示意图1. 直流电动机2. V带3. 负载传感器4. 螺旋加载杆5. 弹簧片6. 摩擦力传感器7. 压力传感器(径向7只,轴向一只)8. 主轴瓦9—主轴10—主轴箱2. 轴与轴瓦间的油膜压力测量装置轴的材料为45号钢,经表现淬火、磨光,由滚动轴承支承在箱体10上,轴的下半部浸泡在润滑油中,本实验台采用的润滑油的牌号为N68(即旧牌号的40号机械油),该油在20℃时的动力粘度为0.34Pa·S。
主轴瓦8的材料为铸锡铅青铜。
牌号为ZCuSnPb5Zn5(即旧牌号ZQSn6-6-3)。
在轴瓦的一个径向平面内沿圆周钻有7个小孔,每个小孔沿圆周相隔20°,每个小孔联接一个压力传感器7,用来测量该径向平面内相应点的油膜压力,由此可绘制出径向油膜压力分布曲线。
沿轴瓦的一个轴向剖面装有两个压力传感器(即4号和8号压力传感器)。
用来观察有限长滑动轴承沿轴向的油膜压力情况。
3. 加载装置油膜的径向压力分布曲线是在一定的载荷和一定的转速下绘制的。
当载荷改变或轴的转速改变时所测出的压力值是不同的,所绘出的压力分布曲线的形状也是不同的。
转速的改变方法如前所述。
本实验台采用螺旋加载,转动螺杆即可改变载荷的大小,所加载荷之值通过传感器数字显示,直接在实验台的操纵板上读出。
4. 摩擦系数f 测量装置径向滑动轴承的摩擦系数f 随轴承的特性系数λ=pnη值的改变而改变 (μ─油的动力粘度,n ─轴的转速,p —压力,p =BdW ,W ─轴上的载荷,W =轴瓦自重+外加载荷。
本机轴瓦自重为40N ,B ─轴瓦的宽度,d ─轴的直径。
本实验台B =120mm ,d =60mm),如图2所示。
图2 f — λ线图在边界摩擦时,f 随λ的增大而变化很小,进入混合摩擦后,λ的改变引起f 的急剧变化,在刚形成液体摩擦时f 达到最小值,此后,随λ的增大油膜厚度亦随之增大,因而f 亦有所增大。
摩擦系数f 之值可通过公式得到。
f =20.5530npπηψξψ⋅+ψ -相对间隙ξ-随轴承长径比而变化的系数,对于l/d<1的轴承,ξ =5.1⎪⎭⎫⎝⎛ld;l/d >=1时,ξ=1。
5. 摩擦状态指示装置指示装置的原理如图3所示。
当轴不转动时,可看到灯泡很亮;当轴在很低的转速下转动时,轴将润滑油带入轴和轴瓦之间收敛性间隙内,但由于此时的油膜很薄,轴与轴瓦之间部分微观不平度的凸峰处仍在接触,故灯忽亮忽暗;当轴的转速达到一定值时,轴与轴瓦之间形成的压力油膜厚度完全遮盖两表面之间微观不平度的凸峰高度,油膜完全将轴与轴瓦隔开,灯泡就不亮了。
图3 滑膜显示装置电路图三、实验方法与步骤l. 准备工作在弹簧片5的端部安装摩擦力传感器6,使其触头具有一定的压力值(见图1)。
2. 测取绘制径向油膜压力分布曲线与承载曲线图。
1)启动电机,将轴的转速逐渐调整到一定值(可取200rpm左右),注意观察从轴开始运转至200rpm时灯泡亮度的变化情况,待灯泡完全熄灭,此时已处于完全液体润滑状态;2)用加载装置分几次加载(但莫超过1000N即100kg⋅f)。
3)待各压力传感器的压力值稳定后,由左至右依次记录各压力传感器的压力值;4)卸载、关机;图4油压分布曲线(上图) 油膜承载曲线(下图)5)根据测出的各压力传感器的压力值按一定比例绘制出油压分布曲线,如图4的上图所示。
此图的具体画法是:沿着圆周表面从左到右画出角度分别为30°、50°、70°、90°、110°、130°、150°分别得出油孔点l 、2、3、4、5、6、7的位置。
通过这些点与圆心O 连线,在各连线的延长线上,据压力传感器测出的压力值(比例:0.1MP =5mm)画出压力线l-l' 、2-2' 、3-3' ……7-7' 。
将1'、2' ……7'各点连成光滑曲线,此曲线就是所测轴承的一个径向截面的油膜径向压力分布曲线。
为了确定轴承的承载量,用P i sin φi (i =1,2……7)求得向量1—1'、2—2'、3—3'……7—7'在载荷方向(即y 轴)的投影值。
角度φi 与sin φi 的数值见下表:然后将P i sin φi 这些平行于y 轴的向量移到直径0—8上。
为清楚起见,将直径0—8平移到图4的下部,在直径0″—8″上先画出轴承表面上的油孔位置的投影点1″、″……8″,然后通过这些点画出上述相应的各点压力在载荷方向的分量,即1″′、2″′……7″′等点,将各点平滑连接起来,所形成的曲线即为在载荷方向的压力分布。
用数格法计算曲线所围的面积,以0"—8"为底边做一个矩形,使其面积与曲线所包围的面积相等,那么,矩形的高P平均乘以轴瓦宽度B 再乘以轴的直径d便是该轴承油膜的承载量。
但考虑端部泄漏造成的压力损失,故油膜承载量为:q =P 平均 · B · d · δ式中,P 平均:径向单位平均压力B :轴瓦宽度120mm d :轴的直径60mm δ:湍泄系数,取0.7。
3. 测量摩擦系数f 与绘制摩擦特性曲线1) 启动电机,逐渐使电机升速,在转速达到250-350转时,旋动螺杆,逐渐加载到700N (70kg ⋅f ),稳定转速后减速。
2) 依次记录转速350-2转/分(350、250、150、80、20、2),负载为70kg ⋅f 时的摩擦力,也可适当增加测量点。
3) 卸载,减速,停机。
4) 根据记录的转速和摩擦力的值计算整理f 与npη值,按一定比例绘制摩擦特性曲线如图2所示。
液体动压滑动轴承实验报告(手工记录数据)专业班级 姓 名 日期 同 组 人 指导老师 成绩一、实验条件实验台型号:轴颈直径 d = mm ; 轴承宽度 B = mm ; 润滑油动力粘度η = Pa ·S ; 润滑油温度t = ℃ 二、油膜压力及承载曲线转速 n = rpm ; 负载 F = N ; 1. 油膜压力测试2. 径向油膜压力分布曲线3. 轴向油膜压力分布曲线KPaKPa三、摩擦特性曲线fηn/p四、思考题1. 载荷和转速的变化对油膜压力影响如何?2. 载荷对最小油膜厚度的影响如何?3. 试分析摩擦特性曲线上拐点的意义及曲线走向变化的原因。