软件无线电
- 格式:doc
- 大小:75.00 KB
- 文档页数:7
软件无线电软件无线电技术是指利用计算机软件技术实现无线电设备的控制、信号处理和通讯操作。
它的出现对无线电通讯技术的发展起到了重大的推动作用,使得无线电通讯技术向着数字化、智能化、高效化的方向不断发展。
软件无线电技术的起源可以追溯到20世纪80年代,当时计算机技术的发展以及数字信号处理技术的进步为软件无线电技术的兴起提供了技术基础。
1983年,美国开发了第一套软件无线电系统——软件电台(Software Radio),该系统通过DSP芯片实现了数字信号的采集、处理和发送。
这套系统的出现标志着软件无线电技术进入了实用化阶段。
软件无线电技术的主要特点是可编程性、可重构性和灵活性。
这些特点使得软件无线电可以符合不同的使用场景和应用需求。
比如,可以根据不同的频段、不同的调制方式以及不同的传输速率进行定制,实现智能化控制和自适应调整。
软件无线电技术的应用领域非常广泛,其中最主要的包括:航空航天、国防军事、广播电视、移动通信等。
在航空航天领域,软件无线电技术可以用于卫星通信、飞行控制、导航等方面,提高了通信的可靠性和精度;在国防军事领域,软件无线电技术可以用于军事通信、雷达和电子战等方面,提高了作战效率和战场指挥的精度;在广播电视领域,软件无线电技术可以用于数字电视、数字音频广播等方面,提高了广播电视的质量和体验;在移动通信领域,软件无线电技术可以用于3G、4G、5G等无线通信标准,提高了通信速率和网络容量。
软件无线电技术的发展趋势主要是数字化、网络化和智能化。
数字化是指数字信号处理技术的不断发展,使得传输速率和信道利用率不断提高;网络化是指软件无线电技术不断向网络化方向发展,构建起基于IP网络的无线电通信系统;智能化是指软件无线电技术逐步引入人工智能和机器学习技术,实现了更智能的调制方式、自适应调整和故障预测等功能。
当然,在软件无线电技术发展的过程中也会遇到很多挑战,如信号干扰、频谱管理问题、网络安全和隐私问题等。
软件无线电技术一、软件无线电的起源软件无线电(Software Radio) 这个术语,最早是美军为了解决海湾战争中,多国部队各军兵种进行联合作战时,所遇到的互联互通互操作(简称“三互”) 问题,而提出来的。
军用电台一般是根据某种特定用途设计的,功能单一。
虽然有些电台基本结构相似,但其信号特点差异很大,例如工作频段、调制方式、波形结构、通信协议、编码方式或加密方式不同。
这些差异极大地限制了不同电台之间的互通性,给协同作战带来困难。
同样,民用通信也存在互通性问题,如现有移动通信系统的制式、频率各不相同,不能互通和兼容,给人们从事跨国经商、旅游等活动带来极大不便。
为解决无线通信的互通性问题,各国军方进行了积极探索。
1992年5月,在美国通信体系会议上,MITRE公司的JoeMitola首次明确提出软件无线电的概念。
二、软件无线电概念及特点所谓软件无线电,就是说其通路的调制波形是由软件确定的,即软件无线电是一种用软件实现物理层连接的无线通信设计。
软件无线电的核心是将宽带A/D、D/A尽可能靠近天线,用软件实现尽可能多的无线电功能;其中心思想是在一个标准化、模块化的通用硬件平台上,通过软件编程,实现一种具有多通路、多层次和多模式无线通信功能的开放式体系结构。
应用软件无线电技术,一个移动终端可以在不同系统和平台间畅通无阻地使用。
软件无线电的主要优点是具有多频段、多功能通信能力和很强的灵活性,可以通过增加软件模块,很容易地增加新的功能。
它可以与其它任何体制电台实现空中接口进行不同制式间的通信,并可以作为其它电台的射频中继;还可通过无线加载来改变软件模块或更新软件;亦可以根据所需功能的强弱,取舍选择软件模块,降低系统成本,节约费用开支。
此外,软件无线电具有较强的开放性系统软件。
由于采用了标准化、模块化的结构,其硬件可以随着器件和技术的发展而更新或扩展,软件也可以随需要而不断升级。
软件无线电不仅能和新体制电台通信,还能与旧式体制电台相兼容。
通信中的软件无线电技术简介在现代通信系统中,无线电技术的应用越来越广泛,从短距离通信到长距离通信,从简单语音通信到复杂的数据传输,都离不开无线电技术的支持。
而软件无线电技术则是在无线电技术发展中崭露头角的一种技术,其能够通过软件方式实现无线电信号的生成和处理,可以节省设备成本,更灵活、高效地应用于各种通信场景中。
什么是软件无线电技术?软件无线电技术是一种新兴的数字通信技术,其底层实现原理是利用计算机或数字信号处理器(DSP)来实现无线电发送和接收信号的功能,而不需要传统的硬件来完成这些任务。
与传统的无线电通信系统相比,软件无线电技术具备更大的灵活性和可扩展性,可以根据需要快速配置和修改系统参数,实现多种通信模式和调制方式。
软件无线电技术的应用在无线电通信领域,软件无线电技术的应用越来越广泛,包括以下几个方面:1. 商业和消费电子软件无线电技术在商业和消费电子中有着广泛的应用,比如无线路由器、智能手机、蓝牙耳机、无线麦克风等设备,都使用了软件无线电技术。
2. 业余无线电通信业余无线电通信是一种爱好,也是一种紧急通信手段。
软件无线电技术在业余无线电中得到了广泛的应用,比如采用软件定义无线电技术的业余电台,可以实现多种通信模式和更高的带宽。
3. 军事通信军事通信是国家安全的重要组成部分,软件无线电技术在军事通信中的应用也越来越广泛。
软件无线电技术可以通过软件方式实现多种通信模式和调制方式,适应不同的战场环境和通信需求。
软件无线电技术的发展趋势软件无线电技术与现代通信技术的融合,将推动通信技术的快速发展和进步。
软件无线电技术在将来的发展中,将呈现以下几个趋势:1. 软件定义无线电技术将成为主流传统的无线电通信系统需要使用硬件电路来处理信号,其具备了固有的硬件限制,无法根据通信需求灵活配置和扩展,而软件定义无线电技术能够以软件方式实现无线电信号的发射和接收,因此将成为未来通信系统的主流技术。
2. 多天线技术将得到广泛应用多天线技术可以显著提高通信信号质量和带宽利用率,对于无线电通信领域而言,也有着重要的意义。
软件无线电方案引言软件无线电(Software-defined radio,简称SDR)是一种利用软件控制实现的无线电通信技术。
相对于传统的硬件无线电,SDR具有灵活性高、适应性强、可扩展性好等优势,因此在通信领域中得到了广泛的应用。
本文将介绍软件无线电的背景和原理,并探讨几种常见的软件无线电方案。
软件无线电的背景和原理软件无线电的定义软件无线电,简称SDR,是一种利用软件控制硬件无线电系统的通信技术。
与传统的硬件无线电相比,SDR通过将传统硬件中的信号处理和调制解调等功能转移到软件中实现,从而实现了无线电系统的灵活性和可扩展性。
软件无线电的原理软件无线电的原理基于软件定义的射频(RF)前端和数字信号处理(DSP)技术。
具体来说,软件无线电的原理可分为以下几个步骤:1.RF前端信号采集:利用射频前端设备,如天线、滤波器和放大器等,将无线电信号转换为电信号。
2.模数转换(ADC):将模拟信号转换为数字信号,以便后续的数字信号处理。
3.数字信号处理:通过使用DSP技术对数字信号进行处理,包括滤波、解调、解码、编码等。
4.数字信号生成:将数字信号转换为模拟信号,以便后续的射频信号输出。
5.射频信号输出:利用射频前端设备将数字信号转换为无线电信号进行发送。
通过以上步骤,软件无线电系统能够实现对无线电信号的灵活处理和控制。
软件无线电方案GNU RadioGNU Radio是一个开源的软件无线电开发工具包,提供了一套丰富的信号处理模块和工具,能够帮助开发人员快速搭建软件无线电系统。
GNU Radio的主要特点包括:•开源免费:GNU Radio是一个开源项目,可免费使用,并且有活跃的开发和社区支持。
•灵活性高:GNU Radio提供了大量的信号处理模块,如滤波器、解调器、解码器等,开发人员可以根据需求自由组合和调整这些模块,实现各种不同的软件无线电应用。
•可扩展性好:GNU Radio支持使用Python等编程语言进行开发,开发人员可以根据自己的需求编写自定义的信号处理模块,以满足特定应用的要求。
军职在线软件无线电答案
什么是软件无线电?软件无线电的特点是什么?
定义:软件无线电是多频带无线电.它具有宽带的天线、射频转换、模、数转和数模变换,能支持多个空中接口和协议,在理想状态下,所有方面(包括物理空中接口)都可以通过软件定义。
软件无线提供了一种建立多模式、多频段、多功能无线设备的有效并且相当经济的解决方案可以通过软件升级实现功能提高
特点:多频带、多模式、多功能(M3)工作:多频带是指软件无线电可以工作在很宽的频带范围内;多模式是指软件无线电能够使用多种
类型的空中接口,其调制方式、编码、帧结构、压缩算法、协议等可
以选择;多功能是指采用相同的无线电设备用于不同的应用中。
具有可重配、重编程能力:可重配置是指系统的操作软件(包括程序、参数以及处理环境的软件方面)或硬件(处理环境的硬件方面)的
改变。
软件无线电采用多个软件模块在相同的系统上可实现不同的标准,只需要选择不同的模块运行就可实现系统的动态配置。
功能的灵活性:软件无线电的功能由软件决定的,软件模块可以通过空中接口
或人工下载的方式获得,以增加或改变其无线电功能,因此其功能的
使用和配置非常方便、灵活。
结构的开放性:软件无线电的结构分为硬件和软件两大部分。
这
两大部分都具有模块化和标准化的特点,是一种开放式的体系结构,
使得研制、生产和使用各环节可以共享已有成果,共同推进软件无线
电技术的发展。
概要软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。
功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。
软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。
软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。
软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。
简称SWR。
理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。
全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。
一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。
在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。
例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。
在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defin ed Radio,SDR)。
SDR被认为仅具有中频可编程数字接入能力。
发展历史无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。
软件无线电技术在现代的通信系统中,无线电技术是至关重要的一种通信技术。
随着技术的不断提高,传统的硬件无线电技术已经不能满足人们的需求,软件无线电技术应运而生。
在这篇文章中,我们将深入了解软件无线电技术。
什么是软件无线电技术软件无线电技术(Software-defined radio,SDR)是指通过软件控制的无线电系统,相当于将原本通过硬件实现的信号处理功能全部或部分转移到了软件中。
在这种系统中,无线电信号可以使用通用计算机上的软件进行处理和解码。
通俗地说,SDR是一种使用通用计算机作为数字信号处理器的无线电技术。
通过使用计算机处理无线电信号,可以实现更灵活、更高效的无线电通信。
SDR的工作原理SDR的核心是一个通用计算机,通过一些硬件设备与无线电信号进行交互。
与传统的硬件无线电系统不同,SDR的信号处理和解码功能全部或部分由软件实现。
软件无线电技术涉及到许多硬件设备,包括天线、前置放大器、模数转换器、数字信号处理器等。
这些设备共同工作,使信号传输更加高效、稳定,提高了信号的质量和可靠性。
在SDR中,无线电信号可以通过数字信号处理器进行处理和解码。
数字信号处理器是计算机中的一个硬件设备,它可以对数字信号进行实时处理和解码。
软件无线电技术的优势SDR相对于传统的硬件无线电技术有许多优势。
更灵活的频谱利用由于SDR可以实现实时处理和解码,所以可以根据需要改变通信方式,比如调整设备的信号处理算法、调整频率等,从而实现更灵活的频谱利用。
更高的通信效率SDR的频谱利用率更高,同时能够实时处理和解码无线电信号,大大提高了通信效率。
更容易升级和扩展由于SDR的功能实现大部分由软件完成,所以可以通过更新软件来实现设备的升级和扩展。
更好的抗干扰能力SDR可以通过处理无线电信号的方式来提高对抗干扰的能力。
SDR在处理干扰信号时,可以实时调整处理算法,从而更好地抵御干扰。
SDR的应用领域SDR已经被广泛应用于军事、航空、无线电电视等领域。
软件无线电实验报告软件无线电实验报告引言:软件无线电(Software Defined Radio,简称SDR)是一种新兴的无线通信技术,它通过软件来实现无线电信号的处理和调制解调。
相比传统的硬件无线电,SDR具有更高的灵活性和可配置性。
本实验旨在通过搭建一个简单的SDR系统,探索其原理和应用。
一、实验目的本实验的目的是搭建一个基于SDR的无线通信系统,并通过实际操作来了解SDR的工作原理和应用场景。
具体实验目标如下:1. 理解SDR的基本原理;2. 学习使用SDR平台进行信号处理和调制解调;3. 实现简单的无线通信功能。
二、实验环境和工具1. 硬件设备:电脑、SDR硬件平台(如RTL-SDR等);2. 软件工具:SDR软件平台(如GNU Radio等)。
三、实验步骤1. 搭建SDR硬件平台:将SDR硬件连接至电脑,确保硬件设备正常工作;2. 安装SDR软件平台:根据硬件平台的要求,下载并安装相应的SDR软件平台;3. 配置SDR软件平台:根据实验需求,设置SDR软件平台的参数,如采样率、中心频率等;4. 实现信号接收:使用SDR软件平台接收无线电信号,并通过可视化界面展示信号的频谱特征;5. 实现信号处理:使用SDR软件平台对接收到的信号进行处理,如滤波、解调等;6. 实现信号发送:使用SDR软件平台将处理后的信号发送出去,构建一个简单的无线通信链路;7. 进一步实验:根据实际需求,深入研究SDR的其他应用领域,如无线电频谱监测、无线电定位等。
四、实验结果与分析通过搭建SDR系统并进行实验操作,我们成功实现了无线信号的接收、处理和发送。
在信号接收方面,我们能够准确地捕获无线电信号,并通过频谱分析工具展示信号的频谱特征。
在信号处理方面,我们可以使用SDR软件平台提供的各种信号处理模块对接收到的信号进行滤波、解调等操作。
在信号发送方面,我们可以将处理后的信号通过SDR软件平台发送出去,实现简单的无线通信功能。
浅析软件无线电的体系结构及应用软件无线电(Software Defined Radio,简称SDR)是一种通过软件控制硬件进行射频信号处理的无线电通信技术。
它基于微处理器、数字信号处理器和专用的软件,能够实现对无线电信号的调制、解调、滤波、编码、解码等处理过程。
软件无线电的体系结构主要由前端硬件、信号采集模块、信号处理模块和应用软件等组成,并广泛应用于无线通信、雷达、千兆以太网等领域。
软件无线电的体系结构由以下几个主要部分组成:1. 前端硬件:包括天线、射频前端(RF front-end)和模数转换器(ADC)。
天线负责接收或发射无线信号,射频前端进行信号放大、滤波、混频等处理,模数转换器将模拟信号转换为数字信号,为后续的数字信号处理做准备。
2. 信号采集模块:主要由模数转换器、FPGA(Field Programmable Gate Array)和时钟同步电路组成。
模数转换器负责将模拟信号转换为数字信号,FPGA用来对数字信号进行处理和控制,时钟同步电路用于保证各个模块之间的同步性。
3. 信号处理模块:由软件、FPGA和DSP(Digital Signal Processor)组成。
软件用于控制信号处理流程和参数,FPGA和DSP分别负责实现硬件的信号处理算法和信号处理运算。
4. 应用软件:为用户提供图形界面或命令行界面,实现与用户交互和数据展示。
用户可以通过应用软件选择信号处理算法、调节参数等。
软件无线电的应用非常广泛,主要有以下几个方面:1. 无线通信:软件无线电可以实现无线通信中的调制解调、滤波、编码解码等过程,可应用于手机、卫星通信、无线电对讲机等通信设备中。
由于软件无线电的可编程性,可灵活适应不同的通信标准和频谱资源分配,提高通信系统的灵活性和性能。
2. 雷达:软件无线电可以应用于雷达系统中,实现信号处理、目标识别和目标跟踪等功能。
由于雷达系统的复杂性和变化性,软件无线电可以根据需要进行灵活的信号处理和算法调整,提供更强大的雷达能力。
浅析软件无线电的体系结构及应用软件无线电是一种基于软件定义无线电技术的新型通信系统,它通过软件和计算机进行无线电信号的处理和控制,能够灵活地配置和重新配置硬件设备,实现多种无线通信功能。
软件无线电的体系结构主要包括前端硬件、中间件和后端软件三部分,它们共同完成无线电信号的接收、处理和传输。
前端硬件是软件无线电的物理层,负责将无线电信号转换为数字信号。
它包括射频前端、模拟前端和数字前端三部分。
射频前端主要负责频率合成、滤波和放大等工作;模拟前端则进行模拟信号的调制、解调和振幅、频率、相位等参数的调整;数字前端将模拟信号进行采样和量化,将其转换为数字信号。
前端硬件的设计需要根据不同的通信标准和需求进行优化和配置,能够适应不同的信号类型和频段。
中间件是软件无线电的核心部分,它负责对接收到的数字信号进行处理和解码。
中间件通过一系列算法,包括信号分析、频谱分析、信号解调、差错控制等,将数字信号转换为机器能理解的数据。
中间件还具备信号识别和频谱监测的功能,可以自动识别无线电信号的类型和属性,并进行合适的处理。
中间件的设计需要考虑时延、计算复杂度和功耗等因素,保证系统具备实时性和高性能。
后端软件是软件无线电的控制层,负责协调和管理前端硬件和中间件的工作。
后端软件通过与中间件进行通信,将数据传输到应用层或其他系统中。
后端软件具备多种功能,包括频率规划、频谱管理、功率控制、流量控制等,能够灵活地配置和管理整个软件无线电系统。
后端软件的设计需要考虑系统的稳定性、可靠性和安全性,确保系统能够长时间稳定运行,并能够应对各种异常情况。
软件无线电具有广泛的应用领域,包括通信、广播、雷达、定位等。
在通信领域,软件无线电可以实现多种通信方式,包括调频、调幅、调相、多址等,能够适应不同的通信标准和需求。
在广播领域,软件无线电可以实现多路广播、频段共享和频率规划等功能,提高频谱利用率。
在雷达和定位领域,软件无线电具备灵活的频率控制和信号处理能力,能够实现高分辨率和高精度的雷达和定位系统。
浅析软件无线电的体系结构及应用软件无线电是利用软件来实现无线电通信系统的一种技朰。
它将传统的硬件无线电功能转移到了软件的层面上,使得无线电通信系统更加灵活、智能和易于管理。
在现代通信领域,软件无线电技术已经成为了一种重要的发展趋势。
本文将对软件无线电的体系结构及应用进行浅析。
软件无线电的体系结构包括物理层、数据链路层、网络层和应用层等组成部分。
在物理层,软件无线电通过软件来实现对射频信号的调制解调、频谱分析和信道估计等功能,实现了软件定义的射频前端。
在数据链路层,软件无线电通过软件来实现对MAC层和LLC层的协议栈,支持数据的封装和解包、信道访问和功率控制等功能。
在网络层,软件无线电通过软件来实现对IP协议栈、路由协议和移动性管理等功能,支持数据的路由和转发、QoS管理和移动性支持等功能。
在应用层,软件无线电通过软件来实现对各种应用服务的支持,如VoIP、视频流媒体和物联网等。
软件无线电的应用领域非常广泛,包括通信系统、雷达系统、无线电频谱监测系统和卫星通信系统等。
在通信系统中,软件无线电可以实现各种不同无线接入技术的融合,如WiFi、蜂窝网络和蓝牙等,提高通信系统的覆盖范围和数据传输速率。
在雷达系统中,软件无线电可以实现波形灵活变换和自适应波束形成等功能,提高雷达系统的检测性能和抗干扰能力。
在无线电频谱监测系统中,软件无线电可以实现对无线电频谱的实时监测和分析,提高频谱资源的利用效率和频谱管理的智能化水平。
在卫星通信系统中,软件无线电可以实现对地面站和卫星之间的通信链路的自适应调整,提高通信系统的可靠性和稳定性。
软件无线电的优势主要体现在以下几个方面。
软件无线电使得无线电通信系统的功能实现完全不再依赖于硬件,而仅仅依赖于软件的编程和配置,从而使得无线电通信系统更加灵活和可配置。
软件无线电使得无线电通信系统的性能实现不再依赖于特定的硬件平台,而仅仅依赖于软件的算法和处理器的性能,从而使得无线电通信系统更加智能和可扩展。
浅析软件无线电的体系结构及应用
软件无线电是一种基于软件定义网络技术的无线通信系统,它以软件为中心,实现了
硬件和软件的分离。
在传统的无线通信系统中,硬件和软件是紧密耦合的,而在软件无线
电中,硬件的功能完全由软件控制和定义,从而实现了灵活性和可定制性的提高。
软件无线电的体系结构主要包括三个部分:前端硬件、中间件和后端软件。
前端硬件
指的是与无线信号传输相关的硬件设备,包括射频部分、中频部分和基带部分等。
中间件
是连接前端硬件和后端软件的重要组成部分,它负责对信号进行处理和转换,并将信号传
递给后端软件进行进一步处理。
后端软件是最核心的部分,它负责各种无线协议的实现和
无线信号的处理,包括信号解调、调制、编码解码等。
软件无线电的应用非常广泛,可以用于各种无线通信系统中。
软件无线电可以用于移
动通信系统中,提供高速、高质量的无线通信服务。
软件无线电可以用于卫星通信系统中,实现卫星间的通信和地面与卫星的通信。
软件无线电还可以用于电视广播系统、无线电测
向系统、雷达系统等领域,提供高效的通信和测量服务。
软件无线电还可以用于军事通信
系统中,提供安全、可靠的通信保障。
软件无线电是一种基于软件定义网络技术的无线通信系统,具有灵活性和可定制性的
优势。
它的体系结构包括前端硬件、中间件和后端软件,应用于移动通信、卫星通信、电
视广播、雷达系统、军事通信等领域。
随着软件无线电技术的不断发展,相信它将在未来
的无线通信领域中起到越来越重要的作用。
浅析软件无线电的体系结构及应用软件无线电(Software Defined Radio,SDR)是一种无线电通信系统,它使用软件控制和数字信号处理技术来实现无线电的发射和接收。
相比传统的硬件无线电系统,SDR具有灵活性高、成本低、容易升级和适应多种通信标准等优点,因此在军事、民用通信、电子对抗等领域都得到了广泛的应用。
本文将从软件无线电的体系结构和应用方面进行浅析。
一、软件无线电的体系结构软件无线电的体系结构主要分为前端硬件子系统、中间件及处理器子系统以及应用软件子系统三个部分。
1. 前端硬件子系统前端硬件子系统是软件无线电的基础,它负责将无线电频率信号转换成数字信号并进行滤波、放大、混频等处理。
在前端硬件子系统中,主要包含了射频前端和模拟数字转换器(ADC)两个主要组成部分。
射频前端主要包括射频滤波器、射频放大器、混频器、数字控制振荡器(DDS)等模块,它们可以将接收到的无线电频率信号进行滤波、放大和频率转换,然后将信号输入到ADC进行模拟数字转换。
ADC主要负责将模拟射频信号转换成数字信号,一般采用高速、高精度的模数转换器,以保证对高频、宽带信号的快速、精确的采样和数字化。
2. 中间件及处理器子系统中间件及处理器子系统是软件无线电的核心部分,它负责对接收到的数字信号进行处理、解调、解码等操作。
中间件及处理器子系统通常包含了数字信号处理器(DSP)、通用处理器(CPU)、FPGA等处理器及相关软件。
DSP主要负责数字信号的处理、解调和解码,它可以根据不同的通信标准、调制方式、信道状态等进行动态配置,实现对信号的灵活处理。
FPGA主要用于实现对信号的快速硬件加速处理,可以提高软件无线电的运算速度、实时性和并行性能。
FPGA还可以实现对不同通信标准、无线电协议的快速切换和适配。
CPU主要负责软件部分的控制、调度、管理和应用,它可以通过软件的方式对整个软件无线电系统进行配置、控制和管理。
3. 应用软件子系统应用软件子系统是软件无线电的最终使用环节,它主要负责和用户进行交互、实现通信、数据处理、显示等功能。
软件无线电摘要:本文主要论述了软件无线电的基本概念、组成、关键技术、应用及制约因素。
1.软件无线电的基本概念软件无线电技术,顾名思义是用现代化软件来操纵、控制传统的“纯硬件电路”的无线通信。
这就打破了有史以来设备的通信功能的实现仅仅依赖于硬件发展的格局,所以说软件无线电技术的出现是通信领域继固定通信到移动通信,摸拟通信到数字通信之后第三次革命。
软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电的各种功能,从基于硬件、面向用途的无线通信机设计中解放出来。
软件无线电的核心是将宽带A/D和D/A尽可能靠近天线(将A/D和D/A由基带移到中频甚至射频),用实时高速DSP/CPU代替传统的专用数字电路做A/D转换后的一系列处理,将无线通信的各种功能用软件进行定义。
软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件的配置结构,实现新的功能。
软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。
理想软什无线电的组成结构如图l一1所示。
2.软件无线电的组成及关键技术软件无线电技术是软件化、计算密集型的操作形式。
它与数字和模拟信号之间的转换、计算速度、运算量、存储量、数据处理方式等问题息息相关,这些技术决定着软件无线电技术的发展程度和进展速度。
软件无线电主要由天线、射频前端、宽带模数/数模转换器(ADC/DAC)、通用数字信号处理器(DSP)以及各种软件组成。
理想的软件无线电系统的天线部分应该能够覆盖全部无线通信频段,通常来说,由于内部阻抗不匹配,不同频段电台的天线是不能混用的。
而软件无线电要在很宽的工作频率范围内实现无障碍通信,就必须有一种无论电台在哪一个波段都能与之匹配的天线,所以,实现软件无线电通信,必须有一副可通过各种频率信号而且线性性能好的宽带天线。
射频前端在发射时主要完成上变频、滤波、功率放大等任务;接收时实现滤波、放大、下变频等功能。
综合课程设计题目:软件无线电的兴起、特点及其关键技术姓名:陈鹏学号:150830114日期:2011年12月20号软件无线电的兴起、特点及其关键技术陈鹏摘要:本文回溯了软件无线电的起源动因与发展过程,讨论了软件无线电的主要特点和应用领域,重点介绍了软件无线电实现的关键技术与器件。
软件无线电是实现无线通信新体系结构的一种技术,经过几年的发展,其重要性和可行性正逐步被越来越多的人所认识和接受。
软件无线电的重要价值体现在:硬件知识作为无线通信的基本平台,而许多的通信功能则是通过软件来实现的,这就打破了长期以来设备的通信功能实现仅仅依赖于硬件的发展格局。
所以软件无线电技术的出现是通信领域继固定到移动,模拟到数字之后的第三次革命。
关键词:软件无线电移动通信互联互通互操作The Key Technology and Characteristics of Software RadioChen PengAbstract: This paper traces the origins of software radio motivation and development process , discusses the main features and software radio applications ,focusing on the software radio implementation of key technologies and devices. Software radio is a wireless communication architecture of a new technology, after years of development , its importance and feasibility are gradually being more and more people are recognized and accepted. Software radio is reflected in the important value: the wireless communication hardware knowledge as a basic platform and many of the communication function is achieved through software, which broke the long-standing communication devices depending only on the hardware realization of the development pattern. Therefore, when the emergence of software radio technology following the fixed to mobile communications , analog to digital after the third revolution.Key words: software radio ,mobile communication ,interconnect, intercommunication ,interoperate1.软件无线电起源1.1软件无线电源于军事通信的需求软件无线电( Software Radio ) 这个术语, 最早是美军为了解决海湾战争中, 多国部队各军兵种进行联合作战时, 所遇到的互联互通互操作( 简称“三互”)问题, 而提出来的. 以往美军的军事通信装备无论是工作频段、通信体制、信息传输格式等方面, 在陆、海、空三军都是各自为政, 互不兼容. 导致在联合作战时各军兵种间无法进行快速沟通、互传信息情报,结果仅是名义上的联合作战, 而实际上只是各军兵种的简单参战, 形成不了真正意义上的“联合”作战.通过海湾战争, 充分暴露了军事通信互通性差、反应速度慢、带宽太窄、速率太低等一系列影响联合作战的关键技术问题. 在1992 年5 月美国通信体系会议上, Joseph Mi-tola 首次提出软件无线电( SWR. Software radio) 概念.1995 年IEEE Communication Magazine 出版了软件无线电专集.同年美国防部高级研究局( DARPA) 提出了SPEAKeasy 计划, 又称“易通话”计划. 该计划的最终目标是开发一种能适应联合作战的三军统一的多频段、多模式、多功能电台, 即MBMMR (Multi- Band Multi- Mode Radio) 电台. “易通话”计划分三个阶段来实施, 第一阶段主要完成预研和需求分析; 第二阶则完成模型样机的开发, 并进行靶场演示验证; 第三阶段则进入装备研制和采购,并开发满足三军装备需求的多频段多模式联合战术无线电系统( JTRS) , 已于2004 年装备部队( 计划执行进程如表1 所示) .据美军称, 一旦JTRS 电台开发成功, 若未经特许, 任何军兵种不得采购其他体制的电台, 也就是说JTRS 电台将成为未来美军三军互联互通的主要战术通信装备. 美军的这一行动从军用需求方面大大推动了MBMMR 电台的开发进程, 也有力促进了软件无线电技术的迅猛发展.1.2民用移动通信网络需求是软件无线电技术发展的巨大驱动力民用移动通信的需求是软件无线电技术进步与发展的巨大驱动力. 移动通信经历了第一代( 1G) 模拟系统, 第二代( 2G) 数字系统( GSM 和基于IS- 95的CDMA) , 直至目前第三代( 3G) 个人通信系统开发研制. 无论是用户, 还是运营商, 都希望建立一个全球统一的标准来实现无缝隙覆盖通信体系. 国际电联( ITU) 在第三代移动通信体制标准制订过程中, 世界各国政府和各大集团公司提交多种提案, 经国际同行专家们多次考评、论证、反复协调后仍保留了三种基本提案, 即确定了美国的CDMA- 2000、欧洲的W- CDMA、中国的TD- SCDMA. 而下一代( 3G 或4G) 移动通信网络的需求将是: 多频段、多模式、多功能、多媒体的模块化体系, 要求模块即插即用. 软件无线电( SWR) 技术领域的发展能满足新一代移动网络的这些需求. 当软件无线电在军事通信中得到应用的同时, 一些有远见的通信专家亦看好民用移动通信市场需求, 1996 年发起了MMITS 论坛( 模块化多功能信息变换系统) , 至1998 年, GSM MOU 的软件无线电版本提出了向3G 演进可能性的论述.1999 年4 月IEEE JSAC 出版了关于软件无线电的选集. 同年国际无线电科学家联合会, 在日本举行了软件无线电会议. 此后成立了软件无线电技术工作组,集中关SDR( Software Defined radio) 在3G 实现的可能性. 民用软件无线电的发展状况如图1 所示. 软件无线电( SWR) 是指一种全部可编程的无线电技术.图 1中COTS Handset 属于ASIC 基带可编程, HF STR-2000 是基带可编程短波数字通信系统. 由ASIC实现中频( IF) 数字接入的蜂窝基站( SWR Cell Site) ,和由FPGA 和DSP 实现IF 数字接入的SPEAKeasy-Ⅱ, 都属于SDR, 代表国际软件无线电现阶段软化程度较高水平.Virtual Radio 是灵活性更高的通信处理器来实现IF 数字接入, 代表目前SDR 的最好水平.在天线后射频( RF) 直接采由以上可见军事通信与民用移动通信市场需求是软件无线电技术进步与发展的推动力. 是解决目前无线通信多标准、多模式兼容工作和互操作性, 频率资源共享的最佳途径.2.研究现状软件无线电技术具有结构的开放性、软件的可编程性、硬件的可重构性以及功能和频段的多样性等特点,无论在军事还是在商用通信中都有着巨大的应用潜力。
也正是因为这些独特的优势,引发了全球对软件无线电技术的关注和研发热潮。
除美国在90 年代初开始实施易通话计划并成功地研制出多功能多频段电台外,欧洲、日本、中国等全球其它地区也纷纷开展了各自的软件无线电技术项目。
欧洲委员会已将软件无线电技术列为重要的研发项目,大量与软件无线电技术相关的研究项目正在其ACTS 计划中进行。
受潜在的商业利益所驱动,其研究重点集中在第三代标准上,这包括FIRST(灵活的综合无线电系统和技术)、FRAMES (未来无线电宽频段多址系统)和SORT 等项目。
前两个项目利用软件无线电台样机研究开发下一代无线接口。
其中FIRST 项目主要是评估实现软件重构空中接口的问题。
目前最公开的工作集中在RF 结构最佳划分方法及数字处理的实现上。
SORT 主要是开展有关第三代系统(UMTS)在地面和卫星接入方面的硬件重构问题的研究,演示灵活而有效的软件可编程电台,实施该项目的目标是:• 为自适应无线接入制定要求,包括定义功能结构和数字信号处理要求。
• 研究并设计更加灵活而有效的处理结构。
• 在可重构硬件上实施两种无线接口的关键功能。
• 将整个项目与UMTS/FPLMTS 标准化工作结合起来。
在日本,1998 年底,该国电气、信息和通信工程师协会(IEICE)成立了软件无线电技术研究小组(SR-TG),以推动软件无线电技术的研发工作。
由于日本多数从事软件无线电技术工作的研究人员都是以无线通信、电气或电子工程为背景,因此其研究重点集中在硬件结构。
目前研究范围涉及结构、器件、算法、描述语言和应用程序接口。
为了证实软件无线电技术的可行性,多家机构已开发出基于软件无线电技术的样机,并以此作为日本软件无线电技术应用研究的第一步。
日本无线电工商协会(ARIB)的一研究小组不仅开发出适用于各类系统的通用终端,而且开发出能应付日益复杂的无线电波环境的无线监控设备。
作为应用实例之一,目前已生产出样机并进行了评估。
该样机所提供的功能包括:• 多模式、多速率调制• 到达方向的预测• 扰波的抑制• 无线电波特性测量• 软件下载NTT 已开发出适用于各类蜂窝系统的基于软件的无线电基站样机和个人电台。
NEC 已开发出能满足未来需求的软件接收机,并对此进行了评估。
日立Kokusai Electric 已开发出与数字和模拟调制通用波形兼容的样机。
Toyo CommunicationEquipment 和ToyoElectric Power Co. 开发出应用于无线基站的基于软件无线电台样机。
东芝公司对手持软件无线电台的宽频而灵活的接收机进行了研究。
索尼计算机科学实验室提出了一种称为软件可编程和硬件可重构结构的软件无线电平台,符合多频段多模式无线标准,适用于无线LAN 和蜂窝电话系统。