新人教版七年级数学下册第八章《实际问题与二元一次方程组(三)》学案1
- 格式:doc
- 大小:81.00 KB
- 文档页数:2
新课内容:问题:教材106页探究3如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?1.总揽题意,分析数量关系(设计说明:由于探究3 题目较长,数量关系比较多且不易理清,所以先通过几个问题引导学生准确把握题意,找出题目中的等量关系,为列方程组解决问题扫清障碍)问题1:本题已知的条件有哪些?问题2:要解决的问题是什么?这批产品的销售款-(原料费+运输费)=?根据题目条件,运输费=15000+97200,销售款、原料费都不能直接求出.问题3 :产品的销售款、原料费与那些量有关?是什么关系?销售款=产品数量×产品单价,原料费=原料数量×原料单价,问题4 :你能找出题中蕴含的等量关系,列出方程组吗?问题5 :题中的数据比较多,你是用什么方法理清的?.设产品重x吨,原料重y吨,填写下表分析数量关系产品x吨原料y吨合计产品x吨原料y吨合计公路运费(元) 1.5×20x 1.5×10y 1.5(20x+10y)铁路运费(元) 1.2×110x 1.2×120y 1.2(110x+120y) 价值(元)8000x 1000y由表中内容及题目条件可以得出:铁路运费=1.2(110x+120y)=97200公路运费=1.5(20x+10y)=15000求出x,y的值以后,原料款1000y,销售款8000x可求,于是问题获解.(教学说明:教师提出问题,学生思考、交流之后师生共同得出结论.学生回答问题时,要把理由交代清楚,尤其是自己的思考过程,以便学生之间相互学习.)问题6:通过计算,你认为长青化工厂在这次买卖过程中是赚了还是赔了?2.思考内化,解决问题解:设产品重x吨,原料重y吨,根据题意得解这个方程组,得即产品重300吨,原料重400吨所以销售款-原料费-运输费=8000×300-1000×400-15000-97200=1887800答:这批产品的销售款比原料费与运输的和多1887800元.(教学说明:学生独立解答,一组同学板演.教师巡视时,及时为学习有困难。
课题8.3实际问题与二元一次方程组⑶【学习目标】:1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用;2通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性【学习重点】:通过实践与探索,运用二元一次方程组解决实际问题【学习难点】:通过实践与探索,运用二元一次方程组解决实际问题.【学法指导】:一【自主学习】(一)预习自我检测(认真自学课本106页探究3,记录下疑难问题,课堂上共同讨论)二【合作探究】活动1 探究用二元一次方程组解决实际问题(先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流与评价)如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元(吨·千米),铁路运价为1.2元(吨·千米),且这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?⑴销售款与什么有关?原料费与什么有关?⑵设产品重x吨,原料重y吨.根据题中数量关系填写下表.12⑶题目所求的数值是________________________________,为此需先解出___与____ . ⑷由上表,列方程组⑸解这个方程组,得 ____,____.x y =⎧⎨=⎩因此,这批产品的销售款比原料费与运输费的和多 ________________________元.从以上探究可以看出,方程组是解决含有多个未知数问题的重要工具.要根据问题中的数量关系列出方程组,解出方程组的解后,应进一步考虑它是否符合问题的实际意义.活动2 练习医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?(小组共同讨论思路,完成后交流心得体会)三【达标测试】1.某所中学现在有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B 商品用了840元.打折后,买500件A商品和500件B商品用了9600元.比不打折少花多少钱?四、【我的感悟】:这节课我的最大收获是:我不能解决的问题是:________________________________________________________________________【课后反思】:3。
实际问题与二元一次方程组教学目标:1、能够利用二元一次方程组建立模型并解决实际问题。
2、经历探索方程组解决实际问题的过程,感受建立有效数学模型的意义。
3、培养分析、解决问题的能力,体会“建模”的实际应用价值,感受数学文化。
教学重难点:重点:利用二元一次方程组解决实际问题。
难点:确定解题策略,比较估算与精确计算。
关键:找出等量关系。
教学过程:一、问题引入,揭示目标前面我们讨论了二元一次方程组的解法,并用二元一次方程组解决了一些实际问题,本节我们继续探究如何用二元一次方程组解决实际问题。
同学们请阅读探究1:养牛场原有30只母牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940 kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg.你能否通过计算检验他的估计? 二、问题启发,探究新知问题1:如何理解“通过计算检验他的估计”这句话?(使学生明确估算的值不是这道探究中的已知量,是需要检验的量,也就是要求的未知数。
) 问题2:探究中哪些是已知量,哪些是未知量?有几个等量关系? 问题3:能否通过方程的知识解决这个探究问题?引导学生依据发现的等量关系,建立方程组:设每头大牛和每头小牛1天分别约用饲料kg x 和kg y ,根据题意,得⎩⎨⎧=+=+94020426751530y x y x教师追问:列一元一次方程能解决这个问题吗?问题4:先独立解方程组,再交流一下你是如何解这个方程组的。
问题5:饲养员李大叔的估计正确吗? 探究1小结:师生共同回顾解决探究1的过程,教师提问: (1)在列方程组之前我们先做了哪些工作? (2)列方程组解决实际问题的一般步骤是什么? 三、问题变换,深化理解1、甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x ,乙数为y ,则方程组(1)1635x y x y +=⎧⎨=⎩,;(2)1653x y x y +=⎧⎨=⎩,;(3)16530x y y x -=⎧⎨-=⎩,;(4)1653y x x y -=⎧⎪⎨=⎪⎩,中,正确的有( ) A.1组B.2组C.3组D.4组2、某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,设不及格学生的人数为x 人。
8.3.3 实际问题与二元一次方程组(3)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第八章“二元一次方程组”8.3.3 实际问题与二元一次方程组(3),内容包括:利用二元一次方程组解决图表信息、决策、商品等问题.2.内容解析实际问题与二元一次方程组选择了三个具有一定综合性的问题:“牛饲料问题”、“种植计划问题”、“成本与产出问题”.使学生利用方程组为工具进行一定深度的思考,增加运用方程组解决实际问题的实践.把全章强调的以方程组为工具,把实际问题模型化的思想提到新的高度.为切实提高利用方程组解决实际问题的能力,这节内容的问题形式包括:估算与精确计算的比较(探究1) ,开放地寻求设计方案(探究2),根据图表所表示的实际问题的数据信息列方程组(探究3).安排这节的目的在于:一方面通过实际生活中的问题,进一步突出方程组这种数学模型应用的广泛性和有效性;另一方面使学生能在解决实际问题的情境中运用所学数学知识,进一步提高分析问题和解决问题的综合能力.基于以上分析,确定本节课的教学重点为:学会利用二元一次方程组解决图表信息、决策、商品等问题.二、目标和目标解析1.目标(1)能够根据具体的数量关系,列出二元一次方程组解决复杂的实际问题.(2)学会利用二元一次方程组解决图表信息、决策、商品等问题.2.目标解析使学生能够探索事物之间的数量关系,利用方程或方程组解决实际问题;通过问题探究,使学生进一步使用代数中的方程来反映现实世界的等量关系,体会代数方法的优越性;进一步培养学生化实际问题为数学问题的能力,培养严谨缜密的科学习惯,继续渗透转化的数学思想;使学生能够根据实际问题,寻找其中的相等关系,最终转化为数学问题求解.三、教学问题诊断分析受阅读能力,分析能力的制约;怎样从实际问题中提取数学信息,并转化为数学语言,对七年级的学生来说是个难点,本节课涉及的实际问题都有两个未知数,含有两个等量关系,列二元一次方程组,数量关系比一元问题复杂,需要学生更好地分析问题,抓住关键词,发现等量关系,列方程组.“探究1”都没有明确地未知数,“探究1”学生要理解需要计算来.检验“估计值,”进而明确要求的未知数.“探究2”要从“怎样划分”中来理解题意,选出适当的未知数.基于以上学情分析,确定本节课的教学难点为:能够根据具体的数量关系,列出二元一次方程组解决复杂的实际问题.四、教学过程设计 复习回顾用二元一次方程组解决实际问题的步骤: (1)审题:弄清题意和题目中的_________; (2)设元:用___________表示题目中的未知数; (3)列方程组:根据___个等量关系列出方程组;(4)解方程组:利用__________法或___________解出未知数的值; (5)检验并答:检验所求的解是否符合实际意义,然后作答.自学导航试一试一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:问:甲、乙两种货车每辆各装货多少吨?解:设甲、乙两种货车每辆分别装货x 吨、y 吨,根据题意,列得方程组 ⎩⎨⎧=+=+27635.2854y x y x 解这个方程组,得 ⎩⎨⎧==5.24y x 答:甲种货车每辆装货4吨,乙种货车每辆装货2.5吨.探究:如图,长青化工厂与A 、B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.公路运价为1.5元/(t ·km),铁路运价为1.2元/(t ·km),且这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元? 讨论:(1)购进的原材料与制成的成品在质量上一样重吗?正常情况下生产都会有损耗或是残渣,所以原材料与成品质量不一样重. (2)运费的单位“元/(t ·km)”的含义. 运费=运价×数量(t )×里程数(km) (3)15000元的公路运费是如何算出来的?原料从A 地运往工厂的公路运费+产品从工厂运往B 地的公路运费=15000 (4)97200元的铁路运费是如何算出来的?原料从A 地运往工厂的铁路运费+产品从工厂运往B 地的铁路运费=97200分析:销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关. 因此设_______________________.解:设置成x t 产品,购买y t 原料.由上表,列得方程组 ⎩⎨⎧=+=+97200120·2.1110·2.11500010·5.120·5.1y x y x 解这个方程组,得 ⎩⎨⎧==400300y x 销售款(原料费+运输费)=8000x(1000y+15000+97200)=1887800(元) 答:这批产品的销售款比原料费与运输费的和多1887800元.典例解析考点1:图表信息问题例1.请你根据图中的对话信息,求中性笔和笔记本的单价. 解:设中性笔和笔记本的单价分别是x 元、y 元. 根据题意,得{12y +20x =11212x +20y =144解得{x =2y =6答:中性笔的单价是2元,笔记本的单价是6元. 【迁移应用】1.某中学七年级( 1)班40名同学为灾区共捐款2000元,捐款情况如表所示:表格中捐款40元和50元的人数不小心被污渍污染已看不清楚,若设捐款40元的有x 名同学,捐款50元的有y 名同学,根据题意,可列方程组为( )A.{x +y =22 40x +50y =2000B. {x +y =22 50x +40y =2000C. {x +y =22 40x +50y =1000D. {x +y =22 50x +40y =1000 2.小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元. 解:设中性笔和笔记本的单价分别是x 元、y 元. 根据题意可得{12y +20x =11212x +20y =144解得{x =2y =6答:中性笔和笔记本的单价分别是2元、6元. 3.某景点的门票价格如下表:某校八、九年级学生自愿报名游览该景点,其中八年级的报名人数不超过50,九年级的报名人数超过50但不超过80.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元.八、九年级的报名人数各是多少? 解:因为4452÷45=981415 981415不是整数,所以两个年级人数之和超过99.设八年级的报名人数是x ,九年级的报名人数是y. 依题意,得{48x +45y =491442(x +y )=4452解得{x =48y =58答:八年级的报名人数是48,九年级的报名人数是58. 考点2:经济生活问题例2.某服装店用6000元购进A ,B 两种服装,按标价全部售出后可获得利润3800元,这两种服装的进价、标价如表所示.(1)求这两种服装各购进的件数;(2)如果A 种服装按标价的八折出售,B 种服装按标价的七折出售,那么这批服装全部售完后,相比按标价出售,利润减少多少元?解:(1)设A 种服装购进x 件,B 种服装购进y 件. 由题意,得{60x +100y =6000(100−60)x +(160−100)y =3800解得{x =50y =30答:A 种服装购进50件,B 种服装购进30件. (2)由题意,得380050(100×0.860) 30(160×0.7100)=3800 I 000 360=2440(元). 答:相比按标价出售,利润减少2440元. 【迁移应用】1.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件赚70元,后因库存太多,每件羊绒衫按标价的六折出售,每件亏损110元,则该商场每件羊绒衫的进价为______元,标价为______元.2.某工厂现向银行申请了两种贷款,共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%.若设甲、乙两种贷款的数额分别为x 万元和y 万元,则x=_____,y=_____.3.某商场按标价销售某种商品时,每件可获利40元;按标价的八折销售该商品5件与将标价降低30元销售该商品3件所获得的利润相等.求该商品每件的进价和标价. 解:设该商品每件的进价为x 元,标价为y 元. 根据题意,得{y −x =405(80%y −x )=3(y −30−x)解得{x =130y =170答:该商品每件的进价和标价分别是130 元、170元.4.在某体育用品商店购买50根跳绳和80个毽子共需1120元,购买30根跳绳和50个毽子共需680元. (1)跳绳、 毽子的单价各是多少元?(2)在“元旦”期间,该店开展促销活动,所有商品按同样的折扣打折销售,若购买100 根跳绳和100个毽子只需1700元,则该店的商品按原价的几折进行销售? 解:(1)设跳绳的单价为x 元,毽子的单价为y 元. 依题意,得{50x +80y =112030x +50y =680解得{x =16y =4答:跳绳的单价为16元,毽子的单价为4元. (2)设该店的商品按原价的m 折进行销售. 依题意,得16×m10×100+4×m10×100=1700, 解得 m=8.5.答:该店的商品按原价的八五折进行销售.考点3:利用二元一次方程组进行决策例3.某生态柑橘园现有柑橘21吨,计划租用A 、B 两种型号的货车将柑橘运往外地销售.已知满载时,用3辆A 型车和2辆B 型车一次可运柑橘13吨;用4辆A 型车和3辆B 型车一次可运柑橘18吨. (1)1辆A 型车和1辆B 型车满载时,一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载,请帮柑橘园设计租车方案.(1)解:设满载时1辆A 型车一次可运柑橘x 吨,1辆B 型车一次可运柑橘y 吨. 依题意,得{3x +2y =134x +3y =18解得{x =3y =2答:1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨. (2)解:依题意,得3m+2n=21,∴m=723n.又∵m ,n 均为非负整数,∴{m =1n =9或{m =3n =6或{m =5n =3或{m =7n =0答:共有4种租车方案.方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:只租用7辆A 型车. 【迁移应用】1.某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算? (1)解:设这批学生的人数是x ,原计划租用45座客车y 辆. 根据题意,得{45y +15=x 60(y −1)=x解得{x =240y =5答:这批学生的人数为240,原计划租用45座客车5辆. (2)解:租45座客车:240÷45≈5.3(辆), 所以需租6辆,租金为220×6=1320(元); 租60座客车: 240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).因为1200<1320,所以租用4辆60座客车才合算.答:租用4辆60座客车才合算.2.妈妈去超市买牙刷和牙膏,已知购买4支牙刷和2盒牙膏需付68元;购买10支牙刷和7盒牙膏需付210元.(1)求牙刷和牙膏的单价;(2)正好赶上甲、乙两个超市打折优惠,两个超市的每个物品的原价均相同.甲超市:牙刷打九折,牙膏打八折;乙超市:每购买满10盒牙膏送3支牙刷.如果妈妈打算买13 盒牙膏和18支牙刷,那么去哪家超市比较划算?并说明理由.(1)解:设牙刷的单价为x元,牙膏的单价为y元.依题意得{4x+2y=6810x+7y=210解得{x=7y=20答:牙刷的单价为7元,牙膏的单价为20元.(2)解:去甲超市比较划算.理由如下:在甲超市购买所需费用为18×7×0.9+13×20×0.8=321.4(元);在乙超市购买所需费用为13×20+(183)×7=365(元).∵365>321.4,∴去甲超市比较划算.。
《8.3.3实际问题与二元一次方程组(第三课时)》教案(一)创设情景,导入新课七年级(5)班在上体育课时,进行、投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表)进球数n同时,已知进球3个和3个以上的人平均每人进3.5个球;进4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和4个球对应的人数补上吗?交流你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢?(引入新课)(二)合作交流,解读探究自主探索学生讨论交流(三)应用迁移,巩固提高例1 两台大收割机和五台小收割机,两小时收割3.6公顷,三台大收割机和两台小收割机,五小时收割8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?[点拨] 如果1台大收割机和1台小收割机每小时个收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦 2x+5y公顷,3台大收割机和2台小收割机1小时收割小麦 3x+5y 公顷.例2 为了保护环境,某校环保小组成员收集费电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池分别重多少克?[点拨] 如果1号电池和5号电池分别重x克、y克,则4节1号电池和5节5号电池总重量为4x+5y克,2节1号电池和3节5号电池总重量为2x+3y克.(四)总结反思,拓展升华小结这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能.拓展王老师用100元买了100份奖品,其中一等奖每份5元,二等奖每份3元,三等奖每3份1元,问王老师买了一等奖、二等奖和三等奖的奖品各几分?(五)课堂跟踪反馈1.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元,获纯利2600元,问王大伯一共获纯利多少元?2.一旅游者从下午2时步行到晚上7时,他先走平路,到山顶后又沿原路下山回到出发点,已知他走平路时每小时走4千米,爬山时每小时走3千米,下坡时每小时走6千米,问旅游者一共走了多少路?。
8.3.1实际问题与二元一次方程组 班级: 座号: 姓名: 【学习目标】1.进一步熟练掌握列二元一次方程组解应用题的一般过程;2.能正确列出方程组解决实际问题;3.体会用方程组解决实际问题.【学习重点】能根据具体问题中的数量关系列出方程.【学习难点】从实际问题中寻找等量关系列出方程.【学前准备】认真阅读课本P991.怎样用消元法解二元一次方程组?解下列方程组:⑴⎩⎨⎧=+=-1464534y x y x ⑵35521s t s t -=⎧⎨+=⎩ ⑶⎩⎨⎧=+=+15432525y x y x2.若1头大牛每天用饲料x 千克,1头小牛每天用饲料y 千克,那么:⑴30头大牛每天用饲料 千克;⑵15头小牛每天用饲料 千克;⑶30头大牛和15头大牛每天一共用饲料 千克.【课堂探究】例1.牛场原有大牛30头和小牛15头,1天约用饲料675kg .一周后又购进12头大牛和5头小牛,这时1天约用饲料940kg .求每头大牛和每头小牛1天用饲料多少千克?分析:利用右表完成数据整理:解:设 .根据题意列方程组 得⎩⎨⎧答: .思考:饲养员李大叔估计每头大牛1天约用饲料18~20kg ,每头小牛1天约用饲料7~8kg .你认为他的估计是否准确?学习小组长评价和签字 完成 订正 签字 头数 每头牛每天的饲料量 每天的饲料总量 原来 大牛 小牛 一周后 大牛 小牛例2 用白铁皮做罐头盒.每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?分析:“一个盒身与两个盒底配成一套”的意思是:盒身数:盒底数= ︰ .解设: .【课堂练习】有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.3辆大车与5辆小车一次可以运货多少吨?【课堂小结】解二元一次方程组解实际问题的基本步骤有哪些?课后作业0806--实际问题1 (课时6)班级: 座号: 姓名:一、选择题:1.由方程954=+y x ,可以用含x 的代数式表示y ,则=y ( ).A .549x -B .459y -C .459x -D .549y -2.已知二元一次方程组27,28.x y x y +=⎧⎨+=⎩,则y x -,y x +分别为( ). A .1,-5 B .-5,1 C .5,-1 D .-1,53.在等式n mx x y ++=2中,当2=x 时,5=y ;3-=x 时,5-=y .则当3=x 时,=y ( ).A .23;B .-13;C .-5;D .134.一个两位数,数字之和为11,若原数加45,等于此两位数字交换位置,•求原数是多少.若设原数十位数字为x ,个位数字为y ,根据题意列出方程组为( ).A .⎩⎨⎧+=++=+x y y x y x 1045101110B .⎩⎨⎧+=++=+x y y x y x 451110C .⎩⎨⎧+=++=+xy y x y x 10451011D .以上各式均不对 二、填空题:5.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是 .6.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 .7.二元一次方程x +2y =12在正整数范围内的解有 组.三、解答题:8.选择比较简便消元法来解下列各方程组.⑴6023x y x x y +=⎧⎨=+⎩ ⑵⎩⎨⎧=+=+8.84124.648b a b a ⑶⎩⎨⎧=--=-025109743n m n m9.一种商品有大小盒两种包装,3大盒、4小盒共装108瓶;2大盒、3小盒共装76瓶。
《实际问题与二元一次方程组》教案【学习目标】1、会借助二元一次方程组解决简单的实际问题,体会二元一次方程组与现实生活的联系和作用.2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系.3、进一步体会列方程组比列一元一次方程容易.4、培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力.【重点与难点】重点:能根据题意列二元一次方程组;根据题意找出等量关系.难点:正确发现并找出问题中的两个等量关系.【学习方法】观察法合作讨论实际生活中的等量关系.自学:阅读课本99页探究1,然后用红笔画出一周前的情况,用蓝笔画出一周后的情况.思考1、这两种情况都与什么有关?所以我们应如何设数?2、根据你所画的语句写出题中的等量关系?3、一周后有大牛多少只?小牛多少只?根据上述相等关系,可以设未知数列出方程组,试试写出完整过程:解:设平均每只母牛和每只小牛1天各需用饲料为和根据题意列方程,得解这个方程组得研学1、对照自学部分“探究1”的解题过程,并回忆用一元一次方程解决实际问题的一般步骤,写出用二元一次方程组解决实际问题的步骤.(1)(2)(3)(4)(5)2、仿照探究1的解题过程,试试完成探究2?(1)仔细阅读课本“探究2”,并结合课本的分析,找出设数.(2)结合课本图8.3-1,找出关于长度的相等关系:在题中找关于“产量”的语句,写出关于产量的相等关系:完整写出解题过程:示学:1、自学部分独立完成8分钟,小组对照,补充学案.1题分别派2小C层展示,B层补充,2小题7组黑板展示.2、研学部分先独立完成9分钟,小组内对照讨论,B层展示其他小组质疑.2小题B层黑板展示.比比那组方案最多.检学1、课本106页综合运用4.2、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人小结结合本节课的学习目标说一说本节课的收获:我学会了本节课我还不明白,在找等量关系时我的表现.。
实际问题与二元一次方程组【教学目标】1、会分析数量关系,列二元一次方程组解决实际问题。
【教学过程】一、板书课题,揭示目标(一)讲述:同学们,今天我们学习实际问题与二元一次方程组。
二、出示目标(一)过渡语:学习目标是什么呢?请看投影:(二)屏幕显示学习目标1、会分析数量关系,列二元一次方程组解决实际问题。
三、指导自学(一)过渡语:请大家按照自学指导(出示自学指导)进行自学竞赛.比谁学得紧张、效果好!比赛开始!(二)出示自学指导自学指导认真看课本(P105)⑴分析“探究”中的两个数量关系,列方程组;⑵求出方程组的解,会从解中分析李大叔估算的正误。
如有疑问,立即请教同学或举手问老师.5分钟后,比谁能正确的做出检测题。
四、先学(一)学生看书,教师巡视,督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)检测1.过渡语:看完的同学请举手,看懂的请举手。
2.检测题:P105 “探究”(口答)“探究”中的第一个数量关系是什么?如何列方程?引导学生说出:30只大牛一天的饲料+15只小牛一天的饲料=675饲料kg30x+15y=675“探究”中的第二个数量关系是什么?如何列方程?引导学生说出:42只大牛一天的饲料+20只小牛的饲料=940kg(30+12)x+(15+5)y=940李大叔的估计正确吗?让学生填空白,说说为什么?(2)P108: 3,5(只列二元一次方程组不解)分别让两位同学上堂板演,其余同学在位上做。
3.学生练习,教师巡视.(收集错误进行第二次备课)五、后教(一)更正:过渡语:请看黑板,找一找哪里做错了?若发现错误,请上台更正.(鼓励尽量多的学生参与更正)(二)讨论:评: 2,3一起评①设的正确吗?(强调语言的准确性)②方程组列的对吗?为什么?引导学生说出:第3题的数量关系是第一天走的路程-第二天走的路程=2km即5y-4x=2(可能有学生这样列 y-x=2 讨论为什么错。
)第一天走的路程+第二天走的路程=98km即4x+5y=98引导学生说出第5题的数量关系是:2量大车运的货+3量小车运的货=15.5吨即2x+3y=15.55量大车运的货+6量小车运的货=35吨即5x+6y=35③第5题解出未知数的值后,能直接答吗?为什么?引导学生说出:3x+5y六、当堂训练(一)讲述:同学们,能运用新知识做对作业吗?好,要注意解题格式,书写工整.(二)出示作业题:必做题:P108 2,6选做题:P108 8(三)学生练习,教师巡视.七、教学反思:。
人教版数学七年级下册8.3《实际问题与二元一次方程组》教学设计一. 教材分析人教版数学七年级下册8.3《实际问题与二元一次方程组》这一节主要介绍了如何利用二元一次方程组解决实际问题。
学生在学习了二元一次方程组的基本概念和求解方法后,通过本节内容的学习,能够将理论知识应用于实际问题的解决,培养学生的数学应用能力。
本节内容主要包括二元一次方程组的建立、求解以及实际应用。
在建立方程组时,需要注意找出实际问题中的等量关系;在求解方程组时,要学会运用代入法、消元法等方法;在实际应用中,要能够将方程组的知识运用到生活中的各种问题中,如购物问题、行程问题等。
二. 学情分析七年级的学生已经掌握了二元一次方程组的基本概念和求解方法,具备了一定的数学基础。
但在解决实际问题时,部分学生可能还存在着将理论知识与实际问题脱节的情况,不知道如何将数学知识运用到生活中。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.理解二元一次方程组的实际意义,能够从实际问题中建立方程组。
2.掌握二元一次方程组的求解方法,能够灵活运用代入法、消元法等解决实际问题。
3.培养学生的数学应用能力,提高学生解决实际问题的积极性。
四. 教学重难点1.重难点:如何从实际问题中建立二元一次方程组,以及如何运用代入法、消元法求解方程组。
2.难点点:将理论知识与实际问题相结合,提高学生的数学应用能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律,建立方程组。
2.运用案例教学法,通过具体案例的分析,让学生掌握二元一次方程组的求解方法。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.利用多媒体辅助教学,增强课堂的趣味性,提高学生的学习兴趣。
六. 教学准备1.准备相关的生活案例,用于引导学生从实际问题中建立方程组。
2.准备PPT课件,用于展示解题过程和巩固知识点。
人教版数学七年级下册8.3《实际问题与二元一次方程组》教学设计3一. 教材分析人教版数学七年级下册8.3《实际问题与二元一次方程组》是学生在掌握了二元一次方程组的基础知识后,进一步学习如何将实际问题转化为二元一次方程组的过程。
这一节内容通过具体的实例,让学生体会数学与实际的联系,培养学生的数学应用能力。
教材中给出了多个实际问题,引导学生用数学眼光去观察、分析,从而得出二元一次方程组的解。
二. 学情分析学生在学习本节课之前,已经学习了二元一次方程组的知识,对于如何解二元一次方程组已经有一定的掌握。
但如何将实际问题转化为数学模型,可能还存在一定的困难。
因此,在教学过程中,教师需要通过具体的实例,引导学生观察、分析,找出问题的规律。
三. 教学目标1.知识与技能:学生能理解实际问题与二元一次方程组之间的关系,学会如何将实际问题转化为二元一次方程组,并求解。
2.过程与方法:学生通过观察、分析实际问题,培养解决问题的能力。
3.情感态度价值观:学生感受数学与实际的联系,增强学习数学的兴趣和信心。
四. 教学重难点1.教学重点:学生能理解实际问题与二元一次方程组之间的关系,学会如何将实际问题转化为二元一次方程组。
2.教学难点:学生如何找出实际问题中的等量关系,列出二元一次方程组。
五. 教学方法1.情境教学法:通过具体的实例,引导学生观察、分析实际问题,找出问题的规律。
2.引导发现法:教师引导学生发现实际问题与二元一次方程组之间的关系,培养学生解决问题的能力。
3.小组合作学习:学生分组讨论,共同解决实际问题,培养学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示具体的实例。
2.教学素材:准备一些实际的例子,用于引导学生观察、分析。
3.粉笔、黑板:用于板书。
七. 教学过程1.导入(5分钟)教师通过一个具体的实际问题,引导学生观察、分析,从而引出本节课的主题——实际问题与二元一次方程组。
2.呈现(10分钟)教师展示一些实际的例子,让学生尝试将其转化为二元一次方程组,并求解。
教学设计整体设计教材分析本节内容是在学生掌握了二元一次方程组的解法,能列二元一次方程组解较简单的应用题的基础上安排的,其中的“牛饲料问题”“种植计划问题”“成本与产出问题”是具有一定综合性的问题,涉及到估算与精确计算的比较、开放地探索设计方案、根据图表信息列方程组等问题形式.由于本节需要探究的问题比较复杂,所以在教学的过程中,一方面需要设置部分台阶(如较简单的准备题、提示解题方向的思考题)减小坡度、分散难点,另一方面需要用一些具体的方法(如列表法、图解法)引导学生学会分析和表达,还要留给学生充足的思考、交流、整理、反思的时间.题目数量不一定多,必须精选,保证质量.在解决问题的过程中,使学生体会到方程组应用的广泛性与有效性,提高分析解决问题的能力.分析数量关系列出方程组是学习的难点,能正确规范的解决各种各样的实际问题是学习的重点,其中列出方程组如何解是容易忽视的环节,要加强运算速度、准确度的训练,努力做到会的题目保证做对.课时分配3课时第一课时教学目标1.使学生学会列二元一次方程组解决简单的实际问题,并进一步提高解方程组的技能,逐步体会列方程组解应用题的优越性.2.学会通过计算进行比较判断,体会估算与精确计算之间的关系及方程组应用的多样性.3.在解决问题的过程中,培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力.教学重难点教学重点:根据题意找出等量关系,列出二元一次方程组.教学难点:正确找出问题中的两个等量关系.教学方法从学生已有的知识经验出发提出问题,使学生快速进入角色,积极思考,多方尝试.教师利用问题引导学生逐步学会分析、学会表达,学生在动脑想、动口说、动手做的过程中形成技能,每个环节都是师生、生生互动共建的过程.教学过程一、创设情境,提出问题前面我们结合实际问题,讨论了方程组的解法以及列方程组解简单的应用题,现在我们来做一个题目,检验一下大家的学习效果.悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄.解:设悟空在静风中行走的速度为x 里/分,风速为y 里/分,则⎩⎪⎨⎪⎧ 4(x +y )=1 000.4(x -y )=600.①②解得⎩⎪⎨⎪⎧ x =200,y =50. 答:风速为50里/分.点评:对列出的不同形式的方程组及其解法作简要的比较说明,有意识的引导学生体会解决问题方法的多样性及方法选择的重要性.二、探索新知,解决问题例题:养牛场原有30只大牛和15只小牛,1天约需用饲料675 kg ;一周后又购进12只大牛和5只小牛,这时1天约需用饲料940 kg.饲养员李大叔估计平均每只大牛1天约需饲料18~20 kg ,每只小牛1天约需饲料7~8 kg.你能否通过计算检验他的估计?问题1:怎样判断李大叔的估计是否正确?讨论结果:判断李大叔的估计是否正确的方法有两种:1.先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.2.根据问题中给定的数量关系求出平均每只大牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.问题2:思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?讨论结果:本题的等量关系是(1)30只大牛和15只小牛1天需用饲料为675 kg ;(2)(30+12)只大牛和(15+5)只小牛1天需用饲料为940 kg.问题3:如何解这个应用题?讨论结果:设平均每只大牛和每只小牛1天各需用饲料为x kg 和y kg.根据题意列方程,得⎩⎪⎨⎪⎧ 30x +15y =675,42x +20y =940. ①②解这个方程组,得⎩⎪⎨⎪⎧x =20,y =5. 答:每只大牛和每只小牛1天各需用饲料20 kg 和5 kg ,因此,饲养员李大叔对大牛的食量估计较准确,对小牛的食量估计偏高.可能会有学生列出如下方程组⎩⎪⎨⎪⎧30x +15y =675,12x +5y =265. 教师可以让这个学生介绍一下自己的想法,教师在肯定这种做法正确的同时指出:列方程组时尽量使用原题中的数据,如265写成940-675;若列出的方程组比较复杂,解方程组时可以先考虑将原方程组化简;对同一个问题,可以有不同的做法,但结果应该一致,如果不一致,说明某个环节出了问题,要仔细检查.问题4:列方程组解应用题的一般步骤是怎样的?讨论结果:审:弄清题目中的数量关系,设出两个未知数;列:分析题意,找出两个等量关系,根据等量关系列出方程组;解:解出方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形.答:写出答案.三、巩固训练,熟练技能1.长18米的钢材,要锯成10段,而每段的长只能取“1米或2米”两种型号之一,小明估计2米的有3段,你们认为他估计的是否正确?为什么呢?那2米和1米的各应多少段?2.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x km/h ,水流的速度为y km/h ,则x ,y 的值为( ).A .x =3,y =2B .x =14,y =1C .x =15,y =1D .x =14,y =23.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?设生产螺栓x 人,生产螺帽y 人,列方程组为( ).A.⎩⎪⎨⎪⎧ y =90-x 2(15-x )=24yB.⎩⎪⎨⎪⎧ x +y =9030x =24yC.⎩⎪⎨⎪⎧ x =90-y 48y =15xD.⎩⎪⎨⎪⎧x +y =9015x =24y 答案:1.解:设2米的有x 段,1米的有y 段,根据题意,得⎩⎪⎨⎪⎧ x +y =10,2x +y =18.解得⎩⎪⎨⎪⎧x =8,y =2. 答:小明估计不准确,2米长的8段,1米长的2段.2.B 3.B四、课堂小结1.本节主要学习利用列二元一次方程组解应用题进行推理判断.2.用到的主要思想方法是方程思想:将实际问题转化成二元一次方程组解决.3.注意的问题:(1)认真审题,用语言或式子表示题目中的数量关系.(2)解方程组时要选择适当的方法,运算速度要快,准确度要高.(3)要按要求写出答案.五、布置作业课本习题8.3 第5、9题.六、拓展练习1.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需________元.2.某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅和2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2 280名学生就餐.(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐?(2)若7个餐厅同时开放,请估计一下能否供应全校的5 300名学生就餐?请说明理由.3.为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20 000盒和30 000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?答案:1.122.解:(1)设1个大餐厅和1个小餐厅分别可供x 名、y 名学生就餐,根据题意,得 ⎩⎪⎨⎪⎧ x +2y =1 680,2x +y =2 280.解得⎩⎪⎨⎪⎧x =960,y =360. 答:1个大餐厅和1个小餐厅分别可供960名、360名学生就餐.若7个餐厅同时开放,则能容纳学生5×960+2×360=5 520(人).5 520>5 300,所以,若7个餐厅同时开放,可以供应全校的5 300名学生就餐.3.解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎪⎨⎪⎧ 4x +5y =20 000,3x +10y =30 000. ①②①×2-②,得5x =10 000.∴x =2 000.把x =2 000代入①,得5y =12 000.∴y =2 400.∴原方程组的解是⎩⎪⎨⎪⎧x =2 000,y =2 400. 答:该厂能生产奥运会标志2 000套,生产奥运会吉祥物2 400套.评价与反思从大处着眼“想”,从细微处入手“做”.分析思路时,先从总体考虑:要解决什么问题?已经知道哪些结论,还需要求出什么?然后分析怎么求出所需要的数据.从题目中的关键语句仔细推敲挖掘出其中蕴含的等量关系,写解答过程,先明确主要步骤,接着一步步做下去,要保证每一步都正确,才能真正解决问题.。
新人教版七年级数学下册第八章《实际问题与二元一次方程组(三)》学案
一、学习内容:教材课题P106-107
二、学习目标:
1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;
2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;
3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值
三、自学探究
1、小试牛刀:
最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案.
电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度一般白天的用电比较集中、用电功率比较大,而夜里人们休息时用电比较小,所以通常白天的用电称为是高峰用电,即8:00~22:00,深夜的用电是低谷用电即22:00~次日8:00.若某地的高峰电价为每千瓦时0.56元;低谷电价为每千瓦时。
.28元.八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗?
2、探究:
教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元。
这批产品的销售款
比原料费与运输费的和多多少元?
设问1.如何设未知数?
销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨.
设问2.如何确定题中数量关系?
由上表可列方程组
解这个方程组,得
毛利润=销售款-原料费-运输费
因此,这批产品的销售款比原料费与运输费的和多________________元.
四、自我检测
教材p108 6、8、9
五、学习小结:
1、在用一元一次方程组解决实际问题时,你会怎样设定未知数,可借助哪些方式辅助分析问题中的
相等关系?
2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程.
六、反馈检测
1、一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两
20元运费,问:菜农应付运费多少元?
2、某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7. 5%,问现在学校中男、女生各是多少?
50人。
如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。
问:甲、乙两个班分别有多少人?
4、甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?。