抛物线焦点弦的弦长公式
- 格式:docx
- 大小:61.19 KB
- 文档页数:3
焦点弦定理公式嘿,咱今天就来好好唠唠这焦点弦定理公式。
要说这焦点弦定理公式啊,那在数学的圆锥曲线里可是个重要角色。
咱们先从抛物线说起,在抛物线中,焦点弦长等于 x₁ + x₂ + p (这里的 x₁、x₂是焦点弦端点的横坐标,p 是抛物线的焦准距)。
这公式看着简单,可真要用起来,那得好好琢磨琢磨。
我记得有一次给学生讲这个知识点的时候,有个小家伙瞪着大眼睛一脸懵地看着我,嘴里嘟囔着:“老师,这咋这么复杂呀?”我就笑着跟他说:“别着急,咱们一步步来。
”然后我就给他举了个例子,比如说抛物线 y² = 2px ,有一条焦点弦的两个端点坐标是 (x₁, y₁) 和 (x₂,y₂) ,那根据抛物线的方程,咱就能得到 y₁² = 2px₁,y₂² = 2px₂。
然后呢,通过一系列的推导和计算,就能把焦点弦长给算出来啦。
再说说椭圆里的焦点弦,那也有它独特的公式。
对于椭圆 x²/a² +y²/b² = 1 (a > b > 0),焦点弦长可以用2ab² / (b² + c²sin²α) 来表示(这里的 c 是椭圆的半焦距,α 是焦点弦与长轴的夹角)。
在双曲线中呢,焦点弦长公式又有所不同。
双曲线 x²/a²- y²/b² = 1 ,焦点弦长是 2ab² / (|b² - c²sin²α|) 。
学习这些公式的时候,可不能死记硬背,得理解其中的原理。
就像搭积木一样,一块一块弄清楚了,才能搭出漂亮的城堡。
比如说在做练习题的时候,有这么一道题:已知抛物线 y² = 8x ,有一条焦点弦的两个端点横坐标分别是 2 和 6,让求这条焦点弦的长度。
这时候,咱们就可以先算出 p = 4 ,然后根据公式,焦点弦长就等于 2+ 6 + 4 = 12 。
抛物线焦点弦长公式推导过程抛物线焦点弦长公式是指在一个抛物线上,通过焦点的弦长的长度公式。
推导过程如下:假设抛物线的方程为 y = ax^2,其中 a 是常数,焦点坐标为(0, p)。
1. 假设抛物线上一点为 P(x,y),则有 y = ax^2。
2. 然后,我们将 P 点到焦点的距离表示为 d,可以通过几何关系得到:d = sqrt(x^2 + (y-p)^2)3. 我们还可以通过另一种方式计算 d,即利用抛物线焦点的特性:焦点到抛物线上任意一点 P 的距离等于 P 点到抛物线的准线的距离。
因此,我们可以将 d 表示为:d = |y - p| / (2a)4. 将步骤 1 的方程代入步骤 3 的公式中,得到:d = |ax^2 - p| / (2a)5. 再次利用绝对值的性质,我们可以将式子转化为两种情况:当 ax^2 > p 时,d = (ax^2 - p) / (2a) = x^2 / (2a) - p / (2a)当 ax^2 < p 时,d = (p - ax^2) / (2a) = p / (2a) - x^2 / (2a)6. 接下来,我们考虑通过这个弦长公式来求抛物线上两点 A 和 B 之间的弦长。
假设点 A 的坐标为 (x1, y1),点 B 的坐标为 (x2, y2)。
首先,我们需要求出抛物线焦点到直线 AB 的距离 h。
h = (|y1 - p| + |y2 - p|) / 2将步骤 4 中的公式代入上面的式子,可得:h = |x1^2 - x2^2| / (4a)7. 然后,我们可以通过勾股定理计算出弦长 L:L = sqrt((x2 - x1)^2 + h^2)将步骤 6 中的 h 公式代入上面的式子,可得:L = sqrt((x2 - x1)^2 + (|x1^2 - x2^2| / (4a))^2)8. 最后,我们可以将步骤 5 中的两种情况代入上面的公式中,得到抛物线焦点弦长公式:当 ax1^2 > p 且 ax2^2 > p 时,L = sqrt((x2 - x1)^2 + ((x1^2 - x2^2) / (4a))^2) 当 ax1^2 < p 且 ax2^2 < p 时,L = sqrt((x2 - x1)^2 + ((x2^2 - x1^2) / (4a))^2) 至此,我们就成功推导出了抛物线焦点弦长公式。
焦点弦长公式推导过程
焦点弦长公式推导过程如下:
焦点弦公式2p/sina^2证明:
设抛物线为y^2=2px(p>0),过焦点F(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于A(x1,y1),B(x2,y2)
联立方程得k^2(x-p/2)^2=2px,
整理得k^2x^2-p(k^2+2)x+k^2p^2/4=0所以x1+x2=p(k^2+2)/k^2 由抛物线定义,AF=A到准线x=-p/2的距离=x1+p/2, BF=x2+p/2 AB=x1+x2+p=p(1+2/k^2+1)=2p(1+1/k^2)=2p(1+cos^2/sin^2a)=2p/s in^2a
扩展公式如下:
抛物线:y = ax1 + bx + c (a≠0)。
就是y等于ax 的平方加上 bx再加上 c。
a > 0时开口向上。
a < 0时开口向下。
c = 0时抛物线经过原点。
b = 0时抛物线对称轴为y轴。
还有顶点式y = a(x-h)1 + k。
h是顶点坐标的x。
k是顶点坐标的y。
一般用于求最大值与最小值。
抛物线标准方程:y1=2px。
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2。
由于抛物线的焦点可在任意半轴,故共有标准方程y1=2px,y1=-2px,x1=2py,x1=-2py。
抛物线的焦半径与焦点弦抛物线的焦点弦是抛物线中的高频考点,特别是对于考生而言,本节的结论既要注意把握推导过程,更应该注意对结论的熟悉程度,因为很多涉及到焦点弦的题目都会以选填的形式出现,如此,你便可以用相关结论快速做到,避免小题大做!一.重要结论抛物线的焦点弦具有丰富的性质,它是对抛物线定义的进一步考察,也是抛物线这节中最重要的考点之一,下面罗列出常见的抛物线焦点弦性质:假设抛物线方程为px y 22=.过抛物线焦点的直线l 与抛物线交于B A ,两点,其坐标分别为),(),,(2211y x B y x A .性质1.,2||p x AF A +=2||px BF B +=,p x x AB B A ++=||.证明:性质1的证明很简单,由抛物线的定义即可证得.如上图,过B A ,向准线引垂线,垂足分别为N M ,.由定义可知:||||||||BF BN AF AM ==,.代入坐标即可证得相关结论.性质2.抛物线px y 22=的焦点为F,),(),,(2211y x B y x A 是过F 的直线与抛物线的两个交点,求证:221221,4p y y p x x -==.证明:),2(),,2(222121y py B y p y A ,则AB 的方程为2(221211p y x y y p y y -+=-,整理可得:212112))((y px y y y y -=+-,即可得AB 的方程为:21212)(y y px y y y +=⋅+.最后,由于直线AB 过焦点,代入焦点坐标可得221p y y -=.再代入抛物线方程4221p x x =.一般地,如果直线l 恒过定点)0,(m M 与抛物线)0(22>=p px y 交于B A ,两点,那么pm y y m x x B A B A 2,2-==.于是,若AB OB OA ⇒⊥恒过定点)0,2(p .性质3.已知倾斜角为θ直线的l 经过抛物线px y 22=的焦点F ,且与抛物线交于B A ,两点,则(1)pFB F A P BF p AF 2||1||1cos 1||,cos 1||=++=-=,θθ.(2))11(2||sin 2sin 2||222k p AB p S p AB OAB+===∆,,θθ.证明:设准线l 交x 轴于点P ,过点A 作x AM ⊥轴于M ,作l AN ⊥于N ,由抛物线定义可知:AN AF =.其中p PF =,θcos ⋅=AF MF .所以θcos AF p FM PF AN +=+=,θcos AF p AF +=,故θcos 1-=pAF .同理θcos 1+=p BF ,所以θθ22sin 2cos 12pp BF AF AB =-=+=.性质4.抛物线的通径(1).通径长为p 2.(2).焦点弦中,通径最短.(3).通径越长,抛物线开口越大.由性质3易得,略.性质5.已知直线l 经过抛物线px y 22=的焦点F ,且与抛物线交于B A ,两点,若弦AB 中点的坐标为),(00y x ,则2(2||0p x AB +=.证明:设B A ,坐标为),(),,(2211y x y x ,由抛物线定义:p x x BF AF AB ++=+=21||||||,故)2(2||0p x AB +=.性质6.以焦点弦为直径的圆与准线相切.证明:设焦点弦的中点为),(:00y x M ,则M 到准线的距离为20px +,由性质5可证得.性质7.如图,过抛物线22(0)y px p =>的焦点F 的直线与抛物线相交于N M ,两点,自N M ,向准线l 作垂线,垂足分别为11,N M ,则(1)21FM FM ⊥;(2)记1111,,FNN N FM FMM ∆∆∆的面积分别为1S ,2S ,3S ,22134S S S =.注:此题为2009湖北卷文科试题,证明过程可参见该题解答.二.典例分析例1.(2017年全国1卷).已知F 为抛物线x y C 4:2=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则||||DE AB +的最小值为()A.16B.14C.12D.10解析:法1:设1122(,),(,)A x y B x y ,3344(,),(,)D x y E x y ,直线1l 方程为1(1)y k x =-取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=∴21122124k x x k --+=-212124k k +=同理直线2l 与抛物线的交点满足22342224k x x k ++=由抛物线定义可知1234||||2AB DE x x x x p+=++++22122222121224244448816k k k k k k ++=++=++≥+=当且仅当121k k =-=(或1-)时,取得等号.法2:设1l 的倾斜角为α,则直线2l 的倾斜角为π2α+,根据焦点弦长公式有:2244πsin sin 2AB DE αα+=+⎛⎫+ ⎪⎝⎭()22222224416sin cos sin cos αααα+=+≥=+.故选A.法4:设点()()1122,,,A x y B x y ,则()221212121224AB x x p x x y y =++=++=++()212121224y y y y ⎡⎤=+-+⎣⎦设直线1l 的方程为1x my =+()0m ≠联立直线1l 与抛物线2:4C y x =方程消去x 可得2440y my --=所以121244y y m y y +=⎧⎨=-⎩,所以()221212122444AB y y y y m ⎡⎤=+-+=+⎣⎦同理244DE m =+,所以2248416AB DE m m +=++≥(当且仅当1m =±时等号成立)法5:可设直线12111:,:b x ky l b kx y l +-=+=,由抛物线焦点弦的性质3可得:)1(4||),11(4||22k DE k AB +=+=,故16)1(411(4||||22≥+++=+k kDE AB ,当且仅当1±=k 时取到最小值,故选A.上述例2,在知晓背景的情况下解答是很容易的,这再次说明记住一些重要的二级结论可以优化运算,提升解题速度.下例中,我们将看到有关面积的定值问题,从而为前面的重要结论做一个补充.例2.(2022新高考2卷)已知O 为坐标原点,过抛物线)0(2:2>=p px y C 的焦点F 的直线与C 交于A ,B 两点,点A 在第一象限,点()0M p ,,若AF AM =,则直线AB的斜率为A.直线AB 的斜率为2B.OB OF =C.4AB OF>D.180<∠+∠OBM OAM 解析:选项A:设FM 中点为N ,则32,24A N ppx x p +===所以()2233220,42A A A y px p p p y ==⋅=>所以,A y p =故2342AB p k p p ==-选项B:112112342p AF BF p BF p p +=⇒+=+5623B B p p BF p x x ⇒==+⇒=所以2222.33Bp p y p =⋅=所以22222227.9394B B p p p p OB x y =+=+=≠选项C:32524.4312pAB p p p p OF =++=>=选项D:由选项A,B知3,,,43pA p p B⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭所以22233,0,4344p pOA OB p p p⎛⎫⎛⎫⋅=⋅=-=-<⎪ ⎪⎪ ⎪⎝⎭⎝⎭所以AOB∠为钝角;又22211,0,42331212p p pMA MB p p p p⎛⎫⎛⎫⋅=-⋅--=-=-<⎪ ⎪⎪ ⎪⎝⎭⎝⎭所以AMB∠为钝角;所以180OAM OBM∠+∠<︒.故选ACD.例3.抛物线24y x=的焦点为F,11(,)A x y,22(,)B x y 是抛物线上两动点,若123(2)2AB x x=++,则AFB∠的最大值为A.23πB.56πC.34πD.3π解析:)12122,2,()AF BF x x AB x x AB AF BF+=++++∴+.在AFB△中,由余弦定理得:()2222222222241331122AF BF ABcos AFBAF BFAF BF AF BF ABAF BFAB AB ABAF BF AF BF+-∠=⋅+-⋅-=⋅-=-=-⋅⋅,又213AF BF AB AF BF AB+∴⋅.所以221131,1223ABcos AFB AFBAB∠-=-∴∠⨯的最大值为23π.本题选择A选项.例4.(2022·广东·一模)已知抛物线2:4C y x=的焦点为F,抛物线C上存在n个点1P,2P,L,nP(2n≥且*Nn∈)满足1223112n n nPFP P FP P FP P FPnπ-∠=∠==∠=∠=,则下列结论中正确的是()A.2n=时,12112P F P F+=B.3n =时,123PF P F P F ++的最小值为9C.4n =时,13241114PF P F P F P F +=++D.4n =时,1234PF P F P F P F +++的最小值为8解析:当2n =时,1212PFP P FP π∠=∠=,此时不妨取12PP 过焦点垂直于x 轴,不妨取12(12),(12)P P -,,,则121111=+122P FP F +=,故A 错误;当3n =时,12233123PFP P FP P FP π∠=∠=∠=,此时不妨设123,,P P P 在抛物线上逆时针排列,设1,(0,)2PFx παα∠=∈,2222||,||241cos()1cos()33P F P F ππαα==-+-+,123222241cos 1cos()1cos()33PF P F P F ππααα++=++--+-+214(1cos )2211cos (cos 2ααα+=+-+,令113cos ,(,222t t α=+∈,则123242332t PF P F P F t t +++=+-,令242332()t t t f t +=+-,则232382627(1)()(32)(32)t t f t t t t t +--'=-=--,当112t <<时,()0f t '>,()f t 递增,当312t <<时,()0f t '<,()f t 递减,故min ()(1)9f t f ==,故当1t =,即1cos ,23παα==时,123PF P F P F ++取到最小值9,故B 正确;当4n =时,122313442PFP P FP P FP P FP π∠=∠=∠=∠=,此时不妨设1234,,,P P P P 在抛物线上逆时针排列,设1,(0,2PFx πθθ∠=∈,12342222||,||,||,||31cos 1cos()1cos()1cos()22PF P F P F P F ππθθπθθ====--+-+-+,即234222||,||,||1sin 1cos 1sin P F P F P F θθθ===++-,故1322241cos 1cos sin PF P F θθθ+=-++=,2422241sin 1sin cos P F P F θθθ+=+-+=,所以132242sin cos 144141PF P F P F P F θθ=++=++,故C 正确;由C 的分析可知:23422122244416sin cos sin cos sin 2PF P F P F P F θθθθθ++===++,当2sin 21θ=时,216sin 2θ取到最小值16,即1234PF P F P F P F +++最小值为16,故D 错误;故选:BC例5.(2018年全国2卷)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解析:(1)设直线l 的方程为)0)(1(>-=k x k y ,且B A ,坐标为),(),,(2211y x y x ,联立方程可得:()214y k x y x⎧=-⎨=⎩得()2222240k x k x k -++=.216160k ∆=+=,故212224k x x k ++=.所以()()21224411k AB AF BF x x k +=+=+++=.由题设知22448k k+=,解得:解得:1=k ,故l 的方程为1-=x y .(2)由(1)可得AB 中点坐标为)2,3(,所以AB 的垂直平分线方程为5+-=x y ,设所求圆的圆心坐标为),(00y x ,则()()002200051116.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩,因此所求圆的方程为()()223216x y -+-=或()()22116144x y -++=.注:此题以焦点弦性质6为背景展开.例6.已知抛物线C :()220,4y px p p =>≠,过点(2,0)A 且斜率为k 的直线与抛物线C 相交于P ,Q 两点.(1)设点B 在x 轴上,分别记直线PB ,QB 的斜率为12,k k .若120k k +=,求点B 的坐标;(2)过抛物线C 的焦点F 作直线PQ 的平行线与抛物线C 相交于M ,N 两点,求||||||MN AP AQ ⋅的值.解析:由题意,直线PQ 的方程为(2)y k x =-,其中0k ≠.设221212(,0),,,,22y y B m P y Q y p p ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立2(2)2y k x y px =-⎧⎨=⎩,消去x 得2240p y y p k --=.21212242160,,4p pp y y y y p k k∴∆=+>+==-.120k k += ,12221222y y y y m m pp∴+=--,即()()12121202y y y y m y y p +-+=.4202p p m p k⎛⎫-∴-⋅= ⎪⎝⎭,即2(2)0pm k +⋅=.0p > ,2m ∴=-,∴点B 的坐标为(2,0)-.(2)由题意,直线MN 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,其中tanθk =,θ为倾斜角,则sin θ=,2122224114sin 1y y p AP AQ p k k k θ-⎛⎫∴⋅===+⋅ ⎪⎝⎭+设322344,,,22y y M y N y p p ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.联立222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去x 得2220p y y p k --=.222343424240,,p p p y y y y p k k∴∆=+>+==-.342112MN y p k ⎛⎫∴=-=+⋅ ⎪⎝⎭22112||11||||214p MN k AP AQ p k ⎛⎫+⋅ ⎪⎝⎭∴=⋅⎛⎫+⋅ ⎪⎝⎭.例7.已知抛物线2:(0)E y ax a =>的焦点为,F A 为E 上一点,||AF 的最小值为1.(1)求抛物线E 的标准方程;()过焦点F 作互相垂直的两条直线121,,l l l 与抛物线E 相交于,P Q 两点,2l 与抛物线E 相交于,M N 两点.若,C D 分别是线段,PQ MN 的中点,求22||||FC FD +的最小值.解析:(1)抛物线E 的标准方程为24x y =.(2)由(1)得,点()0,1F ,显然直线1l ,2l 的斜率都存在且不为0,设直线1l 斜率为k ,则2l 的斜率为1k -,直线1l 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩消去y 并整理得2440x kx --=,216160k ∆=+>,设()11,P x y ,()22,Q x y ,则124x x k +=,所以线段PQ 中点()22,21C k k +,()2424k F k C =+,同理242114FD k k ⎛⎫=+ ⎪⎝⎭,所以242242114FC k F k k D k ⎛⎫=+++ ⎝+⎪⎭,令2212t k k =+≥=,当且仅当221k k =,即21k =时等号成立.所以24412t k k=++,且[)2,t ∈+∞,所以()()222221424249162t t t t t FC FD ⎛⎫=+-=+-=+-≥ ⎪⎝+⎭,当且仅当2t =时取等号,所以22FC FD +的最小值为16.例8.已知抛物线C :()220x py p =>,F 为抛物线C 的焦点,()0,1M x 是抛物线C 上点,且2MF =;(1)求抛物线C 的方程;(2)过平面上一动点(),2P m m -作抛物线C 的两条切线PA ,PB (其中A ,B 为切点),求11AF BF+的最大值.解析:(1)抛物线2C 的方程为24x y =;(2)抛物线2C 的方程为24x y =,即2'xy =,设()11,A x y ,()22,B x y ,(),2P m m -则切线PA ,PB 的斜率分别为12x,22x .所以切线PA :,)(2111x x x y y -=-∴211122x x y x y =-+,又2114x y = ,11220y x x y ∴-+=,同理可得切线PB 的方程为22220y x x y -+=,因为切线PA ,PB 均过点(),2P m m -,所以112240y mx m -+-=,222240y mx m -+-=,所以直线AB 的方程为2240y mx m -+-=.联立方程222404y mx m x y -+-=⎧⎨=⎩,消去x 整理得()()2222420y m m y m --++-=,∴()()()222222442480m m m m m m ∆=-+--=-+≥,∴m R ∈.∴21224y y m m +=-+,()2122y y m =-由抛物线定义可知11AF y =+,21BF y =+,所以11AF BF AF BF AF BF++=∵()()()121212111AF BF y y y y y y =++=+++2269m m =-+,∴2223+112612+2692269m AF BF m m AF BF AF BF m m m m +-+==+-+-+,令32m t R+=∈∴原式21111454522221221222t t t t t=+=+-++-≤。
焦点弦公式例题
焦点弦公式是求解椭圆、双曲线或抛物线上经过一个焦点的弦的长度。
这里提供一个抛物线的焦点弦公式的例题。
例题:已知抛物线的方程为y^2 = 4px(p > 0),焦点为F(p, 0),过焦点F 作直线l 交抛物线于A、B 两点,求弦AB 的长度。
解题步骤:
1.设点并写出方程:设直线l 的方程为x = my + p,与抛物线方
程y^2 = 4px 联立。
2.联立方程求解:联立方程组
{x=my+py2=4px
得到:
y2−4pmy−4p2=0
3.应用韦达定理:设交点A(x1, y1),B(x2, y2),根据韦达定理,我
们有:
y1+y2=4pm
y1y2=−4p2
4.计算弦长:弦AB 的长度可以用以下公式计算:
∣AB∣=(x2−x1)2+(y2−y1)2
由于y 坐标已解出,我们可以利用y 坐标的差来求弦长。
利用抛物线性质,弦长也可以表示为:
∣AB∣=x1+x2+p
将x 坐标表示为y 坐标的函数,代入上述公式中,得到:
∣AB∣=m(y1+y2)+2p=4p2m2+2p
5.简化表达式:考虑到弦AB 经过焦点F,其倾斜角为θ(θ ≠
90°),则斜率m = tanθ。
因此,弦长公式可以进一步简化为:∣AB∣=sin2θ2p
当θ = 90° 时,弦AB 为通径,此时|AB| = 2p。
这个例题展示了如何使用抛物线的性质和联立方程的方法来求解焦点弦的长度。
对于椭圆和双曲线的焦点弦长度计算,也有类似的方法,但具体公式会有所不同。
在求解时,需要注意各种可能的特殊情况,并相应地调整解题步骤。
焦点弦弦长公式嘿,咱今天来聊聊焦点弦弦长公式。
先给大家讲讲啥是焦点弦哈。
比如说在椭圆或者抛物线中,通过焦点的弦就叫做焦点弦。
那这焦点弦弦长公式呢,就是用来计算这种弦的长度的工具。
就拿椭圆来说吧,咱假设椭圆方程是\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\) ,焦点在\(x\)轴上,焦点坐标是\((\pm c, 0)\)。
如果有一条直线过焦点,与椭圆相交于两点\(A\)和\(B\),这时候焦点弦弦长公式就派上用场啦。
我记得有一次给学生讲这个知识点的时候,有个小家伙一脸迷茫地看着我,嘴里还嘟囔着:“老师,这也太难了吧!”我就笑着跟他说:“别着急,咱们一步步来。
”我先给他画了个简单的图,标清楚了椭圆的各个要素,然后带着他一起推导公式。
咱接着说哈,对于抛物线\(y^2 = 2px\) ,焦点弦弦长公式又有点不一样啦。
这时候如果直线与抛物线相交于\(A(x_1, y_1)\) ,\(B(x_2,y_2)\) 两点,弦长就可以表示为\(|AB| = x_1 + x_2 + p\) 。
在学习这些公式的时候,大家可别死记硬背,得理解背后的原理。
比如说,为啥会有这样的公式,是怎么推导出来的。
就像盖房子,咱得知道每一块砖是怎么放上去的,房子才能盖得结实。
我还碰到过一个有趣的事儿,有次课堂小测验,我出了一道关于焦点弦弦长的题目,结果好多同学都做错了。
我一看,原来是大家没搞清楚椭圆和抛物线的焦点弦弦长公式的区别。
这可把我急坏了,赶紧又给他们重新梳理了一遍。
总之呢,焦点弦弦长公式虽然看起来有点复杂,但只要咱们多琢磨琢磨,多做几道题练练手,就一定能掌握好。
大家加油呀,别被这些小困难给吓住咯!相信你们都能在数学的海洋里畅游,轻松拿下这个知识点!。
抛物线焦点弦长公式的证明与应用假设我们有一个以焦点F为顶点的抛物线,并且抛物线上的一点为P。
我们可以将点P的横坐标设为x,纵坐标设为y。
由于抛物线的对称性,我们知道焦点F的横坐标为a,纵坐标为b。
首先,我们需要知道抛物线的定义。
根据定义,抛物线是一条曲线,使得从焦点到曲线上任意一点的距离与该点到直线准线的距离相等。
现在,我们可以使用距离公式来得到抛物线焦点弦长公式。
根据距离公式:距离公式1:PF=√((x-a)²+(y-b)²)(1)根据焦准关系,我们可以得到焦点到点P的距离:距离公式2:PF=√((x-a)²+y²)(2)将公式1和公式2相等,我们可以得到:√((x-a)²+y²)=√((x-a)²+(y-b)²)(3)将上述方程两边平方,我们得到:(x-a)²+y²=(x-a)²+(y-b)²(4)我们可以将方程4进行整理,得到:y²=(y-b)²(5)展开方程5,我们得到:y² = y² - 2by + b² (6)同时,我们可以将方程6进行整理,得到:2by = b² (7)化简方程7,我们得到:y=b/2(8)因此,我们可以得出结论,在抛物线上,从焦点到抛物线上其中一点的线段的长度为焦点到准线的距离的二倍。
现在,我们将探讨一些抛物线焦点弦长公式的应用。
1.焦点弦长和顶点连线的关系根据抛物线焦点弦长公式,从顶点到焦点的弦长等于焦点到准线的距离的二倍。
这个性质使我们能够通过其中一抛物线焦点弦长的已知量,推导出顶点与焦点之间的距离。
2.确定抛物线焦点抛物线焦点弦长公式允许我们通过已知线段的长度和线段的一个端点,确定焦点和抛物线的形状。
例如,我们可能已知抛物线上其中一点到焦点的距离为d,以及该点横坐标的值。
通过使用抛物线焦点弦长公式,我们可以联立方程并求解焦点的坐标。
关于抛物线焦点弦的弦长公式
在高中教材第八章中有关于已知倾斜角的焦点弦,求焦点弦的弦长的问题,其中只介绍了开口向右时的焦点弦的长度计算问题:
(1)已知:抛物线的方程为px y 22
=)0(>p ,过焦点F 的弦AB 交抛物线于A B 两点,且弦AB 的倾斜角为θ,求弦AB 的长。
解:由题意可设直线AB 的方程为)2
(p
x k y -=)2
(π
θ≠将其代入抛物线方程整理
得:
0)84(42
2
2
2
2
=+
+-k
p k x
k
x p p ,且θtan =k
设A,B 两点的坐标为),(),,(2211y x y x 则:k
k x x p
p 2
2
212+=+,4
2
21p x x =
当2
π
θ=
时,斜率不存在,1sin =θ,|AB|=2p.即为通径
而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗?这只能代表开口向右时的弦长计算公式,其他几种情况不尽相同。
现在我们来探讨这个问题。
(2)已知:抛物线的方程为)0(22
>=p py x ,过焦点的弦AB 交抛物线于A,B 两点,直线AB 倾斜角为θ,求弦AB 的长。
解:设A,B 的坐标为),(),,(2211y x y x ,斜率为k )tan (θ=k ,而焦点坐标为)2
,0(p ,故AB 的方程为kx p
y =-
2
,将其代入抛物线的方程整理得: ,022
2
=-
-p
x
pkx 从而p
x x x x pk 2
2121,2-
==+,
弦长为:)
(cos )(2
212
2
24211||θp
AB x x x x k
=
-+=+
p AB 2||,1cos ,0===θθ,即为通径。
而px y 22
-=与(1)的结果一样,py x 22
-=与(2)的结果一样,但是(1)
与(2)的两种表达式不一样,为了统一这两种不同的表达式,只须作很小的改动即可。
现将改动陈述于下:
(3)已知:抛物线的方程为px y 22
=)0(>p ,过焦点F 的弦AB 交抛物线于A ,B 两点,且弦AB 与抛物线的对称轴的夹角为θ,求弦AB 的长。
解:由题意可设直线AB 的方程为)2
(p x k y -=)2
(π
θ≠将其代入抛物线方
程整理得:
0)84(42
2
2
2
2
=+
+-k
p k x
k
x p p ,
若倾斜角2
π
α<
,则θαθαtan tan ,===k ;
若倾斜角,2
π
α>则)tan(tan ,θπαθπα-==-=k 。
设A,B 两点的坐标为),(),,(2211y x y x 则:k
k x x p
p 2
2
212+=
+,4
2
21p x x =
而αθπαθsin )sin(,sin sin =-=,故)
(sin 2
2||θp
AB =;
当2
π
θ=
时,1sin =θ,|AB|=2p.即为通径。
而px y 22
-=与(3)的结果一样
同理:(4)已知:抛物线的方程为)0(22
>=p py x ,过焦点的弦AB 交抛物线于A,B 两点,直线AB 与抛物线的对称轴的夹角为θ,求弦AB 的长。
解:设A,B 的坐标为),(),,(2211y x y x ,若倾斜角为α,斜率为k , 则αtan =k ,而焦点坐标为)2
,0(p , 故AB 的方程为kx p
y =-
2
,将其代入抛物线的方程整理得: ,022
2
=-
-p
x
pkx 从而p
x x x x pk 2
2121,2-
==+,
弦长为:)
(cos )(2
212
2
24211||αp
AB x x x x k
=
-+=+
当倾斜角2
π
α<
,则θθπ
αθπ
αsin )2
cos(cos ,2=-=-=
; 当倾斜角,2
π
α>则θθπ
αθπ
αsin )2
cos(cos ,2-=+=+= 所以)
(sin 2
2||θp
AB =恒成立。
当2
π
θ=
时,1sin =θ,|AB|=2p.即为通径。
而py x 22-=与(4)的结果一样。
故只要直线AB 与抛物线的对称轴的夹角为θ,那么不论抛物线的开口向上,向下,向左还是向右,过焦点的弦的弦长都可以用一个公式表示,即
)
(sin 2
2||θp
AB =。
这个公式包含了抛物线的四种开口形式,没有了因为开口
不同而导致的公式不同,便于记忆,便于应用,是一个很好的弦长公式,这里推荐给大家使用。