第1章 微机原理与接口技术
- 格式:ppt
- 大小:5.93 MB
- 文档页数:298
微机原理与接口技术1.系统总线是连接计算机CPU、内存、辅存、各种输入输出部件的一组物理信号线及相关的控制电路。
2.若操作数由指令中指定的寄存器给出,则采用的寻址方式是寄存器直接寻址。
3.总线性能的重要指标是总线宽带,它定义了为总线本身所能达到的最高传输速率。
4.CISC指令的特点是指令长度固定、指令种类少、寻址方式少。
5.半导体静态存储器SRAM的存储原理是依靠双稳态电路保存信息,不需要刷新。
6.异步串行通信的主要特点是通信双方不需要同步,没有专门的同步字。
7.计算机外部中断分为可屏蔽中断和不可屏蔽中断两类。
8.运算器完成的主要运算是算术运算和逻辑运算。
9.8251A工作在异步方式时最大波特率19.2Kbit/s;工作在同步方式时最大波特率64Kbit/s。
10.8255A的端口A有3种工作方式,端口B有2种工作方式。
11.同步串行通信规程规定,传送数据的基本单位是bit,其中最先传送的是同步字。
12.8259A对中断优先级的管理,可概括为完全嵌套方式,自动循环方式和特殊全嵌套方式。
13.子程序的属性可以分为near 或Far14.在中断驱动I/O方式中,当外设要和CPU交换数据时,它就通过硬件电路给CPU一个信号,这个信号叫做中断请求。
15.系统总线通常包含地址总线、数据总线和控制总线,其中地址总线的位数确定了总线的寻址能力。
16.Pentium系列微机主要采用南北桥结构和两个中心结构。
17.8259A内部主要有中断请求寄存器,中断屏蔽寄存器和中断服务寄存器。
18.DMA数据传送有2种方式:字节方式和数据块。
19.常用的主存到Cache的地址映像方式有直接映像、全相联映像和组相联映像。
20.奇偶校验法只能发现奇数个错,不能发现无错或偶数个错。
21.Cache存储器主要作用是解决协调主存和CPU的速度不匹配问题。
22.RISC指令系统中最大特点是长度固定,指令条数少,寻址种类少。
23.主机与I/O设备传送数据时,CPU的效率最低的是查询方式,较高的是中断方式。
微机原理与接口技术第一章概述二、计算机中的码制(重点 )P51、对于符号数,机器数常用的表示方法有原码、反码和补码三种。
注意:对正数,三种表示法均相同。
它们的差别在于对负数的表示。
(1)原码定义:符号位:0表示正,1表示负;数值位:真值的绝对值.注意:数0的原码不唯一(2)反码定义:若X<0,则[X]反= 对应原码的符号位不变,数值部分按位求反(3)补码定义:若X〈0,则[X]补= [X]反+12、8位二进制的表示范围:原码:—127~+127反码:—127~+127补码:—128~+1273、特殊数10000000●该数在原码中定义为: —0●在反码中定义为:-127●在补码中定义为:-128●对无符号数:(10000000)2= 128三、信息的编码1、字符的编码P8计算机采用7位二进制代码对字符进行编码(1)数字0~9的编码是0110000~0111001,它们的高3位均是011,后4位正好与其对应的二进制代码(BCD码)相符。
(2)英文字母A~Z的ASCII码从1000001(41H)开始顺序递增,字母a~z的ASCII码从1100001(61H)开始顺序递增,这样的排列对信息检索十分有利。
第二章微机组成原理第一节、微机的结构1、计算机的经典结构-—冯.诺依曼结构P11(1)微机由CPU(运算器和控制器)、存储器和I/O接口组成2、系统总线的分类(1)数据总线(Data Bus),它决定了处理器的字长。
(2)地址总线(Address Bus),它决定系统所能直接访问的存储器空间的容量。
(3)控制总线(Control Bus)第二节、8086微处理器1、8086,其内部数据总线的宽度是16位,16位CPU。
外部数据总线宽度也是16位8086地址线位20根,有1MB(220)寻址空间。
P272、8086CPU从功能上分成两部分:总线接口单元(BIU)、执行单元(EU)BIU:负责8086CPU与存储器之间的信息传送。
第1章微型计算机基础1.1 计算机中数的表示和运算1.1.1 计算机中的数制及转换在微型计算机中,常见和常使用的数制♦十进制♦二进制♦八进制♦十六进制等。
1.十进制十进制计数特征如下:♦使用10个不同的数码符号0,1,2,3,4,5,6,7,8,9♦基数为10♦每一个数码符号根据它在数中所处的位置(即数位),按逢十进一决定其实际数值。
任意一个十进制正数D,可以写成如下形式:(D)10=D n-l³10 n-1 +D n-2³10 n-2 +…+D l³101+D0³100+D—l³10 -1+D-2³10-2+²²+D-n³10-n2.二进制在二进制计数制中,基数是2,计数的原则是“逢2进1”。
特征如下:♦使用两个不同的数码符号0和l♦基数为2♦每一个数码符号根据它在数中所处的位置(即数位),按逢二进一决定其实际数值。
任意一个二进制正数B,可以写成如下形式:(B)2=B n—l³2 n-1 +B n—2³2 n-2+…+B l³21+B0³20+B—l³2 -1+B-2³1-2+²²+B-n³1-n十进制TO二进制把十进制整数转换成二进制整数通常采用的方法是“除以2取余数”。
把十进制小数转换成二进制小数所采用的规则是“乘2取整”。
在计算机中,数的存储、运算、传输都使用二进制。
[例 1-2] 将十进制小数0.6875转换成二进制小数3.八进制在八进制计数制中,基数是8,计数的原则是“逢8进1”。
特征如下:♦使用8个不同的数码符号0,1,2,3,4,5,6,7♦基数为8♦每一个数码符号根据它在数中所处的位置(即数位),按逢八进一来决定其实际数值。
任意一个八进制正数S,可表示为:(S)8=S n—l³8 n-1+S n—2³8 n-2+²²+S1³8 1+S0³8 0 +S—l³8–1+²²+S-m³8-m转换: 将十进制整数转换成八进制整数的方法是“除以8取余数”。
《微机原理与接口技术》教案第一章:微机系统概述1.1 教学目标1. 了解微机系统的概念和发展历程。
2. 掌握微机系统的组成和各部分功能。
3. 理解微机系统的工作原理。
1.2 教学内容1. 微机系统的概念和发展历程。
2. 微机系统的组成:微处理器、存储器、输入输出接口等。
3. 微机系统的工作原理:指令执行过程、数据传输等。
1.3 教学方法1. 采用讲授法,讲解微机系统的概念和发展历程。
2. 采用案例分析法,分析微机系统的组成和各部分功能。
3. 采用实验演示法,展示微机系统的工作原理。
1.4 教学评价1. 课堂问答:了解学生对微机系统概念的掌握情况。
2. 课后作业:巩固学生对微机系统组成的理解。
3. 实验报告:评估学生对微机系统工作原理的掌握程度。
第二章:微处理器2.1 教学目标1. 了解微处理器的概念和结构。
2. 掌握微处理器的性能指标。
3. 理解微处理器的工作原理。
2.2 教学内容1. 微处理器的概念和结构:CPU、寄存器、运算器等。
2. 微处理器的性能指标:主频、缓存、指令集等。
3. 微处理器的工作原理:指令执行过程、数据运算等。
2.3 教学方法1. 采用讲授法,讲解微处理器的概念和结构。
2. 采用案例分析法,分析微处理器的性能指标。
3. 采用实验演示法,展示微处理器的工作原理。
2.4 教学评价1. 课堂问答:了解学生对微处理器概念的掌握情况。
2. 课后作业:巩固学生对微处理器性能指标的理解。
3. 实验报告:评估学生对微处理器工作原理的掌握程度。
第三章:存储器3.1 教学目标1. 了解存储器的概念和分类。
2. 掌握存储器的性能指标。
3. 理解存储器的工作原理。
3.2 教学内容1. 存储器的概念和分类:随机存储器、只读存储器等。
2. 存储器的性能指标:容量、速度、功耗等。
3. 存储器的工作原理:数据读写过程、存储器组织结构等。
3.3 教学方法1. 采用讲授法,讲解存储器的概念和分类。
2. 采用案例分析法,分析存储器的性能指标。
第____1____次课操作数存放在某个内存中,指令中给出存储器地址。
例:MOV AX,[22A0H] (AX)≠ 22A0H注意:最明显的特点,存储器操作数肯定有[]。
二、寻址方式(研究如何寻找参加操作的数)1。
立即寻址指令中直接给出立即数。
例:MOV AX,1090H (AH)=10H (AL)=90H2。
寄存器寻址操作数在寄存器中,指令中给出寄存器名.注意:两操作数,每个都有自己的寻址方式。
例:MOV DS,AX 执行前AX=2345H执行后AX=DS=2345H3.直接寻址操作数在存储器中,指令中直接给出操作数地址。
(偏移地址)例:MOV AX,[22A0H] 实际地址 DS×10H+22A0H4。
寄存器间接寻址操作数在存储器中,通过寄存器得到存储单元地址。
例:MOV AX,[BX]; BX = 1000H DS×10H+1000H = 12ABHAX = 12ABH ≠ 1000H注意:(SI DS, DI DS/ES, BP SS, BX DS)5.变址寻址操作数在存储器中,存储单元地址通过变址寄存器加上一个16位的偏移量之和得到。
MOV 80H,AL (错)c 。
存储器之间不可传送,要借用中间寄存器MOV [22A0H],[BX] (错)可适用于寄存器之间,立即数到寄存器/存储器,寄存器到存储器。
d.CS ,IP 不能做目的操作数MOV CS,DX (错) MOV SP,BX;语法正确,注意堆栈结构e 。
本指令对标志位无影响2.堆栈操作指令(对栈空间的操作)关于栈在SP ,BP 处介绍过—-———---复习 1)入栈指令 PUSH格式:PUSH OPRD 16位单操作数 功能:将OPRD 入栈(SP 所指向的栈顶) a 。
栈结构从上到下是低地址到高地址,且栈顶不可用 b.每个单元都是8位,操作数为16位,所以占用两单元。
入栈操作进行两次.c 。
入栈时规则,低对低、高对高。
第一章:1.1 为什么需要半加器和全加器,它们之间的主要区别是什么?答:无论是全加器还是半加器均能实现两个一位的二进制数相加,得到相加的和和向高位的进位。
半加器不需要考虑来自低位的进位,而全家器需考虑来自低位的进位。
1.2 用补码法写出下列减法的步骤:(1) 1111(2)-1010(2)=?(2)=?(10)=00001111B+11110110B=00000101B=5D(2) 1100(2)-0011(2)=?(2)=?(10)=00001100B+11111101B=00001001B=9D第二章:2.1 ALU是什么部件?它能完成什么运算功能?试画出其符号。
答:ALU是算术逻辑运算单元的简称,该部件既能进行二进制数的四则运算,也能进行布尔代数的逻辑运算。
符号略!2.2 触发器、寄存器及存储器之间有什么关系?请画出这几种器件的符号。
答:触发器能存储一位的二进制信息,是计算机记忆装置的基本单元。
寄存器是由多个触发器构成的,能存储多位二进制信息。
存储器又是由多个寄存器构成的。
器件的符号略!2.4 累加器有何用处?画出其符号。
答:累加器是由多个触发器构成的多位寄存器,作为ALU运算过程的代数和的临时存储处。
累加器不仅能装入及输出数据外,还能使存储其中的数据实现左移或右移。
符号略!2.6 何谓L门及E门?它们在总线结构中有何用处?答:L门即LOAD控制端,是用以使寄存器接受数据输入的控制门;E门即ENABLE控制端,是三态输出门,用以控制寄存器中的数据输出至总线。
有了L门及E门,就可以利用总线结构,从而使信息传递的线路简单化。
2.10 除地线公用外,5根地址线和11根地址线各可选多少个地址?答:5根地址线可选25=32个地址;11根地址线可选211=2048个地址。
2.12 存储地址寄存器(MAR)和存储数据寄存器(MDR)各有何用处?答:MAR和MDR均是存储器的附件。
存储地址寄存器(MAR)是一个可控的缓冲寄存器,具有L门以控制地址的输入,它和存储器的联系是双态的,存储地址寄存器存放的是索要寻找的存储单元的地址。
微机原理与接口技术第一章 微型计算机基础1、试说明微处理器、微型计算机和微机系统的概念。
答:微型处理器: ①大规模核心芯片;②由运算器、控制器、寄存器组 组成。
微型计算机是由微型处理器、内存储器、总线、输入输出接口电路组成。
微型计算机系统:①微型计算机;②外部设备和软件组成。
2、两个数1234H 和9ABCH 分别存储在10000H 和21000H 开始的存储单元中,试画图表示存储情况。
3、现代计算机与冯诺依曼计算机的区别?答:①从存储器的结构来讲:冯诺依曼式计算机是单一的,现代计算机的存储器是由内存和外存组成的。
内存储器有主存、高速缓存、寄存器组;外存储器有硬盘、光盘、磁带等光驱。
②从控制器方面来讲:冯诺依曼式计算机通过CPU 集中控制来工作;现代计算机是由分散控制来实现。
③从通信方面来讲:冯诺依曼式计算机是通过CPU 通信;现代计算机通过总线通信。
4、微机系统的工作过程?以一个模型为例如来说明微机的工作过和,假设计算12H + 34 H ,程序如下:MOV AL , 12H ; 将12H 送到累加器中ADD AL , 34H ; 计算12H +34H ,结果送回累加器,编绎后丙坤指令对应的机器指令为:10110000 00010010 “ MOV AL ,12H ”, 00000100 00110100 ; “ ADD AL ,34H “PC :程序计数器 AR : 地址寄存器 AB :地址总线 M:存储器 RD:读 WR:写DB:数据总线 DR:数据缓存器 IR :指令寄存器 ID :指令译码器 PLA:控制信号ALU :运算器34H 12H ... BCH 9AH 10000H 10001H ... 21000H 21001H BOH 12H 04H 34H 10000H 10001H 10002H 10003H①首址在程序计数器PC中,首址送到地址寄存器AR中,PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10001H,AR -> AB找到存储器M,CPU发读信号,BOH -> DB -> DR -> IR -> ID -> 发出各种控制信号;② PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10002H,AR -> AB找到存储器M,CPU发读信号,12H -> DB -> DR ->AL;③ PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10003H,AR -> AB找到存储器M,CPU发读信号,04H -> DB -> DR -> IR -> ID -> 发出各种控制信号;④ PC -> AR,程序计数器加1,PC+1 -> PC,(PC)=10004H,AR -> AB找到存储器M,CPU发读信号,34H -> DB -> DR -> ALU IN1; AL -> ALU IN2ALU IN1 + ALU IN2 = 46H -> AL第二章8086/8088微处理器1、微型计算机的硬件主要由哪里几部分组成?运算器、控制器、存储器、寄存器、输入输出设备。
第1章习题参考解答 1. 1.填空和选择(1)运算器和控制器合在一起称为中央处理器,中央处理器和存储器、I/O接口、总线及电源合在一起被称为主机。
(2)计算机的软件一般分为两大类:一类叫系统软件软件,一类叫应用软件软件。
数据库管理系统属于系统软件软件,计算机辅助教学软件属于应用软件软件。
(3)用来管理计算机系统的资源并调度用户的作业程序的软件称为操作系统;负责将高级语言的源程序翻译成目的程序的软件称为编译程序。
(4)计算机系统中的存储器分为外存储器和内存储器。
在CPU执行指令时,必须将指令存放在内存储器中。
(5)计算机存储数据的最小单位是字节。
1 KB容量的存储器能够存储1024个这样的基本单位。
(6)在计算机系统中,多个系统部件之间信息传送的公共通道称为总线。
就其传送的信息的性质而言,在公共通道上传送的信息包括控制和数据信息。
(7)采用2的补码形式表示的8位二进制整数,其可表示的数的范围为( A )。
A.-128~+127B.-2-127~+2-127C.-2-128~2+127D.-127~+128(8)在定点数运算中产生溢出的原因是( C )。
A.运算过程中最高位产生了进位或借位 B.参加运算的操作数超出了机器的表示范围C.运算的结果超出了结果单元的表示范围 D.寄存器的位数太少,不得不舍弃最低有效位(9)下列逻辑部件中,不属于运算器的是( A )。
A.指令寄存器 C.累加器2.说明微型计算机的基本硬件构成和各部分功能。
微型计算机硬件一般由微处理器、内存储器、外存储器、系统总线、接口电路、输入/输出设备等部件组成。
主要组成部件的功能和特点分析如下:(1)微处理器:是微型计算机的核心部件,由运算单元ALU、控制单元、寄存器组以及总线接口部件等组成,其功能是负责统一协调、管理和控制系统中的各个部件有机地工作。
(2)内存储器:用来存放计算机工作过程中需要的操作数据和程序。
可分为随机存储器RAM和只读存储器ROM。
微机原理与接口技术一、微机原理1.1. 微机的概念与发展微机是现代计算机的一种,通常包括中央处理器、存储器、输入/输出设备等部分,以及操作系统、应用软件等方面。
它是一种小型化的,具有高度自主、灵活性和可扩展性的计算机设备。
微机的发展源于计算机科学技术,始于19世纪60年代,经历了五十多年的演化发展,逐渐成为现代计算机的一个主要系列之一。
1.2. 微机的工作原理微机是一个高速度的计算机设备,它包括硬件和软件两个方面。
从硬件上看,微机包括中央处理器、内存、输入/输出设备等;软件方面主要包括操作系统和各种软件、程序。
微机的工作原理就是这两个方面的协同作用,首先通过输入设备将数据输入微机中,并与处理器和存储器进行交互,由操作系统控制各种资源,最后通过输出设备将结果反馈给使用者。
1.3. 微机的组成微机由中央处理器、存储器、输入/输出设备和操作系统等部分组成。
具体包括:中央处理器:是微型计算机最重要的组成部分,主要负责控制计算机运行、处理各种运算、指令执行等。
存储器:微机中的存储器由各种存储器构成,丰富的存储器可保证微计算机运行数据的高速存取、临时数据缓冲、预测等结果处理。
输入/输出设备:微机的输入设备主要包括键盘、鼠标等,输出设备主要包括显示器、打印机等。
操作系统:微机所使用的操作系统主要有Windows、Linux等,不同操作系统的功能、应用、兼容性也存在差别。
1.4. 微机的分类与应用微机根据不同的功能和应用可以分为不同的类别,如个人计算机(PC)、工作站、小型机、超级计算机等。
在应用方面,微机主要应用于办公、生产、控制、娱乐、医疗等广泛领域,其使用普及也是世界各地的各种行业、企业和机构。
二、接口技术2.1. 接口的定义与分类接口是指连接两个或多个系统、设备、技术等的一种机制,可以使它们之间进行数据传输和控制交互等。
接口按照数据传输的方向分为输入、输出或双向接口;按照数据传输的方式分为并行接口、串行接口等多种类型;按照物理连接方式,则分为USB、RS232、SCSI、IDE等种类。
微机原理与接口技术教案第一章:微机概述1.1 教学目标了解微机的定义和发展历程掌握微机的硬件和软件组成理解微机系统的工作原理1.2 教学内容微机的定义和发展历程微机的硬件组成:CPU、内存、输入/输出设备等微机的软件组成:操作系统、应用软件等微机系统的工作原理:冯诺依曼架构、指令执行过程等1.3 教学方法采用讲授法介绍微机的定义和发展历程通过实物展示或图片介绍微机的硬件组成通过流程图或动画演示微机的工作原理开展小组讨论,让学生分享对微机软件组成的理解1.4 教学评估课堂问答:学生能准确回答微机的定义和发展历程相关问题实物观察:学生能正确识别微机的硬件组成流程图绘制:学生能绘制出微机的工作原理流程图第二章:微处理器2.1 教学目标了解微处理器的定义和发展历程掌握微处理器的结构和工作原理理解微处理器的主要性能指标2.2 教学内容微处理器的定义和发展历程微处理器的结构:CPU核心、寄存器、运算器、控制器等微处理器的工作原理:指令fetch、de、execute等阶段微处理器的主要性能指标:主频、缓存、核心数等2.3 教学方法采用讲授法介绍微处理器的定义和发展历程通过实物展示或图片介绍微处理器的结构通过流程图或动画演示微处理器的工作原理开展小组讨论,让学生分享对微处理器性能指标的理解2.4 教学评估课堂问答:学生能准确回答微处理器的定义和发展历程相关问题实物观察:学生能正确识别微处理器的结构组成流程图绘制:学生能绘制出微处理器的工作原理流程图第三章:存储器3.1 教学目标了解存储器的定义和分类掌握存储器的结构和功能理解存储器的主要性能指标3.2 教学内容存储器的定义和分类:RAM、ROM、硬盘、固态硬盘等存储器的结构:存储单元、地址线、数据线、控制线等存储器的主要功能:数据的读取和写入存储器的主要性能指标:容量、速度、功耗等3.3 教学方法采用讲授法介绍存储器的定义和分类通过实物展示或图片介绍存储器的结构通过流程图或动画演示存储器的功能开展小组讨论,让学生分享对存储器性能指标的理解3.4 教学评估课堂问答:学生能准确回答存储器的定义和分类相关问题实物观察:学生能正确识别存储器的结构组成流程图绘制:学生能绘制出存储器的功能流程图第四章:输入/输出接口技术4.1 教学目标了解输入/输出接口技术的定义和作用掌握输入/输出接口的基本组成和功能理解输入/输出接口的通信方式和技术4.2 教学内容输入/输出接口技术的定义和作用输入/输出接口的基本组成:数据线、地址线、控制线等输入/输出接口的功能:数据的传输和控制信号的传递输入/输出接口的通信方式:程序控制方式、中断控制方式、直接内存访问方式等输入/输出接口的技术:并行接口、串行接口、USB接口等4.3 教学方法采用讲授法介绍输入/输出接口技术的定义和作用通过实物展示或图片介绍输入/输出接口的组成通过流程图或动画演示输入/输出接口的功能开展小组讨论,让学生分享对输入/输出接口通信方式和技术第五章:总线技术5.1 教学目标理解总线的概念和作用掌握总线的类型和特性了解总线的标准和分类5.2 教学内容总线的概念和作用:作为计算机各个组件之间通信的桥梁总线的类型:数据总线、地址总线、控制总线总线的特性:宽度、速度、周期总线的标准:ISA、EISA、PCI、USB等总线的分类:内部总线、外部总线、系统总线5.3 教学方法采用讲授法介绍总线的概念和作用通过实物展示或图片介绍总线的类型通过流程图或动画演示总线的特性开展小组讨论,让学生分享对总线标准的理解和分类5.4 教学评估课堂问答:学生能准确回答总线的概念和作用相关问题实物观察:学生能正确识别总线的类型流程图绘制:学生能绘制出总线的特性流程图第六章:中断技术6.1 教学目标理解中断的概念和作用掌握中断的处理过程了解中断的类型和优先级6.2 教学内容中断的概念和作用:处理外部和内部事件,提高计算机效率中断的处理过程:中断请求、中断响应、中断服务程序、中断返回中断的类型:外部中断、内部中断、软件中断中断的优先级:硬件优先级和软件优先级6.3 教学方法采用讲授法介绍中断的概念和作用通过流程图或动画演示中断的处理过程开展小组讨论,让学生分享对中断类型和优先级的理解6.4 教学评估课堂问答:学生能准确回答中断的概念和作用相关问题流程图绘制:学生能绘制出中断的处理流程图讨论评估:学生能正确描述中断类型和优先级第七章:DMA控制技术7.1 教学目标理解DMA的概念和作用掌握DMA的传输过程了解DMA的类型和应用7.2 教学内容DMA的概念和作用:直接内存访问,提高数据传输效率DMA的传输过程:DMA请求、DMA响应、DMA传输、DMA结束DMA的类型:单缓冲DMA、多缓冲DMA、级联DMADMA的应用:硬盘控制器、网络卡、声卡等7.3 教学方法采用讲授法介绍DMA的概念和作用通过流程图或动画演示DMA的传输过程开展小组讨论,让学生分享对DMA类型和应用的理解7.4 教学评估课堂问答:学生能准确回答DMA的概念和作用相关问题流程图绘制:学生能绘制出DMA的传输流程图讨论评估:学生能正确描述DMA类型和应用第八章:定时器与计数器8.1 教学目标理解定时器与计数器的概念和作用掌握定时器与计数器的原理和操作了解定时器与计数器的应用8.2 教学内容定时器与计数器的概念和作用:计时、计数、控制事件发生定时器与计数器的原理:硬件定时器与计数器的工作原理定时器与计数器的操作:设置定时值、启动/停止定时器、读取计数值定时器与计数器的应用:操作系统调度、网络通信、游戏控制等8.3 教学方法采用讲授法介绍定时器与计数器的概念和作用通过实物展示或图片介绍定时器与计数器的原理通过示例程序演示定时器与计数器的操作开展小组讨论,让学生分享对定时器与计数器应用的理解8.4 教学评估课堂问答:学生能准确回答定时器与计数器的概念和作用相关问题实物观察:学生能正确操作定时器与计数器程序编写:学生能编写简单的定时器与计数器示例程序第九章:串行通信接口9.1 教学目标理解串行通信的概念和作用掌握串行通信的原理和协议了解串行通信接口的组成和重点和难点解析一、微机概述:理解微机的定义和发展历程,掌握微机的硬件和软件组成,理解微机系统的工作原理。
第一章微型计算机基础1、几个关键字:时钟频率、字长、寻址范围、地址总线、数据总线2、冯诺依曼结构中微型计算机的四大组成部分:CPU、内存、I/O接口、系统总线3、微处理器(CPU)包含:运算器(ALU):算数逻辑运算控制器(CU):指令译码,根据指令要求发挥出相应控制信息寄存器(Registers):存放数据4、存储单元是存放信息(程序和数据)的最小单位,用地址标识。
单位:位、字节、字5、三总线:地址总线(AB):输出将要访问的内存单元或I/O端口的地址数据总线(DB):数据线的多少决定了一次能够传送数据的位数控制总线(CB):协调系统中各部件的操作,决定系统总线的特点6、“裸机”指未装备任何软件的计算机所有物理装备的集合=硬件系统=裸机:CPU、I/O接口电路和半导体存储器(ROM和RAM)7、字长是指计算机内部一次可以处理的二进制数码的位数8、时钟周期<总线周期<指令周期9、任意进位制数→十进制数:按位权展开十进制数→任意进位制数:辗转相除第二章8086/8088微处理器1、8086 CPU有两个独立逻辑部件组成(内部功能结构):总线接口部件(BIU):与内存或I/O端口传送指令或数据、产生20位的物理地址指令执行部件(EU):负责执行指令2、BIU负责取指令,EU负责执行指令,重叠执行大大减少了等待指令所需的时间,提高了CPU的利用率和整个系统的执行速度3、段寄存器:代码CS、数据DS、堆栈SS、附加ES通用寄存器:数据寄存器:AX、BX、CX、DX变址寄存器:源DI、目的SI指针寄存器:基址BP、栈SP标志寄存器:FLAGS指令指针寄存器:IP4、8086 CPU通过CS寄存器和IP寄存器能准确找到指令代码5、8086/8088段寄存器的功能是用于存放段起始地址及计算物理地址6、指针寄存器和变址寄存器:只能按16位存取。
7、可以用于寄存器间接寻址、基址变址等寻址方式的寄存器有BX、BP、SI、DI。