第十四讲网络互连
- 格式:ppt
- 大小:294.00 KB
- 文档页数:31
学M O O C 中国大学M O O C 中国大学M O O C中国大学学M O O C中国大学M O O C 中国大学M OO C中国大学学M O O C中国大学MO O C中国大学MO O C中国大学学M OO C 中国大学M O O C中国大学MO O C中国大学学M OO C中国大学M O O C 中国大学MO OC中国大学学M OO C 中国大学M O O C 中国大学M OO C中国大学置换定理置换定理的应用主要内容 CONTENT学M O O C中国大学M O O C 中国大学M O O C中国大学学M O O C中国大学M O O C 中国大学MO OC中国大学学M O O C中国大学MO O C中国大学MO O C中国大学学M OO C 中国大学M O O C中国大学MO O C中国大学学M OOC中国大学M O O C 中国大学MO OC中国大学学M OO C 中国大学MO O C中国大学M O OC中国大学置换定理(Substitution Theorem ):若网络N由两个单口网络N 1和N 2连接组成,且已知端口电压和电流值分别为a和b,则N 2(或N 1)可以用一个电压为a的电压源或电流为b的电流源来置换,不影响N 1(或N 2)内各支路电压、电流原有数值。
适用:线性和非线性电路。
学M O O C中国大学M O O C 中国大学M O O C 学M O O C中国大学M O O C 中国大学MO OC学M O O C中国大学MO O C中国大学M O OC学M OOC 中国大学M O O C 中国大学MO OC学M OO C中国大学M O O C 中国大学MO OC学M OO C 中国大学M O O C 中国大学MO OC已知:u 3=8V , i 1=2A, i 2=1A, i 3=1A20V6Ωi 1i 2i 38Ω4Ω4Vu3+-+-+-20V6Ωi 1i 2i 38Ω8V u 3+-+-+-20V6Ωi 1i 2i 38Ω1A u 3+-+-+-N 1N 2学M O O C 中国大学M O O C 中国大学M O O C 学M O O C 中国大学MOO C 中国大学MO O C学M O O C中国大学MOOC中国大学MO OC学M OOC中国大学MOOC中国大学MO OC学M OO C中国大学MOOC中国大学MO OC学M OOC中国大学M O O C中国大学MO O C已知:u 3=8V , i 1=2A, i 2=1A, i 3=1A20V6Ωi 1i 2i 38Ω4Ω4Vu 3+-+-+-20V6Ωi 1i 2i 38Ω8V u 3+-+-+-20V6Ωi 1i 2i 38Ω1A u 3+-+-+-= −= +N 1N 2学M O OC中国大学M O O C中国大学M O O C学M O O C 中国大学M O OC中国大学MO O C学M O O C中国大学M O O C 中国大学MO OC学M OOC中国大学MO OC中国大学MO OC学M OO C中国大学M OOC中国大学MO OC学M OOC中国大学MOOC 中国大学MO O C【例1】求图示电路中电流I 和 I O 。
网络基础知识-网络互连概述前言网络互连是当前计算机网络的重要发展方向,也是实现互联网的根本。
随着互联网的不断发展,网络互连方案也在不断升级和演变。
本文将介绍网络互连的基本概念、发展历程、实现方式以及未来的发展方向。
基本概念网络互连网络互连是指在不同的计算机网络之间建立联系、实现信息交换的技术。
它是计算机网络通信的基础。
互联网互联网是由多个计算机网络互连而成的全球性网络。
它由无数个网段组成,这些网段由不同的机构、企业和个人自主建设和管理,没有一个中央管理机构。
互联网的核心技术是TCP/IP协议。
发展历程20世纪60年代,美国国防部开始研制“ARPA网”(Advanced Research Projects Agency Network),用于高校、研究机构之间的通信。
1969年,ARPA网通过美国加利福尼亚大学洛杉矶分校(UCLA)与斯坦福研究所(SRI)实现联网,这是互联网的雏形。
80年代,互联网开始商用化,ARPANET逐渐退役,网际互连(Internet)逐渐成为网络互连服务的代名词。
90年代,英国科学家蒂姆·伯纳斯-李发明了万维网,使得互联网使用变得更加简单。
21世纪以来,互联网的普及率不断提升,网络互连的能力也有了明显的提高。
移动互联网、物联网等新兴技术的出现,加速了网络互连服务的普及和发展。
实现方式网络互连可以通过多种方式实现,主要包括以下几种:网关互连网关是实现不同协议之间通信的设备,它可以翻译不同网络之间传输的数据格式和协议。
网关可以将两个或多个独立的网络互连在一起。
路由器互连路由器是管理网络数据包流向的设备,它能够判断数据的最佳传输路径并进行数据包转发。
路由器可以实现子网之间的互联。
隧道互连隧道技术将一个协议的数据封装到另一个协议中进行传输,实现不同网络之间的互连。
隧道技术在虚拟专用网络(VPN)的实现中应用较多。
未来发展未来,网络互连将朝着更加开放、安全、可靠和高效的方向发展。
《计算机网络》第07章网络互连技术在当今数字化的时代,计算机网络已经成为我们生活和工作中不可或缺的一部分。
而网络互连技术,则是构建复杂、高效网络的关键所在。
网络互连,简单来说,就是将多个独立的网络连接在一起,使它们能够相互通信和资源共享。
这就好比把一个个孤立的小岛用桥梁连接起来,形成一个庞大的陆地。
想象一下,如果每个网络都孤立存在,信息只能在有限的范围内流通,那将会是多么的不便。
实现网络互连的设备有很多,其中路由器是最为常见和重要的一种。
路由器就像是网络中的交通警察,它根据网络地址和路由协议,决定数据包的传输路径。
当一个数据包从一个网络发送到另一个网络时,路由器会检查数据包的目标地址,并根据预先设定的路由表,将其转发到正确的方向。
网络互连技术中,IP 协议是核心之一。
IP 地址就像是网络中设备的“身份证号码”,它唯一标识了网络中的每一个节点。
IPv4 地址我们都比较熟悉,由四个 0 到 255 之间的数字组成,例如 19216811。
然而,随着网络的快速发展,IPv4 地址资源已经日益匮乏,IPv6 应运而生。
IPv6 地址长度为 128 位,极大地扩展了地址空间,为未来的网络发展提供了充足的资源。
子网掩码也是网络互连中一个重要的概念。
它与IP 地址配合使用,用于确定网络地址和主机地址的划分。
通过子网掩码,我们可以将一个大的网络划分为多个子网,提高网络的管理效率和安全性。
在网络互连中,还有多种不同类型的网络,比如局域网(LAN)和广域网(WAN)。
局域网通常覆盖较小的范围,如一个办公室、一栋楼或者一个校园。
而广域网则可以跨越城市、国家甚至大洲,将分布在不同地理位置的网络连接起来。
网络互连技术还涉及到不同的网络拓扑结构。
常见的拓扑结构有总线型、星型、环型、树型和网状型等。
每种拓扑结构都有其特点和适用场景。
例如,总线型结构简单,但可靠性较低;星型结构易于管理和维护,但中心节点容易成为瓶颈。
网络互连的过程中,数据链路层的作用也不可忽视。