导数与不定积分习题课
- 格式:ppt
- 大小:859.00 KB
- 文档页数:32
. 1 .第四章 不定积分 习题课1.原函数 若,则称为的一个原函数.)()(x f x F =')(x F )(x f 若是的一个原函数,则的所有原函数都可表示为)(x F )(x f )(x f .C x F +)(2.不定积分 的带有任意常数项的原函数叫做的不定积)(x f )(x f 分,记作.⎰dx x f )(若是的一个原函数,则,)(x F )(x f C x F dx x f +=⎰)()(3.基本性质1),或;)(])([x f dx x f ='⎰dx x f dx x f d )(])([=⎰2),或;C x F x dF +=⎰)()(C x F dx x F +='⎰)()(3);⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([4),(,常数).⎰⎰=dx x f k dx x kf )()(0≠k 4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。
不定积分的运算是积分学中最重要、最基本的运算之一.5. 例题例1 已知的一个原函数是,求.)(x f x 2ln )(x f '解 , .x x x x f 1ln 2)(ln )(2⋅='=)ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='. 2 .例2 设,求.C x dx x f +=⎰2sin 2)()(x f 解 积分运算与微分运算互为逆运算,所以.2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰例3 若的一个原函数是,求.)(x f x 2⎰'dx x f )(解 因为是的原函数,故,所以x 2)(x f 2ln 2)2()(x x x f ='=.C C x f dx x f x +=+='⎰2ln 2)()(例4 求不定积分.⎰-dx e x x 3解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即.⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13例5 求不定积分.⎰'⎪⎭⎫⎝⎛dx x x 2sin 解 利用求导运算与积分运算的互逆性,得.C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin 例6 求不定积分.⎰⋅dx xxx 533解 先用幂函数的性质化简被积函数,然后积分..C x dx x dx x dx xxx +===⋅⎰⎰⎰-+15261511533115332615. 3 .例7 求不定积分.⎰++++dx xx x x x 32313解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113.⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln 例8 求不定积分.⎰-dx x2cos 11解 用三角恒等式将被积函数变形,然后积分.x x 2sin 212cos -=.⎰⎰=-dx xdx x 2sin 212cos 11⎰=xdx 2csc 21C x +-=cot 21例9 求不定积分.⎰+dx x x )sec (tan 22解 用三角恒等式将被积函数统一化为的函数,1sec tan 22-=x x x 2sec 再积分.⎰⎰+-=+dxx x dx x x )sec 1(sec )sec (tan2222.⎰-=dx x )1sec 2(2C x x +-=tan 2例10 求不定积分.⎰++dx x x x )1(21222解 .⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan. 4 .例11 求不定积分.⎰+dx x x )1(124解 类似于例10,拆项后再积分⎰⎰++--+=+dxx x x x x x dx x x )1(1)1(124442224.⎰⎪⎭⎫ ⎝⎛++-=dx x x x 2241111C x x x +++-=arctan 1313例12 一连续曲线过点,且在任一点处的切线斜率等于,)3,(2e x2求该曲线的方程.解 设曲线方程为,则,积分得)(x f y =xx f 2)(='. (曲线连续,过点,故C x dx xx f +==⎰ln 22)()3,(2e )0>x 将代入,得,解出.所以,曲线方程为3)(2=e f C e +=2ln 231-=C .1ln 2-=x y 例13 判断下列计算结果是否正确1); 2).C x dx xx +=+⎰322)(arctan 311)(arctan ()C e dx ex x++=+⎰1ln 11解 1),所以计算结果正确.2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+2), 计算结果不正确,即[]xx x xe e e C e +≠+='++111)1ln(.()C e dx ex x++≠+⎰1ln 11. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式1)时,.0≠a ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f 2).⎰⎰=x d x f xdx x f sin )(sin cos )(sin 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln 5),时,0>a 1≠a =⎰dx a a f x x )(6)时,0≠μ1()f x x dx μμ-=⎰7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin 10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()(例14 求.⎰dx xx xcos sin tan ln 解 ⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=xd xxtan tan tan ln .⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21. 6 .注由于被积函数中含有,表明,故x tan ln 0tan >x .x d x d xtan ln tan tan 1=例15 求下列不定积分1); 2).⎰+dx xx xln 1ln ⎰+dx x x 100)1(解 1) (请注意加1、减1的技巧)⎰⎰⋅+-+=+dx xx x dx xx x1ln 111ln ln 1ln⎰+⎪⎪⎭⎫ ⎝⎛+-+=)ln 1(ln 11ln 1x d x x .C x x ++-+=2123)ln 1(2)ln 1(322)dxx x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x.C x x ++-+=101102)1(1011)1(1021例16 设,不求出,试计算不定积分C x dx x f +=⎰2)()(x f .⎰-dx xxf )1(2解 (将看作变量)2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰21x -u .C x +--=22)1(21例17 设,求.x e x f -=)(⎰'dx xx f )(ln 解 先凑微分,然后利用写出计算结果.即C u f u d u f +='⎰)()(. 7 ..⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1例18 计算不定积分.⎰+dx x x )1(124 【提示】 分母中有时,考虑用“倒代换”.k x tx 1=解 设,则,t x 1=dt tdx 21-=4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+.3111arctan 3C x x x=-+-+例19 求不定积分.⎰+dx x x )4(16解 ⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 . 1ln 244t C t =++661ln 244x C x =++分部积分.⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分目的,使公式右边的积分要比左边的积分容易计算,u vdx '⎰⎰'dx v u 关键在于正确地选取和凑出.u. 8 .例 20 求不定积分.⎰dx xxarcsin 解一 这是一道综合题,先作变量代换,再分部积分.令,x t =则,,2t x =tdt dx 2= ⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=td t t t arcsin arcsin 2⎰--=dtttt t 212arcsin 222arcsin (1)t t t =+- Ct t t +-+=212arcsin 2.C x x x +-+=12arcsin 2解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2 ⎰--=dt tt t t 212arcsin 2.C t t t +-+=212arcsin 2C x x x +-+=12arcsin 2例 21 已知的一个原函数是,求.)(x f 2x e-⎰'dx x f x )(【提 示】 不必求出,直接运用分部积分公式.)(x f '解 由已知条件,,且,故)(x f ()'=-2x e ⎰dx x f )(C e x +=-2⎰⎰=')()(x xdf dx x f x ⎰-=dxx f x xf )()(()Ceex x x +-'=--22. 9 ..C e e x x x +--=--2222例 22 设,求.x x x f ln )1()(ln +=')(x f 解 先求出的表达式.设,则,)(x f 't x =ln t e x =)1()(+='t e t t f ⎰+=dt e t t f t )1()(⎰⎰+=tdttde t,22t dt e te tt +-=⎰C t e te tt ++-=22所以.C x e xe x f x x++-=2)(2例23 求不定积分.5432x x dx x x+--⎰解 将分子凑成,23332()()2x x x x x x x x x x -+-+-++-把分式化为多项式与真分式的和;542233221x x x x x x x x x x+-+-=+++--再将真分式化为最简分式的和,232x x x x+--,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰.322ln ln 132x x x x x C =+++-++. 10 .例24 求不定积分.⎰+-dx x x x )1(188解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x (换元,令)⎰+-=du u u u )1(1818x u =⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81.()C x x ++-=81ln 41||ln 例25 求不定积分.⎰+dx xsin 11解 ⎰⎰--=+dx xx dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1.⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan 例26 求不定积分.⎰+++++dx x x x)11()1(11365解 为同时去掉三个根式,设,则,,t x =+6116-=t x dt t dx 56= dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t +-+=+⎰⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116()C t t t +++-=arctan 61ln 3322.()3311ln 313x x ++-+=C x +++61arctan 6。
《高等数学》不定积分课后习题详解(总58页)不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)思路: 被积函数 52x-=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰★(3)22x x dx +⎰() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰() ★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x+⎰ 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。
导数、不定积分复习题解答 1. 329x dx x +⎰= 解 C x x x d x x d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(92192222222232.2121dx x -⎰= 解 ⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 2213. sin 5sin 7x xdx ⎰=解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin 4. 21ln (ln )x dx x x +⎰=解 C x x x x d x x dx x x x +-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122 5. ⎰-+211xdx= 解 ⎰⎰⎰⎰-=+-=+=-+dt t dt t tdt t t x x dx)2sec 211()cos 111(cos cos 11sin 1122令 C xx x C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan6. ⎰xdx arcsin =解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin⎰--=dx x xx x 21arcsinC x x x +-+=21a r c s i n7. 设函数⎩⎨⎧>+≤=11 )(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 解 因为1lim )(lim 20101==-→-→x x f x x , b a b ax x f x x +=+=+→+→)(lim )(lim 0101, f (1)=a +b , 所以要使函数在x =1处连续, 必须a +b =1 .又因为当a +b =1时211lim )1(201=--='-→-x x f x , a x x a x b a x a x b ax f x x x =--=--++-=--+='+→+→+→+1)1(lim 11)1(lim 11lim )1(010101, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1.8. 已知f (x )=⎩⎨⎧≥<0 0 sin x x x x , 求f '(x ) . 解 当x <0时, f (x )=sin x , f '(x )=cos x ;当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim 00=-=--→-→xx x f x f x x , f +'(0)=10lim )0()(lim 00=-=-+→+→x x xf x f x x , 所以f '(0)=1, 从而 f '(x )=⎩⎨⎧≥<0 10 cos x x x 9. 求函数y =x 2ln x cos x 的导数解y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x ) 2x ln x cos x +x cos x -x 2 ln x sin x10. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数解 )]()(2)()(2[)()(21])()([)()(21222222x g x g x f x f x g x f x g x f x g x f y '+'⋅+='+⋅+=' )()()()()()(22x g x f x g x g x f x f +'+'= 11. 求函数242arcsin x x x y -+=的导数 解2arcsin )2(421214112arcsin 22x x x xx x y =-⋅-+⋅-⋅+=' 12. 求由下列方程所确定的隐函数y 的导数dxdy :y 2-2x y +9=0 解 (1)方程两边求导数得2y y '-2y -2x y ' =0 ,于是 (y -x )y '=y ,xy y y -=' 13. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程. 解 方程两边求导数得0323211='+--y y x , 于是 3131---='y xy , 在点)42 ,42(a a 处y '=-1. 所求切线方程为)42(42a x a y --=-, 即a y x 22=+. 所求法线方程为)42(42a x a y -=-, 即x -y =0.。
高等数学(同济第七版下)课后习题及解答高等数学(同济第七版下)课后习题及解答一、函数与极限1. 已知函数 f(x) = x^2 + 3x - 2, 求以下极限:(1) lim(x→2) f(x)(2) lim(x→-1) f(x)解答:(1) 当x → 2 时,f(x) = x^2 + 3x - 2 = 2^2 + 3(2) - 2 = 12所以,lim(x→2) f(x) = 12(2) 当x → -1 时,f(x) = (-1)^2 + 3(-1) - 2 = -2所以,lim(x→-1) f(x) = -22. 求以下极限:(1) lim(x→0) (sin3x)/(sin4x)(2) lim(x→∞) (x^2 - 2x)/(x - 1)解答:(1) 利用极限的性质,lim(x→0) (sin3x)/(sin4x)= lim(x→0) (3x)/(4x) = 3/4(2) 利用极限的性质,lim(x→∞) (x^2 - 2x)/(x - 1)= lim(x→∞) x(x - 2)/(x - 1) = ∞二、导数与微分1. 求以下函数的导数:(1) y = x^3 + 2x^2 - 3x + 1(2) y = sin(2x) + cos(3x)(3) y = e^x/(1 + e^x)解答:(1) y' = 3x^2 + 4x - 3(2) y' = 2cos(2x) - 3sin(3x)(3) 利用商链规则和指数函数的导数性质,y' = e^x/(1 + e^x) - e^x*e^x/(1 + e^x)^2= e^x/(1 + e^x) - (e^x)^2/(1 + e^x)^2= e^x(1 - e^x)/(1 + e^x)^22. 求以下函数的微分:(1) y = 3x^2 + 4x - 2(2) y = sin(3x) + cos(2x)(3) y = ln(x) + e^x解答:(1) dy = (6x + 4)dx(2) dy = 3cos(3x)dx - 2sin(2x)dx(3) 利用对数函数和指数函数的微分性质,dy = (1/x)dx + e^xdx三、定积分与不定积分1. 求以下定积分:(1) ∫[0,1] (x^2 + 2x)dx(2) ∫[π/4,π/2] sinx dx解答:(1) ∫[0,1] (x^2 + 2x)dx = (1/3)x^3 + x^2 |[0,1]= (1/3)(1)^3 + (1)^2 - (1/3)(0)^3 - (0)^2= 4/3(2) 利用不定积分的基本公式,∫ sinx dx = -cosx∫[π/4,π/2] sinx dx = [-cosx] |[π/4,π/2] = -cos(π/2) - (-cos(π/4)) = -1 + √2/2 = √2/2 - 12. 求以下不定积分:(1) ∫(x^2 + 2x)dx(2) ∫sinx dx解答:(1) ∫(x^2 + 2x)dx = (1/3)x^3 + x^2 + C(2) ∫sinx dx = -cosx + C四、级数1. 判断以下级数的敛散性:(1) ∑(n=1,∞) (1/n)(2) ∑(n=1,∞) (1/2)^n解答:(1) 这是调和级数,已知调和级数∑(n=1,∞) (1/n) 发散。
. 1 .第四章 不定积分 习题课1.原函数 若)()(x f x F =',则称)(x F 为)(x f 的一个原函数. 若)(x F 是)(x f 的一个原函数,则)(x f 的所有原函数都可表示为C x F +)(.2.不定积分 )(x f 的带有任意常数项的原函数叫做)(x f 的不定积分,记作⎰dx x f )(.若)(x F 是)(x f 的一个原函数,则C x F dx x f +=⎰)()(, 3.基本性质1))(])([x f dx x f ='⎰,或dx x f dx x f d )(])([=⎰; 2)C x F x dF +=⎰)()(,或C x F dx x F +='⎰)()(; 3)⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([; 4)⎰⎰=dx x f k dx x kf )()(,(0≠k ,常数).4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。
不定积分的运算是积分学中最重要、最基本的运算之一. 5. 例题例1 已知)(x f 的一个原函数是x 2ln ,求)(x f '.解 x x x x f 1ln 2)(ln )(2⋅='=, )ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='.. 2 .例2 设C xdx x f +=⎰2sin 2)(,求)(x f . 解 积分运算与微分运算互为逆运算,所以2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰.例3 若)(x f 的一个原函数是x 2,求⎰'dx x f )(.解 因为x 2是)(x f 的原函数,故2ln 2)2()(x x x f ='=,所以C C x f dx x f x +=+='⎰2ln 2)()(.例4 求不定积分⎰-dx e x x 3.解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13.例5 求不定积分⎰'⎪⎭⎫⎝⎛dx x x 2sin . 解 利用求导运算与积分运算的互逆性,得C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin .例6 求不定积分⎰⋅dx xxx 533.解 先用幂函数的性质化简被积函数,然后积分.C x dx x dx xdx xxx +===⋅⎰⎰⎰-+15261511533115332615.. 3 .例7 求不定积分⎰++++dx xx x x x 32313. 解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln .例8 求不定积分⎰-dx x2cos 11.解 用三角恒等式x x 2sin 212cos -=将被积函数变形,然后积分.⎰⎰=-dxxdx x 2sin 212cos 11 ⎰=xdx 2csc 21C x +-=cot 21.例9 求不定积分⎰+dx x x )sec (tan 22.解 用三角恒等式1sec t an 22-=x x 将被积函数统一化为x 2sec 的函数,再积分.⎰⎰+-=+dx x x dx x x )sec 1(sec )sec (tan2222⎰-=dx x )1sec 2(2C x x +-=t a n2.例10 求不定积分⎰++dx x x x )1(21222. 解⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan .. 4 .例11 求不定积分⎰+dx x x )1(124.解 类似于例10,拆项后再积分⎰⎰++--+=+dx x x x x x x dx x x )1(1)1(124442224⎰⎪⎭⎫⎝⎛++-=dx x xx2241111C x xx +++-=arctan 1313.例12 一连续曲线过点)3,(2e ,且在任一点处的切线斜率等于x2,求该曲线的方程.解 设曲线方程为)(x f y =,则xx f 2)(=',积分得 C x dx xx f +==⎰ln 22)(. (曲线连续,过点)3,(2e ,故0>x ) 将3)(2=e f 代入,得C e +=2ln 23,解出1-=C .所以,曲线方程为1ln 2-=x y .例13 判断下列计算结果是否正确1)C x dx xx +=+⎰322)(arctan 311)(arctan ; 2)()C e dx e x x ++=+⎰1ln 11. 解 1)2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+,所以计算结果正确. 2)[]xx x xe e e C e +≠+='++111)1ln(, 计算结果不正确,即()C e dx ex x++≠+⎰1ln 11.. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式 1)0≠a 时,⎰⎰++=+)()(1)(b ax d b ax f adx b ax f . 2)⎰⎰=x d x f xdx x f sin )(sin cos )(sin . 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln5)0>a ,1≠a 时,=⎰dx a a f x x )( 6)0≠μ时,1()f x x dx μμ-=⎰ 7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()( 例14 求⎰dx xx xcos sin tan ln .解⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=x d xxtan tan tan ln⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21.. 6 .注 由于被积函数中含有x t a n ln ,表明0t a n >x ,故x d x d xt a nln tan tan 1=. 例15 求下列不定积分 1)⎰+dx xx x ln 1ln ; 2)⎰+dx x x 100)1(.解 1)⎰⎰⋅+-+=+dx xx x dx xx x 1ln 111ln ln 1ln (请注意加1、减1的技巧) ⎰+⎪⎪⎭⎫⎝⎛+-+=)ln 1(ln 11ln 1x d x x C x x ++-+=2123)ln 1(2)ln 1(32.2)dx x x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x C x x ++-+=101102)1(1011)1(1021. 例16 设C x dx x f +=⎰2)(,不求出)(x f ,试计算不定积分⎰-dx x xf )1(2. 解 2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰ (将21x -看作变量u ) C x +--=22)1(21.例17 设x e x f -=)(,求⎰'dx xx f )(ln . 解 先凑微分,然后利用C u f u d u f +='⎰)()(写出计算结果.即⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1.. 7 .例18 计算不定积分⎰+dx x x )1(124.【提示】 分母中有k x 时,考虑用“倒代换”tx 1=.解 设t x 1=,则dt tdx 21-=, 4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111 ⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+ 3111a r c t a n 3C x x x=-+-+. 例19 求不定积分⎰+dx x x )4(16.解⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 1ln 244tC t =++ 661ln 244x C x =++. 分部积分⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分.目的,使公式右边的积分u vdx '⎰要比左边的积分⎰'dx v u 容易计算,关键在于正确地选取u 和凑出. 例 20 求不定积分⎰dx xxarcsin .解一 这是一道综合题,先作变量代换,再分部积分.令x t =,. 8 .则2t x =,tdt dx 2=,⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=t d t t t arcsin arcsin 2⎰--=dttt t t 212arcsin 222arcsin (1)t t t =+-Ct t t +-+=212arcsin 2C x x x +-+=12arcsin 2.解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2⎰--=dt tt t t 212arcsin 2C t t t +-+=212a r c s i n 2C x xx +-+=12a r c s i n 2.例 21 已知)(x f 的一个原函数是2x e-,求⎰'dx x f x )(.【提 示】 不必求出)(x f ',直接运用分部积分公式. 解 由已知条件,)(x f ()'=-2x e,且⎰dx x f )(C ex +=-2,故⎰⎰=')()(x xdf dx x f x ⎰-=dx x f x xf )()(()C ee x x x+-'=--22C e e x x x +--=--2222.. 9 .例 22 设x x x f ln )1()(ln +=',求)(x f .解 先求出)(x f '的表达式.设t x =ln ,则t e x =,)1()(+='t e t t f .⎰+=dt e t t f t )1()(⎰⎰+=tdt tde t22t dt e te tt+-=⎰C t e te tt ++-=22,所以 C x e xe x f xx++-=2)(2.例23 求不定积分5432x x dx x x+--⎰. 解 将分子凑成23332()()2x x x x x x x x x x -+-+-++-,把分式化为多项式与真分式的和542233221x x x x x x x x x x+-+-=+++--; 再将真分式232x x x x+--化为最简分式的和,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++, 于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰ 322ln ln 132x x x x x C =+++-++.. 10 .例24 求不定积分⎰+-dx x x x )1(188.解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x ⎰+-=du u u u )1(181 (换元,令8x u =) ⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81 ()C x x ++-=81ln 41||ln . 例25 求不定积分⎰+dx xsin 11. 解⎰⎰--=+dx x x dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan . 例26 求不定积分⎰+++++dx x x x)11()1(11365.解 为同时去掉三个根式,设t x =+61,则16-=t x ,dt t dx 56=,dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t+-+=+⎰ ⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116 ()Ct t t +++-=arctan 61ln 3322()3311ln 313x x ++-+=C x +++61arctan 6.。