1.如图,在△ABC中, BC>AC,点D在BC边上, 且DC=AC, ∠ACB的平分线CF交AD于F ,点E是 AB的中点,连接EF,求证:EF是△ABD的中位线.
2.如图,在四边形ABCD中, AB∥CD, 且 CD等于AB的一半。E是BC的中点,DE交 AC于点F , 求证 : DE被AC平分.
的中点,则DE与BC存在何种关系?
A
D
E
B
C
DE和边BC关系
位置关系: DE∥BC
数量关系: DE= 1 BC. 2
D B
A E C
三角形的中位线平行且等于第三边的一半.
A
几何语言:
D E ∵DE是△ABC的中位线
(或AD=BD,AE=CE)
B
C
D E/
/
1 2
B
C
如图,在△ABC中,D、E分别是AB、AC 的中点
例1 求证三角形的一条中位线与第三边上的中线 互相平分.
已知:△ABC中,AD=DB,BE=EC,AF=FC.
求证:AE与DF互相平分.
证明:连接DE、EF,因为
A
AD=DB,BE=EC,
所以DE ∥AC(三角形的中位线平
行于第三边并且等于第三边的一
半)。
D
F 同理EF ∥AB。
所以四边形ADEF是平行四边形。
B
E
C因边此形A的E对、角D线F互互相相平平分分。)(平行四
例2. 如图,在四边形ABCD中,E、F、G、 H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.
A
H
D
E G
B
F
C
例3.已知:在四边形ABCD中,AD= BC,P是对角线BD的中点,M是DC 的中点,N是AB的中点.求证∠1= ∠2.