SPSS+cox比例风险回归模型
- 格式:doc
- 大小:354.50 KB
- 文档页数:4
Cox比例风险模型——Hazard model(一)方法简介1概念界定COX回归模型,全称Cox 比例风险回归模型(Cox’s proportional hazards regression model),简称Cox 回归模型。
是由英国统计学家D.R.Cox(1972)年提出的一种半参数回归模型。
该模型以生存结局和生存时间为因变量,可同时分析众多因素对生存期的影响,能分析带有截尾生存时间的资料,且不要求估计资料的生存分布类型。
由于上述优良性质,该模型自问世以来,在医学随访研究中得到广泛的应用,是迄今生存分析中应用最多的多因素分析方法。
(绕绍奇,徐天和,2013)与参数模型相比,该模型不能给出各时点的风险率,但对生存时间分布无要求,可估计出各研究因素对风险率的影响,因而应用范围更广。
2 方法创始人:Cox (1972) proportional (成比例的)hazard regression model.详细介绍了该方法的具体推演过程以及相关的实例。
参考文献:Cox, D. R. (1992). Regression models and life-tables. Journal of the Royal Statistical Society, 34(2), 187-220.3 基础知识h(X,t)由两部分组成:h0(t)不要求特定的形式,具有非参数方法的特点,而exp(…) 部分的自变量效应具有参数模型的形式,所以Cox 回归属于半参数模型。
等比例风险假设是最为关键的适用条件,类似于线性回归模型中的线性相关假设。
比例风险( PH) 假定的检验方法目前,检验Cox 回归模型PH 假定的方法主要有图示法和假设检验法[6]两种。
图示法包括: ( 1)Cox &K-M 比较法,( 2 ) 累积风险函数法,( 3 )Schoenfeld 残差图法; 假设检验法包括: ( 1) 时协变量法,( 2) 线性相关检验法,( 3) 加权残差Score 法; ( 4) Omnibus 检验法。
SPSS详细教程:含时间依存协变量Cox回归模型(时依系数法)Cox回归模型有效地解决了对⽣存资料进⾏多因素分析的问题,但是应⽤Cox回归模型有⼀个⾮常重要的前提条件,即⽐例风险(Proportional hazards)假定,简称PH假定,其基本假设为:协变量对⽣存率的影响不随时间的改变⽽改变。
只有当PH假定得到满⾜时,Cox回归模型的结果才有意义。
在前期的内容中,对于分类变量和连续变量,⼩咖分别向⼤家讲解了如何利⽤SPSS软件来检验PH假定(详细戳链接:《SPSS详细教程:Cox回归中,分类变量的PH假定检验》、《SPSS详细教程:Cox回归中,连续变量的PH假定检验》)。
那么⼤家可能⽐较关⼼,如果协变量不满⾜PH假定时,应该怎么处理呢?本期内容⼩咖将为⼤家介绍⼀种拓展的Cox回归模型⽅法--含时间依存协变量Cox回归模型。
含时间依存协变量Cox回归模型(时依系数法)含时间依存协变量Cox回归模型(Time-Dependent Cox Regression Model),是⼀种⾮⽐例风险模型(Non-proportional Hazard Model),我们把不满⾜PH假定的协变量定义为时间依存协变量,并将其引⼊Cox回归模型中,即构成含时间依存协变量Cox回归模型。
含时间依存协变量⼀般可以分为两种情况,即外在时间依存协变量和内在时间依存协变量,本期内容我们先讨论外在时间依存协变量的情况。
外在时间依存协变量:当时间依存协变量的取值不随时间的变化⽽变化,但其效应值(RR)会随时间⽽改变时,这个时候我们把这类协变量被称为外在时间依存协变量。
模型可以表⽰为:h(X, t)=h(t)exp(αX+βXt)其中h(t)表⽰风险函数,αX表⽰⾃变量X对风险函数的原始影响,βXt表⽰⾃变量X影响的时间校正。
对于这种情况,我们可以在Cox回归模型中引⼊⼀个含时间与协变量的交互作⽤项,⼀般取不满⾜等⽐例风险的协变量与时间函数的乘积项,最常见的时间函数是取时间变量的⾃然对数,即Ln(T)*X,这种⽅法称为时依系数法。
一、生存分析基本概念1、事件(Event)指研究中规定的生存研究的终点,在研究开始之前就已经制定好。
根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。
2、生存时间(Survival time)指从某一起点到事件发生所经过的时间。
生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。
有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。
3、删失(Sensoring)指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。
常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。
4、生存函数(Survival distribution function)又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。
t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。
二、生存分析的方法1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。
对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。
2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。
这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。
下面用一个例子来说明SPSS中Cox回归模型的操作方法。
例题要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:操作步骤:SPSS变量视图菜单选择:点击进入Cox主对话框,如下,将time选入“时间”框,将代表删失的censor变量选入“状态”框,其余分析变量选入“协变量”框。
COX⽐例风险回归不同于多重线性回归和Logistic回归(包括⼆分类和多分类),⽣存分析(Survival analysis)是分析结合终点事件出现与否和所经历时间的统计⽅法,如在疾病队列随访研究中,除了需考虑终点事件是否发⽣,还需考虑到达终点事件所经历的时间长短。
随访过程如图1。
COX⽐例风险回归模型(Proportional hazards model)常⽤于多因素⽣存分析,探索影响多因素对⽣存期的影响。
该模型是⼀种半参数回归模型,对数据分布要求较低,在临床⾮常常⽤。
1 相关概念我们先来了解相关概念,如下:•终点事件 (Outcome event) :标志某种处理措施失败或失效的特征事件,如死亡、发病等。
•⽣存时间 (Survival time) :指观察起点到某⼀特定终点事件出现经历的时间的长度。
•删失数据 (Censored value) :感兴趣终点事件尚未发⽣,由于失访、退出等其他原因引起的,称为截尾(Censored)。
•⽣存率( Survival rate ):指观察对象经历t个时间段后存活的概率,⽣存率等于⽣存概率的乘积,记为S(t)。
如某恶性肿瘤,以⽣存时间为横轴,⽣存率为纵轴,连接各个时间点的⽣存率得到的曲线图形为⽣存曲线。
•风险函数( Hazard function ):表⽰t时刻存活的个体的瞬时死亡风险,记为h(t)。
它是速率⽽不是概率,如某恶性肿瘤,以⽣存时间为横轴,以风险函数为纵轴的曲线称为风险曲线,可以得知⽣存时间点恶性肿瘤的死亡风险值。
2 COX⽐例风险回归模型0 1模型的基本形式COX⽐例风险回归模型基本形式如下:其中,X1、X2、… Xp为⾃变量;β1、β2、…βp为⾃变量的偏回归系数;h0(t)为X1=X2=…= Xp=0时t时刻的风险函数,称为基线风险函数。
h(t)为具有⾃变量X1、X2、… Xp的个体在t时刻的风险函数。
COX模型对第⼀个因⼦h0(t)的内容不做作任何假定,第⼆个因⼦却有参数模型,所有COX模型实为半参数模型。
Cox比例风险回归模型单因素多因素生存分析ROC曲线热图Cox比例风险回归模型单因素多因素生存分析ROC曲线热图原创:biowolfTCGA数据库挖掘,你做到了哪一步,如果还没入门,还应该先看看之前的关于TCGA数据库数据下载,矩阵提取,临床数据下载,miRNA矩阵提取,差异分析,生存分析……的文章。
Cox比例风险回归模型临床应用非常广泛,Cox分析得到的结果是可以直接运用到临床应用的,所以这个分析对癌症临床诊断有非常关键的作用,检测高低风险的关键基因,就可以预测病人5年生存率。
Cox比例风险回归模型,简称Cox回归模型。
该模型又英国统计学家D.R.Cox于1972年提出,主要用于肿瘤和其他慢性病的预后分析,也可用于队列研究的病因探索。
Cox回归模型能处理多个因素对生存时间影响的问题。
这里用到的癌症是:宫颈鳞状细胞癌CESC(临床307个样本,基因表达有304个样本)一、首先需要合并差异基因得到的表达量和临床信息这个步骤非常重要,也是让很多人感觉麻烦的地方,TCGA数据库样本量大,一个重要的癌症样本300-500个,临床信息又是独立存在,这里用到的是总生存时间和生存状态,得到一个行名是样本,列名包括总生存时间、生存状态、以及所有差异基因,对应的数据是差异基因的表达量,当然这个表达量是处理过的,不是TCGA下载下载下来的原始数据。
如果还没有得到生存时间、生存状态的文件,也没有得到差异基因的表达量,那就要先做差异分析,提取生存时间。
简单回顾一下,提取生存时间会用到TCGA数据库下载的metadata.txt文件,这个文件大家很熟悉,可以直接在TCGA数据库下载的;差异分析涉及的内容就比较多,首先要从TCGA数据库下载基因表达数据,然后用perl 脚本合并所有样本的表达矩阵,得到矩阵之后,要对ID进行转换,TCGA数据库用的是ensmbolID,需要转换genesymobl,得到genesymobl的矩阵之后,就可以做差异分析,做了差异分析,就可以接着我们上面的合并工作了。
王江源SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)王江源 /u/1153366774 2012-09-22 19:05:29一、生存分析基本概念1、事件(Event)指研究中规定的生存研究的终点,在研究开始之前就已经制定好。
根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。
2、生存时间(Survival time)指从某一起点到事件发生所经过的时间。
生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。
有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。
3、删失(Sensoring)指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。
常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。
4、生存函数(Survival distribution function)又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。
t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。
二、生存分析的方法1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。
对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。
2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。
这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。
下面用一个例子来说明SPSS中Cox回归模型的操作方法。
COX比例风险回归模型是一种常用的生存分析方法,它能够对生存时间或事件发生时间进行建模,并且能够考虑到不同个体的观测时长不同这一特点。
在研究中,COX比例风险回归模型通常被用来探究某种因素对于生存时间或事件发生时间的影响程度。
本文将以COX比例风险回归模型为主题,深入探讨其原理、应用、结果解读和个人理解。
一、COX比例风险回归模型原理COX比例风险回归模型是由David R. Cox于1972年提出的,它是一种半参数模型,既考虑了危险比的比例关系,又不需要对基本风险函数作出严格的假设。
模型的基本形式为:$$ h(t|x) =h_0(t)exp(\beta_1x_1+\beta_2x_2+...+\beta_px_p) $$ 其中,h(t|x)为在给定协变量x情况下,观测到时间t的瞬时事件发生率;h0(t)为基础风险函数,与协变量无关;β1, β2,…, βp为协变量的回归系数;x1, x2,…, xp为对应的协变量。
二、COX比例风险回归模型应用COX比例风险回归模型主要适用于生存分析领域,例如医学、流行病学和生态学等研究中。
研究者可以利用COX比例风险回归模型来探究不同因素对于生存时间或事件发生时间的影响情况。
这种模型在临床试验中也得到了广泛的应用,可以用来评估治疗效果、预测疾病风险等。
三、COX比例风险回归模型结果解读在进行COX比例风险回归模型分析后,我们通常会得到各个协变量的回归系数、危险比和相应的置信区间。
这些结果对于理解不同因素对生存时间或事件发生时间的影响至关重要。
如果某个协变量的危险比为2.0,且置信区间不包含1.0,就说明该因素对事件发生的影响是显著的。
还需要考虑模型的比例风险假设是否成立,以及是否存在共线性等问题。
个人理解与观点:COX比例风险回归模型是一种非常有用的统计方法,它能够帮助研究者从更深层次理解不同因素对生存能力的影响程度。
然而,在进行模型分析时,我们还需要注意模型的适用性和准确性,避免结果的误导性。
SPSS单因素回归,多因素cox回归详细解答相信许多小伙伴们在做多因素回归时候总是看文献的做法,先进行一次单因素回归,然后将单因素回归的有意义的指标纳入多因素回归中,简直就是无脑纳入,只要有意义,全部纳入,而无异议的看都不看就直接扔了,其实这样是不对的,但是这对于你发表论文可能没什么影响,因为很多审稿人根本就不知道多因素回归,(包括多因素logistics回归以及多因素cox回归)的具体定义,也不知道其纳入方法,外国人更是傻傻分不清楚了,但是说归说,我们还是要从本质去学习,了解什么是真理,什么是目的,目的是需要手段去实现的,但是真理才是永恒的。
这里重要的一点是单纯纳入单因素分析中有意义的指标进入多因素分析,结果是不靠谱的,因为你很可能将重要的影响因素排除在外!!举个例子这里显然在单因素回归中(此处为单因素logistics回归)年龄是无意义的,但是地球人用脚趾头想想都能知道血脂的异常跟年龄是显著有关的啊,这里先别着急将年龄从血脂异常候选影响因素中删去,我们再来看看多因素Logistic回归分析结果。
SPSS软件的多因素Logistic回归结果显示,55-岁组血脂异常的患病风险是<45岁组的2.093倍。
之所以会出现这种现象,是因为在做单因素分析时,往往无法识别混杂因素的存在,而混杂因素很可能会干扰我们关注的变量与结局之间的关系。
请仔细看这里的解释,55-岁组血脂异常的患病风险是<45岁组的2.093倍(我们并没有说45-55岁之间的人怎么怎么样,因为他p值没意义,so这里的描述要追求真理的情况下,显然需要更加细化的描述,就跟前面蓝字一样的描述,如果你傻傻分不清,论文是初级选手,或者不想写那么细化的论文,想简单点,请参照下图将年龄划出去就行就是这里,不要将年龄这个变量纳入分类变量,那么就能显示出你想要的结果)所以,如果多因素Logistic回归分析时,只纳入单因素分析有统计学意义的自变量,则有时候某些影响因素就没有机会进入多因素模型(比如栗子中的年龄,而年龄确实对血脂异常有影响)。