第三章_通信原理《随机过程》
- 格式:ppt
- 大小:1.29 MB
- 文档页数:94
通信原理辅导及习题解析(第六版)第3章随机过程本章知识结构及内容小结[本章知识结构][知识要点与考点]1. 随机过程的基本概念 (1)随机过程的定义随机过程可从样本函数与随机变量两种角度定义。
第一,随机过程是所有样本函数的集合;第二,随机过程可以看作实在时间进程中处于不同时刻的随机变量的集合。
(2)随机过程的分布函数 ① n 维分布函数12121122(,,,;,,,){(),(),,()}n n n n n F x x x t t t P t x t x t x ξξξ=≤≤≤② n 维概率密度函数1212121212(,,,;,,,)(,,,;,,,),,,n n n n n n nF x x x t t t f x x x t t t x x x ∂=∂∂∂维数n 越大,对随机过程统计特征的描述就越充分。
(3)随机过程的数字特征 ① 均值(数学期望)1[()](,)()E t xf x t dx a t ξ∞-∞==⎰均值表示随机过程的样本函数曲线的摆动中心。
② 方差2222[()]{()[()]}[()]()()D t E t E t E t a t t ξξξξσ=-=-=方差表示随机过程在时刻t 相对于均值的偏离程度。
③自相关函数1212(,)[()()]R t t E t t ξξ=自相关函数目的是为了衡量在任意两个时刻上获得的随机变量之间的关联程度。
④协方差函数1211221212(,){[()()][()()]}(,)()()B t t E t a t t a t R t t a t a t ξξ=--=-协方差函数对随机过程在任意两个时刻上的随机变量与各自均值的差值之间的相关联程度进行描述。
⑤互相关函数,1212(,)[()()]R t t E t t ξηξη=互相关函数用来衡量两个随机过程之间的相关程度。
2. 平稳随机过程 (1)定义 ①严平稳随机过程若一个随机过程()t ξ的任意有限维分布函数与时间起点无关,则称为严平稳的,即:()()12121212,,,,,,,,,,n n n n n n f x x x t t t f x x x t t t =+∆+∆+∆②宽平稳随机过程若一个随机过程()t ξ的均值为常数,自相关函数仅于时间间隔21t t τ=-有关,则称为宽平稳,即:()()()12, ,E t a R t t R ξτ==⎡⎤⎣⎦(2)各态历经性若随机过程的任一实现,经历了随机过程的所有可能状态,则称其是各态历经的,即随机过程的数字特征,可以由其任一实现(样本函数)的数字特征来代表。
第3章随机过程3.1 随机过程基本概念自然界中事物的变化过程可以大致分成为两类:(1) 确定性过程:其变化过程具有确定的形式,数学上可以用一个或几个时间t的确定函数来描述。
(2) 随机过程:没有确定的变化形式。
每次对它的测量结果没有一个确定的变化规律。
数学上,这类事物变化的过程不可能用一个或几个时间t的确定函数来描述。
随机信号和噪声统称为随机过程。
1. 随机过程的分布函数随机过程定义:设S k(k=1, 2, …)是随机试验。
每一次试验都有一条时间波形(称为样本函数),记作x i(t),所有可能出现的结果的总体{x1(t), x2(t),…, x n(t),…}构成一随机过程,记作ξ(t)。
无穷多个样本函数的总体叫做随机过程。
随机过程具有随机变量和时间函数的特点。
在进行观测前是无法预知是空间中哪一个样本。
在一个固定时刻t1,不同样本的取值x i(t1)是一个随机变量。
随机过程是处于不同时刻的随机变量的集合。
设ξ(t)表示一个随机过程,在任意给定的时刻t1其取值ξ(t1)是一个一维随机变量。
随机变量的统计特性可以用分布函数或概率密度函数来描述。
把随机变量ξ(t1)小于或等于某一数值x1的概率记为F1(x1, t1),即如果F1对x1的导数存在,即ξ (t)样本函数的总体(随机过程)11{()}P t xξ≤11111(,){()}F x t P t xξ=≤称为ξ(t)的一维概率密度函数。
同理,任给t 1, t 2, …, t n ∈T, 则ξ(t)的n 维分布函数被定义为为ξ(t)的n 维概率密度函数。
2. 随机过程的数字特征用数字特征来描述随机过程的统计特性,更简单直观。
数字特征是指均值、方差和相关系数。
是从随机变量的数字特征推广而来的。
(1) 数学期望(均值)表示随机过程的n 个样本函数曲线的摆动中心,即均值。
积分是对x 进行的,表示t 时刻各个样本的均值,不同时刻t 的均值构成摆动中心。