水、地源热泵特点及使用范围
- 格式:doc
- 大小:16.80 MB
- 文档页数:23
水源热泵与地源热泵的区别(含打井)一、定义上的区别:地源热泵和水源热泵在概念上来讲主要是针对系统所说的,也就是地源热泵系统和水源热泵系统,而不是针对主机,有很多人在这方面有误解,换句话说地源热泵主机和水源热泵主机是一样的主机。
而我们通常所说的地源热泵或者水源热泵就是指主机源水侧水源的来源。
如果是地源热泵的话,那么他的水源来源于地下埋管的闭式环路,源水侧的水通过地下埋管与地下进行热交换,而不发生物质交换,这就是我们通常所说的地源热泵,欧美的表示方法为geothermal-heatpump。
水源热泵区别于地源热泵的就是源水侧水源直接取自地下水或者江水或者海水等,它是一种开式的型式,水被直接拿来取热或排热并按要求排放回原取水点,只是利用了自然界水中的能量,这样的形式就称为水源热泵了。
二、简理解单的区别:1:地源热泵是室外打孔,占地面积比水源热泵要大2:水源热泵是室外打水井,但现在政府对打井审批比较复杂(水源热泵是需要打井的,通常都需要水务局批准。
),而地源热泵国家不需要相关的审批手续3:地源热泵比水源热泵室外部分投资要高所有的浅层低温能热泵都统称为:地源热泵地源热泵分为开式系统和闭式系统。
你所说的地源热泵应该是指土壤源的。
“地源”和“水源”的区别主要是介质不同,设计和施工方法也不同。
土壤源热泵也是闭式系统的一种,主要是在建筑物周围的地下铺设地耦管,封闭的管内流动介质与建筑物内部完成热交换。
水源热泵是开式系统的一种,地下水或地表水经过换热器提取热量。
地源热泵用地埋管收集土壤中的热量水源热泵用地下水收集水体中的热量两者原理类似,实际设计温度,载冷剂和阀部件有一定区别,因为地下水温度较高,可直接作为载冷剂。
而地埋管出水温度较低,经常有可能低于零度,所以常采用乙二醇溶液作为载冷剂,乙二醇浓度视最低出水温度而定。
原理一样,取热源的方式不同。
水源热泵是打井直接取地下水进行换热或换冷;地源热泵是在地下埋设很多管道,然后再在管道内注满水或者防冻液作为换热介质,通过管道内的介质循环吸收地下的热量或冷量。
地源热泵的特点和基本形式地源热泵(区别于热泵热水器和太阳能热泵热水器)技术是一种利用浅层地热资源的既可供热又可制冷的高效节能的空调技术。
热泵的理论基础源于卡诺循环, 与制冷机相同, 是按照逆循环工作的。
由于全年地温波动小, 冬暖夏凉, 因此地热可分别在冬季作为热泵供暖的热源和夏季空调的冷源, 即冬季从土壤中采集热量, 提高温度后供给室内采暖;夏季从土壤中采集冷量, 把室内多余热量取出释放到地能中去。
地源热泵主要有以下几种形式:(1)地下水热泵:为开放系统。
该系统占地面积小, 非常经济。
它要求保证机组正常运行的稳定水源, 温度范围在7—21℃, 需要打井, 为保持地下水位需要注意回灌, 从而不破坏水资源。
(2)河湖水源热泵:为开式或闭式系统。
该系统投资小, 水系统能耗低, 可靠性高, 且运行费用低, 但盘管容易被破坏, 机组效率不稳。
(3)土壤热泵:为闭式系统。
垂直埋管系统占地面积小, 水系统耗电少, 但钻井费用高;水平埋管安装费用低, 但占地面积大, 水系统耗电大。
2 地源热泵伏于传统空调的特性2.1 在技术方面(1)传统的空调系统不论是水冷还是风冷, 由于它的换热器必须置于暴露的空气中, 因此会对建筑造型造成不好的影响, 破坏建筑的外观;而地源热泵把换热器埋于地下, 且远离主建筑物, 故不会对其造型产生影响。
(2)风冷换热器与水冷换热器的换热环境均为大气, 故不可避免地受到环境条件变化的影响, 会明显降低换热效率;而地源热泵换热器是和大地换热, 换热对象是1m以下的地层, 其初始温度大约等于年平均温度, 基本不受外界环境的影响。
这种温度特性使地源热泵比传统空调运行效率要高40%~60%。
(3)普通空调对环境的影响是很严重的, 它不仅对臭氧层造成严重的破坏和产生令人难以忍受的噪音, 还由于夏季将废热排入大气, 冬季吸收大气中的热量而使大气、住宅周围的环境更加恶劣;而地源热泵可以利用大地的蓄热能力, 把夏季多余的排入大地的热能在冬季取用, 把冬季多余的冷能在夏季取用, 以达到冬夏两季室内的供暖与供冷。
地源热泵方案设计一、地源热泵系统概述地源热泵是一种利用地下土壤、地下水或地表水等作为冷热源,通过热泵机组进行能量交换,为建筑物提供制冷、供暖和生活热水的系统。
与传统的空调和供暖系统相比,地源热泵系统具有以下显著优势:1、高效节能:地源热泵系统的能效比(COP)通常较高,可大大降低能源消耗和运行成本。
2、环保无污染:不使用化石燃料,减少了温室气体排放和对环境的污染。
3、稳定可靠:地下温度相对稳定,使得系统运行更加稳定可靠,不受外界气候条件的影响。
4、使用寿命长:热泵机组和地下换热器的使用寿命较长,维护成本相对较低。
二、工程场地条件评估在进行地源热泵方案设计之前,首先需要对工程场地的条件进行详细评估。
这包括地质结构、土壤类型、地下水位、水文地质条件等。
不同的场地条件会影响地下换热器的设计和安装方式。
1、地质结构:了解地层的分布、厚度和岩石类型,以确定钻孔的可行性和难度。
2、土壤类型:土壤的热导率和比热容会影响热量传递效率,常见的土壤类型如砂土、黏土和壤土等,其热性能有所差异。
3、地下水位:地下水位的高低会影响换热器的安装深度和防水措施。
4、水文地质条件:包括地下水的流动速度、水质等,这对于选择合适的换热器类型和防止地下水污染至关重要。
三、建筑物负荷计算准确计算建筑物的冷热负荷是地源热泵方案设计的基础。
负荷计算需要考虑建筑物的用途、面积、朝向、围护结构的保温性能、室内人员和设备的发热量等因素。
通过专业的负荷计算软件,可以得到建筑物在不同季节和不同时段的制冷和供暖负荷需求。
1、制冷负荷:主要由室内外温差、太阳辐射、人员散热和设备散热等因素引起。
2、供暖负荷:与室外温度、建筑物的保温性能、通风换气次数等有关。
根据负荷计算结果,可以确定热泵机组的容量和地下换热器的规模,以保证系统能够满足建筑物的冷热需求。
四、地源热泵系统类型选择地源热泵系统主要有三种类型:地下水地源热泵系统、地埋管地源热泵系统和地表水地源热泵系统。
水源热泵与地源热泵优缺点的比较一、水源热泵深井技术介绍1、水源热泵原理地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。
水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。
在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。
为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。
为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。
1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。
闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。
开式系统也就是通常所说的深井回灌式水源热泵系统。
通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。
水源热泵原理图:深井回灌开式环路地下水平式封闭环路2.水源热泵优点2.1高效节能水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。
水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。
而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。
水源热泵选用指南1、主要控制参数水源热泵的主要控制参数包括名义制冷量、名义制热量、制热性能系数、制冷能效比、水流量、噪声等。
2、特点及适用范围表11)、制冷(热)量,制冷(热)消耗功率按表2和表3制冷(热)名义工况条件实测的制冷(热)量不应小于名义制冷(热)量的95%;其相应消耗功率不应大于名义制冷(热)消耗功率的110%。
2)、制冷能效比(EER),制热性能系数(COP)实测制冷量与实测制冷功率的比值[即能效比(EER)]、实测制热量与制热功率的比值[即性能系数(COP)],不应小于表4、表5和表6中的规定值。
机组能效等级按表7判定。
3)、静压、噪声水源热泵机组的机外静压、噪声限值应符合表8的规定。
4)、水系统压力损失按GB/T18430.1-2001要求测定的水系统压力损失不应大于机组名义值的115%。
5) 、其它要求。
机组的制冷系统安全性能、电气安全性能、气密性、液压试验等均应符合国家相关标准中的要求。
表2 商用冷水(热泵)机组名义工况条件(℃)表3 水源热泵机组名义工况条件(℃)2.冷(热)水型机组指使用侧换热设备为制冷剂-水热交换机组。
3.出水温度依据名义制冷工况水流量确定。
4.上表数据引自GB/T 19409-2003。
表4 冷水(热泵)机组名义制冷工况能效比(EER)表5 冷水(热泵)机组名义制冷工况能效比(EER)2. 性能系数(COP)为机组制热量与制热消耗的功率之比。
3.上表数据引自GB/T 19409-2003。
注:1. 机组的节能评价值为表中能效等级的二级。
2. 上表数据引自GB 19577-2004。
注:1.最小机外静压是接风管式室内机的限值。
2.上表数据引自GB/T 19409-2003。
4、设计选用要点1)、热泵机组应根据建筑物冬季热负荷及负荷特点进行选型,同时应核算夏季空调冷负荷,两者都需满足。
对于低负荷工况运转时间较长的系统,机组应具有较好调节性能。
2)、机组选型应优先选用性能系数较高的机型。
一、地源热泵简介一、地源热泵的概念地源热泵系统(groud-source heat pump system)(又称地源中央空调系统)是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。
地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。
地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
地源热泵性能系数(即COP值)高于空气源热泵,目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。
系统运行性能稳定,它利用地下常温土壤或地下水温度相对稳定的特性:冬季:当机组在制热模式时,就从土壤/水中吸收热量,通过电驱动的压缩机和热交换器把大地的热量集中,并以较高的温度释放到室内。
夏季:当机组在制冷模式时,就从土壤/水中提取冷量,通过机组的运行将冷量集中,送入室内,同时将室内的热量排放到土壤/水中,达到空调的目的。
地源热泵机组只用一套设备可以满足供热和制冷的要求,同时还可以提供生活热水,减少了设备的初投资,是最经济的节能环保型中央空调系统。
热泵是一种将低温热源的热能转移到高温热源的装置。
通常用于热泵装置的低温热源改是我们周围的介质——空气、河水、海水,或者是从工业生产设备中排出助工质,这些工质常与周围介质具有相接近的温度。
热泵装置的工作原理与压缩式制冷机是一致的;在小型空调器中,为了充分发挥它的效能,在夏季空调降温或在冬季取暖,都是使用同一套设备来完成的。
在冬季取暖时,将空温器中的蒸发器与冷凝器通过一个换向阀来调换工作。
在夏季空调降温时,按制冷工况运行,由压缩机排出的高压蒸汽,经换向阀(又称四通阀)进入冷凝器,制冷剂蒸汽被冷凝成液体,经节流装置进入蒸发器,并在蒸发器中吸热,将室内空气冷却,蒸发后的制冷剂蒸汽,经换向阀后被压缩机吸入,这样周而复始,实现制冷循环。
地/水源热泵空调基本概念1、什么是"地源/水源/水环热泵空调"?地源/水源/水环热泵空调是利用地球表面或浅层水源作为冷热源,将低品位热能转化为用于供热的高品位热能以及用作制冷时的冷却水的空调系统。
地源热泵系统以土壤作为低温热源,水源热泵系统利用湖水、河水、地下水、矿井水这样的自然水源作为冷热源,水环热泵是用一个循环水环路作为冷热源,当环路水温超过一定温度时,冷却系统启动,当水温低于一定温度时辅助加热系统启动。
2、地源/水源/水环热泵空调"系统组成、运行原理及优点地源热泵系统(1)系统组成系统是由下列部分所组成:地源热泵机组、循环水泵、水管环路、水系统控制箱和室内温控器等。
地源热泵空调机组是一种水冷式的供冷/供热机组。
机组由封闭式压缩机、同轴套管式水/制冷剂热交换器、热力膨胀阀(或毛细膨胀管)、四通换向阀、空气侧盘管、风机、空气过滤器、安全控制等所组成。
机组本身带有一套可逆的制冷/制热装置,是一种可直接用于供冷/供热的热泵空调机组。
(2)运行原理地源热泵系统是一种由双管路水系统连接起建筑物中的所有地源热泵机组而构成的封闭环路的中央空调系统。
在冬季,地源热泵系统通过埋在地下的封闭管道(称为环路)从大地收集自然界的热量,而后由环路中的循环水把热量带到室内。
再由装在室内的地源热泵系统驱动的压缩机和热交换器把大地的能量集中,并以较高的温度释放到室内。
在夏季,此运行程序则相反,地源热泵系统将从室内抽出的多余热量排入环路而为大地所吸收,使房屋得到供冷。
尤如电冰箱那样,从冰箱内部抽出热量并将它排出箱外使箱内保持低温。
(3)优点1) 地源热泵系统能充分利用蕴藏于土壤和湖泊中的巨大能量,循环再生,实现对建筑物的供暖和制冷。
因而运行费用较低。
2)节能地源热泵比风冷热泵节能40%,比电采暖节能70%。
比燃气炉效率提高48%。
所需制冷剂比一般热泵空调减少50%。
3)低维护地源热泵系统运动部件要比常规系统少,因而减少了维护,并且更加可靠。
地源热泵和水源热泵地源热泵 (2)定义 (2)概述 (2)冷热源 (2)形式 (2)高效节能 (3)优点 (4)工作原理 (5)组成 (6)系统类型 (7)水源热泵 (8)定义: (8)工作原理: (8)优点: (9)应用 (11)地源热泵定义把地面做低温热源的热泵,即从地面土壤中吸热来取暖的循环设备。
概述地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。
地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。
地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。
冷热源目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源以及土壤源作为水源热泵的冷热源。
形式开式系统:是直接利用水源进行热量传递的热泵系统。
该系统需配备防砂堵,防结垢、水质净化等装置。
闭式系统:是在深埋于地下的封闭塑料管内,注入防冻液,通过换热器与水或土壤50-150米深处,一组或多组管与热泵机组相连,封闭的塑料管内的防冻液将热能传送给热泵,然后由热泵转化为建筑物所需的暖气和热水。
垂直埋管是地源热泵系统的主要方式,得到各个国家的政府部门大力支持。
2、水平埋管--大地表层在地下2米深处水平放置塑料管,塑料管内注满防冻的液体,并与热泵相连。
水平埋管占地面积大,土方开挖量大,而且地下换热器受地表气候变化的影响。
3、地表水江、河、湖、海的水以及深井水统称地表水。
地源热泵可以从地表水中提取热量或冷量,达到制热或制冷的目的。
利用地表水的热泵系统造价低,运行效率高,但受地理位置(如江河湖海)和国家政策(如取深井水)的限制。
高效节能地源热泵机组利用土壤或水体温度冬季为12-22℃,温度比环境空气温度高,热泵循环的蒸发温度提高,能效比也提高;土壤或水体温度夏季为18-32℃,温度比环境空气温度低,制冷系统冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率大大提高,可以节约30--40%的供热制冷空调的运行费用,1KW的电能可以得到4KW以上的热量或5KW以上冷量。
地源热泵工作基本原理
地源热泵工作基本原理是:
利用地球表面浅层地热资源(如地下水、土壤或地表水)作为热源,通过压缩机将低温位的热能吸收进来,然后经过压缩机后,转化为高温热能以此来升高水温。
具体过程为:当热泵处于夏季时,通过制冷剂循环从而将室内的热量“吸取”出来,给室内制冷。
同时,在冬季时,通过制冷剂循环将室外的热量“搬到”室内,给室内供暖。
地源热泵具有以下优点:
1.高效:地源热泵利用地热作为热源,能量转换效率高,通常比传统空
调的效率高30%~40%。
2.节能:地源热泵只需消耗少量的电能,就可以在冬季采暖时产生较大
的能量,比传统空调更节能。
3.环保:地源热泵在使用过程中不产生任何污染物,不会对环境造成污
染。
4.稳定:地源热泵运行稳定,不会受到气候变化的影响,可以全年不间
断地为室内提供稳定的温度和湿度。
5.舒适:地源热泵在冬季采暖时,室内的温度变化较小,不会产生干燥
和异味,舒适度高。
总之,地源热泵是一种高效、节能、环保、稳定的供暖和制冷设备,对保护环境和提高人们的生活品质具有重要意义。
各种热泵的适用范围和注意事项一、介绍热泵的基本原理热泵是一种能够将热量从低温区域转移到高温区域的设备,其工作原理类似于空调,但是热泵不仅可以用于制冷,也可以用于供暖。
其基本原理是利用压缩机对制冷剂进行压缩,使其温度升高,然后通过换热器将热量传递到需要供暖的区域。
二、空气源热泵的适用范围和注意事项1. 适用范围:空气源热泵适用于气候温和的地区,其制热效率在温度较高的情况下更高。
在温度较低的地区,空气源热泵的制热效率会下降,需要配合其他供暖设备使用。
2. 注意事项:(1) 确保室外机的通风良好,避免室外机受到阻挡或者被堵塞,影响热泵的制热效果。
(2) 在使用过程中,定期清洗室外机的散热器,保持室外机的散热效果。
(3) 选择合适的制热剂,根据当地气候情况选择合适的制热剂,以保证热泵的工作效率。
三、地源热泵的适用范围和注意事项1. 适用范围:地源热泵适用于气候寒冷的地区,其制热效率稳定,不受室外温度的影响,适用范围更广。
2. 注意事项:(1) 安装地源热泵时,需要充分考虑地下水位和土壤状况,选择合适的地热换热器形式。
(2) 地源热泵的地热换热器需要定期清洗和维护,以保证地热换热器的换热效果。
(3) 在选择地源热泵时,需要根据当地地下水位和土壤状况选择合适的地热换热器形式。
四、水源热泵的适用范围和注意事项1. 适用范围:水源热泵适用于需要大量热量供暖的场所,比如游泳馆、温室等,其制热效率稳定,且不受室外温度的影响。
2. 注意事项:(1) 在选择水源热泵时,需要充分考虑地下水的水质和温度,选择合适的热源水。
(2) 定期检查水源热泵的水循环系统,确保循环系统的正常运行。
(3) 在使用过程中,避免水源热泵的水源受到污染,影响水源热泵的工作效果。
五、总结通过以上内容的介绍,我们可以了解到不同类型的热泵在适用范围和注意事项上都有所不同。
在选择和使用热泵时,需要根据当地的气候和具体场所的需求来选择合适的热泵类型,并且在使用过程中需要定期对热泵进行维护和保养,以保证热泵的长期稳定运行。
地源热泵-地源热泵系统类型
1.水平式地源热泵
通过水平埋置于地表面2~4以下的闭合换热系统,它与土壤进行冷热交换。
此种系统适合于制冷供暖面积较小的建筑物,如别墅和小型单体楼。
该系统初投资和施工难度相对较小,但占地面积较大。
2.垂直式地源热泵
通过垂直钻孔将闭合换热系统埋置在50M~400M深的岩土体与土壤进行冷热交换。
此种系统适合于制冷供暖面积较大的建筑物,周围有一定的空地,如别墅和写字楼等。
该系统初投资较高,施工难度相对较大,但占地面积较小。
3.地表水式地源热泵
地源热泵机组通过布置在水底的闭合换热系统与江河、湖泊、海水等进行冷热交换。
此种系统适合于中小制冷供暖面积,临近水边的建筑物。
它利用池水或湖水下稳定的温度和显著的散热性,不需钻井挖沟,初投资最小。
但需要建筑物周围有较深、较大的河流或水域。
地源热泵
4.地下水式地源热泵
地源热泵机组通过机组内闭式循环系统经过换热器与由水泵抽取的深层地下水进行冷热交换。
地下水排回或通过加压式泵注入地下水层中。
此系统适合建筑面积大,周围空地面积有限的大型单体建筑和小型建筑群落。
地源热泵。
水地源热泵机组的定义
水地源热泵机组是一种利用地下浅层地热能(如地下水、土壤或地表水中的热能)作为冷热源,进行供暖和制冷的空调设备。
它通过循环水或防冻液在地下换热器中与土壤或地下水进行热交换,从而实现室内温度的调节。
水地源热泵机组主要由压缩机、蒸发器、冷凝器和膨胀阀等部件组成。
在夏季,机组通过蒸发器从室内吸收热量,将其传递给地下,使室内得到制冷效果;在冬季,机组通过冷凝器从地下吸收热量,将其传递给室内,使室内得到供暖效果。
相比传统的空气源热泵,水地源热泵机组具有以下优点:
1. 高效节能:水地源热泵机组利用地下浅层地热能,其能源利用效率比空气源热泵高30%~60%。
2. 稳定可靠:地下浅层地热能受季节和气候影响较小,因此水地源热泵机组的运行更加稳定可靠。
3. 环保低碳:水地源热泵机组不需要使用制冷剂,不会产生温室气体,对环境友好。
4. 适用范围广:水地源热泵机组适用于各种建筑类型,包括住宅、商业、工业等。
水地源热泵机组是一种高效、节能、环保的空调设备,具有广阔
的应用前景。
地源热泵取水温度范围
地源热泵是一种利用地下热能进行供暖和制冷的环保设备。
在使用地源热泵时,我们需要了解其取水温度范围,以确保设备的正常运行和高效能使用。
地源热泵的取水温度范围通常受到地下水温度的影响。
地下水温度是指地下水在地下层中的平均温度。
一般来说,地下水温度比气温要稳定,因为地下水受到地壳的保温作用。
根据地理位置和季节的不同,地下水温度会有所变化。
在地源热泵系统中,取水温度范围一般在5摄氏度到25摄氏度之间。
当地下水温度低于5摄氏度时,地源热泵会降低供暖效果,甚至可能无法正常运行。
因此,在寒冷的冬季,可能需要采取其他降温措施,以确保地下水温度在可接受的范围内。
另一方面,当地下水温度高于25摄氏度时,地源热泵的制冷效果可能会受到影响。
这时,可能需要采取其他降温措施或者调整地源热泵系统的工作参数,以保证设备的正常运行。
需要注意的是,地下水温度的变化是比较缓慢的,通常随着季节的变化而变化。
因此,在选择地源热泵系统时,需要考虑当地地下水温度的年平均值,并根据系统的需求来确定最适宜的取水温度范围。
总结起来,地源热泵的取水温度范围一般在5摄氏度到25摄氏度
之间。
根据地下水温度的变化,可能需要采取其他措施来调整地源热泵系统的工作参数,以确保设备的正常运行和高效能使用。
对于使用地源热泵的人们来说,了解取水温度范围对于正确使用和维护设备非常重要,以确保舒适的室内环境和节能环保的效果。
热泵温度范围全文共四篇示例,供读者参考第一篇示例:热泵是一种通过循环转移热量的设备,常用于对空气或水的加热和制冷。
热泵的温度范围是指其操作时可以达到的最高和最低温度。
热泵的温度范围取决于其工作原理、制冷剂的种类以及使用环境的条件等因素。
热泵的温度范围通常在-20℃至50℃之间,具体的温度范围取决于热泵的类型及设计。
常见的热泵类型包括空气源热泵、地源热泵和水源热泵等。
不同类型的热泵适用于不同的环境和需求,其温度范围也有所不同。
空气源热泵的温度范围通常在-10℃至40℃之间。
在冬季,空气源热泵可以从室外的空气中吸收热量,通过压缩和释放热量的过程实现室内的加热。
在夏季,空气源热泵可以实现室内的制冷。
地源热泵的温度范围通常在-20℃至50℃之间。
地源热泵利用地下的地热能源进行加热和制冷,其稳定的地下温度能够保证热泵在不同季节和气候条件下的正常运行。
水源热泵的温度范围通常也在-20℃至50℃之间。
水源热泵利用水体的热量进行加热和制冷,可以通过河流、湖泊或井水等水源来提供热量或吸收热量。
除了以上常见的热泵类型外,还有一些特殊用途的热泵,如高温热泵和低温热泵等。
高温热泵可以实现更高温度的热水供应,适用于一些需要高温热水的场合。
低温热泵则可以在低温环境下进行加热或制冷,适用于一些特殊的工业生产过程或实验室环境。
热泵的温度范围可以根据具体需求和环境条件进行选择,以满足不同场合的加热和制冷需求。
随着热泵技术的不断发展,热泵的温度范围也在不断扩大,为人们提供更多的选择和便利。
希望本文能够对热泵的温度范围有所了解,为大家在选购热泵时提供一些参考和帮助。
第二篇示例:热泵是一种高效节能的供热方式,可以通过从环境中提取热能来提供供暖和热水。
热泵的温度范围是指热泵在工作过程中可以达到的最高和最低温度。
不同类型的热泵有不同的温度范围,下面我们来详细介绍一下。
热泵的最低温度范围通常取决于其工作原理和设计结构。
常见的热泵类型包括空气源热泵、地源热泵和水源热泵。
一、地源热泵简介在我国既有的400多亿平米建筑中,80%以上为高耗能建筑,在所有的建筑能耗中,采暖和空调能耗占总能耗55%以上,所提供的能源70%以上由煤炭直接或间接供应。
煤炭在燃烧、发电过程中,产生大量的粉尘、CO2、SO2,严重污染大气,对我们的生态环境造成严重威胁,特别对人类的生产和生活产生重大的影响。
为改善生存环境,保证可持续发展,国家大力推广使用地源热泵技术,制定了税收减免、享受峰谷电价等优惠政策,有些地区已经实施每平米给予50~100元不同程度的补贴。
目前经济发展日新月异,随着生态环境保护的深入人心和节能意识的加强,可再生能源越来越受重视,水、地源热泵系统因其节约常规能源、充分利用可再生能源以及减少环境污染和资源破坏等显著优点,将会成为21 世纪最有效的供热和供冷空调技术之一。
供热空调的能源消耗占社会总能耗的比例大达30%,而环境污染的20%也是由供热空调燃煤引起的。
因此,采用热泵技术,开发低位的、可再生的清洁能源用于建筑物的供热空调意义重大,是建筑节能减排的有效途径之一。
这些能源包括:大气、土壤、地下水、地表水、工业余热及城市污水等等。
其中污水在数量(水量)、质量(水温)及分布规律上(地理位置)具有明显优势。
预计2010年我国污水排放量达720亿t/a,水温全年在10-25℃之间,按开发50%的水量计算,可供热空调的面积至少在5亿㎡以上。
另外,原生污水均匀地分布在城市地下空间,为因地制宜地有效利用及建设分散式的热泵供热空调系统创造了有利条件。
地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。
地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。
地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
地源热泵较于传统空调及采暖的优点1、环境和经济效益显著地源热泵机组运行时,不消耗水也不污染水,不需要锅炉,不需要冷却塔,也不需要堆放燃料废物的场地,环保效益显著。
地源热泵机组的电力消耗,与空气源热泵相比也可以减少40%以上;与电供暖相比可以减少70%以上,它的制热系统比燃气锅炉的效率平均提高近50%,比燃气锅炉的效率高出了75%。
2、一机多用,应用广泛地源热泵系统可供暖、空调制冷,还可提供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统,特别是对于同时有供热和供冷要求的建筑物。
地源热泵有着明显的优点。
不仅节省了大量的能量,而且用一套设备可以同时满足供热、供冷、供生活用水的要求,减少了设备的初投资,地源热泵可应用于宾馆、居住小区、公寓、厂房、商场、办公楼、学校等建筑,小型的地源热泵更适合于别墅住宅的采暖、空调。
3、自动运行地源热泵机组由于工况稳定,可以设计成简单的系统,部件较少,机组运行可靠,维护费用用低,自动控制程度高,使用寿命长。
4、无环境污染地源热泵的污染物排放,与空气源热泵相比,相当于减少38%以上,与电供暖相比,相当于减少70%以上,真正的实现了节能减排节能减排是减少能源浪费和降低废气排放更多。
5、维护费用低地源热泵系统运动部件要比常规系统少,因而减少维护,系统安装在室内,不暴露在风雨中,也可免遭损坏,更加可靠,延长寿命。
6、使用寿命长地源热泵的地下埋管选用聚乙烯和聚丙烯塑料管,寿命可达50年,要比普通空调高35年使用寿命。
7、维持生态环境平衡地源热泵夏天把室内的热量排到地下,冬天把地下的热量取出来供室内使用,相对来说,向环境排放更少的能量,维持生态环境的平衡。
8、节省空间没有冷却塔、锅炉房和其它设备,省去了锅炉房,冷却塔占用的宝贵面积,产生附加经济效益,并改善了环境外部形象。
9、符合国家政策,获得政策性支持国家十分重视可再生能源开发利用工作,《中华人民共和国可再生能源法》已于2006年1月1日起实施;同时,在《国家中长期科学和技术发展规划纲要》中,又把大力发展和规模化应用新能源和可再生能源作为能源领域的优先发展主题。
从国家立法和发展战略的高度,对可再生能源的发展应用予以强力推动。
根据国家建设部政策规定,凡采用地源热泵空调技术的建筑物,通过向当地建委申报,可获得政府的政策性支持,减免建筑配套费用140~200元/㎡。
地源热泵系统的能量来源于自然能源。
它不向外界排放任何废气、废水、废渣、是一种理想的“绿色空调”。
被认为是目前可使用的对环境最友好和最有效的供热、供冷系统。
该系统无论严寒地区或热带地区均可应用。
可广阔应用在办公楼、宾馆、学校、宿舍、医院、饭店、商场、别墅、住宅等领域。
二、地下水源热泵系统与地埋管地源热泵系统比较分析由于本地地表水资源匮乏,下面重点分析地下水源热泵系统及地埋管地源热泵系统。
(一)地下水(井水)源热泵系统地下水源热泵系统是一种新型节能环保空调系统,利用地下水温度稳定的特点,抽取地下水到地面以上,与建筑物内的空气进行热交换,然后再回灌到含水层,形成循环,因此又被陈伟开放式循环系统。
与深层地热开发不同,地下水源热泵主要开发深在200m以内的浅部含水层,相对运行成本较低,空气热泵、地表水热泵和土壤热泵的媒质温度随季节变化强烈,而地下水温度十分稳定,因此地下水源热泵具有更高的效率,可以大大减少燃料或电能消耗。
随着全球能源形势日趋紧张,这种节能环保型的空调技术在建筑领域受到推崇,在世界各地被推广应用。
按照地下水抽取和回灌的井孔组合特征,地下水源热泵系统可以分为异井抽灌系统和同井抽灌系统(图1),其中采用较多的是异井抽灌系统。
对于异井抽灌系统,回灌井和抽水井可以轮换,即如果夏季是开采井,冬季可变为抽水井。
另外有一种单井抽灌的热泵系统,是把冬季的低温水注入含水层保存(并不抽取地下水),然后夏季在同一口径中抽取贮存的低温水以降低建筑物室内温度(并不回灌)。
这种冬灌夏抽或夏灌冬抽的热泵系统又被称为含水层贮能系统。
地下水源热泵系统和含水层贮能系统并不是要直接利用地热能,而是把含水层作为天然的保温箱,进行地表热能的时空调节。
(二)地埋管地源热泵系统地埋管地源热泵系统是传热介质通过水平或竖直地埋管换热器与岩土体进行热交换的地热能交换系统,是一种使用可再生能源的高效节能、环保型的空调系统。
该项技术在欧、美一些国家已非常成熟,近几年土壤源热泵技术在我国逐渐被人们所重视,越来越被广泛地应用到各类工程建设项目当中。
根据管道埋设的方式,地埋管系统可分为水平埋管系统和竖直埋管系统。
在本地区通常采用竖直埋管系统。
(三)地下水源热泵系统及地埋管地源热泵系统的比较分析地下水源热泵系统及地埋管地源热泵系统除具有地源热泵系统的全部优点外,又具有各自的特点。
结合具体工程,可以从以下几个角度进行分析:1、对室外施工场地要求。
对于某工程,若采用地下水源热泵系统,设计需要9孔热源井(3抽6灌,间距50米,设计每孔井出水量80m³/h,设计每孔井回水里大于40m³/h);若采用垂直埋管地源热泵系统,设计需要450孔换热井(设计井深120m,双U形,交换热量45W/延米,间距4m),占地面积约为6400㎡。
2、初投资分析。
由1可知,采用地下水源热泵系统,热源侧系统包括9热源井、9台潜水泵、2台旋流除砂器、1台电子水处理仪、约1500m管道连接系统、阀门控制系统及潜水泵控制系统、土方工程;垂直埋管换热系统包括钻井450孔、3台循环水泵(两用一备)、1台电子水处理仪、井内216000m管道及水平约1200m管道连接系统,阀门控制系统及循环泵控制系统,大量的土方工程。
3、使用效果分析。
根据本公司经验可知,浅层地下水源出水温度约为15℃,且随地表温度变化不大,换热效果较好;而垂直埋管系统机组回水温度较低,受土壤性能影响较大,土壤的热工性能、能量平衡、土壤中的传热与传湿对传热有较大影响。
4、可利用的水源条件限制。
地下水源热泵系统对热源井水质要求较高,对于不符合要求的水源必须进行水处理或增设板式换热器改为闭式系统。
5、水层的地理结构的限制。
地下水源热泵的运行也有可能导致不均匀的地面沉降。
充分回灌的地下水源热泵并不会使用整个场地的地下水位下降,但抽水附近可形成显著的地下水漏斗。
如果在热泵井的埋深范围粘性土层很发育,抽水井附近可产生附加地面沉降,而回灌井附近则几乎没有岩土层变形。
这样场地内会有不均匀地面沉降,对建筑物是有一定风险的。
回灌不足的地下水源热泵如果长期运行,有可能形成较大范围的地下水漏斗并诱发场地整体地面沉降。
目前,国内外还没有地下水源热泵诱发地面沉降的案例报道,这说明从工程经验上看地下水源热泵一般不会引发岩土层的严重变形。
然而,原则上讲地下水源热泵不宜在软弱粘性土层十分发育的地方使用。
地埋管地源热泵系统则不存在这种限制。
6、地下水资源保护问题。
地下水源热泵还需避免造成地下水的污染。
施工填料、井孔管材的腐蚀、井壁微生物繁殖、加酸洗井等过程可能把一些降低水质的化学物质带入地下水。
有些地下水源热泵系统管路密封不足,加上回扬、负压和沉砂池等因素,会把空气引入地下水,导致地下水具有更强的氧化环境,可能发生不利的化学演变。
另外,地下水温度的大幅度变化,也有可能使地下水中某些对温度敏感的化学物质或物理化学反应过程发生变化。
小规模的和分散的地下水源热泵一般不会严重影响地下水质,但大规模的密集的热泵系统需要注意地下水环境的受害风险。
地埋管地源热泵系统热源侧换热系统属于闭式循环系统,与地下水没有直接接触,不会造成地下水源污染。
使用范围:水地源热泵系统适用于冬季制热、夏季制冷的建筑物,在以下建筑类型中使用较多:●农村新民居的采暖工程●大型商场、超市中央空调系统●办公楼建筑的中央空调系统或采暖系统●酒店、旅馆客房类建筑的中央空调系统及生活热水系统●医院病房类建筑、气象局办公楼建筑●大型商场、超市的中央空调系统●客运站、候车室等交通运输类型的采暖空调系统●轨道交通地铁类空调通风系统●高大车间、厂房的采暖系统●汽车4S店类型建筑中央空调系统●高速路收费站、服务区的采暖空调系统●别墅类、家庭用户式小型空调及采暖系统三、产品介绍(一)压缩机博纳德公司生产的水源热泵机组采用半封闭双螺杆式制冷压缩机。
在运行上采用模糊控制原理,尽量均衡压缩机的运行时间已达到均衡磨损,均衡压缩机寿命,即机组全部停机后再次启动运行时间短的压缩机先启动,运行时间长的压缩机后启动;压缩机在运行过程中的能级调节是逐级加载或逐级卸载。
大大延长了压缩机的使用寿命和运行的安全可靠性。
该压缩机具有以下优势:图3-1 压缩机断面图(1)转子:采用5:6非对称转子齿形;采用英国HOLROYD转子加工机及德国KAPP、KLINGELNBER精密转子研磨机加工成形;德国ZEISS、LEITZ三坐标测量仪严格检测,精度佳,质量稳定;在连续运转状况下,转子可保持最佳间隙值,以达到最高效率之要求。