陕西科技大学matlab实验1 解非线性方程实验
- 格式:pdf
- 大小:115.07 KB
- 文档页数:5
matlab实验一:非线性方程求解-牛顿法实验一:非线性方程求解程序1:二分法:syms f x;f=input('请输入f(x)=');A=input(’请输入根的估计范围[a,b]=’);e=input('请输入根的误差限e=’);while (A(2)—A(1))>ec=(A(1)+A(2))/2;x=A(1);f1=eval(f);x=c;f2=eval(f);if (f1*f2)〉0A(1)=c;elseA(2)=c;endendc=(A(1)+A(2))/2;fprintf(’c=%。
6f\na=%.6f\nb=%.6f\n',c,A)用二分法计算方程:1.请输入f(x)=sin(x)—x^2/2请输入根的估计范围[a,b]=[1,2]请输入根的误差限e=0。
5e-005c=1.404413a=1。
404411b=1.4044152.请输入f(x)=x^3—x-1请输入根的估计范围[a,b]=[1,1.5]请输入根的误差限e=0.5e-005c=1。
324717a=1。
324715b=1。
324718程序2:newton法:syms f x;f=input(’请输入f(x)=');df=diff(f);x0=input('请输入迭代初值x0=’);e1=input('请输入奇异判断e1=’);e2=input('请输入根的误差限e2=');N=input('请输入迭代次数限N=’);k=1;while (k〈N)x=x0;if abs(eval(f))〈e1 fprintf(’奇异!\nx=%。
6f\n迭代次数为:%d\n’,x0,k)breakelsex1=x0—eval(f)/eval(df);if abs(x1-x0)<e2fprintf('x=%。
6f\n迭代次数为:%d\n’,x1,k)breakelsex0=x1;k=k+1;endendendif k〉=Nfprintf('失败\n')end用newton法计算方程:1.请输入f(x)=x*exp(x)—1请输入迭代初值x0=0。
数学实验报告Matlab的简单应用——非线性方程(组)求解姓名班级学号学院2013年5月12日一、实验目的1.熟悉MATLAB软件中非线性方程(组)的求解命令及其用法。
2.掌握求非线性方程近似根的常用数值方法——迭代法。
3.了解分叉与混沌概念。
二、实验问题1.利用弦截法编程对方程x^5+x-1=0进行求解实验,并与二分法、牛顿切线法进行比较;2.方程f(x)=x^2+x-4=0在(0,4)内有唯一的实根,现构造以下三种迭代函数:(1)g1(x)=4-x^2,迭代初值x0=4;(2)g2(x)=4/(1+x),迭代初值x0=4;(3)g3(x)=x-(x^2+x-4)/(2x+1),迭代初值x0=4;分别用给出的3种迭代函数构造迭代数列x(k+1)=g1(x(k)),i=1,2,3,观察这些迭代数列是否收敛,若收敛能否收敛到方程f(x)=0的解。
除此之外,你还能构造出其他收敛的迭代吗?4.分别取不同的参数值r,做迭代数列x(n+1)=rx(n)(1-x(n)),n=0,1,2……,观察分叉与混沌现象。
步骤1:首先,分别取参数r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7, 3.0,3.3,3.6,3.9等14个值,按迭代序列迭代150步,分别产生14个迭代序列{x(k)},k=0,1,…,150;其次,分别取这14个迭代序列的后50个迭代值(x100,x101,…,x150),画在以r为横坐标的同一坐标面rox上,每一个r取值对应的迭代值点为一列。
步骤2:对(1)中图进行观察分析,容易发现:(1)当r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7时,每个r对应的50个迭代值凝聚在一点,这说明对这些r的取值所产生的迭代序列是收敛的。
(2)当r为3,3.3时,r对应的50个迭代值凝聚在两个点,这说明这些r值所对应的迭代序列不收敛,但凝聚在两个点附近;同时也说明当r在2.7和3之间取值时,对应的迭代序列从收敛到不收敛,轨道由一只分为两支开始出现分叉现象。
中南大学MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券的自行百度。
所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出保存界面,文件名默认不要修改,保存)→结果。
第一题需要把数据文本文档和m文件放在一起。
全部测试无误,放心使用。
本文档针对做牛顿法求非线性函数题目的同学,当然第一题都一样,所有人都可以用。
←记得删掉这段话班级:学号:姓名:一、《MATLAB程序设计实践》Matlab基础表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。
由于数据量非常大,不便于分析,需要借助图形来分析。
请你编写一个matlab程序画出如下的几种图形来分析其取向分布特征:(1)用Slice函数给出其整体分布特征;"~(2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。
(备注:数据格式说明解:(1)((2)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如下:fid=fopen('');for i=1:18tline=fgetl(fid);endphi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19);[while ~feof(fid)tline=fgetl(fid);data=str2num(tline);line=line+1;数据说明部分,与作图无关此方向表示f随着φ1从0,5,10,15,20 …到90的变化而变化此方向表示f随着φ从0,5,10,15, 20 …到90的变化而变化表示以下数据为φ2=0的数据,即f(φ1,φ,0)if mod(line,20)==1phi2=(data/5)+1;phi=1;else~for phi1=1:19f(phi1,phi,phi2)=data(phi1);endphi=phi+1;endendfclose(fid);。
用MATLAB解析实验数据与拟合非线性方程引言在科学研究和工程实践中,我们经常需要分析实验数据并拟合非线性方程模型。
然而,由于实验数据的复杂性和非线性方程的高维度,这项任务往往具有一定的挑战性。
幸运的是,利用MATLAB这样强大的计算工具,我们可以轻松地完成这个任务。
数据导入和预处理首先,我们需要将实验数据导入MATLAB中进行进一步的分析。
在MATLAB 中,我们可以使用多种方式来导入数据,例如使用readtable函数来读取Excel文件中的数据,或使用importdata函数来导入文本文件中的数据。
导入数据后,我们可以对数据进行一些预处理的操作,例如去除异常值、缺失值填充、数据平滑等。
MATLAB提供了众多的函数和工具箱,可以帮助我们轻松地完成这些操作。
数据可视化在分析实验数据之前,我们通常需要先对数据进行可视化,以便更好地理解数据的特征和趋势。
MATLAB提供了丰富的绘图函数,可以帮助我们绘制各种类型的图表,例如折线图、散点图、柱状图等。
通过绘制图表,我们可以观察到数据的变化趋势、异常情况和相关性等。
此外,MATLAB还提供了交互式的绘图工具,可以使我们更加灵活地调整图表的样式和布局。
数据分析和建模在数据可视化的基础上,我们可以进一步对实验数据进行分析。
MATLAB提供了丰富的统计分析函数和工具箱,可以帮助我们计算数据的各种统计指标,例如均值、方差、相关系数等。
另外,如果我们已经有了一定的理论基础,可以根据实验数据建立起合适的非线性方程模型。
MATLAB提供了优化工具箱,可以帮助我们拟合非线性方程模型,并估计模型参数。
通过拟合,我们可以得到模型的函数形式和参数值,进而对实验数据进行解析和预测。
非线性方程拟合非线性方程拟合是实验数据分析的关键步骤之一。
MATLAB提供了多种非线性方程拟合的方法和函数,例如最小二乘法、非线性最小二乘法、逐步回归等。
在进行非线性方程拟合时,我们需要选择合适的模型函数和初值,并设置适当的拟合算法和参数。
Matlab⾮线性⽅程数值解法实验⽬的⽤Matlab实现⾮线性⽅程的⼆分法、不动点迭代法实验要求1. 给出⼆分法算法和不动点迭代算法2. ⽤Matlab实现⼆分法3. ⽤Matlab实现不动点迭代法实验内容(1)在区间[0,1]上⽤⼆分法和不动点迭代法求的根到⼩数点后六位。
(2)⼆分法的基本思想:逐步⼆分区间[a,b],通过判断两端点函数值的符号,进⼀步缩⼩有限区间,将有根区间的长度缩⼩到充分⼩,从⽽,求得满⾜精度要求的根的近似值。
(3)不动点迭代法基本思想:已知⼀个近似根,构造⼀个递推关系(迭代格式),使⽤这个迭代格式反复校正根的近似值,计算出⽅程的⼀个根的近似值序列,使之逐步精确法,直到满⾜精度要求(该序列收敛于⽅程的根)。
实验步骤(1)⼆分法算法与MATLAB程序(⼆分法的依据是根的存在性定理,更深地说是介值定理)。
MATLAB程序,1 %⼆分法2 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep3 %输出:近似根root,迭代次数k4 function [root,k]=bisect(fun,a,b,ep)5if nargin>36 elseif nargin<47 ep=1e-5;%默认精度8else9 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]10 end11if fun(a)*fun(b)>0%输⼊的区间要求12 root=[fun(a),fun(b)];13 k=0;14return;15 end16 k=1;17while abs(b-a)/2>ep%精度要求18 mid=(a+b)/2;%中点19if fun(a)*fun(mid)<020 b=mid;21 elseif fun(a)*fun(mid)>022 a=mid;23else24 a=mid;b=mid;25 end26 k=k+1;27 end28 root=(a+b)/2;29 end⼆分法1运⾏⽰例(并未对输出格式做控制,由于精度要求,事后有必要控制输出的精度):优化代码,减⼩迭代次数(在迭代前,先搜寻更适合的有根区间)1 %⼆分法改良2 %在⼀开始给定的区间中寻找更⼩的有根区间3 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep4 %输出:近似根root,迭代次数k5 %得到的根是优化区间⾥的最⼤根6 function [root,k]=bisect3(fun,a,b,ep)7if nargin>38 elseif nargin<49 ep=1e-5;%默认精度10else11 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]12 end13 %定义划分区间的分数14 divQJ=1000;15 %等分区间16 tX=linspace(a,b,divQJ);17 %计算函数值18 tY=fun(tX);19 %找到函数值的正负变化的位置20 locM=find(tY<0);21 locP=find(tY>0);22 %定义新区间23if tY(1)<024 a=tX(locM(end));25 b=tX(locP(1));26else27 a=tX(locP(end));28 b=tX(locM(1));29 end30if fun(a)*fun(b)>0%输⼊的区间要求31 root=[fun(a),fun(b)];32 k=0;33return;34 end35 k=1;36while abs(b-a)/2>ep%精度要求37 mid=(a+b)/2;%中点38if fun(a)*fun(mid)<039 b=mid;40 elseif fun(a)*fun(mid)>041 a=mid;42else43 a=mid;b=mid;44 end45 k=k+1;46 end47 root=(a+b)/2;48 end⼆分法2运⾏⽰例(同样没有控制输出)明显地,迭代次数减⼩许多。
matlab解非线性方程MATLAB求解非线性方程一、Matlab求解非线性方程的原理1. 非线性方程是指当函数中的变量出现不同的次方数时,得出的方程就是非线性的。
求解非线性方程的准确性决定于得出的解集是否丰富,以及解的精度是否符合要求。
2. Matlab是一款多功能的软件,可以快速求解工程中的数学方程和模型,包括一元非线性方程。
Matlab 具有非线性解析计算能力,可以极大地提高求解效率。
二、Matlab求解非线性方程的方法1. 使用数值解法求解:包括牛顿法、割线法、共轭梯度法、梯度下降法等,可以采用Matlab编写程序,来计算满足一元非线性方程的解。
2. 使用符号解法求解:在Matlab中,可以直接使用solve函数来解决一元非线性方程。
3. Matlab求解非线性方程的技巧:1)定义区间:对非线性方程给出一个精确定义的区间,matlab会将该区间分成若干区间,在这些区间内搜索解;2)多给出初始值:可以给出若干个初始值,令matlab均匀搜索多个解;3)改变算法:可以更改matlab中不同的求解算法;4)换元法:可以通过改变不同的元变量,将非线性方程变成多个简单的线性方程,然后利用matlab求解。
三、Matlab求解非线性方程的特点1. 高效:Matlab求解的方式高效有效,性能优异,可以节省大量的求解时间。
2. 准确:Matlab采用符号解法时,解的准确度精度更高,可以满足大部分要求。
3. 节省资源:Matlab求解非线性方程节省计算机资源,可以很好地利用资源,提高工作效率。
四、 Matlab求解非线性方程的步骤1. 对结构表达式编写程序;2. 设定相应的条件;3. 优化程序;4. 运行程序;5. 分析结果;6. 测试代码;7. 验证学习结果。
五、Matlab求解非线性方程的事例例1:已知一元非线性方程f ( x ) = x^3 - 4x - 9 = 0,求精度范围在[-5,5]之间的实根解法:使用Matlab符号解法求解solX = solve('x^3-4*x-9 = 0','x');输出结果为:solX =3-31运行程序,即可得到由-5到5的实根。
非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。
若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。
设函数)(x f 在],[b a 内连续,且0)()(<b f a f 。
根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。
即使能表示成解析式的,往往也很复杂,不便计算。
所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止。
如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f 。
我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。
若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。
这种方法通常称为“定步长搜索法”。
另外,还是图解法、近似方程法和解析法。
2 迭代法2.1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。
迭代法的基本思想是一种逐次逼近的方法。
首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。
对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。
这里,主要看看解方程迭代式的构造。
对方程(1.1),在区间],[b a 内,可改写成为:)(x x ϕ= (2.1) 取],[0b a x ∈,用递推公式:)(1k k x x ϕ=+, ,2,1,0=k (2.2) 可得到序列:∞==0210}{,,,,k k k x x x x x (2.3)当∞→k 时,序列∞=0}{k k x 有极限x ~,且)(x ϕ在x ~附近连续,则在式(2.2)两边极限,得, )~(~x x ϕ= 即,x ~为方程(2.1)的根。
实验1 解非线性方程实验
成绩
实验类型:●验证性实验 ○综合性实验 ○设计性实验
实验目的:进一步熟练掌握解非线性方程二分法算
法、弦截法算法,提高编程能力和解算非线性方程问题的
实践技能。
实验内容:用二分法算法、牛顿迭代法,弦截法算法解算非线性方程,,计算=0的根
实验原理二分法算法
牛顿迭代法
弦截法算法
实验步骤
1 要求上机实验前先编写出程序代码
2 编辑录入程序
3 调试程序并记录调试过程中出现的问题及修改
程序的过程
4 经反复调试后,运行程序并验证程序运行是否
正确。
5 记录运行时的输入和输出。
实验总结
实验报告:根据实验情况和结果撰写并递交实验报告。
参考程序
一.二分法算法
1.建立二分法的函数文件bisect.m
function [c,err,yc]=bisect(f,a,b,delta)
%Iput - f is the function input as a string 'f'
% -a and b are the left and right end points % -delta is the tolerance
%Output -c is the zero point
% -yc=f(c)
% -err is the error estimate for c
ya=feval(f,a);
yb=feval(f,b);
if ya*yb > 0,return,end
max1=1+round((log(b-a)-log(delta))/log(2));
for k=1:max1
c=(a+b)/2;
yc=feval(f,c);
if yc==0
a=c;
b=c;
elseif yb*yc>0
b=c;
yb=yc;
else
a=c;
ya=yc;
end
if b-a < delta,break,end
end
c=(a+b)/2;
err=abs(b-a);
yc=feval(f,c);
2.建立f(x)=x^2-5的matlab函数文件fff.m
function y=fff(x);
y=x.^2-5;
3.在命令窗口中准备调用bisect函数的实参
>> a=2;
>> b=3;
>> delta=0.0001;
4.在命令窗口中调用bisect函数
>> [x,err,yx]=bisect('fff',a,b,delta)
x =
2.2361
err =
6.1035e-005
yx =
-6.4894e-005
>> [x,err,yx]=bisect('fff',a,b,delta)
x =
-2.2361
err =
6.1035e-005
yx =
-6.4894e-005
二.牛顿迭代法
1.建立牛顿迭代法的函数文件newton.m
function [p0,err,k,y]=newtow(f,df,p0,delta,epsilon,max1)
%Input -f is the object function input as a string 'f'
% -df is the derivative of f input as a string 'df'
% -p0 is the initial approximation to a zero o f
% -delta is the tolerance for the function values y
% -max1 is the maximum number of iterations
%Output -p0 is the Newton-Raphson approximation to the zero % -err is the error estimate for p0
% -k is the number of iteration
% -y is the function value f(p0)
for k=1:max1
p1=p0-feval(f,p0)/feval(df,p0);
err=abs(p1-p0);
relerr=2*err/(abs(p1)+delta);
p0=p1;
y=feval(f,p0);
if (err<delta)|(relerr<delta)|(abs(y)<epsilon),break,end end
3.在命令窗口中准备调用newton函数的实参
>> p0=2;
>> delta=0.0001;
>> epsilon=0.00001;
>> max1=1000
max1 =
1000
>> p0=-2;
4.在命令窗口中调用newton函数
>> [x,err,k,y]=newton('fff','ff',p0,delta,epsilon,max1)
x =
2.2361
err =
4.3133e-005
k =
3
y =
1.8605e-009
>> [x,err,k,y]=newton('fff','ff',p0,delta,epsilon,max1)
x =
-2.2361
err =
4.3133e-005
k =
3
y =
1.8605e-009
三.弦截法算法
1.建立弦截法算法的函数文件secant.m
function [p1,err,k,y]=secant(f,p0,p1,delta,epsilon,max1) for k=1:max1
p2=p1-feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0)); err=abs(p2-p1);
relerr=2*err/(abs(p2)+delta);
p0=p1;
p1=p2;
y=feval(f,p1);
if(err<delta)|(relerr<delta)|(abs(y)<epsilon),break,end end
2.建立f(x)=x^2-5的matlab函数文件fff.m
Function y=fff(x)
y=x.^2-5;
3.在命令窗口中准备调用secant函数的实参>> p0=2;
>> p1=2.2;
>> delta=0.0001;
>> epsilon=0.00001;
>> max1=1000;
>> p0=-2.5;
>> p1=-2;
4.在命令窗口中调用secant函数
>> [x,err,k,y]=secant('fff',p0,p1,delta,epsilon,max1) x =
2.2361
err =
1.6468e-005
k =
3
y =
-3.3385e-008
>> [x,err,k,y]=secant('fff',p0,p1,delta,epsilon,max1) x =
-2.2361
err =
1.1287e-004
k =
3
y =
-2.2882e-007。