《有理数的加减法》习题3
- 格式:doc
- 大小:1.32 MB
- 文档页数:8
有理数加减法练习题1. 计算下列各题:(1) $(-\frac{3}{4})+(-\frac{1}{3})$(2) $\frac{-7}{9}-\frac{-5}{6}$(3) $(-\frac{5}{8})+(-\frac{-7}{12})$(4) $(-\frac{2}{3})-(-\frac{-5}{9})$(5) $\frac{-3}{5}+(-\frac{2}{3})$2. 解答下列问题:(1) 有理数加法中,两个正数相加的结果是正数还是负数?为什么?(2) 有理数减法中,两个正数相减的结果是正数还是负数?为什么?(3) 有理数加法中,一个正数和一个负数相加的结果是正数还是负数?为什么?(4) 有理数减法中,一个整数减去一个负数的结果是什么?为什么?(5) 对于任意的有理数$a$,$a+(-a)$的结果是什么?为什么?正文部分:1. 计算下列各题:(1) $(-\dfrac{3}{4})+(-\dfrac{1}{3})$解:首先,我们需要找到它们的最小公倍数,即$4$和$3$的最小公倍数为$12$。
然后,根据分数加法的规则,我们可以得到:$(-\dfrac{3}{4})+(-\dfrac{1}{3}) = -\dfrac{3\times3}{4\times3} -\dfrac{1\times4}{3\times4} = -\dfrac{9}{12} - \dfrac{4}{12} = -\dfrac{13}{12}$综上所述,$(-\dfrac{3}{4})+(-\dfrac{1}{3}) = -\dfrac{13}{12}$。
(2) $\dfrac{-7}{9}-\dfrac{-5}{6}$解:先将减法转化为加法,即变号相反。
然后,我们找到$\dfrac{-7}{9}$和$\dfrac{-5}{6}$的最小公倍数,即$9$和$6$的最小公倍数为$18$。
根据分数加法规则,我们有:$\dfrac{-7}{9}-\dfrac{-5}{6} = \dfrac{-7}{9}+\dfrac{5}{6} = \dfrac{-7\times2}{9\times2} + \dfrac{5\times3}{6\times3} = \dfrac{-14}{18} +\dfrac{15}{18} = \dfrac{1}{18}$综上所述,$\dfrac{-7}{9}-\dfrac{-5}{6} = \dfrac{1}{18}$。
有理数的加减法练习题及答案篇一:有理数加减法经典测七年级(上)有理数的加减法测验一.选择题(每题2分,共18分)1.相反数是它本身的数是()2、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数3、以下说法不正确的选项()A、有理数的绝对值一定是正数B、数轴上的两个有理数,绝对值大的离原点远C、一个有理数的绝对值一定不是负数D、两个互为相反数的绝对值相等4、已经明白a为有理数,以下式子一定正确的选项()A.︱a︱=aB.︱a︱≥a C.︱a︱=-a D.a>05、以下各式中,等号成立的是()A、-?6=6B、?(?6)=-6 C、-2 11226、在数轴上表示的数8与-2这两个点之间的间隔是()A、6 B、10 C、-10D-67、在-5,-1,-3.5,-0.01,-2,-212各数中,最大的数是()101A -12B -C -0.01D -5108、比-7.1大,而比1小的整数的个数是()A 6B 7C 8D 9 9、?357,?,?的大小顺序是()。
468753735A ????? B ?????,864846573357C ????? D ?????684468二、填空题(每空1分,共22分)1. |-4|-|-2.5|+|-10|=__________;|-24|÷|-3|×|-2|=_________ 2. 最大的负整数是_____________;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 4,0得相反数是,-(-4)的相反数是。
5. 绝对值最小的数是36.1的绝对值是。
312133.14?π= 2-3。
7. 20、假设零件的长度比标准多0.1cm记作0.1cm,那么—0.05cm表示____________. 8. 21、大于?411且小于1的整数有。
249. 19、x=y,那么x和y的关系10. 把以下各数填在相应的大括号里:+1124,-6,0.54,7,0,3.14,200%,3万,-,3.4365,-,-2.543。
有理数的加减法练习题(周末)篇一:有理数的加减法——计算题练习有理数的加减法——计算题练习1、加法计算(直接写出得数,每小题1分):(1)(-6)+(-8)=(4)(-7)+(+4)=(7)-3+2=(10)(-4)+6=(2)(-4)+2.5=(5)(+2.5)+(-1.5)=(8)(+3)+(+2)=(3)(-7)+(+7)=(6)0+(-2)=(9) -7-4=(11)??3??1=(12) a???a?=2、减法计算(直接写出得数,每小题1分):(1) (-3)-(-4)=(4) 1.3-(-2.7)=(7) 13-(-17)=(10) 0-6=(2) (-5)-10=(5) 6.38-(-2.62)=(8) (-13)-(-17)=(11) 0-(-3)=(3)9-(-21)=(6)-2.5-4.5=(9) (-13)-17=(12) -4-2=1??1??1?(13) (-1.8)-(+4.5)=(14) ????????=(15) (?6.25)???34?=???4??3?3、加减混合计算题(每小题3分):(1) 4+5-11;(2) 24-(-16)+(-25)-15 (3) -7.2+3.9-8.4+12(4) -3-5+7(5) -26+43-34+17-48 (6) 91.26-293+8.74+191(7) 12-(-18)+(-7)-15(8) (?83)?(?26)?(?41)?(?15)(9) (?1.8)?(?0.7)?(?0.9)?1.3?(?0.2)(10) (-40)-(+28)-(-19)+(-24)-(32)(11) (+4.7)-(-8.9)-(+7.5)+(-6)(12) -6-8-2+3.54-4.72+16.46-5.284、加减混合计算题:?1?5??3??1??4??1? (1)15?? (2) (-1.5)++(+3.75)+?3?5??3??2??6????4??????????6??7??6??7??4??2?2??1??1?22??2??3??1??(3)???5????????????5????1?(4) 4?8???3????1????2? 3??4??3?13??4??13??5??5?2??3??2?(5) ???3????2????1??(?1.75)(6) 3??4??3???7??1??1??1???4????5????4????3? ?8??2??4??8?1??5??1??1??1??3??1?(7) ???1????1????2????3????1?(8) ??1.2?2????5???3.4?(?1.2) 6??6?2??4??4???2??4??(9)11111111?????????? (10)1?22?38?99?101?33?597?9999?101有理数的加减法——提高题练习一、选择题:1、若m是有理数,则m?|m|的值()A、可能是正数B、一定是正数C、不可能是负数D、可能是正数,也可能是负数2、若m?0,则m?|m|的值为()A、正数B、负数C、0D、非正数3、如果m?n?0,则m与n的关系是( )A、互为相反数B、m=?n,且n≥0C、相等且都不小于0D、m是n的绝对值4、下列等式成立的是( )A、a??a?0B、?a?a=0C、?a?a?0D、?a-a=05、若a?2?b?3?0,则a?b的值是()A、5B、1C、-1D、-56、在数轴上,a表示的点在b表示的点的右边,且a?6,b?3,则a?b的值为(A.-3B.-9C.-3或-9D.3或97、两个数的差为负数,这两个数( )A、都是负数B、两个数一正一负C、减数大于被减数D、减数小于被减数6、负数a与它相反数的差的绝对值等于( )A、0B、a 的2倍C、-a的2倍D、不能确定8、下列语句中,正确的是( )A、两个有理数的差一定小于被减数B、两个有理数的和一定比这两个有理数的差大C、绝对值相等的两数之差为零D、零减去一个有理数等于这个有理数的相反数9、对于下列说法中正确的个数()①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数)④两个有理数的和可能等于0A、1B、2C、3D、410、有理数a,b在数轴上的对应点的位置如图所示,则()A、a+b=0B、a+b>0C、a-b<0D、a-b>011、用式子表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A、a+b-c=a+b+c B、a-b+c=a+b+cC、a+b-c=a+(-b)=(-c)D、a+b-c=a+b+(-c)12、若a?b?0?c?d,则以下四个结论中,正确的是()A、a?b?c?d一定是正数B、c?d?a?b可能是负数C、d?c?a?b一定是正数D、c?d?a?b一定是正数13、若a、b为有理数,a与b的差为正数,且a与b两数均不为0,那么()A、被减数a为正数,减数b为负数B、a与b均为正数,切被减数a大于减数bC、a与b两数均为负数,且减数b的绝对值大D、以上答案都可能14、若a、b表示有理数,且a>0,b<0,a+b<0,则下列各式正确的是()A、-b<-a<b<aB、-a<b<a<-bC、b<-a<-b<aD、b<-a<a<-b15、下列结论不正确的是()A、若a?0,b?0,则a?b?0B、若a?0,b?0,则a?b?0C、若a?0,b?0,则a???b??0D、若a?0,b?0,且a?b,则a?b?016、若x?0,y?0时,x,x?y,y,x?y中,最大的是()A、xB、x?yC、x?yD、y17、数m和n,满足m为正数,n为负数,则m,m-n,m+n的大小关系是( )A、m>m-n>m+nB、m+n>m>m-nC、m-n>m+n>mD、m-n>m>m+n18、若a?0,b?0,则下列各式中正确的是( )A、a?b?0B、a?b?0C、a?b?0D、?a?b?019、如果a、b是有理数,则下列各式子成立的是( )A、如果a<0,b<0,那么a+b>0B、如果a>0,b<0,那么a+b>0C、如果a>0,b<0,那么a+b<0D、如果a<0,b>0,且︱a︱>︱b︱,那么a+b<0二、填空题:20、已知x?6,y?3,那么x?y21、三个连续整数,中间一个数是a,则这三个数的和是___________.22、若a?8,b?3,且a?0,b?0,则a?b=________.23、当b?0时,a、a?b、a?b中最大的是_______,最小的是_______.24、若a?0,那么a?(?a)等于___________.25、若数轴上,A点对应的数为-5,B点对应的数是7,则A、B两点之间的距离是.26、有若干个数,第一个数记为a1,第二个数记为a2,第3个数记为a3,…,第n个数记为an ,若a1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。
1.3有理数的加减法练习题一、判断题(每小题1分,共4分)1.一个数的相反数一定比原数小。
( )2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等。
() 3.|-2.7|>|-2.6| ( )4.若a+b=0,则a,b 互为相反数。
( )二、选择题(每小题1分,共6分)1.相反数是它本身的数是( )A. 1B. -1C. 0D.不存在2.下列语句中,正确的是( )A.不存在最小的自然数B.不存在最小的正有理数C.存在最大的正有理数D.存在最小的负有理数3.两个数的和是正数,那么这两个数( )A.都是正数B.一正一负C.都是负数D.至少有一个是正数4、下列各式中,等号成立的是 ( )A.-6-=6B.(6)--=-6C.-112=﹣112 D. 3.14+=﹣3.145、在数轴上表示的数8与﹣2这两个点之间的距离是 ( )A.6B.10C.﹣10D.﹣66、一个有理数的绝对值等于其本身,这个数是 ( )A.正数B.非负数C.零D.负数三、填空题(每空1分,共32分)1. 相反数是2的数是____________,绝对值等于2的数是_____________2. |-4|-|﹣2.5|+|﹣10|=__________;|﹣24|÷|﹣3|×|﹣2|=_________3. 最大的负整数是_____________;最小的正整数是____________4. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个5. 数轴三要素是__________,___________,___________6. 若上升6米记作+6米,那么﹣8米表示 。
7. 在数轴上表示的两个数, 总比 的数大。
8. 的相反数是4,0的相反数是 ,﹣(﹣4)的相反数是。
9. 绝对值最小的数是 ,﹣313的绝对值是 。
10. 数轴上与表示-2的点距离1个单位长度的点所表示的数为 。
人教版七年级上册《2.1有理数的加法与减法》2024年同步练习卷(3)一、选择题:本题共3小题,每小题3分,共9分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.将式子写成和的形式正确的是()A. B.C. D.2.请指出下面计算开始出错在哪一步()①②③④A.①B.②C.③D.④3.若,则的值为()A. B.2 C. D.1二、填空题:本题共3小题,每小题3分,共9分。
4.算式“”可以读作______.5.把写为省略括号和加号的形式是______.6.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额______元.支付宝帐单日期交易明细乘坐公交¥转帐收入¥体育用品¥零食¥餐费¥三、计算题:本大题共1小题,共6分。
7.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数:星期一二三四五六日增减/辆生产量最多的一天比生产量最少的一天多生产多少辆?本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?四、解答题:本题共5小题,共40分。
解答应写出文字说明,证明过程或演算步骤。
8.本小题8分计算:;9.本小题8分运用加法的运算律计算下列各题:10.本小题8分银行储蓄业务员办理了8笔业务:取出950元,存进500元,取出800元,存进1200元,存进2500元,取出1020元,取出1600元,存进400元.这时银行现款是增加了,还是减少了?增加或减少了多少元?11.本小题8分计算:12.本小题8分一种游戏规则如下:①每人每次取4张卡片,如果抽到的卡片形如,那么加上卡片上的数字;如果抽到的卡片形如,那么减去卡片上的数字;②若规定从0开始,比较两人所抽4张卡片的计算结果,结果大的为胜者.小明抽到如图①所示的4张卡片,小丽抽到如图②所示的4张卡片,请你通过计算要求有具体的计算过程,指出本次游戏的获胜者.答案和解析1.【答案】D【解析】解:,故选:根据有理数的减法法则,将省略的加号填上即可解答.本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.2.【答案】B【解析】解:在运用加法的运算律时,整个算式看作是省略括号与加号的和的形式,所以,①式是,,,四个加数的和,再将正数与负数分别结合时,一律用加号连接,所以错在第②步.本题考查了有理数的加减混合运算,可以运用加法的交换律和结合律简化运算,注意运用加法的结合律时,中间应用“+”号连接.3.【答案】D【解析】解:,,,解得:,,故故选:直接利用非负数的性质得出a,b的值,进而代入得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.4.【答案】负二十加三加五减七的差或负二十与正三与正五与正七的和【解析】解:算式“”可以读作负二十加三加五减七的差;或读作负二十与正三与正五与正七的和.故答案为:负二十加三加五减七的差或负二十与正三与正五与正七的和.这个算式可以看成几个数的和的形式,也可以看成数的加减混合运算,因而可以有两种读法.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.5.【答案】【解析】解:故答案为:原式利用减法法则变形即可得到结果.此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.6.【答案】810【解析】【分析】本题考查正数与负数和有理数的加减,理解正数与负数在实际问题的中的意义,利用有理数加减进行准确运算是解题的关键.用支付宝的860分别与支出和收入部分求和即可.【解答】解:元,故答案为7.【答案】解:辆;辆,答:生产量最多的一天比生产量最少的一天多生产17辆;本周总生产量是696辆,比原计划减少了4辆.【解析】由表格找出生产量最多与最少的,相减即可得到结果;根据题意列出算式,计算即可得到结果.此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.8.【答案】解:;【解析】根据有理数加减运算法则直接求解即可得到答案;根据有理数加减运算法则,结合异分母分数加减法则求解即可得到答案.本题考查了有理数的加减运算,掌握有理数加减运算法则是关键.9.【答案】解:;【解析】根据加法的交换律和结合律可以解答本题;先化简,然后根据加法的交换律和结合律可以解答本题.本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.10.【答案】解:规定取出为负,存进为正.由题意,得元所以银行的存款增加了,增加了230元.【解析】先规定正负,再列出算式,加减求值即可.本题考查了有理数的加减,根据题意列出算式是解决本题的关键.11.【答案】解:原式;原式【解析】利用有理数的加减混合运算法则计算即可.此题主要考查了有理数的加减混合运算,解题的关键是注意利用运算律简化计算.12.【答案】解:小明所抽卡片上的数的和为:;小丽所抽卡片上的数的和为:;因为,所以本次游戏获胜的是小丽.【解析】先根据题意列出算式,再根据有理数的加减混合运算法则求出结果,然后进行比较,即可得出答案.此题考查了有理数的大小比较和有理数的加减混合运算,注意加减混合运算应从左往右依次运算.。
2022年人教版暑假小升初数学衔接达标检测专题03《有理数的加减法》试卷满分:100分考试时间:100分钟班级:姓名:学号:题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021秋•绵阳期末)﹣5比﹣2()A.大3 B.大7 C.小3 D.小﹣32.(2分)(2022•宝鸡模拟)(﹣3)+2=()A.﹣5 B.﹣1 C.1 D.53.(2分)(2021秋•霸州市期末)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是+21﹣32=﹣11的计算过程,则图2表示的过程是在计算()A.(﹣13)+(+23)=10 B.(﹣31)+(+32)=1C.(+13)+(+23)=36 D.(+13)+(﹣23)=﹣104.(2分)(2021秋•长春期末)把(﹣3)﹣(﹣7)+4﹣(+5)写成省略加号的和的形式是()A.﹣3﹣7+4﹣5 B.﹣3+7+4﹣5 C.3+7﹣4+5 D.﹣3﹣7﹣4﹣55.(2分)(2021秋•綦江区期末)11月10日,某股票的股价在连续上涨后开始高位震荡,当天开盘价为31.85元,相对开盘价,波动最高+0.13元,最低﹣0.84元,那么这天的最大价差(最高价减去最低价)为()A.31.98元B.31.01元C.0.71元D.0.97元6.(2分)(2021秋•龙泉驿区校级期中)若x的相反数是2,|y|=5,且x+y<0,则x﹣y的值是()A.3 B.3或﹣7 C.﹣3或﹣7 D.﹣77.(2分)(2021•吉林二模)如图,给出了吉林市2021年4月13日的最高气温和最低气温,则这天的温差是()A.﹣4℃B.4℃C.8℃D.12℃8.(2分)(2019秋•通州区期末)下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3 B.(+3)+(﹣8)=﹣(8﹣3)=﹣5C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11 D.(+6)+(﹣4)=+(6+4)=+109.(2分)(2020•浙江自主招生)将1,2,3,4,…,12,13这13个整数分为两组,使得一组中所有数的和比另一组中所有数的和大10,这样的分组方法()A.只有一种B.恰有两种C.多于三种D.不存在10.(2分)(2019秋•江夏区校级月考)如图是一个3×3的幻方,当空格中填上适当的数后,每行,每列以及对角线上的数的和都是相等的,则k的值为()A.110 B.132 C.231 D.253评卷人得分二.填空题(共9小题,满分18分,每小题2分)11.(2分)(2021秋•费县期末)计算:﹣4﹣(﹣1)=.12.(2分)(2021秋•永吉县期末)如图,陆上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差m.13.(2分)(2021秋•吉林期末)某地星期一上午的温度是﹣7℃,中午上升了8℃,下午由于冷空气南下,到夜间又下降了10℃,则这天夜间的温度是℃.14.(2分)(2021秋•武冈市期末)新疆乌鲁木齐是我国温差最大的城市,有记载极端最高气温曾接近48℃,最低气温曾接近﹣42℃,温差近℃.15.(2分)(2021秋•江油市期末)已知a、m、n均为有理数,且满足|a+m|=6,|n﹣a|=3,那么|m+n|的值为.16.(2分)(2022•徐汇区校级模拟)若|a|=3,|b|=4,且a,b异号,则|a+b|=.17.(2分)(2021秋•乐昌市期末)如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为.18.(2分)(2021秋•梁子湖区期中)已知|x|=3,|y|=6,且x>y,则x+y=.19.(2分)(2021秋•锦江区校级期中)若a的相反数等于它本身,b是到原点的距离等于2的负数,c是最大的负整数,则a﹣b+c的值为.评卷人得分三.解答题(共10小题,满分62分)20.(3分)(2021秋•阳东区期中)计算:11﹣(﹣19)+(﹣12)﹣4.21.(4分)(2021秋•南安市期中)计算:(1)(﹣4)+9;(2)13+(﹣6)+7﹣(+4).22.(5分)(2021秋•思明区校级期中)某检修小组乘汽车沿公路检修线路,约定向东为正,向西为负,某天自A地出发到收工时所走的路线(单位:千米)为:+11,﹣3,+4,+2,﹣8,﹣2,+8,+5.(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时共耗油多少升?23.(6分)(2021秋•南皮县校级月考)若|a|=2,﹣b=3,c是最大的负整数.(1)分别求出a,b,c的值;(2)求|b﹣c|的值;(3)求a+b﹣c的值.24.(5分)(2021秋•北京期中)对于有理数a,b,n,d,若|a﹣n|+|b﹣n|=d,则称a和b关于n的“相对关系值”为d,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“相对关系值”为3.(1)﹣3和5关于1的“相对关系值”为;(2)若a和2关于1的“相对关系值”为4,求a的值.25.(8分)(2021秋•上蔡县月考)数学张老师在多媒体上列出了如下的材料:计算:.解:原式===0+(﹣1)=﹣1.上述这种方法叫做拆项法.请仿照上面的方法计算:(1)(+28)+(﹣25).(2)(﹣2021)+(﹣2022)+4044+(﹣).26.(6分)(2021秋•兰山区校级月考)某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,﹣3,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为0.3公升/千米,这天下午汽车共耗油多少公升?27.(9分)(2021秋•瑶海区期中)今年“十•一”黄金周期间,西安曲江遗址公园风景区在8天假期中每天旅游的人次数变化如下表(正数表示比前一天多的人次数,负数表示比前一天少的人次数):(单位:万人),若9月30日的游客人次数记为0.5万,日期1日2日3日4日5日6日7日8日人次数变化+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2 ﹣0.1(1)10月1日的游客人次数是多少?(2)请判断8天内游客人次数最多的是哪天?最少的是哪天?他们相差多少万人?(3)求今年黄金周期间游客在该地的总人次数.28.(8分)(2020秋•镇原县期末)某股民上星期五买进某公司股票1000股,每股20元,下表为本周内每日该股票的涨跌情况(“+”号表示与前一天相比涨,“一”号表示与前一天相比跌).星期一二三四五每股涨跌(元)+1.2 +0.4 ﹣1 ﹣0.5 +0.9(1)星期三收盘时,每股是多少元?(2)本周内最高收盘价是每股多少元?收盘价最低是每股多少元?(3)已知此股民买进和卖出股票时都要付0.15%的手续费和卖出时0.1%的交易税,如果他在星期五以收盘价将股票全部卖出,他的收益情况如何?29.(8分)(2020秋•山西月考)请根据情景对话回答下面的问题:小明:这条数轴上的两个点A、B表示的数都是绝对值是4的数,点A在点B的左边;小宇:点C表示负整数,点D表示正整数,且这两个数的差为3;小智:点E表示的数的相反数是它本身;(1)求A、B、C、D、E五个不同的点对应的数.(2)求这五个点表示的数的和.。
初一上册数学有理数的加减法练习题(有解析)想要学好数学,一定要多做同步练习,以下所介绍的七年级上册数学有理数的加减法练习题(有答案)同步练习,要紧是针对每一单元学过的知识来巩固自己所学过的内容,期望对大伙儿有所关心!一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。
2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。
3、3与-2的和的倒数是____,-1与-7差的绝对值是____。
4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。
5、-0.25比-0.52大____,比- 小2的数是____。
6、若一定是____(填正数或负数)7、已知,则式子_____。
8、把下列算式写成省略括号的形式:=____。
二、选择题(每小题3分,共24分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A、B、C、D、2、下面是小华做的数学作业,其中算式中正确的是( )A、①②B、①③C、①④D、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A、12.25元B、-12.25元C、12元D、-12元4、-2与的和的相反数加上等于( )A、-B、C、D、5、一个数加上-12得-5,那么那个数为( )A、17B、7C、-17D、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地点比最低的地点高( )A、10米B、15米C、35米D、5米7、运算:所得结果正确的是( )A、B、C、D、8、若,则的值为( )A、B、C、D、三、解答题(共52分)1、列式并运算:(1)什么数与的和等于?(2)-1减去的和,所得的差是多少?2、运算下列各式:(1)(2)(3)3、下列是我校七年级5名学生的体重情形,(1)试完成下表:姓名小颖小明小刚小京小宁体重(千克) 34 45体重与平均体重的差-7 +3 -4 0(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。
人教版数学七年级上册《有理数加减法》练习题(一)一、单选题:1. 计算:13-12正确的结果是( )A.15 B .-15 C.16 D .-162.计算|-13|-23的结果是( )A .-13 B.13 C .-1 D .13.下列计算正确的是( )A .(-15)-(+5)=-10B .0-(+3)=3C .(-9)-(-9)=-18D .0-(-6)=64. 比-5小-2的数是( )A .-7B .7C .-3D .35.在(-5)- =-6中的方框里应填( )A .-1B .+1C .-11D .+116.下列运算结果为1是( )A .|+3|-|+4|B .|(-3)-(-4)|C .|-2|-|-4|D .|+3|-|-4|7.下列说法正确的是( )A .减去一个数等于加上这个数的相反数B .互为相反数的两数之差为0C .零减任何有理数,差为负数D .减去一个正数,差大于被减数8. 若x 是2的相反数,|y|=3,则x -y 的值是( )A.-5 B.1 C.-1或5 D.1或-59.a,b在数轴上的位置如图,下列结论不正确的是( )A.a+b<0 B.a-b<0 C.-a-b>0 D.-a+b<0二、填空题:10. 计算:(-5)-(-3)=-5+____11. 计算: (-6)-4=-6+________12. 计算: 0-(+5)=0+_________13. 计算:8-(+2 016)=8+________14. 下列说法中:①一个数减去零仍得这个数;②零减去一个数等于这个数的相反数;③一个数减去它的相反数得零;④两个有理数之差不一定小于这两数之和.其中正确的是___________.(填序号)15. 扬州市某天最高气温是6 ℃,最低气温是-2 ℃,那么当日的温差是____℃.16.数轴上表示-3的点与表示-7的点之间的距离是____.17.某粮店出售的3种品牌的面粉袋上,分别标有质量为(25±0.2) kg,(25±0.3) kg,(25±0.4) kg的字样,从中任意拿出两袋,它们的质量最多相差______kg.18.-8与3的差的绝对值是_______.19.在数5,-2,7,-6中,任意两个数相减差最大是______,最小是_________.20.数字解密:第一个数是3=2-(-1);第2个数是5=3-(-2);第三个数是9=5-(-4);第四个数是17=9-(-8)……第六个数是___________________.21.小亮做这样一道计算题:|(-3)+|,其中“”表示被污染看不清的一个数,他翻开答案,知道该题的结果是6,那么“”表示的数是__________.22.已知x是5的相反数,y比x小-7,则x与-y的差是______.三、计算题:23. 计算:(1)(-5)-(-23);(2)(-9.25)-(-414 ).24.已知|a|=5,|b|=4,且a+b<0,求a-b的值.四、解答题:25. 世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844 m,吐鲁番盆地的海拔是-155 m,两处的海拔高度相差多少米?26. 符号“f”表示一种运算,它的一些运算结果如下:①f(1)=0,f(2)=1,f(3)=2,f(4)=3…②f(12)=2,f(13)=3,f(14)=4,f(15)=5…利用上述规律求:(1)f(10)-[-f(110 )];(2)f(2 015)-f(12 016).人教版数学七年级上册《有理数加减法》练习题(一)答案:一、单选题1-9. DADCB BADB10. 311. (-4)12. (-5)13. (-2016)14. ①②④15. 816. 417. 0.818. 1119. 13 -1320. 65=33-(-32)21. 9或-322. -323. (1)解:原式=18(2)解:原式=-524. 解:a-b的值为-9或-125. 解:8 999米26. (1)解:原式=19(2)解:原式=-2人教版数学七年级上册《有理数加减法》练习题(二)一、单选题1. 某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃2. 在-2,0,1,3这四个数中,最大的数和最小的数的和是( )A.1B.0C.2D.33. 5的相反数与-2的差是( )A.3B.-3C. 7D.-74. 下列表示某地区早晨、中午和午夜的温度(单位:℃),则下列说法正确的是( )A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃5. 若|a|=2,|b|=3,且0>a>b,则a+b=( )A.5B.﹣5C.﹣1D.﹣36. 比-6的一半大2的数是( )A.2B.0C.﹣1D.﹣37. 温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃8. 绝对值大于1且小于5的所有的整数的和是( )A.9B.-9C.6D.09. 计算:-2+3=( )A.1B.-1C.-5D.-610. 已知3x=,2y=,且0xy>,则x y-的值等于( )A.5或-5B.1或-1C.5或1D.-5或-111. 下面说法中正确的是( )A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-112. 计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2B.2C.0D.﹣113. 若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是( )A.3B.3或-13C.-3或-13D.-13二、填空题14. 比最大的负整数大2的数是_____.15. 比-5大-6的数是____.16. 小怡家的冰箱冷藏室温度是4℃,冷冻室的温度是-2℃,则冷藏室温度比冷冻室温度______℃。
2022-2023学年人教版七年级数学上册《1.3有理数的加减法》题型分类练习题(附答案)一.有理数的加法1.若|a|=﹣a,则a0;|x|=3.|y|=4,且x>y,则x+y=;b为正整数,且a,b满足|2a﹣4|+b=1,则a+2006b=.2.用“>”或“<”填空:(1)如果a>0,b>0,那么a+b0;(2)如果a<0,b<0,那么a+b0;(3)如果a>0,b<0,|a|>|b|,那么a+b0;(4)如果a>0,b<0,|a|<|b|,那么a+b0.3.计算(1)23+(﹣17)+6+(﹣22)(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35.4.计算题(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)5.阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值. (1)﹣+(﹣9)++(﹣3)解:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+[(+17)+(+)]+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣)+(﹣)+(+)+(﹣)] =0+(﹣1)=﹣上面这种方法叫拆项法.仿照上述方法计算: (2)(﹣2021)+(﹣2020)+324043+(﹣)6.计算:(1)(﹣9)+15(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)7.请根据情景对话回答下面的问题:小明:这条数轴上的两个点A 、B 表示的数都是绝对值是4的数,点A 在点B 的左边; 小宇:点C 表示负整数,点D 表示正整数,且这两个数的差为3; 小智:点E 表示的数的相反数是它本身;(1)求A 、B 、C 、D 、E 五个不同的点对应的数. (2)求这五个点表示的数的和.8.如图,在数轴上,点A 向右移动1个单位得到点B ,点B 向右移动(n +1)个单位得到点C (n 为正整数),点A 、B 、C 分别表示有理数a 、b 、c(1)若a 、b 、c 这三个数的和与其中最大的数相等,则a =(2)若a、b、c这三个数中只有一个数为正数,且这三个数的和等于6,则正整数n的最小取值为多少?9.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是;(3)从下到上前35个台阶上数的和为.10.|a|=22,|b|=2022,|a+b|≠a+b,试计算a+b的值.11.若两个有理数A、B满足A+B=8,则称A、B互为“吉祥数”.如5和3就是一对“吉祥数”.回答下列问题:(1)求﹣5和2x的“吉祥数”;(2)若3x的“吉祥数”是﹣4,求x的值;(3)4|x|和9能否互为“吉祥数”?若能,请求出;若不能,请说明理由.12.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?13.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?14.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,8筐白菜的总重量是多少?二.有理数的减法15.用p、m分别表示加法、减法,例如:5p6m4=5+6﹣4=7,按照以上规定,计算下列各题.(1)12m1p(﹣5)p6m3p(﹣4)(2)m1p(﹣)p|﹣2|m.16.列式计算:(1)已知甲、乙两数之和为﹣2030,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.17.已知x是绝对值最小的有理数,y是最大的负整数,z是最小的正整数,m的绝对值等于3,求:x﹣y﹣z+m的值.18.已知|a|=8,|b|=6.(1)若a,b同号,求a+b的值;(2)若|a﹣b|=b﹣a,求a+b的值.19.已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a﹣b的值.三.有理数的加减混合运算20.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.21.计算:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|22.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.参考答案一.有理数的加法1.解:若|a|=﹣a,则a≤0;|x|=3.|y|=4,且x>y,则x=3、y=﹣4或x=﹣3、y=﹣4,∴x+y=﹣1或﹣7;∵|2a﹣4|≥0,b为正整数,且a,b满足|2a﹣4|+b=1,所以b=1,2a﹣4=0,解得:a=2,b=1,把a=2,b=1代入a+2006b=2+2006=2008,故答案为:≤,﹣1或﹣7,2008.2.解:同号两数相加,取相同的符号,所以(1)中两数的和为正;(2)中两数的和为负;异号两数相加,取绝对值较大的加数的符号,所以(3)中两数的符号为正;(4)中两数的符号为负.故答案为:(1)>,(2)<,(3)>,(4)<.3.解:(1)23+(﹣17)+6+(﹣22)=23﹣17+6﹣22=29﹣39=﹣10;(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35=(﹣6.35+5.35)+(﹣1.4﹣7.6)=﹣1﹣9=﹣10.4.解:(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)=8﹣32﹣16+28=36﹣48=﹣12;(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64=(0.36+0.64)+(﹣7.4﹣0.6)+0.3=1﹣8+0.3=﹣6.7;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)=(﹣3.5+)+(﹣﹣)+(﹣+0.75)=0﹣3+0=﹣3;(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)=(+17﹣2.25﹣17.5)+(﹣9﹣10)=﹣2﹣20=﹣22;(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)=(1﹣2)+(3﹣4)…+(2019﹣2020)+(2021﹣2022)=﹣1×1011=﹣1011.5.解:原式=(﹣2021)+(﹣)+(﹣2020)+(﹣)+4043++(﹣1)+(﹣),=(﹣2021﹣2020+4043﹣1)+(﹣﹣+﹣),=1﹣,=﹣.6.解:(1)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.7.解:(1)∵点E表示的数的相反数是它本身,∴E表示0,∵A.B表示的数都是绝对值是4的数,且点A在点B左边,∴A表示﹣4,B表示4,∵点C表示负整数,点D表示正整数,且这两个数的差是3,∴若C表示﹣1,则D表示2:若C表示﹣2.则D表示1.即A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0或﹣4,4,﹣2,1,0;(2)当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0时,这五个点表示的数的和是﹣4+4+(﹣1)+2+0=1;当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣2,1,0时,这五个点表示的数的和是﹣4+4+(﹣2)+1+0=﹣1.8.解:(1)依题意有a+(a+1)+(a+1+n+1)=a+1+n+1,解得a=﹣;(2)依题意有a+(a+1)+(a+1+n+1)=6,n=3﹣3a,∵a、b、c这三个数中只有一个数为正数,∴a+1≤0且a+1+n+1>0,则a≤﹣1且n>﹣a﹣2,即3﹣3a>﹣a﹣2,解得a≤﹣1,∴n≥6,∵n是正整数,∴正整数n的最小取值为6.故答案为:﹣.9.解:(1)由题意得前4个台阶上数的和是:﹣5+(﹣2)+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;(3)由题意知台阶上的数字是每4个一循环,35÷4=8……3,∵﹣5﹣2+1+9=3.∴3×8+(﹣5)+(﹣2)+1=24﹣6=18.即从下到上前35个台阶上数的和为18.故答案为:﹣5,18.10.解:∵|a|=22,|b|=2022∴a=±22,b=±2022.∵|a+b|≠a+b,∴|a+b|=﹣(a+b),∴a+b<0.当a=22,b=﹣2022时,a+b=22+(﹣2022)=﹣2000,当a=﹣22,b=﹣2022时,a+b=(﹣22)+(﹣2022)=﹣2044,当b=2022时,不合题意,∴a+b的值为﹣2000或﹣2044.11.解:(1)根据“吉祥数”的定义可得,﹣5的吉祥数为8﹣(﹣5)=13,2x的“吉祥数”为8﹣2x,答:﹣5的吉祥数为13,2x的“吉祥数“为8﹣2x;(2)由题意得,3x﹣4=8,解得x=4,答:x的值是4;(3)不能,由题意得,4|x|+9=8,则|x|=﹣,因为任何数的绝对值都是非负数,所以4|x|和9不能互为“吉祥数”.12.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).13.解:(1)超产记为正、减产记为负,所以星期四生产自行车(200+13)辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409(辆),故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26(辆),故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675(元),故该厂工人这一周的工资总额是84675元.14.解:1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=[1.5+1+(﹣2.5)]+[2+(﹣2)]+[(﹣3)+(﹣2)+(﹣0.5)]=0+0+(﹣5.5)=﹣5.525×8+(﹣5.5)=194.5(千克),答:8筐白菜的总重量是194.5千克.二.有理数的减法15.解:(1)原式=12﹣1+(﹣5)+6﹣3+(﹣4)=5;(2)原式=﹣1+(﹣)+2﹣=1.16.解:(1)根据题意知乙数为﹣2030﹣(﹣7)=﹣2030+7=﹣2023;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.17.解:∵x是绝对值最小的有理数,∴x=0,∵y是最大的负整数,∴y=﹣1,∵z是最小的正整数,∴z=1,∵m的绝对值等于3,∴m=±3,故x﹣y﹣z+m=0+1﹣1±3=±3.18.解:∵|a|=8,|b|=6,∴a=±8,b=±6.(1)因为a,b同号,所以a=8,b=6或者a=﹣8,b=﹣6.①当a=8,b=6时a+b=14.当a=﹣8,b=﹣6时a+b=﹣14.所以,当a,b同号时a+b等于14或﹣14;(2)由题意得b>a所以a=﹣8,b=6,或者a=﹣8,b=﹣6.①当a=﹣8,b=6时,a+b=﹣2;②当a=﹣8,b=﹣6时,a+b=﹣14.所以,当|a﹣b|=b﹣a时,a+b等于﹣2或者﹣14.19.解:∵|a+b|=|a|+|b|,∴a、b同号,∵|a|=4,|b|=2,∴a=±4,b=±2,当a=4,b=2时,a﹣b=2;当a=﹣4,b=﹣2时,a﹣b=﹣2.三.有理数的加减混合运算20.解:∵|a|=2,|b|=3,|c|=6,∴a=±2,b=±3,c=±6,∵|a+b|=﹣(a+b),|b+c|=b+c,∴a+b≤0,b+c≥0,∴a=±2,b=﹣3,c=6,∴当a=2,b=﹣3,c=6时,a+b﹣c=2+(﹣3)﹣6=﹣7,a=﹣2,b=﹣3,c=6时,a+b﹣c=﹣2+(﹣3)﹣6=﹣11.21.解:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|=16.2+2+3﹣10.7=11.5.22.解:(1)原式=﹣53+21+69﹣37=(21+69)+(﹣53﹣37)=90﹣90=0;(2)原式=(5.7+1.2)+(﹣4.2﹣8.4﹣2.3)=6.9﹣14.9=﹣8;(3)原式=12+18﹣37﹣41=30﹣78=﹣48;(4)原式=(﹣1﹣2)+(﹣1+3+1)+4=﹣4+3+4=3.。
初一上册数学有理数的加减法试题及答案一、选择题(共26小题)1.计算(﹣3)+(﹣9)的结果等于( )A.12B.﹣12C.6D.﹣6【考点】有理数的加法.【分析】根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.【解答】解:(﹣3)+(﹣9)=﹣12;故选B.【点评】本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.计算:﹣2+1的结果是( )A.1B.﹣1C.3D.﹣3【考点】有理数的加法.【分析】符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,所以﹣2+1=﹣1.【解答】解:﹣2+1=﹣1.故选B.【点评】此题主要考查了有理数的加法法则:符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.﹣2+3的值是( )A.﹣5B.5C.﹣1D.1【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进行计算即可.故选:D.【点评】此题主要考查了有理数的加法,关键是掌握有理数的加法法则.4.计算(+2)+(﹣3)所得的结果是( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【分析】运用有理数的加法法则直接计算.【解答】解:原式=﹣(3﹣2)=﹣1.故选B.【点评】解此题关键是记住加法法则进行计算.5.气温由﹣1℃上升2℃后是( )A.﹣1℃B.1℃C.2℃D.3℃【考点】有理数的加法.【分析】根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.【解答】解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选B.【点评】此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.6.计算﹣2+3的结果是( )A.﹣5B.1C.﹣1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.故选B.【点评】此题考查了有理数的加法法则,熟练掌握运算法则是解本题的关键.7.计算:5+(﹣2)=( )A.3B.﹣3C.7D.﹣7【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:5+(﹣2)=+(5﹣2)=3.故选A.【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.8.计算﹣|﹣3|+1结果正确的是( )A.4B.2C.﹣2D.﹣4【考点】有理数的加法;绝对值.【分析】首先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进行计算即可.【解答】解:﹣|﹣3|+1=﹣3+1=﹣2.故选C.【点评】此题考查了有理数的加法,用到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键.9.下面的数中,与﹣2的和为0的是( )A.2B.﹣2C.D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.【点评】此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.10.比﹣1大1的数是( )A.2B.1C.0D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.【点评】本题考查了有理数的加法,互为相反数的和为0.11.计算(﹣2)+(﹣3)的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.﹣3+(﹣5)的结果是( )A.﹣2B.﹣8C.8D.2【考点】有理数的加法.【分析】根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.【解答】解:原式=﹣(3+5)=﹣8.故选:B.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.13.计算:﹣2+3=( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:﹣2+3=+(3﹣2)=1.故选:A.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.14.计算:(﹣3)+4的结果是( )A.﹣7B.﹣1C.1D.7【考点】有理数的加法.【分析】根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:原式=+(4﹣3)=1.故选:C.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值的运算.15.计算﹣2+3的结果是( )A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加的法则进行计算即可.【解答】解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选:A.【点评】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.16.若( )﹣(﹣2)=3,则括号内的数是( )A.﹣1B.1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3,故选:B.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.17.计算:|﹣5+3|的结果是( )A.﹣2B.2C.﹣8D.8【考点】有理数的加法;绝对值.【分析】先计算﹣5+3,再求绝对值即可.【解答】解:原式=|﹣2|=2.故选B.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.18.计算﹣3+(﹣1)的结果是( )A.2B.﹣2C.4D.﹣4【考点】有理数的加法.【分析】根据同号两数相加的法则进行计算即可.【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,故选:D.【点评】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.19.计算(﹣3)+(﹣9)的结果是( )A.﹣12B.﹣6C.+6D.12【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.20.计算3+(﹣3)的结果是( )A.6B.﹣6C.1D.0【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:∵3与﹣3互为相反数,且互为相反数的两数和为0.∴3+(﹣3)=0.故选D.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.21.计算2﹣3的结果为( )A.﹣1B.﹣2C.1D.2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可.【解答】解:2﹣3=2+(﹣3)=﹣1,故选:A.【点评】本题主要考查了有理数的减法计算,减去一个数等于加上这个数的相反数.22.若等式0□1=﹣1成立,则□内的运算符号为( )A.+B.﹣C.×D.÷【考点】有理数的减法;有理数的加法;有理数的乘法;有理数的除法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:∵0﹣1=﹣1,∴□内的运算符号为﹣.故选B.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.23.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.24.已知a>b且a+b=0,则( )A.a<0B.b>0C.b≤0D.a>0【考点】有理数的加法.【专题】计算题.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.【解答】解:∵a>b且a+b=0,∴a>0,b<0,故选:D.【点评】此题考查了有理数的加法,熟练掌握互为相反数两数的性质是解本题的关键.25.计算:﹣3+4的结果等于( )A.7B.﹣7C.1D.﹣1【考点】有理数的加法.【分析】利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.【解答】解:﹣3+4=1.故选:C.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.26.计算﹣2+1的结果是( )A.﹣3B.﹣1C.3D.1【考点】有理数的加法.【分析】异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣2+1=﹣1,故选B【点评】此题考查有理数的加法,关键是根据异号两数相加的法则计算.二、填空题(共4小题)27.计算:|﹣2|+2= 4 .【考点】有理数的加法;绝对值.【分析】先计算|﹣2|,再加上2即可.【解答】解:原式=2+2=4.故答案为4.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.28.计算:﹣10+(+6)= ﹣4 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.29.计算:﹣2+(﹣3)= ﹣5 .【考点】有理数的加法.【专题】计算题.【分析】根据有理数的加法法则求出即可.【解答】解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.【点评】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.30.计算:﹣9+3= ﹣6 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:﹣9+3=﹣(9﹣3)=﹣6.故答案为:﹣6.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.初一数学学习方法一、注重学习内容的衔接1.初一数学是在小学数学的基础上进行拓展和提高的。
七年级数学上册《第一章 有理数的加减法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.在0、-3、-3.14,π中,最大的有理数的是( )A .0B .3-C . 3.14-D .π2.某市某年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃3.下列各式结果等于3的是( )A .(﹣2)﹣(﹣9)+(+3)﹣(﹣1)B .0﹣1+2﹣3+4﹣5C .4.5﹣2.3+2.5﹣3.7+2D .﹣2﹣(﹣7)+(﹣6)+0+(+3)4.在+1,﹣2,﹣1这三个数中,任取两个数相加,所得的和最大的是( )A .-1B .1C .0D .-35.绝对值不大于3的所有整数的和是( )A .0B .―1C .1D .66.数轴上点A 表示-3,点B 表示1,则表示A 、B 两点间的距离的算式是( )A .-3+1B .-3-1C .1-(-3)D .1-37.如图,数轴上A 、B 两点分别对应有理数a 、b ,则下列结论:①a >0,b <0;②a ﹣b <0;③a+b >0;④|a|﹣|b|>0,其中正确的有( )A .1B .2C .3D .08.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成11,11=10﹣1;198写成202,202=200﹣2;7683写成12323,12323=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算5231﹣3241=( )A .1990B .2068C .2134D .3024二、填空题: 9.计算: ()()14103-+--= .10.珠穆朗玛峰的海拔为8848.86 m ,吐鲁番盆地的海拔为-155 m ,珠穆朗玛峰的海拔比吐鲁番盆地的海拔高 m.11.若140a b -++=,则b a += .12.如果四个有理数之和是12,其中三个数是-9,+8,-2,则第四个数是 。
有理数的加减运算练习题1. 计算下列有理数的加减运算:a) 3 + (-5)b) 7 - (-2)c) (-8) + 4d) (-9) - (-3)e) 5 + (-7) + 2f) (-2) - 4 + (-6)g) 1 + (-3) - 5h) 9 - (-4) + 7i) (-6) + 2 - 9j) 10 - (-2) - 62. 化简下列有理数的表达式:a) 8 - (4 - 5)b) (-3) + [(-2) - (-7)]c) 6 - [(-2) - (5 - 8)]d) (-9) - (3 - 6)e) 3 + [(-4) - (2 - 5)]f) (-7) - [(-2) + (4 - 1)]g) (-5) + [(-3) - (6 - 9)]h) 4 - [(3 - 1) - (-5)]i) (-8) + [(7 - 4) - (-3)]j) 2 - [(10 - 7) - (-6)]3. 用数轴表示以下数对应的有理数,并计算其和:a) -3, 4b) -2, -5c) 6, -7d) -9, -3e) 1, -5, 2f) -4, 2, -6g) 1, -3, -5h) 9, -4, 7i) -6, 2, -9j) 10, -2, -64. 用有理数的加减法解决以下问题:a) 小明有欠爸爸5元,妈妈又借给小明2元,那么小明一共欠爸爸多少钱?b) 一个温度计在上午显示的温度是6度,下午温度下降了8度,那么下午的温度是多少度?c) 某地海拔是-100米,在一个雨季又下了120毫米的降雨,那么雨季结束后该地的海拔是多少?d) 小华有10本漫画书,他从图书馆借了4本,然后又买了3本,他现在有多少本漫画书?e) 一支队伍在比赛中进行了两次射击,第一次得分是-5环,第二次得分是8环,这支队伍最后的得分是多少环?f) 某地上午气温为5摄氏度,下午气温上升了10摄氏度,那么当天的最高气温是多少摄氏度?g) 小华在银行存了100元,他今天花了15元买了一个礼物,明天又花了7元买了一本书,那么小华剩下多少钱?h) 一辆汽车从A地到B地的距离是300公里,汽车经过了一段时间后,又返回A地,返回后汽车行驶的总距离是多少公里?i) 小明走路去学校,他在家门口走了200米,然后又走了-150米,这时他距离学校还有多远?j) 一架飞机从A地飞往B地,飞行的高度是+8000米,然后又飞回A地,飞行的总高度是多少米?以上是有理数的加减运算练习题,希望对你的学习有所帮助。
有理数加减法混合计算题一、基本概念1. 有理数- 有理数是整数(正整数、0、负整数)和分数的统称。
例如:3,0,-5是整数,(1)/(2),-(3)/(4)是分数,它们都是有理数。
2. 有理数加法法则- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8(两个正数相加);(-3)+(-5)=-(3 + 5)=-8(两个负数相加)。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0),如3+(-3)=0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:5+(-3)=+(5 - 3)=2;(-5)+3=-(5 - 3)=-2。
- 一个数同0相加,仍得这个数,如0+5 = 5,-3+0=-3。
3. 有理数减法法则- 减去一个数,等于加上这个数的相反数。
用字母表示为a - b=a+(-b)。
例如:5-3 = 5+(-3)=2;5-(-3)=5+(+3)=8。
二、例题解析(一)简单计算1. 计算(-3)+5 - (-2)- 解析:- 首先根据有理数减法法则,将-(-2)转化为+2,则原式变为(-3)+5+2。
- 然后按照有理数加法法则进行计算,先计算(-3)+5,异号两数相加,取绝对值较大的数(5)的符号,并用较大的绝对值减去较小的绝对值,即(-3)+5 =+(5 - 3)=2。
- 最后计算2+2 = 4。
2. 计算4-7+3- 解析:- 按照顺序进行计算,先算4-7,异号两数相减,4-7 = 4+(-7),取绝对值较大的数(-7)的符号,并用较大的绝对值减去较小的绝对值,即4+(-7)=-(7 - 4)=-3。
- 再计算-3+3 = 0。
(二)含有括号的计算1. 计算2-(3 - 5)+(-2)- 解析:- 先计算括号内的式子3 - 5,3-5 = 3+(-5)=-(5 - 3)=-2。
- 则原式变为2-(-2)+(-2)。
- 再根据有理数减法法则,2-(-2)=2+(+2)=4。
《有理数的加减法》习题3
《有理数的减法》同步练习
一、随堂检测
1、(1)(-3)-______=1
(2)_____-7=-2
(3) -5-______=0
2、计算:
(1))9()2(--- (2)110-
(3))8.4(6.5-- (4)435)214(--
3、下列运算中正确的是( )
A 、2)58.1(58.3)58.1(58.3=-+=--
B 、6.646.2)4()6.2(=+=---
C 、1)57(5257)52(57)52(0-=-+=-+=-+-
D 、4057)59(8354183-=-+=-
4、计算:
(1))5()3(9)7(-+----
(2)104.87.52.4+-+-
5、下列结论不正确的是()
A、若a>0,b<0,则a-b>0
B、若a<0,b>0,则a-b<0
C、若a<0,b<0,则a-(-b)>0
D、若a<0,b<0,且
a
b ,则a
-b>0.
6、红星队在4场足球赛中的成绩是:第一
场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。
红星队在4场比赛中总的净胜球数是多少?
7、一个病人每天下午需要测量一次血压,
下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位。
星期一二三四五
高压的变化
(与前一天比较)升25
单位
降15
单位
升13
单位
升15
单位
降20
单位
(1)该病人哪一天的血压最高?哪一天血压最低?
(2)与上周比,本周五的血压是升了还是
降了?
三、体验中招
1、(2009年,浙江)计算:=--23________。
2、(2008年,哈尔滨)哈尔滨市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( )
A 、-2℃
B 、8℃
C 、-8℃
D 、2℃
参考答案
一、随堂检测
1、-2,5,-5.运用减法法则进行计算。
2、(1)792)9()2(=+-=---
(2)11)11(0110-=-+=-
(3)4.108.46.5)8.4(6.5=+=--
(4)435)214(--=4
110)435()214(-=-+- 3、D .其他三项均有符号的错误。
4、(1)853)9()7()5()3(9)7(-=++-+-=-+----
(2)1.3107.54.82.4104.87.52.4=++--=+-+-
(3)21326541-++-=4332652141=++--
二、拓展提高
1、B 正号可以省略;正确运用减法的运算法则。
2、(1)
26843241321721217432)25.3(210-=+-=++--=-+---
(2)
311231352252431323)524()31()4.2()323(-=+-=-++-=-----+-
(3)
85142164118872216)4118(214837-=+--=--+-++-
3、∵,3,4==n m ∴3,4±=±=n m 又∵,m n n m -=-∴n m ≤
∴⎩
⎨⎧=-=⎩⎨⎧-=-=3434n m n m 或 ∴1-=-n m 或7-
4、D .∵x <0,∴)(x x --=x x x x 22-==+
5、选C 。
A 、∵a >0,b <0,∴-b >0.∴a
-b=a +(-b)>0
B 、∵a <0,b >0,∴-b <0,∴a
-b=a +(-b)<0
C 、∵a <0,b <0,∴a -(-b)=a
+b <0 故C 错。
D 、∵a <0,b <0,且b a >,∴a
-b=a +(-b)>0.
6、由题意的,3+(-1)+2+(-3)+2
+(-5)=-2
∴红星队在4场比赛中总的净胜球数是-2。
7、(1)该病人周四的血压最高,周二的血压最低。
(2)∵+25-15+13+15-20=18,∴与上周比,本周五的血压升了。
三、体验中招
1、1.准确运用绝对值和减法法则。
2、B。
准确运用减法法则。