微波技术基础-功率分配器和定向耦合器(1)
- 格式:pdf
- 大小:323.25 KB
- 文档页数:24
微波定向耦合器工作原理引言:微波定向耦合器是一种常见的无源微波器件,广泛应用于微波通信、卫星通信、雷达系统等领域。
它能够实现微波信号的能量分配和定向耦合,具有较高的传输效率和较低的插损。
本文将从微波定向耦合器的工作原理、结构以及应用等方面进行介绍。
一、工作原理微波定向耦合器通过特殊的设计和制造工艺,实现了微波信号的能量分配和定向耦合。
其工作原理主要基于两个重要的物理现象:电磁波的传输特性和微波传输线的耦合机制。
1. 电磁波的传输特性微波定向耦合器中的微波信号是以电磁波的形式传输的。
电磁波在传输过程中,具有幅度、相位和频率等特性。
幅度决定了电磁波的强弱,相位决定了电磁波的相对位置,频率决定了电磁波的振动次数。
2. 微波传输线的耦合机制微波传输线是微波定向耦合器中的重要组成部分。
它通常由金属导体制成,并具有特定的传输特性。
微波传输线中的电磁波会沿着导体表面传播,并在传输过程中与其他导体发生相互作用。
这种相互作用会引起电磁波的能量分布和传输方向的改变。
二、结构和工作方式微波定向耦合器通常由输入端口、输出端口和耦合结构组成。
其中,输入端口用于接收输入信号,输出端口用于输出耦合后的信号,耦合结构用于实现输入信号到输出信号的能量分配和定向耦合。
1. 能量分配微波定向耦合器的能量分配是指将输入信号的能量按照一定比例分配到不同的输出端口。
这种能量分配通常通过合理设计的耦合结构实现。
耦合结构中的导体、介质和空气等介质的特性会影响能量分配的效果。
2. 定向耦合微波定向耦合器的定向耦合是指将输入信号的能量按照一定的方向耦合到输出端口。
这种定向耦合可以通过合理设计的导体形状和布局实现。
导体的形状和布局会影响电磁波在耦合结构中的传输路径和传输方向。
三、应用微波定向耦合器在各种微波系统中具有广泛的应用。
以下是一些常见的应用场景:1. 微波通信系统微波定向耦合器可以用于微波通信系统中的信号分配和耦合。
它可以将输入信号的能量按照一定的比例分配到不同的输出端口,实现信号的多路复用和分配。
目录一、前言 (02)二、发展背景 (02)三、组成及分类 (03)四、原理简介 (03)五、定向耦合器的基本功能和参数指标 (04)1、耦合度 (05)2、隔离性 (05)3、定向性D (05)4、输出驻波比....................................... .065、工作频带宽度 (06)六、定向耦合器的应用 (08)七、总结 (11)八、参考文献 (12)定向耦合器的原理及介绍一、前言定向耦合器在微波波段有着广泛的应用,其主要用途有用来监视功率、频率和频谱,把功率进行分配和合成,构成平衡混频器和测量电桥,利用定向耦合器来测量反射功率系数和功率。
它的本质是将微波信号按一定的定向耦合器比例进行功率分配。
二、发展背景在20世纪50年代初以前,几乎所有的微波设备都采用金属波导和同轴线电路,那个时候的定向耦合器也多为波导小孔耦合定向耦合器,其理论依据是Bethe小孔耦合理论,Cohn和Levy等人也做了很多贡献。
随着航空和航天技术的发展,要求微波电路和系统做到小型化、轻量化和性能可靠,于是出现了带状线和微带线。
随后由于微波电路与系统的需要有相继出现了鳍线、槽线、共面波导和共面带状线等微波集成传输线。
这样就出现了各种传输线定向耦合器。
第一个真正意义上的定向耦合器由H. A. Wheeler在1944年设计实现,Wheeler使用了一对长为四分之一中心频率波长的圆柱来实现电场与磁场的能量相互耦合,遗憾的是这种方法只能实现一个倍频程的带宽。
三、组成及分类定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。
但从它的耦合机理来看主要分为四种,即小孔耦合、平行耦合、分支耦合以及匹配双T。
定向耦合器四、原理简介主线中传输的功率通过多种途径耦合到副线,并互相干涉而在副线中只沿一个方向传输。
图1为矩形波导定向耦合器的三种典型耦合结构。
微波定向耦合器、混合电桥、功率分配器1.微波定向耦合器基本概念:定向耦合器的技术指标(以同向为例)• 定向耦合器的技术指标:• 1.耦合:• 2.定向性:续上:• 5.插损:主线输入口到主线输出口的功率关系:• 6.各端口之间的功率关系:•2.耦合线定向耦合器基本原理• 如图:方向性的物理解释:奇、偶模分析和计算公式• 如图:续上•如下: •b1 s11s21s31s41 a1 •b2 s21s11s41s31 a2 •b3 = s31s41s11s21 a3 •b4 s41s31s21s11 a4•偶模激励:a1=a4 =1/2, a2 =a3 =0 求出: •GAMAe=b1 /a1 = b4/a4 =s11+s41 • Te=b2 /a1 =b3/a4 =s21 +s31•奇模激励:a1=1/2, a4 =-1/2, a2 =a3=0求出:•GAMAo=b1/a1=b4/a4=s11-s41•To=b2/a1=b3/a4=s21-s31•S11=(GAMAe+GAMAo)/2,s21=(Te+To)/2,s41=(GAMAe-GAMAo)/2,s31=(Te-To)/2续上:混合电桥也是四端口网路,其特点是其中两个端口相互隔离,另两个端口等功率输出。
两输出信号的相位差,可以是•幺正性(无耗网路):3.制造公差对隔离度(方向性+耦合度)的影响•设:续上:•相速影响• 4.功率分配器:续上:续上:•-------续上:•-----续上:•------5. 测试:•这些器件的端口数目N>2,属多端口测试,使用两端口网络分析仪测量这些器件时,多余的端口必须接上匹配负载。
例如写出测量耦合器方向性的连接关系,如图。
复习题•一、说明耦合线定向耦合器工作原理(物理解释)。
•二、一个10 dB定向耦合器,不考虑线路导体本身的损耗且认为理想匹配,当输入功率Pin,dBm=10 dBm时,求出:(2-1)Pc,dBm,Pout, dBm等于多少dBm? (2-2)Pc,Pout等于多少mW?•三、用两端口网路分析仪测量10dB定向耦合器,•(3-1)写出测量各端口VSWR、耦合度CdB、隔离度LdB的连接关系;简述测量方法。
分器和耦合器有什么区别?功分器现在有如下几种系列:1、400MHz-500MHz频率段二、三功分器,应用于常规无线电通讯、铁路通信以及450MHz无线本地环路系统。
2、800MHz-2500MHz频率段二、三、四微带系列功分器,应用于GSM/CDMA/PHS/WLAN室内覆盖工程。
3、800MHz-2500MHz频率段二、三、四腔体系列功分器,应用于GSM/CDMA/PHS/WLAN室内覆盖工程。
4、1700MHz-2500MHz频率段二、三、四腔体系列功分器,应用于PHS/WLAN室内覆盖工程。
5、800MHz-1200MHz/1600MHz-2000MHz 频率段小体积设备内使用的微带二、三功分器。
现有的耦合器有3种类型,运用的系统和上述功分器的系统是一样的,这里不再重复。
耦合度分为:5 dB、7 dB、10 dB、15 dB、20 dB、25 dB.1、微带系列耦合器800MHz-2500MHz频率段2、腔体系列耦合器800MHz-2500MHz频率段3、腔体系列耦合器1700MHz-2500MHz频率段Tags:功分器,耦合器,顾名思义,功率分配器,功率耦合器;功分器、耦合器基本上都用在射频信号中的无源器件,起到根据实际需要分配信号的目的。
合路器是将不同频段的信号合路为一路信号输出的无源器件。
其功率损耗各有不同,和工艺有比较大的关系。
功分器和耦合器都是功率分配器件,只是功分器是均分的,比如二功分平均分为两路,三功分平均分为三路;耦合器耦合输出端和直通端的分配功率不平均,当然功分器和耦合器都有损耗的。
无源器件根据实现原理分为微带型和腔体型两类。
微带型利用1/4波长的微带线,腔体型利用谐振腔。
相对而言,微带型器件便宜但插入损耗达0.5dB,而腔体型贵一些但插入损耗只有0.1dB。
功分器是最常见的无源器件,用于将一路信号均分为多路信号,起着功率平均分配的作用,常见的有二功分、三功分、四功分。
功分器反向应用就成了合路器。
什么是定向耦合器定向耦合器的工作原理定向耦合器是微波测量和其它微波系统中常见的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。
它是一种有方向性的微波功率分配器,更是近代扫频反射计中不可缺少的部件,通常有波导、同轴线、带状线及微带等几种类型。
图1为其结构示意图。
它主要包括主线和副线两部分,彼此之间通过种种形式小孔、缝、隙等进行耦合。
因此,从主线端上“1”输入的功率,将有一部分耦合到副线中去,由于波的干涉或叠加,使功率仅沿副线-一个方向传输(称“正向”),而另一方向则几乎毫无功率传输(称“反向”)图2为十字定向耦合器,耦合器中端口之一终端接一内装的匹配负载。
定向耦合器的应用1、用于功率合成系统在多载频合成系统中,通常会用到3dB的定向耦合器(俗称3dB电桥),如下图所示。
这种电路常见于室内分布系统,来自两路功率放大器的信号f1和f2经过3dB定向耦合器后,每路的输出均包含了f1和f2两个频率分量,每个频率分量的幅度减少3dB。
如果将其中一个输出端接上吸收负载,另外一路输出可以作为无源互调测量系统的功率源。
如果需要进一步提高隔离度,可以外加一些器件如滤波器和隔离器。
一个良好设计的3dB电桥的隔离度可以做到33dB以上。
定向耦合器用于功率合成系统一定向沟壑区作为功率合成的另外一种应用见下图(a)。
在这个电路中,定向耦合器的方向性得到了巧妙的应用。
假设两个耦合器的耦合度均为10dB,方向性均为25dB,则f1和f2端之间的隔离为45dB。
如果f1和f2的输入均为0dBm,则合成后的输出均为-10dBm。
与下图(b)中的Wilkinson耦合器(其隔离度典型值为20dB)相比,同样输入OdBm的信号,合成后还有-3dBm (未考虑插入损耗)。
作为间样条件下的比较,我们将图(a)中的输入信号提高7dB,这样其输出就和图(b)—致了,此时,图(a)中f1和f2端的隔离度“降低”为38 dB。
功分器基本工作原理:威尔金森功率分配器的功能是将输入信号等分或不等分的分配到各个输出端口,并保持相同输出相位。
环形器虽然有类似功能,但威尔金森功率分配器在应用上具有更宽的带宽,微带型功分器的电路如图9-1所示。
其中,输入端口特性阻抗为Z0;两端分支微带线电长度为1/4波长,特性阻抗分别为Z02和Z O3,终端分别接Z O2端口1Z O3功分器各个端口的特性如下:1、端口1无反射2、端口2和端口3输出电压相等且同相3、端口2、端口3输出功率比值为任意指定值1/K2因此,1/Z IN2 +1/Z IN3 =1/Z0;K2=P3 /P2 , P3 =1/2*U32/R3, P2=1/2*U22 /R2U3= U2在四分之一波长传输线阻抗变换理论的:Z IN2 *R2= Z O22Z IN3*R3= Z O32设R2=K* Z0,则Z O2,Z O3,R3 为:Z O2= Z0 exp(K(1+ K2 ))Z O3= Z0 exp(K(1+ K2 )/K3)R3= Z0 /K为了增加隔离度在端口2和端口3之间加一贴片电阻R,隔离电阻R的电阻值为R=Z0 (K+1/K)当K=1时,上面的结果化简为功率相等情况,还可以看出,输出线是与R2=KZ0和R3=Z0/K 匹配的,而不与阻抗Z0匹配。
定向耦合器工作原理LANGE耦合器结构如图9-26所示。
端口1的输入功率一部分直接传递给直通端口2,另外一部分耦合到耦合端口3.在理想的定向耦合器中,没有功率传递到隔离端口4,LANGE耦合器的直递端口2与耦合端口3之间有90度的相位差,可见LANGE耦合器是正交耦合器。
图中。
Z0为输入微带线的特性阻抗;W为微带线的宽带,S为微带线之间的间距;λ/4为工作带宽中心频点处的四分之一波长。
LANGE耦合器的耦合系数常用C表示,耦合系数C的参数有线宽比率W/H、缝隙宽度比率S/H、基板介电常数εr;导体厚度比率T/H和频率,这5个参数的微小偏差会导致耦合器奇偶模阻抗发生相应变化,从而在耦合线数目N固定的情况下使耦合系数C和特性阻抗Z0发生变化,缝隙宽带比率S/H、导体厚度比率T/H的偏差对耦合系数C又较大影响,而其余三个参数的偏差对于耦合的影响比较小,但对于特性阻抗Z0的影响是不可忽略的。