六年级小升初 图形与几何复习
- 格式:pdf
- 大小:201.86 KB
- 文档页数:4
小升初专题复习——几何图形一、三视图及展开图例题1:用同样大小的正方体摆成的物体,从正面看到,从上面看到,从右面看到〔 〕A .B .C .D .变式练习:如图,它是用6个棱长为1分米的正方体拼成的. ①它的外表积是 . ②它的体积是 .二、三角形的底边及面积关系例题1:如图.A 、B 是长方形长和宽的中点,阴影局部的面积是长方形面积的 %.例题2:如图,三角形ABC 面积为27平方厘米,AE=CE ,BF=BC ,求三角形BEF 的面积.变式练习1:如图,直角梯形ADCB 中,三角形BEC 、四边形CEAF 和三角形CFD 的面积一样大.BC=16、AD=20、AB=12,求三角形AEF 的面积.教师姓名 学科 数学 上课时间 讲义序号 (同一学生)学生姓名年级六年级组长签字日期课题名称 几何图形变式练习2:如图,梯形ABCD中共有〔〕对面积相等的三角形A. 22 B. 3 C. 4 D. 5变式练习3:在如图中,平行四边形的面积是20平方厘米,图中甲、丙两个三角形的面积比是,阴影局部的面积是平方厘米.三、多边形内角和例题1:把表填完整多边形…边数 3 4 5 6 …内角和180°180°×2 180°×3 180°×5 …变式练习:探索〔1〕完成表格中未填局部.〔2〕根据表中规律,八边形的内角和是度.〔3〕假设图形的边数为a,内角和为s,请你用一个含有字母的关系式表示图形边数及内角和的关系..图形边数 3 4 5内角和180 180×2 180×3四、长度比拟例题1:面积相等的情况下,长方形、正方形和圆相比,〔〕的周长最短.A.长方形B.正方形C.圆例题2:如图,A是一个圆,B是由三个半圆围成的图形,那么它们周长的大小关系是C A C B.变式练习1:下面三个图形中,哪两个图形的周长相等?〔〕A.图形①和②B.图形②和③C.图形①和③变式练习2:在图形中甲的周长〔〕乙的周长.A.大于B.小于C.等于拓展提升:某高层公寓大火时,小王逃生的时候看了下疏散通道如下图,那么最快逃离到楼梯〔图中阴影〕的通道共有〔〕条.A. 3 B. 9 C. 6 D. 12五、组合图形计数例题1:如图中直角的个数为〔〕个.A. 4 B. 8 C. 10 D. 12例题2:如图,共有〔〕条线段.A. 4 B. 8 C. 10 D. 12例题3:数一数,在右图中共有〔〕个三角形.A.10 B. 11 C. 12 D. 13 E.14A.4 B. 8 C. 10 D. 12变式练习2:如图中直角有〔〕个.A. 1 B. 2 C. 3 D. 4变式练习3:这里共有〔〕条线段.A.三条B.四条C.五条D.六条变式练习4:如下图的7×7的方格内,有许多边长为整数的正方形,其中在有的正方形中黑方格及白方格的个数占一半〔同样多〕.像这样的正方形有〔〕个.A.26 B. 36 C. 46 D. 56E.66变式练习5:图中共有〔〕个长方形.A. 30 B. 28 C. 26 D. 24变式练习6:如图,三角形一共有个.拓展提升1:如图是半个正方形,它被分成一个一个小的等腰三角形,图中,正方形有10 个,三角形有47 个.拓展提升2:如图中,三角形的个数有多少?六、图形的拆拼〔切拼〕例题1:一个圆的周长是15.7分米,把这个圆等分成假设干个小扇形,拼成一个近似的长方形,这个近似的长方形的长是分米,宽是分米.例题2:爸爸给女儿买了一个圆柱形的大生日蛋糕,女儿把蛋糕竖直方向切成22块分给22个小朋友,切成的大小不一定相等.那么至少需切的刀数为?变式练习1:在一块边长为4厘米的正方形的铁皮上,剪出直径为2厘米的小圆片,最多可剪〔〕片.A. 3 B. 4 C. 5 D. 6变式练习2:用一条直线将一个正方形分成两个完全一样的两局部,有几种分法〔〕A. 1种B. 2种C. 3种D. 4种变式练习3:在一块长10分米、宽5分米的长方形铁板上,最多能截取11 个直径是2分米的圆形铁板.拓展提升:请将下面等边三角形按要求分割成假设干个形状和大小都一样的三角形〔1〕分成2个〔2〕分成3个〔3〕分成4个〔4〕分成6个七、立体图形的外表积例题1:把14个棱长为1的正方体,在地面上堆叠成如下图的立体,然后将露出的外表局部染成红色.那么红色局部的面积为〔〕A. 21 B. 24 C. 33 D. 37例题2:如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,那么所得物体的外表积为.变式练习2:把假设干个边长2厘米的正方体重叠起来堆成如下图的立体图形,这个立体图形的外表积是平方厘米.变式练习3:如图是一个长3厘米、宽及高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的外表积〔〕A.比原来大B.比原来小C.不变拓展提升〔难〕:在一个棱长为8的立方体上切去一个三棱柱〔如图〕,那么外表积减少.八、立体图形的体积例题1:如图的体积是.〔单位:厘米〕例题2:一支没有用过的圆柱形铅笔,长18厘米,体积是9立方厘米,使用一段时间后变成了如图的样子,这时铅笔的体积是多少立方厘米?变式练习1:有一棱长为5cm的正方体机器零件,现在它的上下面挖去了一个直径为2cm的圆孔,求剩下机器零件的外表积和体积?九、等积变形例题1:如下图,把底面直径8厘米的圆柱切成假设干等分,拼成一个近似的长方体.这个长方体的外表积比原来增加80平方厘米,那么长方体的体积是立方厘米.例题2:一个酸奶瓶〔如图〕,它的瓶身呈圆柱形〔不包括瓶颈〕,容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余局部高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?变式练习1:一个圆锥形沙堆,底面积是3.6平方米,高1.2米.把这堆沙装在长2米、宽1.5米的沙坑里,可以装多高?变式练习2:有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形〔不包括瓶颈〕.现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余局部的高度为5厘米.瓶内现有饮料立方厘米.变式练习3:水平桌面上放着高度都为10厘米的两个圆柱形容器A和B,在它们高度的一半处有一连通管相连〔连通管的容积忽略不计〕,容器A、B底面直径分别为10厘米和16厘米.关闭连通管,10秒钟可注满容器B,如果翻开连通管,水管向B容器注水6秒钟后,容器A中水的高度是多少呢?〔π取3.14〕变式练习4:A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A 注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通〔连通管的容积忽略不计〕,仍用该水龙头向A注水,求〔1〕2分钟容器A中的水有多高?〔2〕3分钟时容器A中的水有多高.十、数阵图中找规律的问题例题1:把自然数依次排成以下数阵:1,2,4,7,11,…3,5,8,12,…6,9,13,…10,14,…15,……现规定横为行,纵为列.求〔1〕第10行第5列排的是哪一个数?〔2〕第5行第10列排的是哪一个数?〔3〕2004排在第几行第几列?变式练习1:淘气用小棒搭房子,他搭3间用了13根小棒,像这样搭15间房子要用〔〕根小棒.A. 60 B. 61 C. 65 D. 75。
第9讲图形与几何(总复习)【考点1】巧数图形【例1】数一数,下图中有()条直线,()条射线,()条线段。
【考点2】图形与格点【例1】如图是用橡皮筋在钉子板上围成的一个三角形,计算它的面积是多少?(每相邻两个小钉之间的距离都等于1个单位长度)【例2】右图中有28个点,其中每相邻的三点“∵”或“∴”所形成的三角形都是面积为1的等边三角形,试计算四边形ABCD的面积。
【规律总结】1.正方形格点多边形面积公式:2.三角形格点多边形面积公式:【实战练习】1.如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD的面积。
2.如图,每相邻三个点构成的三角形的面积都是1平方厘米,求阴影格点多边形的面积。
【考点3】用底高倍数法接图形题【例1】如图所示,三角形ABC的每边长都是96cm,用折线把这个三角形分割成面积相等的4个三角形,求线段CE与CF的长度之和。
【例2】如图,三角形ABC的面积为10厘米,AD与BF交于点E,且AE=ED,BD=CD,求图中阴影部分的面积和。
【例3】如图,把四边形ABCD的各边延长,使得AB=AE,BC=BF,CD=CG,DA=DH,得到一个大的四边形EFGH,若四边形ABCD的面积是5,试求四边形EFGH的面积。
【实战练习】1.如图,△ABC中,BD:DF:FC=2:3:4,已知△AFC的面积为48平方厘米,E为AF的中点。
求四边形ABDE的面积。
2.如图所示,=1,==,则=( )A. B. C. D.3.如图所示,直线DE把大三角形分成甲、乙两部分,甲与乙的面积比是。
4.如图所示,已知梯形ABCD的上底CD=3cm,下底AB=9cm,CF=2cm,.求梯形ABCD的面积。
【考点4】活用公式解图形问题【例1】用一块面积为36平方厘米的大圆铝板下料,如图,裁出7个同样大小的小圆形铝板,则余下的边角料的总面积是多少平方厘米?【例2】如图,等边△ABC的边长是1,现依次以A、C、B为圆心,以AB,CD,BE为半径画扇形,则阴影部分的面积为多少?(结果保留π)【实战练习】1.如图,半圆的直径为50厘米,阴影部分的周长是多少厘米?(结果保留π)2.如图,半圆的面积是14.13平方厘米,圆的面积是19.625平方厘米,那么长方形(阴影部分)的面积是多少平方厘米?课后巩固一、求下面各图中阴影部分的面积二.填空题1.经过一点可以画()条直线。
小升初数学《图形与几何》专题复习讲义(含答案)一、填空题1、如图所示,有一个五边形ABCDE,其中M、N、P分别为边AE、BC、DE的中点,每块图形中的数表示该图形的面积(单位:平方厘米),则图中阴影部分的面积是()平方厘米2、如图所示,长方形ABCD的面积是56cm²。
BE=3cm,DF=2cm。
请你回答:三角形AEF的面积是()3、如图所示,一个正六边形分成6个相同的三角形,每个三角形又可以分成三个相同的小三角形,已知阴影部分的面积是18平方厘米,那么正六边形的面积是()平方厘米4、如图所示,在平行四边形ABCD中,点E是BC的中点,DF=2FC。
若的面积是10,则平行四边形的面积是()5、如图所示,正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC,则△BFE的面积与正方形ABCD的面积的比值是()6、有一块长50.24厘米、宽18.84厘米的长方形硬纸板,横着可以卷成一个圆柱,竖着可以卷成一个圆柱,两种卷法表面积相差( )平方厘米(接头处忽略不计)7、一个半圆的周长是257厘米,它的面积是( )平方厘米8、一个圆柱的底面周长和一个圆锥的底面周长的比是3:4,它们的体积之比是9:7,那么圆柱和圆锥的高之比是( )9、如图所示,有3个圆从小到大的半径分别为1厘米,2厘米,3厘米。
阴影部分和非阴影部分面积之比是( )10、如图,圆的半径是1厘米,阴影部分的周长是( )厘米11、把一根长1米的圆柱铁棒锯成三段(每段仍然是圆柱体),表面积增加了0.36平方分米,这跟铁棒原来的体积是( )立方分米12、一个圆柱形水桶的侧面积是它的底面积的6倍,水桶的底面半径为1分米,这个水桶的容积是( )立方分米13、一个圆柱体,侧面积是37.68平方分米,高是2分米,它的表面积是( )平方分米14、一根横截面为正方形的方木长2.4米,锯下一个最大的正方体后,表面积减少了36平方分米,这跟方木原来的体积是( )立方分米15、一个长方体木块,长、宽、高分别是8分米、4分米、2分米,把它锯成若干个小正方体,然后拼成一个大正方体,那么拼成的大正方体的表面积是( )平方分米 二、解答题1、如图所示,梯形ABCD 的面积为45平方厘米,三角形AED 的面积是三角形ABE 面积的2倍,BE =4厘米,EC =9厘米,求三角形DEC 的面积。
小升初七大专题:图形与几何(专项突破)-小学数学六年级下册人教版一、选择题1.一个圆锥的体积是24cm3,底面积是8cm2,高是()cm。
A.3B.6C.9D.52.小刚有一个圆柱形的水杯,从里面量,底面直径是5cm,高是10cm。
有资料显示:“每人每天的正常饮水量大约是1L。
”小刚一天大约要喝()杯水。
A.4B.5C.3D.83.一张长方形铁皮(如图),配上底面刚好可以做一个圆柱形盒子(接头不计)。
现有A、B两种不同型号的圆片,直径分别是2分米、3分米,每种圆片各有两块。
做成的盒子体积是()立方分米。
A.108πB.9πC.12π×6.28D.1.52π×6.284.两个正方体的棱长比是2∶3,它们的体积比是()。
A.2∶3B.4∶9C.8∶27D.8∶95.如图,下面关于圆的周长的说法,正确的是()。
A.大圆的周长大于两个小圆周长的和B.大圆的周长小于两个小圆周长的和C.大圆的周长等于两个小圆周长的和D.没有数据,无法比较6.一个圆锥沿高切成相等的两部分,切面如图。
这个圆锥的体积是()立方厘米。
A.36πB.24πC.12πD.9π7.一个圆柱的底面半径是2厘米,侧面展开是一个正方形,它的高是()厘米。
A.2B.4C.12.56D.25.128.将一个圆柱削成一个最大的圆锥,削去部分为24立方厘米。
这个圆锥的体积是()立方厘米,原来圆柱的体积是()立方厘米。
A.8;24B.12;36C.24;8D.36;12二、填空题9.一个圆柱的底面半径是2米,若高增加2米,底面积不变,则表面积会增加( )平方米。
10.一根圆柱形木料的长是3米,把它截成三段小圆柱,表面积增加50.24平方米,这根木料的体积是( )立方米。
11.如下图所示,一个球的体积是( )立方厘米,两个球大小相同。
(单位:厘米)12.用一块轻黏土正好可以捏成一个底面积是12cm2,高是5cm的长方体。
如果把这块轻黏土捏成底面积是6cm2的圆柱,这个圆柱的高是( )cm。
六年级小升初数学总复习【图形与几何】专题训练(解析卷)六年级小升初数学总复【图形与几何】专题训练【解析卷】直线型面积】1.在图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。
解答:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边形ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。
2.图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米,求CD的长。
解答:连结CB。
三角形DCB的面积为4×4÷2-2=6(厘米2),CD=6÷4×2=3(厘米)。
3.有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合。
已知露在外面的部分中,红色面积是20,黄色面积是14。
绿色面积是10,求正方形盒子底部的面积。
解答:把黄色正方形纸片向左移动并靠紧盒子的左边。
由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。
此时露出的黄、绿两部分的面积相等,都等于(14+10)÷2=12.因为绿:红=A∶黄,以是绿×黄=红×A,A=绿×XXX÷红12×12÷20=7.2.正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2.三角形的等积变换】:4.如左下图是两个相同的直角三角形叠在一起组成的,求阴影部分的面积。
单位:分米)谜底:32.5平方分米。
拓展:如图所示,已知正方形ABCD和正方形EFGC,且正方形EFGC的边长为6厘米,请问图中阴影部分面积是多少?答案:18平方厘米。
5.如图所示,在平行四边形ABCD中,DE=EF=FC,BG=GD.已知三角形GEF的面积是4平方厘米,求平行四边形的面积。
图形与几何整理和复习整理教师:刘新民一、基础知识回顾(一)地址与方向(二)1.在平面图上标出物体地址的方法:先用量角器确定它在什么方向,再以选定的单位长度为基准用直尺确定图上距离(几个单位长度),最后找出物体的详尽地址,标上名称。
2.描述路线图的方法:先按行走路线确定察看点,再确定行走的方向和距离。
即每走一步,都要讨情从哪里出发,向什么方向走多远的距离。
3.绘制路线图的方法:(1)确定风向标和单位长度。
(2)确定起点的地址。
(3)从起点出发,依照描述确定方向和距离。
每走一段路,都要重新确定察看点。
(二)圆1.圆的各部分名称。
( 1)圆心:圆中心的一点叫做圆心,一般用字母O表示。
( 2)半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r 表示。
( 3)直径:经过圆心并且两端都在圆上的线段叫做直径。
一般用字母 d 表示。
2.圆的特色。
( 1)在同圆或等圆中,半径的长度都相等,直径的长度都相等,直径的长度是d半径的 2 倍,用字母表示为 d =2 r或r =。
( 2)圆拥有对称性,圆是轴对称图形,它有无数条对称轴。
3.用圆规画圆的方法:(1)先把圆规的两脚叉开,定好两脚的距离作为半径。
(2)再把带有针尖的脚固定在一点上作为圆心。
(3)尔后把装有铅笔的脚旋转一周,就画出一个圆。
明确:圆心确定圆的地址,半径确定圆的大小。
4.圆的周长(1)圆的周长:围成圆的曲线的长叫做圆的周长,一般用字母C 表示。
(2)圆周率:圆的周长与它的直径的比值叫做圆周率,一般用字母π表示,π是无量不循环小数,一般取近似数π≈。
(3)圆的周长计算公式: C=π d 或 C=2πr。
5.圆的面积。
(1)圆的面积:圆所占平面的大小叫做圆的面积,一般用字母S 表示。
(2)圆的面积计算公式: S=πr 2。
6.圆环的面积计算公式: S 环 =πR2-πr 2 或 S=π (R2- r 2), 其中 R是外圆半径,r是内圆半径。
6.有关“外方内圆”和“外圆内方”的问题。