向量方法求异面直线的夹角
- 格式:ppt
- 大小:313.00 KB
- 文档页数:11
异面直线所成角的几种求法仅供学习与交流,如有侵权请联系网站删除 谢谢2异面直线所成角的几种求法异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。
因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。
在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。
一、向量法求异面直线所成的角例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。
求A 1E 和B 1F 所成的角的大小。
解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。
作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。
过F 作CD 的平行线RS , 分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。
由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。
在△GHS 中,设正方体边长为a 。
GH=46a (作直线GQ//BC 交BB 1于点Q , B A CD FEB 1 A 1 D 1C 1G HSRPQ仅供学习与交流,如有侵权请联系网站删除 谢谢3连QH ,可知△GQH 为直角三角形),HS=26a (连A 1S ,可知△HA 1S 为直角三角形), GS=426a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。
∴Cos ∠GHS=61。
所以直线A 1E 与直线B 1F解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用 点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。
以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。
专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
第 1 页 共 3 页异面直线所成角的几种求法异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。
因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。
在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。
一、向量法求异面直线所成的角例1:如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。
求A 1E 和B 1F 所成的角的大小。
解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。
作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H ,连结GH ,有GH//A 1E 。
过F 作CD 的平行线RS , 分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS.由B 1H//C 1D 1//FS,B 1H=FS ,可得B 1F//SH. 在△GHS 中,设正方体边长为a 。
GH=a (作直线GQ//BC 交BB 1于点Q ,连QH,可知△GQH 为直角三角形), HS=a(连A 1S ,可知△HA 1S 为直角三角形),GS=a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。
∴Cos ∠GHS=.所以直线A 1E 与直线B 1F 所成的角的余弦值为。
解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角. 以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z则点A 1的坐标为(0,2,2),点E 的坐标为(1,0,1),点B 1的坐标为(0,0,2),点F 的坐标为(2,1,1);所以向量的坐标为(-1,2,1),向量的坐标为(2,1,—1),所以这两个向量的夹角θ满足cos θ===-。
异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
直角平移法:1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.解:设BD 的中点G ,连接FG ,EG 。
在△EFG 中 EF =3FG =EG =1∴∠EGF =120° ∴AD 与BC 成60°的角。
2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC和AB 的中点.求异面直线SA 和EF 所成角. 正确答案:45°3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA=2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN ,则QN ∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN =a 25 NQ =21SM =42a BQ =a 414∴COS ∠QNB =5102222=⋅-+NQ BN BQ NQ BN4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角.解:连接MN ,作NG ∥BM 交BC 于G ,连接AG , 易证∠GNA 是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6, cos ∠GNA =1030562556=⨯⨯-+。
第5讲 空间向量求夹角[玩前必备]1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围 (0,π2][0,π] 求法cos θ=|a ·b ||a ||b |cos β=a ·b|a ||b |2.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 3.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).[玩转典例]题型一 求异面直线所成的角例1 如图,在四棱锥P ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值.[玩转跟踪]1.(2014·课标全国Ⅱ)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.222.(2018江苏)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P ,Q 分别为11A B ,BC 的中点.(1)求异面直线BP 与1AC 所成角的余弦值;题型二 求直线与平面所成的角例2 (2018全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.ABC QPA 1C 1B 1[玩转跟踪]1.(2019·日照模拟)在三棱柱ABC A 1B 1C 1中,侧面ABB 1A 1为矩形,AB =2,AA 1=22,D 是AA 1的中点,BD 与AB 1交于点O ,且CO ⊥平面ABB 1A 1. (1)证明:BC ⊥AB 1;(2)若OC =OA ,求直线CD 与平面ABC 所成角的正弦值.题型三 求二面角例3 (2017新课标Ⅰ)如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠= ,求二面角A PB C --的余弦值.PFE D CBADCA P[玩转跟踪]1.【2017北京,理16】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD,AB=4. (I )求证:M 为PB 的中点; (II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.[玩转练习]1.【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()A .3B .15C .10D .32.(2019全国Ⅰ理18)如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.3.(2019北京理16)如图,在四棱锥中,,,,.E 为PD 的中点,点F 在PC 上,且. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值;P ABCD -PA ABCD ⊥平面AD CD ⊥AD BC 2PA AD CD BC ====,13PF PC =CD PAD ⊥平面F AE P --(Ⅲ)设点G 在PB 上,且.判断直线AG 是否在平面AEF 内,说明理由.4.(2019浙江19)如图,已知三棱柱,平面平面,,分别是AC ,A 1B 1的中点. (1)证明:;(2)求直线EF 与平面A 1BC 所成角的余弦值.5.(2019全国Ⅲ理19)图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B-CG-A 的大小.23PG PB =111ABC A B C -11A ACC ⊥ABC 90ABC ∠=︒1130,,,BAC A A AC AC E F ∠=︒==EF BC⊥6.(2019全国Ⅱ理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.7.(2018全国卷Ⅱ)如图,在三棱锥-P ABC中,==AB BC PA PB PC ===4AC =,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角--M PA C 为30︒,求PC 与平面PAM 所成角的正弦值.8.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.O MPCBAMD CBA。
异面直线成角公式异面直线成角公式是解决在三维空间中两条异面直线之间夹角的数学公式。
在几何学中,异面直线是指不在同一个平面内的两条直线,而成角则是指两条直线之间的夹角。
异面直线成角公式可以帮助我们计算出两条异面直线之间的夹角,从而在解决一些几何问题时提供便利。
要理解异面直线成角公式,首先需要了解什么是异面直线以及夹角的概念。
异面直线是指不在同一个平面内的两条直线,也就是说它们的方向不重合,无法通过平面旋转或平移相互重合。
而夹角则是指两条直线之间的夹角,可以用度数或弧度来表示。
在三维空间中,我们可以使用向量来表示直线。
对于两条异面直线,我们可以通过求取它们的方向向量来判断它们是否异面。
两条异面直线的方向向量不平行,即两条向量的点积不等于零。
如果两条直线的方向向量不平行,那么它们就是异面直线。
接下来,我们需要找到两条异面直线之间的夹角。
我们可以使用向量的夹角公式来计算。
向量的夹角可以通过点积和模长来计算。
设两条异面直线的方向向量分别为a和b,那么它们之间的夹角θ可以通过以下公式计算得出:cosθ = (a·b) / (|a||b|)其中,·表示点积,|a|和|b|表示向量a和向量b的模长。
通过计算这个公式,我们可以得到两条异面直线之间的夹角的余弦值。
如果我们需要得到夹角的具体数值,可以使用反余弦函数来计算。
异面直线成角公式的应用非常广泛。
在几何学中,我们经常需要计算两条异面直线之间的夹角,以解决一些相关问题。
例如,在三维空间中,我们需要计算两条直线的夹角来确定它们之间的关系,或是计算两个平面的夹角来判断它们是否相交。
在物理学中,夹角的计算也经常用于求解力的合成和分解问题。
异面直线成角公式是解决三维空间中两条异面直线夹角的数学公式。
通过求取两条直线的方向向量,并通过点积和模长计算,我们可以得到两条异面直线之间的夹角。
这个公式在几何学和物理学中有着广泛的应用,可以帮助我们解决一些与夹角相关的问题。
异面直线所成角的取值范围
1. 异面直线是指不在同一个平面上的两条直线。
2. 异面直线所成角的取值是从0到180度之间。
异面直线是指两条直线不在同一个平面上,它们不会相交而是在一定的距离上平行或者呈现一定的夹角。
因为不在同一平面上,所以这些直线的相交角应该是“体角”而不是“平面角”。
异面直线的角度取值范围从0到180度。
当两条异面直线平行时,它们之间的角度是0度,当两条异面直线相互垂直时,它们之间的角度是90度。
而当两条异面直线互相交叉时,它们之间的夹角在0度和180度之间。
要计算两条异面直线的角度,通常可以使用向量的方法,即对两条异面直线分别求其方向向量,然后通过向量的点积来计算它们之间的夹角。
其中,夹角的值可以使用余弦函数或正弦函数来计算。
在实际应用中,处理异面直线的问题通常会涉及到三维建模、人工智能、机器视觉等领域。
例如,在三维建模中,需要计算三维模型中不同面之间的夹角,就需要处理异面直线的问题。
总的来说,异面直线所成角的取值范围从0到180度之间,它们之间
的夹角可以使用向量的方法来计算,这在实际应用中具有重要的意义。
异面直线夹角【考点例题解析】一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
直接平移法1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角.3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.BM AN CSABCD A 1B 1C 1D 1EF4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM与AN 所成的角.5.如图,在正方体1111D C B A ABCD -中,E 、F 分别是1BB 、CD 的中点.求AE 与F D 1所成的角。
6.如图1—28的正方体中,E 是A ′D ′的中点(1)图中哪些棱所在的直线与直线BA ′成异面直线? (2)求直线BA ′和CC ′所成的角的大小; (3)求直线AE 和CC ′所成的角的正切值; (4)求直线AE 和BA ′所成的角的余弦值7. 长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的大小。
B '(图1-28)A 'ABC 'D 'CD FE2.中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。
向量异面直线所成的角公式1. 引言大家好,今天我们要聊一个有点儿数学味儿的话题,那就是向量异面直线所成的角公式。
听起来很复杂对吧?别担心,我会把它拆得像剥橙子一样简单明了。
想象一下,咱们在一个阳光明媚的日子里,走在校园的操场上,偶尔碰到几条不相交的直线,这可不是简单的直线,而是高大上的向量。
今天,我们就要揭开这些“直线”的神秘面纱,顺便聊聊它们之间的“亲密关系”。
2. 向量和异面直线2.1 什么是向量?首先,向量就是一个有大小和方向的东西。
就像你去超市买东西,手上提着一袋苹果,你的手劲儿就是向量的大小,而你提着苹果的方向就是向量的方向。
听起来是不是简单多了?2.2 异面直线的概念那么,异面直线呢?简单来说,就是在三维空间中,两条直线不平行,也不相交。
就像两条从未见面的火车轨道,各自奔向不同的地方,完全没有交集。
这种情况在数学上可不是个例,而是经常发生的事情。
3. 异面直线之间的角3.1 如何计算角度?说到异面直线,它们之间是有角度的,那这个角度怎么计算呢?这就得用到向量了!其实,计算异面直线所成的角,咱们可以先找到这两条直线的方向向量。
只要把这两个向量放在一起,就像两个好朋友,看看它们之间的“距离”。
公式其实挺简单的:( costheta = frac{|mathbf{a cdot mathbf{b|{|mathbf{a| |mathbf{b| )。
听起来复杂,但把它拆开就容易了。
3.2 理解公式的意义在这个公式里,( mathbf{a )和( mathbf{b )就是我们那两条直线的方向向量,(cdot)是点积,表示的是两个向量之间的“亲密度”。
如果你发现两条直线“很亲近”,它们的角度就小;如果两条直线“见面就打架”,角度就大。
最后,得到的角度( theta )是咱们要的答案,算是给这两条直线之间的关系画个句号。
4. 实际应用4.1 生活中的应用听到这里,可能有人会问:“这跟我有什么关系?”别急,生活中到处都能看到它的身影!比如说,在建筑设计中,工程师需要计算不同结构之间的角度,以确保建筑的稳定性;在航天领域,飞行器需要计算与轨道的夹角,以达到最佳的飞行路径。
异面直线的夹角-线面角(含答案)空间角1、异面直线所成角的求法一是几何法,二是向量法。
异面直线所成的角的范围:]2,0(π几何法求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解。
基本思路是选择合适的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点。
常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
例1在正方体ABCD A B C D ''''-中,E 是AB 的中点,(1)求BA /与CC /夹角的度数. (2)求BA /与CB /夹角的度数.(3)求A /E 与CB /夹角的余弦值.例2:长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的余弦值。
直接平移:常见的利用其中一个直线a 和另一个直线b 上的一个已知点,构成一个平面,在此平面内做直线a 的平行线。
解法一:如图④,过B 1点作BE ∥BC 1交CB 的延长线于E 点。
则∠DB 1E 就是异面直线DB 1与BC 1所成角,连结DE 交AB 于M ,DE=2DM=35,cos∠DB1E=734解法二:如图⑤,在平面D1DBB1中过B点作BE∥DB1交D1B1的延长线于E,则∠C1BE就是异面直线DB1与BC1所成的角,连结C1E,在△B1C1E中,∠C1B1E=135°,C1E=35,cos∠C1BE=734170课堂思考:1.如图,PA 矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的余切值为。
DC1B1A1CD2.在长方体ABCD- A1B1C1D1中,若棱B B1=BC=1,AB=3,求D B和AC所成角的余弦值.例3 如图所示,长方体A1B1C1D1-ABCD中,∠ABA1=45°,∠A1AD1=60°,求异面直线A1B与AD1所成的角的度数.课堂练习如图空间四边形ABCD中,四条棱AB,BC,CD,DA及对角线AC,BD均相等,E为AD的中点,F为BC中,(1)求直线AB和CE 所成的角的余弦值。
用空间向量研究夹角问题课程标准 学习目标1.能用向量方法解决简单夹角问题.2.体会向量方法在研究几何问题中的作用1.知道两个相交平面夹角的含义,借助直线的方向向量和平面的法向量,能求直线与直线、直线与平面、平面与平面所成的角或夹角.2.能分析和解决一些立体几何中的角度问题,体会向量方法与综合几何方法的共性和差异,体会直线的方法向量和平面的法向量的作用,感悟向量是研究几何问题的有效工具知识点一 空间角空间图形范围 向量法几何法 异面直线所成的角0°< θ≤90°cosθ=|cos <u ,v>|= 平移交于一点,解三角形直线与平面所成的角sin θ=|cos <u ,n>|=过直线上一点作平面的垂线,解三角形 平面与平面的夹角cos θ=|cos <n 1,n 2>|=作两平面的垂面解三角形【诊断分析】 判断正误.(请在括号中打“√”或“×”) (1)异面直线所成的角与其方向向量的夹角相等.( )(2)若平面α的法向量为u ,直线l 的方向向量为v ,直线l 与平面α所成的角为θ,则cos θ=|u ·v ||u ||v |.( )(3)二面角的大小等于平面与平面的夹角. ( ) 知识点二 解决立体几何中空间角问题的步骤用空间向量解决立体几何问题的“三步曲”可以概括为“一化二算三译”六字诀.“一化”就是把立体几何问题转化为向量问题;“二算”就是通过向量运算,研究点、线、面之间的位置关系以及它们之间的角度问题;“三译”就是把向量的运算结果“翻译”成相应的几何意义.探究点一 异面直线所成角的求法例1 (1)已知在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 是DC 的中点,建立如图1-4-27所示的空间直角坐标系,图1-4-27则AB 1与D 1E 所成角的余弦值为( )A .√1010 B .√105 C .-√1010D .-√105(2)如图1-4-28所示,在三棱柱OAB-O 1A 1B 1中,平面OBB 1O 1⊥平面OAB ,∠O 1OB=60°,∠AOB=90°,且OB=OO 1=2,OA=√3,求异面直线A 1B 与AO 1所成角的余弦值.图1-4-28[素养小结]用向量法求异面直线的夹角时,常在两异面直线a 与b 上分别取点A ,B 和C ,D ,则AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 分别为a ,b 的方向向量,若异面直线a ,b 的夹角为θ,则cos θ=|AB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |.运用向量法常有两种途径:①基底法:在一些不适合建立坐标系的题型中,经常采用取基底的方法.在由公式cos <a ,b>=a ·b|a ||b |求向量a ,b 的夹角时,关键是求出a ·b ,|a|与|b|,一般是把a ,b 用基向量表示出来,再求有关的量.②坐标法:根据题目条件建立恰当的空间直角坐标系,写出相关各点的坐标,利用坐标法求线线角,避免了传统找角或作角的步骤,使过程变得简单.探究点二求直线和平面所成的角例2 [2020·安徽芜湖高二期中] 如图1-4-29,在正方体ABCD-A1B1C1D1中,点E是AB的中点.(1)证明:AC1⊥平面D1B1C;(2)求直线CE与平面D1B1C所成角的余弦值.图1-4-29变式[2020·山东肥城高二期中] 在如图1-4-30所示的多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,E为AD的中点,F为线段BP上一点,∠CDP=120°,AD=3,AP=5,CD=2.(1)若F为BP的中点,证明:EF∥平面PDC;BP,求直线AF与平面PBC所成角的正弦值.(2)若BF=13图1-4-30[素养小结]向量法求线面角的步骤:①分析图形中的位置关系,建立空间直角坐标系;②求出直线的方向向量s和平面的法向量n;③求出夹角<s,n>;④判断直线和平面所成的角θ和<s ,n>的关系,求出角θ.拓展 [2021·北京丰台区高二期中] 如图1-4-31,在直三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=2,AA 1=3.M 是AB 的中点,N 是B 1C 1的中点,点P 在线段A 1N 上,且A 1P ⃗⃗⃗⃗⃗⃗⃗ =23A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ ,Q 是BC 1与B 1C 的交点.(1)求证:PQ ∥平面A 1CM.(2)在线段AA 1上是否存在点S ,使得直线CS 与平面A 1CM 所成角的正弦值为√214?请说明理由.图1-4-31探究点三 求平面与平面的夹角例3 [2020·江苏如皋高二期中] 如图1-4-32所示,在直三棱柱ABC-A 1B 1C 1中,AB=BC ,AA 1,AC ,A 1C 1的中点分别为D ,E ,F. (1)求证:AC ⊥平面BEF ;(2)若异面直线AA 1与BF 所成的角为45°,且BC 与平面BEF 所成角的正弦值为√55,求平面BCD 与平面CDB 1夹角的余弦值.图1-4-32变式 [2020·江苏盐城亭湖区月考] 如图1-4-33所示,在三棱锥P-ABC 中,△PAC 为等腰直角三角形,∠APC=90°,△ABC 为正三角形,AC=2. (1)证明:PB ⊥AC ;(2)若平面PAC ⊥平面ABC ,求平面APC 与平面PCB 夹角的余弦值.图1-4-33[素养小结]设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面的夹角θ,用坐标法的解题步骤如下:(1)建系:依据几何条件建立适当的空间直角坐标系; (2)求法向量:在建立的坐标系下求两个平面的法向量n 1,n 2; (3)计算:cos θ=|n 1·n 2||n 1||n 2|.拓展 如图1-4-34,在四棱锥P-ABCD 中,PA ⊥AD ,AB ∥CD ,CD ⊥AD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点,DE=EC. (1)求证:平面ABE ⊥平面BEF ;(2)设PA=a ,若平面EBD 与平面ABCD 的夹角θ∈π4,π3,求a 的取值范围.图1-4-341.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .以上均错2.已知两个平面的法向量分别是m=(1,2,-1),n=(1,-1,0),则这两个平面所成的二面角的余弦值为 ( ) A .-√36或√36B .-√33或√33C .-√36D .√363.[2020·江苏南通高一期末] 在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则直线BC 1与平面BB 1DD 1所成角的正弦值为 ( ) A .√63B .√102C .√155D .√1054.[2021·天津部分区高二期中] 如图1-4-35,在四面体OABC 中,OA=OB=OC ,OA ⊥OB ,OB ⊥OC ,OC ⊥OA ,则平面BAC 与平面ACO 夹角的余弦值为 ( )图1-4-35A .√33 B .√22C .1D .13用空间向量研究夹角问题参考答案【课前预习】知识点一|u ·v ||u ||v |0°≤θ≤90° |u ·n ||u ||n |0°≤θ≤90° |n 1·n 2||n 1||n 2|诊断分析(1)× (2)× (3)× [解析] (1)当两个方向向量的夹角是锐角或直角时,向量的夹角与异面直线所成的角相等;当两个方向向量的夹角为钝角时,向量的夹角与异面直线所成的角互补.故错误. (2)sin θ=|u ·v ||u ||v |,故错误.(3)二面角中不大于90°的二面角称为平面与平面的夹角.故错误. 【课中探究】探究点一例1 (1)A [解析] ∵A (2,2,0),B 1(2,0,2),E (0,1,0),D 1(0,2,2),∴AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,2),ED 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,2),∴|AB 1⃗⃗⃗⃗⃗⃗⃗ |=2√2,|ED 1⃗⃗⃗⃗⃗⃗⃗ |=√5,AB 1⃗⃗⃗⃗⃗⃗⃗ ·ED 1⃗⃗⃗⃗⃗⃗⃗ =0-2+4=2,∴cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,ED 1⃗⃗⃗⃗⃗⃗⃗ >=AB 1⃗⃗⃗⃗⃗⃗⃗⃗ ·ED 1⃗⃗⃗⃗⃗⃗⃗⃗ |AB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||ED 1⃗⃗⃗⃗⃗⃗⃗⃗|=2√2×√5=√1010,∴AB 1与ED 1所成角的余弦值为√1010. (2)解:建立如图所示的空间直角坐标系,则O (0,0,0),O 1(0,1,√3),A (√3,0,0),A 1(√3,1,√3),B (0,2,0),所以A 1B ⃗⃗⃗⃗⃗⃗⃗ =(-√3,1,-√3),O 1A ⃗⃗⃗⃗⃗⃗⃗ =(√3,-1,-√3),所以|cos <A 1B ⃗⃗⃗⃗⃗⃗⃗ ,O 1A ⃗⃗⃗⃗⃗⃗⃗ >|=|A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·O 1A ⃗⃗⃗⃗⃗⃗⃗⃗ ||A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ |·|O 1A ⃗⃗⃗⃗⃗⃗⃗⃗ |= √3,√3)·(√3,√3√7×√7=17,所以异面直线A 1B 与AO 1所成角的余弦值为17.探究点二例2 解:(1)证明:如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体的棱长为2,则A (2,0,0),E (2,1,0),C (0,2,0),B 1(2,2,2),C 1(0,2,2),D 1(0,0,2), ∴CD 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,2),CB 1⃗⃗⃗⃗⃗⃗⃗ =(2,0,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,2,2). ∵AC 1⃗⃗⃗⃗⃗⃗⃗ ·CD 1⃗⃗⃗⃗⃗⃗⃗ =-2×0+2×(-2)+2×2=0, AC 1⃗⃗⃗⃗⃗⃗⃗ ·CB 1⃗⃗⃗⃗⃗⃗⃗ =-2×2+2×0+2×2=0,∴AC 1⊥D 1C ,AC 1⊥B 1C ,又D 1C ∩B 1C=C , ∴AC 1⊥平面D 1B 1C.(2)由(1)知,EC⃗⃗⃗⃗⃗ =(-2,1,0), AC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,2,2)是平面D 1B 1C 的一个法向量,设直线CE 与平面D 1B 1C 所成的角为θ,则sin θ=|cos <EC ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|EC ⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||EC ⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗|=√5×2√3=√155,∴直线CE 与平面D 1B 1C 所成角的余弦值为(√155)=√105. 变式 解:(1)证明:以D 为坐标原点,DC 所在直线为x 轴,过点D 且与平面ABCD 垂直的直线为y 轴,DA 所在直线为z 轴建立空间直角坐标系(图略),则D (0,0,0),C (2,0,0),B (2,0,3),P (-2,2√3,0),A (0,0,3). 因为E 为AD 的中点,F 为BP 的中点,所以E 0,0,32,F 0,√3,32,所以直线EF 的方向向量EF ⃗⃗⃗⃗⃗ =(0,√3,0). 易知平面PDC 的一个法向量为n=(0,0,1). 因为EF ⃗⃗⃗⃗⃗ ·n=0,所以EF ⃗⃗⃗⃗⃗ ⊥n ,又EF ⊄平面PDC , 所以EF ∥平面PDC.(2)由(1)知,CB⃗⃗⃗⃗⃗ =(0,0,3),PC ⃗⃗⃗⃗⃗ =(4,-2√3,0), 设F (x ,y ,z ),BF⃗⃗⃗⃗⃗ =(x-2,y ,z-3)=13BP ⃗⃗⃗⃗⃗ =-43,23√3,-1, 所以F23,23√3,2,所以AF⃗⃗⃗⃗⃗ =23,23√3,-1.设平面PBC 的法向量为n 1=(x ,y ,z ),则{n 1·CB ⃗⃗⃗⃗⃗ =0,n 1·PC ⃗⃗⃗⃗⃗ =0,即{3z =0,4x -2√3y =0,取y=1,得n 1=√32,1,0,所以cos <AF ⃗⃗⃗⃗⃗ ,n 1>=AF ⃗⃗⃗⃗⃗ ·n 1|AF ⃗⃗⃗⃗⃗ ||n 1|=23×√32+23√3√49+43+1×√34+1=√353×√72=6√2135, 所以直线AF 与平面PBC 所成角的正弦值为635√21.拓展 解:(1)证明:以A 为坐标原点,建立空间直角坐标系,如图所示,则A 1(0,0,3),C (2,0,0),M (0,1,0),N (1,1,3),Q 1,1,32,∴A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,0),A 1Q ⃗⃗⃗⃗⃗⃗⃗⃗ =1,1,-32,CM ⃗⃗⃗⃗⃗⃗ =(-2,1,0),CA 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,3),∴A 1P ⃗⃗⃗⃗⃗⃗⃗ =23A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =23,23,0,∴PQ ⃗⃗⃗⃗⃗ =A 1Q ⃗⃗⃗⃗⃗⃗⃗⃗ -A 1P ⃗⃗⃗⃗⃗⃗⃗ =13,13,-32.设平面A 1CM 的法向量为n=(x ,y ,z ),则{n ·CA 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·CM ⃗⃗⃗⃗⃗⃗ =0,即{-2x +3z =0,-2x +y =0,取z=2,得n=(3,6,2),∴PQ ⃗⃗⃗⃗⃗ ·n=3×13+6×13-2×32=0,∴PQ⃗⃗⃗⃗⃗ ⊥n , 又PQ ⊄平面A 1CM ,∴PQ ∥平面A 1CM.(2)假设在线段AA 1上存在点S ,使得直线CS 与平面A 1CM 所成角的正弦值为√214. 不妨设AS=h (0≤h ≤3), 则S (0,0,h ),∴CS⃗⃗⃗⃗ =(-2,0,h ), ∴|cos <CS ⃗⃗⃗⃗ ,n>|=|CS⃗⃗⃗⃗⃗ ·n ||CS⃗⃗⃗⃗⃗ ||n |=√4+ℎ2×7, ∴7√4+ℎ2=√214,解得h=2或h=347(舍),∴当点S 为线段AA 1上靠近A 1的三等分点时,直线CS 与平面A 1CM 所成角的正弦值为√214.探究点三例3 解:(1)证明:由题可知,AA 1⊥平面ABC ,∵AC ∥A 1C 1,AC=A 1C 1,E ,F 分别是AC ,A 1C 1的中点,∴AE=A 1F ,∴四边形AEFA 1是平行四边形, ∴EF ∥AA 1,∴EF ⊥平面ABC ,又AC ⊂平面ABC ,∴EF ⊥AC.∵AB=BC ,E 是AC 的中点, ∴BE ⊥AC ,又BE ∩EF=E , ∴AC ⊥平面BEF.(2)∵AA 1∥EF ,∴∠BFE 为异面直线AA 1与BF 所成的角,即∠BFE=45°,∴EF=BE.∵AC ⊥平面BEF ,∴∠CBE 为直线BC 与平面BEF 所成的角, ∴sin ∠CBE=√55,∴tan ∠CBE=12,∴BE=2CE.以E 为原点,EB ,EC ,EF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设CE=1,则B (2,0,0),C (0,1,0),D (0,-1,1),B 1(2,0,2), ∴DC ⃗⃗⃗⃗⃗ =(0,2,-1),BC ⃗⃗⃗⃗⃗ =(-2,1,0),CB 1⃗⃗⃗⃗⃗⃗⃗ =(2,-1,2).设平面BCD 的法向量为m=(x 1,y 1,z 1),则{m ·DC ⃗⃗⃗⃗⃗ =0,m ·BC ⃗⃗⃗⃗⃗ =0,即{2y 1-z 1=0,-2x 1+y 1=0,取x 1=1,得m=(1,2,4).设平面CDB 1的法向量为n=(x 2,y 2,z 2),则{n ·DC⃗⃗⃗⃗⃗ =0,n ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{2y 2-z 2=0,2x 2-y 2+2z 2=0, 取y 2=1,得n=-32,1,2,∴cos <m ,n>=m ·n|m ||n |=172√21×√292=17√609609.设平面BCD 与平面CDB 1的夹角为θ,则cos θ=|cos <m ,n>|=17√609609, ∴平面BCD 与平面CDB 1夹角的余弦值为17√609609. 变式 解:(1)证明:取AC 的中点D ,连接PD ,BD ,∵△PAC 为等腰直角三角形,D 为中点,∴PD ⊥AC ,又△ABC 为正三角形,D 为中点,∴BD ⊥AC ,又PD ∩BD=D ,PD ⊂平面PBD ,BD ⊂平面PBD ,∴AC ⊥平面PBD.∵PB ⊂平面PBD ,∴PB ⊥AC.(2)∵平面PAC ⊥平面ABC ,平面PAC ∩平面ABC=AC ,PD ⊂平面PAC ,PD ⊥AC ,∴PD ⊥平面ABC.由(1)知BD ⊥AC ,以D 为坐标原点,建立如图所示的空间直角坐标系,则A (1,0,0),B (0,√3,0),C (-1,0,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(0,√3,0),CP ⃗⃗⃗⃗⃗ =(1,0,1),CB ⃗⃗⃗⃗⃗ =(1,√3,0). 设n=(x ,y ,z )为平面PBC 的法向量,则{CP ⃗⃗⃗⃗⃗ ·n =0,CB⃗⃗⃗⃗⃗ ·n =0,即{x +z =0,x +√3y =0, 取x=1,得n=1,-√33,-1,又DB⃗⃗⃗⃗⃗⃗ =(0,√3,0)是平面PAC 的一个法向量, ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,n>=DB ⃗⃗⃗⃗⃗⃗ ·n |DB⃗⃗⃗⃗⃗⃗ ||n |=-√77, 设平面APC 与平面PCB 的夹角为θ,则cos θ=|cos <DB ⃗⃗⃗⃗⃗⃗ ,n>|=√77, ∴平面APC 与平面PCB 夹角的余弦值为√77.拓展 解:(1)证明:∵AB ∥CD ,CD ⊥AD ,AD=CD=2AB=2,F 为CD 的中点,∴四边形ABFD 为矩形,∴AB ⊥BF.∵DE=EC ,F 为CD 的中点,∴DC ⊥EF ,又AB ∥CD ,∴AB ⊥EF.∵BF ∩EF=F ,∴AB ⊥平面BEF.又AB ⊂平面ABE ,∴平面ABE ⊥平面BEF.(2)由(1)知DC ⊥EF ,又PD ∥EF ,AB ∥CD ,∴AB ⊥PD.又AB ⊥AD ,PD ∩AD=D ,∴AB ⊥平面PAD ,∴AB ⊥PA.以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (0,2,0),P (0,0,a ),C (2,2,0),E 1,1,a 2, 所以BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),BE ⃗⃗⃗⃗⃗ =0,1,a 2. 易得平面ABCD 的一个法向量为n 1=(0,0,1).设平面EBD 的法向量为n 2=(x ,y ,z ),由{n 2⊥BD ⃗⃗⃗⃗⃗⃗ ,n 2⊥BE ⃗⃗⃗⃗⃗ ,得{n 2·BD ⃗⃗⃗⃗⃗⃗ =0,n 2·BE ⃗⃗⃗⃗⃗ =0,即{-x +2y =0,y +az 2=0, 取y=1,得x=2,z=-2a , 则平面EBD 的一个法向量为n 2=2,1,-2a , ∴cos θ=2a√4+1+4a 2=√5a 2+4.又∵平面EBD 与平面ABCD 的夹角θ∈π4,π3,∴cos θ∈12,√22, 即2√5a 2+4∈12,√22,∴2√55≤a ≤2√155, 故a 的取值范围是2√55,2√155.【课堂评价】 1.C [解析] ∵l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°,则直线l 与平面α所成的角为90°-60°=30°.2.A [解析] 设两个平面的夹角为θ,则|cos θ|=|cos <m ,n>|=√6×√2=√36,故cos θ=±√36. 3.D [解析] 如图,在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=1,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则B (2,2,0),C 1(0,2,1),D (0,0,0),D 1(0,0,1),所以BC 1⃗⃗⃗⃗⃗⃗⃗ =(-2,0,1),DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1).设平面BB 1DD 1的法向量为n=(x ,y ,z ),则{n ·DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0,n ·DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =z =0,取x=1,得n=(1,-1,0).设直线BC 1与平面BB 1DD 1所成角为θ,则sin θ=|BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=√5×√2=√105.故选D .4.A [解析] 在四面体OABC 中,OA=OB=OC ,OA ⊥OB ,OB ⊥OC ,OC ⊥OA ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OC 所在直线为z 轴,建立空间直角坐标系,如图所示,设OA=OB=OC=1,则A (1,0,0),B (0,1,0),C (0,0,1),O (0,0,0),所以AB⃗⃗⃗⃗⃗ =(-1,1,0),AC ⃗⃗⃗⃗⃗ =(-1,0,1),OA ⃗⃗⃗⃗⃗ =(1,0,0),OC ⃗⃗⃗⃗⃗ =(0,0,1).设平面ABC 的法向量为n=(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =-x +y =0,n ·AC ⃗⃗⃗⃗⃗ =-x +z =0,取x=1,得n=(1,1,1),由题知平面AOC 的一个法向量为m=(0,1,0),设平面BAC 与平面ACO 的夹角为θ,则cos θ=|cos <m ,n>|=|m ·n ||m ||n |=√3=√33,故平面BAC 与平面ACO 夹角的余弦值为√33.故选A .。
第一讲:立体几何中的向量方法——利用空间向量求异面直线所成的角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。
高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。
它能利用代数方法解决立体几何问题,体现了数形结合的思想。
并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。
为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题.本文举例说明如何用向量法解决立体几何的空间角问题。
以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。
利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。
空间角主要包括线线角、线面角和二面角,下面对线线角的求法进行总结.教学目标1。
使学生学会求异面直线所成的角的向量方法;2.使学生能够应用向量方法解决一些简单的立体几何问题;3.使学生的分析与推理能力和空间想象能力得到提高。
教学重点求解异面直线所成的角的向量法。
教学难点求解异面直线所成的角的向量法.教学过程Ⅰ、复习回顾一、回顾有关知识:1、两异直线所成的角:(范围:]2,0(πθ∈)(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a ´与b ´,那么直线a ´与b ´ 所成的锐角或直角,叫做异面直线a 与b 所成的角。
(2)用向量法求异面直线所成角,设两异面直线a 、b 的方向向量分别为a 和b ,问题1: 当a 与b 的夹角不大于90°时,异面直线a 、b 所成的角θ与a 和b 的夹角的关系?问题 2:a与b 的夹角大于90°时,,异面直线a 、b 所成的角θ与a 和b 的夹角的关系?两向量数量积的定义:><=⋅b a b a b a ,cos ||||abαθO两向量夹角公式:||||,cos b a b a b a >=<结论:异面直线a 、b 所成的角的余弦值为|||||||,cos |cos b a b a b a ⋅=><=θ2、用空间向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。
利用空间向量求夹角的问题
1、求两异面直线a 、b 所成的角θ,0,2πθ⎛
⎤∈ ⎥⎝⎦
步骤:①求出直线a 的方向向量a ,求出直线b 的方向向量b
2、求直线a 与平面α所成的线面角θ,0,2πθ⎡⎤∈⎢⎥⎣⎦
步骤:①求出直线a 的方向向量a ,求出平面α的法向量μ,并设两向量a 与μ所成角为ϕ
3、求平面α与平面β所成的二面角θ,[]0,θπ∈
步骤:①求出平面α的法向量n ,求出平面β的法向量m ,并设两向量n 与m 所成角为ϕ ②cos n m
n m ϕ=,并求出两向量n 与m 所成角ϕ
③判断求角:两法向量n 与m 的方向一内一外时,θϕ=
两法向量n 与m 的方向同内、同外时,θπϕ=-
利用空间向量求距离的问题
1、求平面α外一点B 到平面α的距离d 步骤:①在平面α内找一点A 得到AB ,求出平面α的法向量n
2、求两异面直线a 、b 的公垂线的长d 步骤:①在直线a 上找一点A ,在直线b 上找一点B ,得到AB
②求出直线a 的方向向量a ,求出直线b 的方向向量b ,在利用求法向量的方法n ,
要求n a ⊥,n b ⊥
3、已知直线a 与平面α平行,求直线a 到平面α的距离d 步骤:①在直线a 上找一点A ,在平面α内找一点B ,得到AB
②求出平面α的法向量n
4、已知平面α与平面β平行,求平面α到平面β的距离d 步骤:①在平面α内找一点A ,在平面β内找一点B ,得到AB
②求出平面 的法向量n。