食品化学第二章水知识点总结
- 格式:doc
- 大小:25.50 KB
- 文档页数:5
食品化学水知识点水是食品化学中一项重要的研究内容,它在食品加工和储存过程中起着至关重要的作用。
本文将介绍食品化学中与水相关的知识点,并解释其在食品加工中的作用。
1.水的化学性质水的化学式为H2O,是由一个氧原子和两个氢原子组成的化合物。
水是一种无色、无味、无臭的液体,它在室温下是液态存在的。
水是一种极性分子,具有良好的溶剂能力,可以溶解许多食品成分。
2.水的物理性质水的物理性质对于食品加工具有重要意义。
水的沸点为100摄氏度,冰点为0摄氏度。
水的密度随温度而变化,通常在4摄氏度时具有最大密度。
此外,水还具有热容量大、热传导性能好等特点,使其成为食品加工中常用的冷却、加热介质。
3.水在食品加工中的作用(1)溶剂:水是一种理想的溶剂,可以溶解许多食品成分,如糖、盐、酸等。
在食品加工过程中,水的溶解能力可以促进食品的溶解、混合和反应。
(2)稀释:水可以用来稀释食品中过高的浓度,使其达到适宜的口感和味道。
例如,酱油、醋等浓缩的调味品常常需要用水稀释后才能使用。
(3)调节温度:水作为一种热传导介质,在食品加工过程中可以用来调节温度。
例如,在烹饪中加入适量的水可以控制食物的温度,使其煮熟或煮烂。
(4)调节酸碱度:水的pH值为中性,当食品过酸或过碱时,可以用水来调节酸碱度,使其达到适宜的口感和保质期。
(5)保湿:水具有良好的保湿性能,可以防止食品失去水分,延长食品的保质期。
在面包、蛋糕等糕点制作中,水的添加可以增加面团的柔软度和保湿性。
4.水质对食品加工的影响水质对食品加工具有重要的影响。
水中的杂质和微生物会对食品的质量和安全性产生影响。
例如,硬水中的钙和镁离子会与食品中的某些成分发生反应,导致沉淀和不良的口感。
此外,水中的微生物可能导致食品腐败和变质。
为了确保食品的质量和安全性,食品加工过程中需要选择适宜的水源,并对水进行必要的处理和消毒。
总结:食品化学中的水知识点包括水的化学性质、物理性质以及在食品加工中的作用。
《食品化学》复习要点第2章:水分1.水具有的特殊物理性质?(是什么决定的)水的异常物理性质与断裂的水分子间氢键需要额外能量有关P152.水存在状态:例共价键,离子键的大小和顺序等等共价键>H2O-离子键>H2O- H2O3.可形成氢键的基团?羧基、羰基、氨基、亚胺基、羟基、巯基等。
4.疏水相互作用如果存在两个分离的非极性基团,那么不相容的水环境将促进它们之间的缔合,从而减少水-非极性实体界面面积,此过程是疏水水合的部分逆转,称为“疏水相互作用”。
△G <0 热力学有利R(水合)+R(水合) R2(水合)+H2O5.水存在形式结合水:化合水、邻近水、多层水,自由水:滞化水、毛细管水、自由流动水6.结合水的特点(不被蒸发,不被微生物利用):*结合水最牢固、在食品内部不能做溶剂、不容易被蒸发、-40以下不能结冰。
7.滞化水的特点是被组织中的显微结构与膜阻滞留住的水,不能自由流动。
8.水分活度(定义,意义,变化,与食品稳定性的关系,反正要掌握一切水分活度相关的知识点,必考)定义:食品中水分逸出的程度,可以用食品中水的蒸汽压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。
Aw = f(溶液中水的逸度)水逃离的趋势fo(纯水的逸度)≈P(食品中水的蒸汽压)Po(纯水饱和蒸汽压)=ERH/100意义:9.冰点上和冰点下的水分活度冰点以上,A w是样品组成与温度的函数,前者是主要的因素;冰点以下,A w与样品组成无关,而仅与温度有关,即冰相存在时,A w不受所存在的溶质的种类或比例的影响,不能根据A w预测受溶质影响的反应过程;不能根据冰点以下温度A w预测冰点以上温度的A w;当温度改变到形成冰或熔化冰时,就食品稳定性而言,水分活度的意义也改变了。
10.吸湿等温线(定义,分区,掌握BET单层)定义:在恒定温度下,以食品的水分含量对它的水分活度绘图形成的曲线,称水分的吸湿等温线分区:•BET单层:区段I和区段II的边界,相当于食品的“BET单层”水分含量。
第二章一、水的结构水是唯一的以三种状态存在的物质:气态、液态和固态(冰)(1)气态在气态下,水主要以单个分子的形式存在(2)液态在液态下,水主要以缔合状态(H2O)n存在,n可变氢键的特点;键较长且长短不一,键能较小(2-40kj/mol)a.氢键使得水具有特别高的熔点、沸点、表面张力及各种相变热;b.氢键使水分子有序排列,增强了水的介电常数;也使水固体体积增大;c.氢键的动态平衡使得水具有较低的粘度;d.水与其它物质(如糖类、蛋白类)之间形成氢键,会使水的存在形式发生改变,导致固定态、游离态之分。
(3)固态在固体(冰)状态下,水以分子晶体的形式存在;晶格形成的主要形式是水分子之间的规则排列及氢键的形成。
由于晶格的不同,冰有11种不同的晶型。
水冷冻时,开始形成冰时的温度低于冰点。
把开始出现稳定晶核时的温度称为过冷温度;结晶温度与水中是否溶解有其它成分有关,溶解成分将使水的结晶温度降低,大多数食品中水的结晶温度在-1.0~-2.0C˚。
冻结温度随着冻结量的增加而降低,把水和其溶解物开始共同向固体转化时的温度称为低共熔点,一般食品的低共熔点为-55~-65℃。
水结晶的晶型与冷冻速度有关。
二、食品中的水1.水与离子、离子基团相互作用当食品中存在离子或可解离成离子或离子基团的盐类物质时,与水发生静电相互作用,因而可以固定相当数量的水。
例如食品中的食盐和水之间的作用2.水与具有氢键能力的中性基团的相互作用许多食品成分,如蛋白质、多糖(淀粉或纤维素)、果胶等,其结构中含有大量的极性基团,如羟基、羧基、氨基、羰基等,这些极性基团均可与水分子通过氢键相互结合。
因此通常在这些物质的表面总有一定数量的被结合、被相对固定的水。
带极性基团的食品分子不但可以通过氢键结合并固定水分子在自己的表面,而且通过静电引力还可吸引一些水分子处于结合水的外围,这些水称为邻近水(尿素例外)。
3.结合水与体相水的主要区别(1)结合水的量与食品中所含极性物质的量有比较固定的关系,如100g蛋白质大约可结合50g 的水,100g淀粉的持水能力在30~40g;结合水对食品品质和风味有较大的影响,当结合水被强行与食品分离时,食品质量、风味就会改变;(2)蒸汽压比体相水低得多,在一定温度下(100℃)结合水不能从食品中分离出来;(3)结合水不易结冰,由于这种性质使得植物的种子和微生物的孢子得以在很低的温度下保持其生命力;而多汁的组织在冰冻后细胞结构往往被体相水的冰晶所破坏,解冻后组织不同程度的崩溃;(4)结合水不能作为可溶性成分的溶剂,也就是说丧失了溶剂能力;(5)体相水可被微生物所利用,结合水则不能。
第二章水2.1 食品中的水分含量及功能2.1.1 水分含量▪一般生物体及食品中水分含量为3~97%•水在生物体内的含量约70~80%水在动物体内的含量特点随动物年龄的增加而减少,成人含水量为58~67%。
不同部位水分含量不同:皮肤60~70%;肌肉及器脏70~80%;骨骼12~15%。
水在植物体内的含量特点•营养器官组织(根、茎、叶的薄壁组织)含量最高70~90%。
•繁殖器官组织(种子、微生物的孢子)含量最低12~15%。
某些食品的水分含量表2—1食品水分含量( % )白菜,菠菜90—95猪肉53—60新鲜蛋74奶88冰淇淋65大米12面包35饼干3—8奶油15--202.2 水的功能2.2.1 水在生物体内的功能1.稳定生物大分子的构象,使其表现特异的生物活性2.体内化学介质,使生物化学反应顺利进行3.营养物质,代谢载体4.热容量大,调节体温5.润滑作用此外,水还具有镇静、强壮效果;保护眼睛,降脂减肥和美容作用。
2.2.2 水的食品功能1.食品的组成成分2.显示色、香、味、形、质构特征3.分散蛋白质、淀粉、形成溶胶4.影响鲜度、硬度5.影响加工,起浸透、膨胀作用6.影响储藏性2.3 水的物理性质2.3.1 水的三态1、以水—汽(100℃/1个大气压)2、水—冰(0℃/1个大气压)3、汽—冰(>0℃/611Pa以下)特点: 具有水、汽、冰三相共存(0.0098℃/611Pa)* * 2.3.2 水的重要物理性质•水的许多物理性质:如熔点、沸点、比热容、熔化热、蒸发热、表面张力和界电常数都明显偏高.* *原因:水分子间存在着三维氢键缔合的缘故1水的密度在4℃最大,为1;0℃时冰密度为0.917,水结冰时,体积膨胀约9%(1.62ml/L). 实际应用:这种性质易对冷冻食品的结构造成机械损伤,是冷冻食品行业中应关注的问题2.水的沸点与气压呈正相关关系.当气压升高时,则其沸电升高;当气压下降,则沸点降低。
第二章,水水-溶质相互作用一、 与离子和离子基团的相互作用(P15)当食品中存在离子或可解离成离子或离子基团的盐类物质时,产生偶极-离子相互作用,可以固定相当数量的水。
随着离子种类及所带电荷的不同,与水之间的相互作用也有所差别。
大致可以分作两类:1、有助于水分子网状结构的形成,水溶液的流动性小于水,如:Li +、Na +、H 3O +、Ca 2+、Ba 2+、Mg 2+、Al 3+、OH -等。
2、能阻碍水分子之间网状结构的形成,其溶液的流动性比水大,此类离子如:K+、Rb+、Cs +、NH 4+、C l-、B r-、I -、NO -3、BrO -3等;二、水与具有氢键形成能力的中性基团(亲水性溶质)的相互作用许多食品成分,如蛋白质、多糖(淀粉或纤维素)、果胶等中的极性基团,如羟基、羧基、氨基、羰基等,均可与水分子通过氢键相互结合。
水与溶质之间的氢键键合比水与离子之间的相互作用弱。
三、 水与非极性物质的相互作用非极性的分子通常包括烃类、稀有气体、脂肪酸、氨基酸和蛋白质的非极性基团等。
疏水水合作用 疏水相互作用 疏水基团还能和水形成笼形水合物。
四、水与双亲分子的相互作用双亲分子包括脂肪酸盐、蛋白脂质、糖脂、极性脂类和核酸。
双亲分子在水中形成胶团。
食品中水的存在状态根据食品中水分的存在状态,可以把食品中的水分作不同的类型(如下页图)。
结合水,自由水(体相水)之间很难作截然的划分,其主要的区别在于:a.结合水的量与食品中所含极性物质的量有比较固定的关系。
b.结合水的蒸汽压比自由水低得多。
c.结合水不易结冰(冰点约-40℃)。
食品中水的存在形式构成水定义:与非水物质呈紧密结合状态的水特点:非水物质必要的组分,-40度部结冰,无溶剂能力,不能被微生物利用;邻近水定义:处于非水物质外围,与非水物质呈缔合状态的水;特点:-40度不结冰,无溶剂能力,不能被微生物利用;多层水定义:处于邻近水外围的,与邻近水以氢 键或偶极力结合的水;特点:有一定厚度(多层),-40度基本不结 冰,溶剂能力下降,可被蒸发;单分子层水,0.5%5%结合水自由水被组织中的显微结构或亚显微结构或膜滞留的水滞化水不能自由流动,与非水物质没关系毛细管水由细胞间隙等形成的毛细管力所系留的水物理及化学性质与滞化水相同自由流动水以游离态存在的水可正常结冰,具有溶剂能力,微生物可利用定义特点定义特点定义特点d.结合水不能作为溶质的溶剂。
食品化学第二章水知识点总结
第二章水分
2.1食品中的水分含量和功能2.1.1水分含量
?普通生物和食物中的水分含量为3 ~ 97%?生物体中水的含量约为70-80%。
动物体内的水分含量为256±199,随着动物年龄的增长而减少,而成年动物体内的水分含量为58-67%
不同部位水分含量不同:皮肤60 ~ 70%;
肌肉和器官脏70 ~ 80%;骨骼12-15%植物中
水分的含量特征?营养器官组织(根、茎和叶的薄壁组织)的含量高达70-90%?生殖器官和组织(种子、微生物孢子)的含量至少为12-15%表2-1某些食物的含水量
食物的含水量(%)
卷心菜,菠菜90-95猪肉53-60新鲜鸡蛋74牛奶88冰淇淋65大米12面包35饼干3-8奶油15-20 2.2水的功能
2.2.1水在生物体中的功能
1。
稳定生物大分子的构象,使它们表现出特定的生物活性2。
体内化学介质使生化反应顺利进行。
营养物质,代谢载体4。
热容量大,体温调节5。
润滑。
此外,水还具有镇静和强有力的作用。
护眼、降血脂、减肥、美容2.2.2水的食物功能1。
食品成分
2。
展示颜色、香气、味道、形状和质地特征3。
分散蛋白质、淀粉并形成溶胶4。
影响新鲜度和硬度
5。
影响加工。
它起着饱和和膨胀的作用。
它影响
2.3水的物理性质2.
3.1水的三态
1,具有水-蒸汽(100℃/1个大气压)2、水-冰(0℃/1个大气压)3、蒸汽-冰(> 0℃/611帕以下)
的特征:水、蒸汽、冰三相共存(0.0098℃/611帕)* * 2.3.2水的重要物理性质256水的许多物理性质,如熔点、沸点、比热容、熔化热、汽化热、表面张力和束缚常数
数,都明显较高。
*原因:
水分子具有三维氢键缔合,
1水的密度在4℃时最高,为1;水结冰时,0℃时冰密度为0.917,体积膨胀约为9%(1.62毫升/升)。
实际应用:
是一种容易对冷冻食品的结构造成机械损伤的性质,是冷冻食品工业中应注意的问题。
水的沸点与气压成正比。
当气压增加时,它的沸腾电流增加。
当空气压力下降时,沸点下降
低
:
(1)牛奶、肉汁、果汁等热敏性食品的浓缩通常采用减压或真空来保护食品的营养成分。
低酸度罐头的灭菌(3)高原烹饪应使用高压3。
水的比热大于。
水的比热较大,因为当温度升高时,除了分子的动能需要吸收热量外,同时相关分子在转化为单个分子时需要吸收热量。
这样水温就不容易随着温度的变化而变化。
例如,海洋气候就是这样
4。
水的介电常数非常高。
当水在20℃溶解度大时,水的介电常数为80.36,
生物干物质的介电常数为2.2~4.0
具有较高的介电常数,能促进电解质的解离,因此对电解质和蛋白质如酸、碱和盐在水中的溶解非常重要。
5。
冰的电导率和传热系数分别是水的3倍和4倍。
意味着在某种环境下,冰的温度变化比水快得多。
因此,同一种食物的
解冻比冷冻快得多。
# 2.4食品中的水状态与
2.4.1水状态
2.4.1.1结合水(结合水、化学结合水)力:配位键、氢键、部分离子键特点:在-40℃以上不冻结,不能作为外来溶质的溶剂
单层水:它被称为第一个水分子层中的水,直接与离子结合水总量的大约0.5%
多层水:单层水之外的几层水分子或与非水组分中的弱极性基团如羟基、酰胺基等形成氢键的水分子。
# 2.4食品中的水状态及其与溶质的关系(2)
2.4.1.2游离水(散装水、游离水、吸湿水)
力:物理拦截,由生物膜或凝胶中大分子交联形成的网络拦截;毛细管力的特点:它能冻结和溶解溶质;含水量测定减少;可以被微生物利用毛管水:当毛管直径大于0.1微米且约为几微米至几十微米时,其
中的水属于游离水自由流动的水(截留水、自由水)
# 2.4食物中的水状态及其与溶质的关系(3)
2.4.2水溶质关系
2.4.2.1水与离子和离子基团的相互作用
力:极性组合,偶极-离子相互作用比其他溶质更能阻碍水分子的流动;水离子键的强度大于水氢键。
破坏水的正常结构,防止水在0℃结冰。
结冰阻力为
# 2.4。
食物中的水分状态和水与溶质的关系(4)
2.4.2。
水和能够形成氢键的中性基团之间的相互作用
水可以与羟基、氨基、羰基、酰基、亚氨基等形成氢键。
的力小于水和离子之间的力。
流动性低。
它对水的网状结构几乎没有影响。
防止水结冰;《水桥》η
││ì
-ν-η...η-η...η-η...с=с-
# 2.4食品中的水状态及其与溶质的关系(5)
2.4.1.3水和非极性物质之间的相互作用
笼型水合物的形成:由于非极性基团和水分子之间的排斥力,使疏水基团附近的水分子之间的氢键力=
“笼型水合物”:20-74个水分子将“物体”包裹在其中
力2.5水活性对于疏水基团和食品稳定性之间的关联的意义* * 2.5.1水活性
问题(1)哪种含水量为18%的果脯比含水量为18%的小麦更耐贮藏?
水分活度:在相同温度下,食物中水蒸气的分压与纯水的饱和蒸气压之比表示Aw=P/Po
?对于纯水:p = poaw = 1;
?对于食物中的水来说,因为其他物质溶解在其中,所以磷总是。