第二章 产生式系统
- 格式:ppt
- 大小:1.29 MB
- 文档页数:38
产生式系统产生式系统(production system)由波斯特(Post)于1943年提出的产生式规则(production rule)而得名。
人们用这种规则对符号进行置换运算。
1965年美国的纽厄尔和西蒙利用这个原理建立了一个人类的认知模型。
同年,斯坦福大学利用产生式系统结构设计出第一个专家系统DENDRAL。
产生式系统用来描述若干个不同的以一个基本概念为基础的系统。
这个基本概念就是产生式规则或产生式条件和操作对的概念。
在产生式系统中,论域的知识分为两部分:用事实表示静态知识,如事物、事件和它们之间的关系;用产生式规则表示推理过程和行为。
由于这类系统的知识库主要用于存储规则,因此有吧这类系统称为基于规则的系统(rule-based system)。
1、产生式系统的基本要素1.1产生式系统的组成产生式系统由三部分组成,即总数据库(Global Database),产生式规则库(Set of Product Rules)和控制策略(Control Strategies),各部分之间的关系如图1所示。
图1.产生式系统的主要组成1.1.1总数据库(Global Database)总数据库又称综合数据库、上下文、黑板等,用于存放求解过程中各种当前信息的数据结构,如问题的初始状态、事实或证据、中间推理结论和最后结果等,其中的数据是产生式规矩的处理对象。
数据库中的数据根据应用的问题不同,可以使常量、变量、谓词、表结构、图像等等。
例如,关于动物世界的产生式系统有如下数据库:…(Mammal Dog)(Eat Dog Meat)…从另一个角度,数据库可视为推理过程中间结果的存储池。
随着中间结果的不断加入,是数据库描述的问题状态逐步转变为目标状态。
1.1.2 规则库(Set of Product Rules)产生式规则库是某领域知识用规则形式表示的集合,其中包含将问题从初始状态转换到目标状态的所有变换规则。
当产生式规则中某条规则的前提与数据总库中的事实相匹配时,该规则库就被激活,并把其结论作为新的事实存入总数据库。
【⼈⼯智能导论】产⽣式系统
产⽣式系统
产⽣式系统是给定事实与推理规则,进⾏⾃动推理的推理系统。
产⽣式系统由3个部分组成:总数据库、产⽣式规则、控制策略。
总数据库是存放求解过程中各种当前信息的数据结构,包括已知事实与推理过程中得到的结论
产⽣式规则是⼀个规则库,存放形如"if <前提>, then <结论>" 的推理规则.
控制策略决定了推理过程中如何应⽤规则,即确定下⼀步应该选⽤什么规则,类⽐于图搜索中的图搜索策略(DFS,BFS,etc.)
产⽣式系统图搜索
初始事实数据初始节点
⽬标条件⽬标节点
产⽣式规则状态转换规则问题变换规则
规则集操作集
动态数据库节点(状态/问题)
控制策略搜索策略
按照搜索⽅向,产⽣式系统可分为正向推理、逆向推理和双向推理。
例正向推理设P1,P2,P3,P4为谓词公式或命题, 初始总数据库DB={P1},规则库R={R1:P1→P2,R2:P2→P3,R3:P3→P4},则推理步骤如下
1. P1∈DB,在规则库R中寻找到可⽤的规则R1:P1→P2,得到P2,当前DB={P1,P2}
2. P2∈DB,在规则库R中寻找到可⽤的规则R2:P2→P3,得到P3,当前DB={P1,P2,P3}
3. P3∈DB,在规则库R中寻找到可⽤的规则R3:P3→P4,得到P4,当前DB={P1,P2,P3,P4}
Processing math: 100%。
产生式系统产生式系统文档一、介绍1.1 目的本文档旨在提供关于产生式系统的详细信息,包括系统的定义、架构、工作原理以及相关的实际应用案例等。
1.2 背景随着技术的不断发展和应用,产生式系统成为了一种重要的智能处理方式。
本文档将对该系统进行全面介绍,旨在帮助读者了解并使用产生式系统。
二、系统定义2.1 什么是产生式系统产生式系统是一种基于规则库的推理机制,通过规则匹配与推理等算法,实现问题的求解和自动决策。
该系统由规则库、推理机以及知识库等组成。
2.2 系统构成产生式系统主要包括以下几个组成部分:- 规则库:存储了系统的规则集合,每条规则一般由前件和后件组成,用于进行规则匹配和推理。
- 推理机:负责根据规则集合和当前问题状态进行规则匹配和推理,推理链以及最终的推理结果。
- 知识库:存储了系统所需的领域知识,包括事实、规则和推理机制等,用于支持系统的推理过程。
- 用户界面:提供给用户与系统交互的界面,包括输入问题、展示推理结果等功能。
2.3 工作原理产生式系统的工作原理如下:- 根据用户输入的问题,系统将问题转化为内部可处理的形式。
- 推理机根据规则库和知识库进行规则匹配和推理,推理链。
- 根据推理链,系统得出最终的推理结果,并展示给用户。
三、系统应用3.1 实际应用案例1:医学诊断产生式系统可以应用于医学诊断领域,通过构建规则库和知识库,实现对病情的快速诊断和治疗建议。
3.2 实际应用案例2:智能客服产生式系统可以应用于智能客服领域,根据用户的问题和规则库,实现自动回答用户的咨询和解决问题。
四、附件本文档包括以下附件:- 附件一:规则库示例- 附件二:知识库示例五、法律名词及注释1.(Artificial Intelligence,简称):指通过模拟与复制人类智能的各种思维特征和行为,在某些特定领域或任务上展示出与人类相似的智能行为的科学和工程。
六、全文结束。
产生式系统的组成产生式系统是人工智能领域中一种重要的知识表示和推理方法。
它由一组产生式规则组成,每条规则由前件和后件构成,表示了一种条件-动作对。
产生式系统通过匹配规则的前件,选择合适的规则并执行相应的动作,从而实现推理和问题求解的过程。
一、产生式系统的基本组成1.1 前件:前件是规则中的条件部分,用于描述问题的特征和条件。
在问题求解过程中,产生式系统会根据输入的问题描述和已知条件,匹配规则的前件,以确定适用的规则。
1.2 后件:后件是规则中的动作部分,用于描述问题求解的结果和推理的结论。
当规则的前件与当前问题描述匹配成功时,产生式系统会执行规则的后件,得到相应的结果或结论。
1.3 规则库:规则库是产生式系统中存储规则的地方,它由一组产生式规则组成。
规则库中的规则根据具体问题的特点和需求,经过人工设计和编写,用于描述问题的解决思路和推理过程。
1.4 控制策略:控制策略是产生式系统中的重要组成部分,它决定了规则的执行顺序和方式。
控制策略可以根据不同的问题和应用需求进行调整和优化,以提高系统的推理效率和准确性。
二、产生式系统的工作原理产生式系统的工作原理可以简单描述为以下几个步骤:2.1 初始化:产生式系统在开始工作之前,需要初始化系统的状态和规则库。
初始化包括设置系统的初始状态和加载规则库。
2.2 匹配规则:产生式系统根据当前问题描述和已知条件,匹配规则库中的规则的前件。
匹配可以基于规则的特征和条件进行,也可以基于问题描述和已知条件的匹配度进行。
2.3 选择规则:当有多条规则的前件与当前问题描述匹配成功时,产生式系统需要根据一定的策略选择合适的规则。
选择规则可以基于规则的优先级、匹配度等进行。
2.4 执行规则:选择合适的规则后,产生式系统执行规则的后件,得到相应的结果或推理结论。
执行规则可以包括修改系统状态、生成新的问题描述、输出结果等。
2.5 更新状态:在执行规则后,产生式系统会更新系统的状态和问题描述。
产生式系统的组成
产生式系统是一种用于描述形式语言的形式化工具,由一组产生式和一些终结符号组成。
其中,产生式指定了如何将一些符号替换为其他符号或符号串,而终结符号则是产生式系统中不再进行替换的符号。
产生式系统的组成包括以下几个要素:
1. 终结符号集合:产生式系统中使用的符号集合,也称为字母表或字母表表达式。
2. 非终结符号集合:用于表示符号串中可以替换的部分的符号集合,也称为变量集合。
3. 产生式集合:由非终结符号和终结符号组成的规则集合,描述了如何将一个符号串替换为另一个符号串。
4. 开始符号:用于表示整个符号串的起始符号。
5. 推导规则:表示如何使用产生式将一个符号串推导为另一个符号串的规则。
6. 推导过程:根据推导规则,逐步将一个符号串推导为另一个符号串的过程。
以上是产生式系统的组成要素,通过组合不同的产生式和符号,可以描述各种形式化语言。
产生式系统在编译原理、自然语言处理等领域中得到了广泛的应用。
- 1 -。
产生式系统2.2.1 产生式系统1.序1943年,Post首先提出了产生式系统。
到目前为止,人工智能(AI)领域中的产生式系统,无论在理论上还是在应用上都经历了很大发展,所以现今AI中的产生式系统已与1943年Post提出的产生式系统有很大不同。
●因果关系自然界各个知识元(事实,断言,证据,命题, )之间存在着大量的因果关系,或者说前提和结论关系,用产生式(或称规则)表示这些关系是非常方便的:“模式——动作”对偶“条件——结论”对偶●产生式系统把一组领域相关的产生式(或称规则)放在一起,让它们互相配合、协同动作,一个产生式生成的结论一般可供另一个(或一些)产生式作为前提或前提的一部分来使用,以这种方式求得问题之解决,这样的一组产生式被称为产生式系统。
●产生式系统的历史a. 1943年,Post第一个提出产生式系统并把它用作计算手段。
其目的是构造一种形式化的计算工具,并证明了它与图灵机具有同样的计算能力。
b. 1950年,Markov提出了一种匹配算法,利用一组确定的规则不断置换字符串中的子串从而把它改造成一个新的字符串,其思想与Post类似。
c. (大约在)1950年,Chomsky为研究自然语言结构提出了文法分层概念,每层文法有一种特定的“重写规则”,也就是语言生成规则。
这种“重写规则”,就是特殊的产生式。
上面b和c所给出的系统其计算能力都与图灵机等价。
d. 1960年,Backus (译名为:巴克斯或巴科斯)提出了著名的BNF,即巴科斯范式,用以描写计算机语言的文法,首先用来描写ALGOL 60语言。
不久即发现,BNF范式基本上是Chomsky的分层系统中的上下文无关文法。
由于和计算机语言挂上了钩,产生式系统的应用范围大大拓广了。
2.产生式系统产生式系统的构成△一组规则每条规则分为左部(或称前提、前件)和右部(或称结论、动作、后件)。
通常左部表示条件,核查左部条件是否得到满足一般采用匹配方法,即查看数据基DB(Data Base)中是否存在左部所指明的情况,若存在则认为匹配成功,否则认为匹配失败。
产生式系统推理产生式系统推理是一种基于逻辑推理的计算机算法,它通过一系列的规则和事实来推导出新的结论。
这种推理方法常用于人工智能领域的知识表示和推理系统中。
一、产生式系统的基本概念1.1 产生式规则产生式规则是产生式系统推理的基本单元。
它由一个条件部分和一个结论部分组成,形式可以表示为“如果条件则结论”。
条件部分是由一系列事实和规则组成的逻辑表达式,用来描述问题的已知信息。
结论部分是由新的事实或规则组成,它是根据条件部分的逻辑关系推导出来的。
1.2 事实事实是产生式系统推理过程中的基本元素,它是描述问题现实情况的逻辑表达式。
事实可以是已知的,也可以是通过推理推导出来的。
在产生式系统中,事实可以用来匹配产生式规则的条件部分,从而触发规则的推导过程。
1.3 推理过程产生式系统的推理过程是基于规则的匹配和推导的。
当一个或多个事实与规则的条件部分匹配时,就会触发规则的推导过程,推导出新的事实或规则。
这个推导过程会不断迭代,直到没有新的事实或规则可以推导出为止。
二、产生式系统推理的应用2.1 专家系统专家系统是一种基于产生式系统推理的人工智能应用。
它利用专家的知识和经验,通过产生式规则来模拟专家的思维过程,从而解决特定领域的问题。
专家系统可以应用于医疗诊断、工程设计、金融分析等领域,帮助人们做出决策和解决问题。
2.2 自然语言处理自然语言处理是指计算机对自然语言的理解和处理。
产生式系统推理在自然语言处理中起到了重要的作用。
通过产生式规则,可以将自然语言的句子转换为逻辑表达式,并进行推理和推导。
这样可以实现机器对自然语言的理解和回答问题的能力。
2.3 智能游戏智能游戏是一种利用人工智能技术实现智能对战的游戏。
产生式系统推理在智能游戏中被广泛应用。
通过产生式规则,智能游戏可以模拟玩家的思维过程,根据当前状态和规则进行推理和决策,从而实现自动对战和智能对手的功能。
三、产生式系统推理的优势和局限3.1 优势产生式系统推理具有以下优势:(1)灵活性:产生式系统推理可以根据具体问题和需求灵活定义规则和事实,适应不同领域和情境的推理需求。
产生式系统(production system)内容产生式系统的描述推理控制策略两类特殊的产生式系统 基于规则的演绎系统产生式系统的描述推理控制策略两类特殊的产生式系统 基于规则的演绎系统产生式一种知识表示方法,常用来表示有因果关系的知识。
形式:条件→行动前提→结论“if……then……”例如:烫手→缩手下雨→地面湿下雨∧甲未打伞→甲被淋湿所有人会死∧甲是人→甲会死→左边表示条件(左半部分),右边表示结论(右半部分)一般可以写成A1∧A2∧……A n→B的形式;下雨∧甲未打伞→甲被淋湿产生式系统把一组产生式放在一起,让它们互相配合,协同作用,一个产生式的结论可以供另一个产生式作为前提使用,以这种方式求解问题的系统称为产生式系统。
A→B, B→C, C→D : A→D ???历史历史1943年,美国数学家Post设计的产生式系统,称为Post系统。
目的是构造一种形式化的计算工具。
证明它和图灵机具有相同的计算能力。
产生式系统的构成产生式系统的构成一组产生式规则(set of rules) 综合数据库(global database)控制机制(control system)产生式规则例子下雨→地面湿下雨∧甲未打伞→甲被淋湿所有人会死∧甲是人→甲会死综合数据库存放已知的事实和推导出的事实;数据基(global database);和database(数据库)不同:database: 强调数据的管理(存取、增、删、改等) 产生式系统: 抽象的概念只是说明数据在此存放,和物理实现没关系。
具体实现时,用DBMS和文件等都可以。
数据是广义的,可以是常量、变量、谓词、图像等。
数据结构:符号串、向量、集合、数组、树、表格、文件等;控制机制控制机制完成的工作有:匹配规则条件部分;多于一条规则匹配成功时,选择哪条规则执行(点燃);如何将匹配规则的结论部分放入综合数据库(是直接添加到数据库中,还是替换其中的某些东西);决定系统何时终止;产生式系统的运行过程产生式系统的运行过程:建立产生式规则;将已知的事实放入综合数据库;考察每一条产生式规则,如果条件部分和综合数据库中的数据匹配,则规则的结论放入综合数据库;算法令DATA为综合数据库1.DATA←初始化;2.如果满足终止条件,终止。