八年级数学直角三角形性质和应用练习含答案
- 格式:docx
- 大小:84.67 KB
- 文档页数:4
19.8(1)直角三角形的性质一、填空题1.若直角三角形的两个锐角之差为24度,则较大的锐角的度数是_________ . 2. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D , (1)若∠B =50°,则∠A =__________; (2)若∠B -∠A =50°,则∠A =__________; (3)与∠A 互余的角有________________;(4)与∠A 相等的角有________________. 第2题图3.已知直角三角形面积等于24平方厘米,斜边上的高为4厘米,则斜边上的中线长 为 厘米.4.等腰直角三角形中,若斜边和斜边上的高的和是6cm ,则斜边长是 cm . 5. 若直角三角形的斜边上的高与斜边上的中线长分别为2 cm 和3 cm ,则这个直角三角形的面积为__________cm 2.6. 在Rt △ABC 中,∠C =90°,周长为24 cm ,三边长的比为3∶4∶5,则斜边上的中线长为__________cm ,斜边上的高为__________cm.二、解答题7.如图,已知△ABC 中,∠ ABC=∠ ACB ,D 、E 为△ABC 外两点,AD ⊥BD ,AE ⊥CE ,F 、G 分别为AB 、AC 的中点.求证:DF =GE .8.如图,已知:在ABC ∆中,D BC AC AD C B 于交,,⊥=∠=∠2040. 求证:AB CD 2=.ABCD9. 如图,已知在Rt △ABC 中,∠C =90°,M 是AB 的中点,AM =AN ,MN ∥AC . 求证:MN =AC .10. 如图,已知HE 、AG 相交于点D ,点B 、C 、F 分别是线段DG 、HD 、AE 的中点,若AH =AD ,DE =EG .求证:CF =BF .三、提高题11.如图,已知:在ΔABC 中, ∠ABC=2∠C,AD ⊥BC 于D,E 是AC 中点,ED 的延长线与AB 的延长线交于点F .求证:BF=BD .CBAEDF19.8(2)直角三角形的性质一、填空题1. 在Rt△ABC中,∠C=90°,∠B=60°,若BC=4 cm,则AB=__________cm.2. 在△ABC中,若∠C∶∠B∶∠A=1∶2∶3,BC=16,则AB=__________.3.在Rt△ABC中,若∠ACB=90°,CD⊥AB于D,∠A=30°,若BD=4cm,则BC=__________cm,AD=__________cm.4. 等腰三角形的顶角为30°,腰长为4 cm,则这个等腰三角形的面积为__________cm 5.△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD= cm..6.等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的顶角度数是__________.7.如图,在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿CM翻折,点A落在点D处,如果CD恰好与AB垂直,那么∠A=__________度.二、解答题8.已知:如图,△ABC中,AB=AC,点D在BC边上,∠DAC=90° , AD= 12 CD.求:∠BAC的度数.9.已知:如图,在△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12 AB.AB CDAB CD10. 如图,已知等边三角形中,E 是AC 上的一点,CE =14AC ,过E 作DE ⊥AC 交BC 于点D . 求证:D 是BC 的中点.11. 如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 为AB 边上的中线,若AC =AE .求证:BC =2CD .三、提高题12.已知:等腰三角形一腰上的高是另一腰长度的12,求这个等腰三角形的底角的度数。
19.8(1)直角三角形的性质一、填空题1.若直角三角形的两个锐角之差为24度,则较大的锐角的度数是_________ .2. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,(1)若∠B=50°,则∠A=__________;(2)若∠B-∠A=50°,则∠A=__________;(3)与∠A互余的角有________________;(4)与∠A相等的角有________________.第2题图3.已知直角三角形面积等于24平方厘米,斜边上的高为4厘米,则斜边上的中线长为厘米.4.等腰直角三角形中,若斜边和斜边上的高的和是6cm,则斜边长是 cm.5. 若直角三角形的斜边上的高与斜边上的中线长分别为2 cm和3 cm,则这个直角三角形的面积为__________cm2.6. 在Rt△ABC中,∠C=90°,周长为24 cm,三边长的比为3∶4∶5,则斜边上的中线长为__________cm,斜边上的高为__________cm.二、解答题7.如图,已知△ABC中,∠ ABC=∠ ACB,D、E为△ABC外两点,AD⊥BD,AE⊥CE,F、G 分别为AB、AC的中点.求证:DF=GE.8.如图,已知:在ABC ∆中,D BC AC AD C B 于交,,⊥=∠=∠2040. 求证:AB CD 2=.9. 如图,已知在Rt △ABC 中,∠C =90°,M 是AB 的中点,AM =AN ,MN ∥AC . 求证:MN =AC .10. 如图,已知HE 、AG 相交于点D ,点B 、C 、F 分别是线段DG 、HD 、AE 的中点,若AH =AD ,DE =EG .求证:CF =BF .ABCD三、提高题11.如图,已知:在ΔABC 中, ∠ABC=2∠C,AD ⊥BC 于D,E 是AC 中点,ED 的延长线与AB 的延长线交于点F .求证:BF=BD .19.8(2)直角三角形的性质一、填空题1. 在Rt △ABC 中,∠C =90°,∠B =60°,若BC =4 cm ,则AB =__________cm.2. 在△ABC 中,若∠C ∶∠B ∶∠A =1∶2∶3,BC =16,则AB =__________.3.在Rt △ABC 中,若∠ACB =90°,CD ⊥AB 于D ,∠A =30°,若BD =4cm ,则BC =__________cm ,AD =__________cm.4. 等腰三角形的顶角为30°,腰长为4 cm ,则这个等腰三角形的面积为__________cm 5.△ABC 中,AB=AC,∠BAC=120°,AB=12cm,则BC 边上的高AD= cm..CBAEDF6.等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的顶角度数是__________.7.如图,在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿CM翻折,点A落在点D处,如果CD恰好与AB垂直,那么∠A=__________度.二、解答题8.已知:如图,△ABC中,AB=AC,点D在BC边上,∠DAC=90° , AD= 12 CD.AB CD1 2AB.9.已知:如图,在△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=AB CD10. 如图,已知等边三角形中,E 是AC 上的一点,CE =14AC ,过E 作DE ⊥AC 交BC 于点D . 求证:D 是BC 的中点.11. 如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 为AB 边上的中线,若AC =AE .求证:BC =2CD .三、提高题12.已知:等腰三角形一腰上的高是另一腰长度的12,求这个等腰三角形的底角的度数。
专题2.6含30°的直角三角形的性质【十大题型】【苏科版】专题2.6 含30°的直角三角形的性质【十大题型】【题型1 由含30°的直角三角形的性质求线段长度】【题型2 由含30°的直角三角形的性质求角度】【题型3 由含30°的直角三角形的性质求面积】【题型4 由含30°的直角三角形的性质求最值】【题型5 由含30°的直角三角形的性质求坐标】【题型6 由含30°的直角三角形的性质进行证明】【题型7 由含30°的直角三角形的性质解决折叠问题】【题型8 由含30°的直角三角形的性质解决旋转问题】【题型9 由含30°的直角三角形的性质解决动点问题】【题型10 含30°的直角三角形的性质的实际应用】知识点:含30°的直角三角形的性质在直角三角形中,30°角所对的边等于斜边的一半.【题型1 由含30°的直角三角形的性质求线段长度】【例1】(23-24八年级·山东济宁·期末)1.如图,在等边ABC V 中,点D E 、分别在边BC AC 、上,且AE CD =,BE 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:BE AD =;(2)若4PQ =,求BP 的长.【变式1-1】(23-24八年级·黑龙江牡丹江·期中)2.在等边三角形ABC V ,若AB 边上的高CD 与边BC 所夹得角为30°,且3BD =,则ABC V 的周长为( )A .18B .9C .6D .4.5【变式1-2】(23-24八年级·山东泰安·期末)3.如图所示,ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为E .若3AE =,则ABC V 的边长为( )A .12B .10C .8D .6【变式1-3】(2024八年级·江苏·专题练习)4.如图,在ABC V 中,60ABC Ð=°,以AC 为边在ABC V 外作等边ACD V ,过点D 作DE BC ^.若 5.4AB =,3CE =,则BE = .【题型2 由含30°的直角三角形的性质求角度】【例2】(2024·吉林长春·八年级期末)5.如图所示,把两块完全相同的等腰直角三角板如图所示的方式摆放,线段AC 在直线MN 上.若点F 恰好是线段AB 中点,则AFD Ð的大小为 °.【变式2-1】(23-24八年级·湖北武汉·期中)6.如图,在ABC V 中,45ACB Ð=°,点M 为边BC 上的动点,当2AM CM +最小时,则CAM Ð的度数为( )A .60°B .45°C .30°D .15°【变式2-2】(2024八年级·江苏·专题练习)7.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.【变式2-3】(2024·安徽·八年级期末)8.已知在等腰ABC V 中,AD BC ^,垂足为点D ,12AD BC =,则C Ð的度数有( )A .5种B .4种C .3种D .2种【题型3 由含30°的直角三角形的性质求面积】【例3】(2024·山东聊城·八年级期末)9.如图,在ABC V 中,90ABC Ð=°,60BAC Ð=°,以点A 为圆心,以AB 的长为半径画弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径画弧,两弧交于点P ,作射线AP 交BD 于点M ,交BC 于点E ,连接DE ,则:CDE ABC S S △△的值是( )A .1:2B 3C .2:5D .1:3【变式3-1】(23-24八年级·重庆·期末)10.如图,在Rt ABC △中,90A Ð=°,点D 是AB 上一点,且6,15BD CD DBC ==Ð=°,则BCD △的面积为( )A .9B .12C .18D .6【变式3-2】(23-24八年级·辽宁辽阳·期末)11.如图,在ABC V 中,90,30C B Ð=°Ð=°,D 是BC 上一点,连接AD ,若AD 平分BAC Ð,设ADB V 和ADC △的面积分别是1S ,2S ,则12:S S =( )A .1:1B .2:1C .3:1D .3:2【变式3-3】(23-24八年级·湖南永州·期中)12.如图,在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,求阴影部分的面积.【题型4 由含30°的直角三角形的性质求最值】【例4】(23-24八年级·湖北荆门·期末)13.如图,CA ^直线l 于点A ,4CA =,点B 是直线l 上一动点,以CB 为边向上作等边MBC △,连接MA ,则MA 的最小值为( )A .1B .2C .3D .4【变式4-1】(23-24八年级·黑龙江齐齐哈尔·期末)14.如图,已知60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于点D ,6OP =,点E 是射线OB 上的动点,则PE 的最小值为( )A .4B .2C .5D .3【变式4-2】(23-24八年级·江苏苏州·期中)15.如图,边长为6的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是 .【变式4-3】(23-24八年级·浙江金华·期末)16.如图,在等腰三角形ABC 中,4AB AC ==,30BAC Ð=°,AG 是底边BC 上的高,在AG 的延长线上有一个动点D ,连接CD ,作150CDE Ð=°,交AB 的延长线于点E ,CDE Ð的角平分线交AB 边于点F ,则在点D 运动的过程中,线段EF 的最小值( )A .6B .4C .3D .2【题型5 由含30°的直角三角形的性质求坐标】【例5】(23-24八年级·北京朝阳·期末)17.如图,在平面直角坐标系xOy 中,Rt OAB V 的斜边OB 在x 轴上,30ABO Ð=°,若点A 的横坐标为1,则点B 的坐标为 .【变式5-1】(23-24八年级·湖南长沙·期中)18.如图,等边ABC V 的三个顶点都在坐标轴上,()30A -,,过点B 作BD AB ^,交x 轴于点D ,则点D 的坐标为 .【变式5-2】(2024·山东泰安·八年级期末)19.如图,在平面直角坐标系中,点O 的坐标为()00,,点M 的坐标为()30,,N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60°得到线段MK ,连接NK OK ,.求线段OK 长度的最小值( )A .32B C .2D .【变式5-3】(23-24八年级·广东东莞·期末)20.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,1),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A L ,按此规律继续作下去,得到等边三角形202120212022O A A ,则点2021A 的纵坐标为 .【题型6 由含30°的直角三角形的性质进行证明】【例6】(23-24八年级·山东烟台·期末)21.在Rt ABC △中,90ACB Ð=°,30BAC Ð=°,AD 平分BAC Ð,交BC 于点D .(1)用尺规作出线段AD 的垂直平分线交AD 于点M ,交AB 于点N .(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:12CD AN =.【变式6-1】(23-24八年级·重庆江津·期中)22.如图,在等腰ABC V 中,AC BC =,4ACB B =∠∠,点D 是AC 边的中点,DE AC ^,交AB 于点E ,连接CE .(1)求BCE Ð的度数;(2)求证:3AB CE =.【变式6-2】(2024八年级·江苏·专题练习)23.如图,在ABC V ,90ACB Ð=°,30A Ð=°,AB 的垂直平分线分别交AB 和AC 于点D E ,.(1)若6cm AC =,求CE 的长度;(2)连接CD ,请判断BCD △的形状,并说明理由.【变式6-3】(23-24八年级·安徽阜阳·开学考试)24.如图,已知在等边三角形ABC 中,D ,E 分别是边BC ,AC 上的点,且AE DC =,连接AD ,BE 相交于点P ,过点B 作BQ AD ^,Q 为垂足,求证:2BP PQ =.【题型7 由含30°的直角三角形的性质解决折叠问题】【例7】(23-24八年级·山东济宁·期末)25.如图,三角形纸片ABC 中,90BAC Ð=°,4AB =,30C Ð=°.沿过点A 的直线将纸片折叠(折痕为AF ),使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,折痕交AC 于点E (折痕为EG ),则FG 的长是( )A .3B .4C .6D .8【变式7-1】(23-24八年级·湖北武汉·期中)26.如图所示,在ABC V 中,9030C A Ð=°Ð=°,,将BCE V 沿BE 折叠,使点C 落在AB边D 点,若6cm EC =,则AC =( )cm .A .12B .16C .18D .14【变式7-2】(2024·山东滨州·八年级期末)27.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若3BE =,则折痕AE 的长为 .【变式7-3】(23-24八年级·广西南宁·阶段练习)28.如图,在ABCD Y 中,将ADC △沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若602B AB Ð=°=,,则BC 为 .【题型8 由含30°的直角三角形的性质解决旋转问题】【例8】(23-24八年级·陕西西安·阶段练习)29.如图,在ABC V 中,90C Ð=°,30ABC Ð=°,5cm AC =,将ABC V 绕点A 逆时针旋转至AB C ¢¢△的位置,点B 的对应点为点B ¢,点C 的对应点C ¢恰好落在边AB 上.设旋转角为a .(1)a 的度数为 °;(2)求ABB ¢V 的周长.【变式8-1】(2024·新疆乌鲁木齐·三模)30.如图,将ABC V 绕点A 旋转得到ADE V ,若90B Ð=°,30C Ð=°,2AB =,则AE 的长为 .【变式8-2】(2024八年级·浙江·专题练习)31.如图,AB C ¢¢△是ABC V 绕点A 旋转180°后得到的,已知90B Ð=°,1AB =,30C Ð=°,则CC ¢的长为 .【变式8-3】(2024·河北秦皇岛·八年级期末)32.如图,在等边ABC V 中,10AB =,P 为BC 上一点(不与点B ,C 重合),过点P 作PM BC^于点P ,交线段AB 于点M ,将PM 绕点P 顺时针旋转60°,交线段AC 于点N ,连接MN ,有三位同学提出以下结论:嘉嘉:PNC △为直角三角形.淇淇:当2AM =时,7AN =.珍珍:在点P 移动的过程中,MN 不存在平行于BC 的情况.下列说法正确的是( )A .只有嘉嘉正确B .嘉嘉和淇淇正确C .淇淇和珍珍正确D .三人都正确【题型9 由含30°的直角三角形的性质解决动点问题】【例9】(23-24八年级·湖南岳阳·期中)33.如图:ABC V 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达B 时,P 、Q 两点停止运动,当点P 到达B 时,P 、Q 两点停止运动.设点P 运动的时间为(s)t .当t 为 时,PBQV 是直角三角形.【变式9-1】(23-24八年级·山西晋中·期中)34.如图,在ABC V 中,90,30,8cm B A AC Ð=°Ð=°=,动点P 、Q 同时从A 、C 两点出发,分别在AC 、BC 边上匀速移动,它们的速度分别为2cm /s,1cm /s P Q v v ==,当点P 到达点C 时,P 、Q 两点同时停止运动,设点P 的运动时间为s t .(1)当t 为何值时,PCQ △为等边三角形?(2)当t 为何值时,PCQ △为直角三角形?【变式9-2】(2024八年级·全国·专题练习)35.已知:如图,ABC V 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB BC 、方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为s t .(1)当动点P 、Q 同时运动2s 时,则BP = cm ,BQ = cm .(2)当动点P 、Q 同时运动s t 时,分别用含有t 的式子表示;BP = cm ,BQ = cm .(3)当t 为何值时,PBQ V 是直角三角形?【变式9-3】(23-24八年级·辽宁朝阳·期末)36.如图,在ABC V 中,60A Ð=°,4cm AB =,12cm AC =.动点P 从点A 开始沿AB 边以1cm/s 的速度运动,动点Q 从点C 开始沿CA 边以3cm/s 的速度运动.点P 和点Q 同时出发,当点P 到达点B 时,点Q 也随之停止运动.设动点的运动时间为()s 04t t <<,解答下列问题:(1)用含t 的代数式表述AQ 的长是______.(2)在运动过程中,是否存在某一时刻t ,使APQ △是直角三角形?若存在,求出t 的值;若不存在,请说明理由.【题型10 含30°的直角三角形的性质的实际应用】【例10】(23-24八年级·安徽合肥·期末)37.如图①,设计一张折叠型方桌,其示意图如图②,若50cm AO BO ==,30cm CO DO ==.现将桌子放平,两条桌腿需要叉开的角度AOB Ð应为120°,则AB 距离地面CD 的高为 cm .【变式10-1】(23-24八年级·广西玉林·期中)38.某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ^.测得A 处与E 处的距离为70m ,C 处与E 处的距离为35m ,90C Ð=°,30BAE Ð=°.(1)请求出旋转木马E 处到出口B 处的距离;(2)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.【变式10-2】(23-24八年级·河北廊坊·期末)39.如图,嘉琪想测量一座古塔CD 的高度,在A 处测得15CAD Ð=°,再往前行进60m 到达B 处,测得30CBD Ð=°,点 A ,B ,D 在同一条直线上,根据测得的数据,这座古塔CD 的高度为( )A .40mB .30mC .D .50m【变式10-3】(23-24八年级·山东济宁·期中)40.图①所示的是某超市入口的双翼闸门,如图②,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为7cm ,双翼的边缘80cm AC BD ==,且与闸机侧立面夹角30ACP BDQ Ð=Ð=°,求当双翼收起时,可以通过闸机的物体的最大宽度.1.(1)见解析(2)8【分析】本题考查了全等三角形的判定和性质、含30°角的直角三角形的性质、等边三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)证明ABE CAD V V ≌即可得证;(2)求出30PBQ Ð=°,再根据含30°角的直角三角形的性质即可得出答案.【详解】(1)证明:∵ABC V 为等边三角形,∴60AB AC BAC C =Ð=Ð=°,,在ABE V 和CAD V 中AB AC BAE ACD AE CD =ìïÐ=Ðíï=î,∴()SAS V V ≌ABE CAD ,∴BE AD =.(2)解:∵ABE CAD V V ≌,∴ABE CAD Ð=Ð,∴60BPQ ABP BAP CAD BAP BAC Ð=Ð+Ð=Ð+Ð=Ð=°,又∵BQ AD ^,∴90BQP Ð=°,∴18030PBQ BPQ BQP Ð=°-Ð-Ð=°,∴2BP PQ =,又∵4PQ =,∴8BP =.2.A【分析】由30度角的性质可求出26BC AB ==,然后利用等边三角形的性质求解即可.【详解】解:如图,∵CD AB ^,∴90CDB Ð=°.∵30BCD Ð=°,3BD =,∴26BC AB ==.∵ABC V 是等边三角形,∴ABC V 的周长为6318´=.故选A .【点睛】本题考查了等边三角形的性质,含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解答本题的关键.3.A【分析】本题主要考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;在直角三角形中30°角所对应的边是斜边的一半是解题的关键.根据题意可知60A Ð=°,在直角三角形ADE 中求得AD 的长,即可求得AC 的长.【详解】解:∵ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为点E .若3AE =,∴在直角三角形ADE 中,60A Ð=°,90AED Ð=°,30ADE Ð=°,∴26AD AE ==,又∵D 为AC 的中点,∴212AC AD ==,∴等边三角形ABC 的边长为12,故选:A .4.7.8【分析】此题主要考查了等边三角形的性质,熟练掌握等边三角形的性质,正确地作出辅助线,构造全等三角形和含有30°角的直角三角形是解决问题的关键.过点C 作CP AB ^于P ,根据60ABC Ð=°得120BAC BCA Ð+Ð=°,再根据等边三角形性质得AC CD =,60ACD Ð=°,则120DCE BCA Ð+Ð=°,由此得BAC DCE Ð=Ð,据此可依据“AAS ”判定APC △和CED △全等,从而得3AP CE ==,则 2.4BP AB AP =-=,进而在根据直角三角形性质得2 4.8BC BP ==,据此可得BE 的长.【详解】解:过点C 作CP AB ^于P ,如图所示:60ABC Ð=°Q ,180120BAC BCA ABC \Ð+Ð=°-Ð=°,ACD QV 为等边三角形,AC CD \=,60ACD Ð=°,180120DCE BCA ACD Ð+Ð=°-Ð=°Q ,BAC DCE \Ð=Ð,CP AB ^Q ,DE BC ^,90APC CED \Ð=Ð=°,在APC △和CED △中,90APC CED BAC DCEAC CD Ð=Ð=°ìïÐ=Ðíï=î,(AAS)APC CED \V V ≌,3AP CE \==,5.43 2.4BP AB AP \=-=-=,在Rt BCP △中,60ABC Ð=°,30BCP \Ð=°,22 2.4 4.8BC BP \==´=,4.837.8BE BC CE \=+=+=.故答案为:7.85.15【分析】本题考查了三角形中位线,含30°的直角三角形,平行线的性质,熟练掌握以上知识是解题的关键.过点F 作CD 的垂线,垂足为H ,先证明FH 为ABC V 的中位线,和45B HFA Ð=Ð=°,再根据直角三角形中30°所对的直角边为斜边的一半即可得出30FDH Ð=°,继而求出HFD Ð,以及AFD Ð的度数.【详解】过点F 作CD 的垂线,垂足为H ,如图:∵点F 恰好是线段AB 中点,FH AC ^,90BCA Ð=°,∴BC FH ∥,2BC FH =,∴45B HFA Ð=Ð=°,∵两块等腰直角三角板完全相同,∴BC FD =,∴2BC FD FH ==,∵90FHD Ð=°,∴30FDH Ð=°,∴60HFD Ð=°,∵45B HFA Ð=Ð=°,∴604515AFD HFD HFA Ð=Ð-Ð=°-°=°,故答案为:15.6.D【分析】本题主要考查了直角三角形的性质,垂线段最短,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握相关的性质.在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,根据含30度角的直角三角形的性质得出12ME CM =,根据()12222AM CM AM CM AM ME æö+=+=+ç÷èø,两点之间线段最短,且垂线段最短,得出当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,求出此时CAM Ð的度数即可.【详解】解:在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,如图所示:则12ME CM =,∴()12222AM CM AM CM AM ME æö+=+=+ç÷èø,∵两点之间线段最短,且垂线段最短,∴当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,∴当点E 在点F 时,2AM CM +最小,∵90AFC Ð=°,453075ACE ACB BCE Ð=Ð+Ð=°+°=°,∴=9075=15CAF а-°°,即此时15CAM Ð=°.故选:D .7.72【分析】过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,证明()Rt Rt HL DNC DMC V V ≌,得12DCM ACD Ð=Ð=°,求出ACB Ð的度数,则根据等腰三角形的内角和,可求出A Ð的度数.【详解】解:如图,过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,∵点D 在AC 的垂直平分线上,∴DN 垂直平分AC ,∴12NC AC =,∵AC BC =,∴12NC BC =,在Rt BMC △中,30DBC Ð=°,∴12CM BC =,∴CM CN =,在Rt DNC △和Rt DMC V 中,∵CD CD CN CM =ìí=î,∴()Rt Rt HL DNC DMC V V ≌,∴12DCM ACD Ð=Ð=°,∵30DBC Ð=°,∴60MCB Ð=°,∴6012236ACB Ð=°-°´=°,又∵AC BC =,∴()118036722A Ð=´°-°=°,故答案为:72.【点睛】本题考查了等腰三角形的性质,含30°角直角三角形的性质,全等三角形的判定与性质,解题时要熟知等腰三角形的两个底角相等,需要作辅助线,构建全等三角形,利用全等三角形的对应角相等.8.A【分析】根据题意分两种情况:AD 落在ABC V 内部和AD 落在ABC V 外部,然后分别根据等腰三角形的概念和三角形内角和定理求解即可.【详解】(1)当AD 落在ABC V 内部时,①如图,当AB AC =时,∵AD BC ^,12AD BC =,∴AD BD DC ==,即45C Ð=°.②如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30B Ð=°,∴()()11180180307522C B Ð=´°-Ð=´°-°=°③如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30C Ð=°.(2)当AD 落在ABC V 外部时,④当AB AC =时,此时不存在.⑤如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30ABD Ð=°,则11301522C ABD Ð=Ð=´°=°.⑥如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30ACD Ð=°,则18030150ACB Ð=°-°=°,即150C Ð=°.综上,C Ð的度数可能为15°,30°,45°,75°,150°,共5种可能,故选:A .【点睛】此题考查了等腰三角形的性质,含30°角直角三角形的性质,三角形内角和定理等知识,解题的关键是根据题意分情况讨论.9.D【分析】先根据30°角的直角三角形的性质得到12AB AC =,证明()SAS ABE ADE △≌△,再根据全等三角形的判定和性质定理即可得到结论.【详解】解:∵90ABC Ð=°,60BAC Ð=°,∴90906030C BAC Ð=°-Ð=°-°=°,∴12AB AC =,由题意得:AB AD =,AP 平分BAC Ð,∴BAE DAE Ð=Ð,在ABE V 与ADE V 中,AB AD BAE DAE AE AE =ìïÐ=Ðíï=î,∴()SAS ABE ADE △≌△,∴ABE ADE S S =△△,∵12AD AB AC ==,∴AD CD =,∴ADE CDE S S =V V ,∴3ABC CDE S S =△△,∴:1:3CDE ABC S S =△△.故选:D .【点睛】本题考查作图—基本作图,直角三角形两锐角互余,30°角的直角三角形,全等三角形的判定和性质,角平分线的定义,等底同高的三角形面积相等.掌握基本作图及全等三角形的判定和性质是解题的关键.10.A【分析】本题考查等边对等角,三角形的外角,含30度角的直角三角形,根据等边对等角结合三角形的外角,求出30ADC Ð=°,进而求出AC 的长,利用三角形的面积公式求出BCD △的面积即可.【详解】解:∵6,15BD CD DBC ==Ð=°,∴15DCB B Ð=Ð=°,∴30ADC B BCD Ð=Ð+Ð=°,∵90A Ð=°,∴132AC CD ==,∴BCD △的面积为1163922BD AC ×=´´=;故选A .11.B【分析】本题考查了直角三角形的性质,等角对等边,三角形的面积等知识,先求出30BAD CAD Ð=Ð=°,得出AD BD =, 从而1122CD AD BD ==,然后根据三角形面积公式可得结论.【详解】解:∵90,30C B Ð=°Ð=°,∴903060BAC Ð=°-°=°.∵AD 平分BAC Ð,∴1302BAD CAD BAC Ð=Ð=Ð=°,∴B BAD Ð=Ð,∴AD BD =, ∴1122CD AD BD ==,∴1211::2:122S S BD AC CD AC =××=.故选B .12.9【分析】根据旋转的性质得到11ABC A BC V V ≌,16A B AB ==,所以1A BA V 是等腰三角形,依据130A BA Ð=°得到等腰三角形的面积,由图形可以知道1111A BA A BC ABC A BA S S S S S =+-=V V V V 阴影,最终得到阴影部分的面积.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.【详解】解:在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,∴11ABC A BC V V ≌16A B AB \==,\1A BA V 是等腰三角形,130A BA Ð=°,如图,过1A 作1A D AB ^于D ,则11132A D AB ==,116392A BA S \=´´=△,又1111A BA A BC ABC A BA S S S S S =+-=V V V V Q 阴影,11A BC CBA S S =V V ,19A BA S S \==V 阴影.13.B【分析】本题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,证明(SAS)BCA MCE V V ≌,由全等三角形的性质得出BA ME =,90BAC MEC Ð=Ð=°,由直角三角形的性质可得出答案.【详解】解:如图,以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,MBC QV 和ACE △为等边三角形,BC CM \=,AC CE =,60BCM ACE Ð=Ð=°,BCA MCE \Ð=Ð,在BCA V 和MCE △中,BC MC BAC MCE AC CE =ìïÐ=Ðíï=î,(SAS)BCA MCE \V V ≌,BA ME \=,90BAC MEC Ð=Ð=°,906030AEF \Ð=°-=°,B Q 是直线l 的动点,M \在直线ME 上运动,MA \的最小值为AF ,4AE AC ==Q ,122AF AE \==.故选:B14.D【分析】题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】解∶∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP =,∴132PD OP ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH ==,∵点E 是射线OB 上的动点,∴PE 的最小值为3,故选:C .15.32【分析】取BC 的中点,连接MG ,根据等边三角形的性质和旋转可以证明MBG NBH V V ≌,可得MG NH =,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,进而根据30度角所对直角边等于斜边的一半即可求得线段HN 长度的最小值.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.【详解】解:如图,取BC 的中点,连接MG ,Q 线段BM 绕点B 逆时针旋转60°得到BN ,60MBH HBN \Ð+Ð=°,又ABC QV 是等边三角形,60ABC \Ð=°,即60MBH MBC Ð+Ð=°,HBN GBM \Ð=Ð,CH Q 是等边三角形的高,12BH AB \=,BH BG \=,又BM Q 旋转到BN ,BM BN \=,(SAS)MBG NBH \△≌△,MG NH \=,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,此时160302BCH Ð=´°=°,116322CG BC ==´=,1322MG CG \==,32HN \=.\线段HN 长度的最小值是32.故答案为:3216.D 【分析】此题考查了全等三角形的判定即性质,等腰三角形的三线合一的性质,角平分线的性质,含30度角的直角三角形的性质.作DM AB ^于M ,作DN AC ^于N ,证明()ASA MDE NDC V V ≌,推出DE DC =,再证明()SAS EDF CDF V V ≌,推出EF CF =,得到当CF AB ^时CF 有最小值,即EF 有最小值,由30BAC Ð=°,4AC =,求出CF .【详解】解:作DM AB ^于M ,作DN AC ^于N ,AB AC =Q , AG BC ^,AG \平分BAC Ð,即AD 平分BAC Ð,DM AB ^Q ,DN AC ^,DM DN \=,30BAC Ð=°Q ,90AMD AND Ð=Ð=°,150MDN Ð\=° ,150CDE Ð=°Q ,150MDE CDM ÐÐ\=°- NDC Ð=,(ASA MDE NDC \V V ≌),DE DC \=,DF Q 平分CDE Ð,EDF CDF \Ð=Ð,连接CF ,DF DF =Q ,()SAS EDF CDF \V V ≌,EF CF \=,\当CF AB ^时CF 有最小值,即EF 有最小值,此时,30BAC Ð=°Q ,4AC =,\122CF AC ==,故选:D .17.()4,0【分析】本题主要考查了含30度角直角三角形的特征,解题的关键是掌握含30度角的直角三角形,30度角所对的边是斜边的一半.过点A 作x 轴的垂线,垂足为点C ,先得出30OAC Ð=°,则22OA OC ==,进而得出24OB OA ==,即可解答.【详解】解:过点A 作x 轴的垂线,垂足为点C ,∵Rt OAB V 中30ABO Ð=°,∴60AOB Ð=°,∵AC OB ^,∴30OAC Ð=°,∵点A 的横坐标为1,∴1OC =,∴22OA OC ==,∵30ABO Ð=°,∴24OB OA ==,∴点B 的坐标为()4,0,故答案为:()4,0.18.()90,【分析】本题考查了坐标与图形,等边三角形的性质,含30度角的直角三角形的性质.利用等边三角形的性质求得AB 的长,再利用含30度角的直角三角形的性质求得AD 的长,继而求得OD 的长,即可求解.【详解】解:∵ABC V 是等边三角形,且BO AC ^,∴60AO OC BAC =Ð=°,,∵()30A -,,∴3AO =,∴26AB AC AO ===,∵BD AB ^,∴90ABD Ð=°,∴30ADB Ð=°,∴212AD AB ==,∴9OD AD OA =-=,∴点D 的坐标为()90,.故答案为:()90,.19.A【分析】如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,证明OMQ V 是等边三角形,得到60QOM OQ OM =°=∠,,推出30NOQ Ð=°;由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,由此即可得到答案.【详解】解:如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,∴OMQ V 是等边三角形,∴60QOM OQ OM =°=∠,,∴30NOQ Ð=°,∵点M 的坐标为()30,,∴3OQ OM ==,由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,∴1322OK NQ OQ ===最小值最小值,故选A .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,坐标与图形,含30度角的直角三角形的性质,正确作出辅助线是解题的关键.20.202112【分析】此题主要考查了点的坐标,等边三角形的性质,直角三角形的性质,熟练掌握等边三角形的性质,理解在直角三角形中, 30°的角所对的边等于斜边的一半是解决问题的关键.首先根据点A 的坐标及等边三角形的性质得111,60,OA OA AOA ==Ð=°进而得1130,A OO Ð=°再根据直角三角形的性质得 11111,22A O OA ==点1A 的纵坐标为 12,依次类推得到点n A 的纵坐标为 12næöç÷èø即可解题.【详解】∵点A 的坐标是()0,1,1OAA V 是等边三角形,111,60OA OA AOA \==Ð=°,1111906030A OO AOO AOA \Ð=Ð-Ð=°-°=°,11A O x ^Q 轴,∴在11Rt A OO V 中, 1130,A OO Ð=°则 1111122A O OA ==,∴点1A 的纵坐标为 12,同理:2221111,22A O A O æö==ç÷èø 3332211,22A O A O æö==ç÷èø 4443311,22A O A O æö==ç÷èø...,以此类推, 12n n n A O æö=ç÷èø,∴点2A 的纵坐标为 21,2æöç÷èø点 A ₃的纵坐标为31,2æöç÷èø点 A ₄的纵坐标为 41,2æöç÷èø……,以此类推,点n A 的纵坐标为 12n æöç÷èø,∴点 2021A 的纵坐标为 202120211122æö=ç÷èø.故答案为: 202112.21.(1)见解析(2)见解析【分析】(1)根据尺规作一条线段垂直平分线的方法,进行作图即可;(2)过D 点作DE AB ^于E 点,连接DN ,由角平分线的性质和定义得到1152BAD BAC ==°∠,DC DE =,再由线段垂直平分线的性质得到NA ND =,进而得到30DNE NDA NAD Ð=Ð+Ð=°,则12DE DN =,由此即可证明结论.【详解】(1)解:如图,MN 为所求作的线段AD 的垂直平分线;(2)证明:过D 点作DE AB ^于E 点,连接DN ,∵30BAC Ð=°,AD 平分BAC Ð,DC AC ^,DE AB ^,∴1152BAD BAC ==°∠,DC DE =,∵MN 是AD 的垂直平分线,∴DN AN =,∴15NDA NAD Ð=Ð=°,∴30DNE NDA NAD Ð=Ð+Ð=°,在Rt DNE △中,12DE DN =,∵DN AN =,DC DE =,∴12CD AN =.【点睛】本题主要考查了,尺规作一条线段的垂直平分线,角平分线的性质,含30度角的直角三角形的性质,线段垂直平分线的性质,等边对等角,三角形外角的性质,解题的关键是作出辅助线,熟练掌握相关的性质.22.(1)90BCE °Ð=;(2)证明见解析.【分析】(1)证明ECD EAD V V ≌,可得A ECD Ð=Ð,设B x Ð=,可得2BEC x Ð=,得出23180x x x ++=°,解得30x =°,则BCE Ð可求出;(2)由直角三角形的性质可得2BE CE =,AE CE =,则结论可得出.【详解】(1)解: Q 点D 是AC 边的中点,DE AC ^,90EDC EDA \Ð=Ð=°,DC DA =,ED ED =Q ,()SAS ECD EAD \V V ≌,A ECD \Ð=Ð,设B x Ð=,∵AC BC =,B A x \Ð=Ð=,2BEC A ECA x \Ð=Ð+Ð=,4ACB B Ð=ÐQ ,3BCE x \Ð=,180B BEC BCE Ð+Ð+Ð=°Q ,23180x x x \++=°,解得30x =°,90BCE \Ð=°;(2)解:30B Ð=°Q ,90BCE Ð=°,2BE CE \=,CE AE =Q ,3AB BE AE CE \=+=.【点睛】考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,三角形内角和定理等知识.熟练掌握运用基础知识是解题的关键.23.(1)2cm(2)等边三角形,理由见解析【分析】本题主要考查线段垂直平分线的性质、含30°角的直角三角形,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.(1)连接BE ,由垂直平分线的性质可求得30CBE ABE A Ð=Ð=Ð=°,在Rt BCE V 中,由直角三角形的性质可证得2BE CE =,则可得出结果;(2)由垂直平分线的性质可求得AD BD =,根据含30°角的直角三角形可得12BC AB =,因此BCD △为等腰三角形,进一步由题意可知60ABC Ð=°,即可证明BCD △为等边三角形.【详解】(1)解:如图,连接BE ,DE Q 是AB 的垂直平分线,AE BE \=,30ABE A \Ð=Ð=°,30CBE ABC ABE \Ð=Ð-Ð=°,在Rt BCE V 中,2BE CE =,2AE CE \=,6cm AC =Q ,2cm CE \=.(2)BCD △是等边三角形,理由如下:连接CD ,DE Q 垂直平分AB ,∴D 为AB 中点,AD BD \=,在Rt ABC △中,30A Ð=°,12BC AB =∴,AD BD BC \==,又60ABC Ð=°Q ,∴BCD △是等边三角形.24.见详解【分析】根据全等三角形的判定定理SAS 可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到30PBQ Ð=°,根据直角三角形的性质即可得到.本题考查了全等三角形的判定与性质、等边三角形的性质以及含30度角直角三角形的性质,熟记全等三角形的判定与性质是解题的关键.【详解】解:ABC QV 为等边三角形.AB AC \=,60BAC ACB Ð=Ð=°,在BAE V 和ACD V 中,AE CD BAC ACB AB AC =ìïÐ=Ðíï=î,(SAS)BAE ACD \V V ≌,ABE CAD \Ð=Ð,BPQ ÐQ 为ABP V 外角,60BPQ BAD ABE CAD BAD BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,BQ AD ^Q ,30PBQ \Ð=°,2BP PQ \=.25.B【分析】根据折叠的性质可得,BF FD =,CG GD =,即12FG BC =,再由30°角所对的直角边是斜边的一半,即可求解,本题考查了折叠的性质,含30°角的直角三角形的性质,解题的关键是:熟练掌握折叠的性质.【详解】解:由折叠可知,BF FD =,CG GD =,12FG BC \=,在ABC V 中,90BAC Ð=°,4AB =,30C Ð=°,2248BC AB \==´=,118422FG BC \==´=,故选:B .26.C【分析】本题主要考查了折叠的性质,含30°角的直角三角形的直角.理解直角三角形中30°角所对边是斜边的一半是解题的关键.【详解】解:根据折叠的性质6cm DE EC ==,90EDB C Ð=Ð=°,∴90EDA Ð=°,∵30A Ð=°,∴212cm AE DE ==,∴18cm AC AE EC =+=,故选C .27.6【分析】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.由折叠的性质及矩形的性质得到OE 垂直平分AC ,得到AE EC =,根据AB 为AC 的一半确定出30ACE Ð=°,进而得到OE 等于EC 的一半,求出EC 的长,即为AE 的长.【详解】解:由题意得:AB AO CO ==,即2AC AB =,且OE 垂直平分AC ,AE CE \=,30ACB Ð=°,在Rt OEC △中,30OCE Ð=°,12OE EC BE \==,3BE =Q ,3OE \=,6EC =,则6AE =,故答案为:6.28.4【分析】本题考查了折叠的性质,平行四边形的性质,三角形内角和定理,含30°的直角三角形.解题的关键在于对知识的熟练掌握与灵活运用.由折叠的性质与题意可得,=90ACD а,由ABCD Y ,可知260BC AD CD AB D B ===Ð=Ð=°,,,则18030CAD ACD D Ð=°-Ð-Ð=°,24AD CD ==,进而可求BC 的值.【详解】解:由折叠的性质可得,=90ACD а,∵ABCD Y ,∴260BC AD CD AB D B ===Ð=Ð=°,,,∴18030CAD ACD D Ð=°-Ð-Ð=°,∴24AD CD ==,∴4BC =,故答案为:4.29.(1)60(2)30cm【分析】本题主要考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握旋转的性质.(1)根据90C Ð=°,30ABC Ð=°,求出903060BAC Ð=°-°=°,即可求出结果;(2)根据直角三角形的性质得出210cm AB AC ==,根据旋转得出60BAB ¢Ð=°,AB AB ¢=,证明ABB ¢V 是等边三角形,求出结果即可.【详解】(1)解:∵在ABC V 中,90C Ð=°,30ABC Ð=°,∴903060BAC Ð=°-°=°,根据旋转可知:60BAB BAC a =Ð=Ð=¢°;(2)解:∵90C Ð=°,30ABC Ð=°,5cm AC =,∴()22510cm AB AC ==´=,∵将ABC V 绕点A 逆时针旋转a 角度至AB C ¢¢△的位置,∴60BAB ¢Ð=°,AB AB ¢=,∴ABB ¢V 是等边三角形,∴ABB ¢V 的周长是()331030cm AB =´=.30.4【分析】由直角三角形的性质可得24AC AB ==,由旋转的性质可得4AE AC ==.本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是解题的关键.【详解】解:90B Ð=°Q ,30C Ð=°,24AC AB \==,Q 将ABC V 绕点A 旋转得到ADE V ,4AE AC \==,故答案为:431.4【分析】本题考查了旋转的性质,含30度角的直角三角形的性质,根据题意得出2AC =,进而根据旋转的性质,即可求解.【详解】在Rt ABC △中,1AB =,30C Ð=°,∴22AC AB ==.。
一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒C解析:C【分析】 根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质2.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒D解析:D【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.3.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、2+3=5,不能组成三角形,不符合题意;B 、4+6<11,不能组成三角形,不符合题意;C 、5+8>10,能组成三角形,符合题意;D 、4+4=8,不能够组成三角形,不符合题意.故选:C .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变B .减少C .增加D .不能确定A 解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A .【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°. 5.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.6.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是()A.4、5、6 B.3、4、5 C.2、3、4 D.1、2、3D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A .CE 不垂直AB ,故CE 不是ABC 的高,不符合题意,B .CE 是ABC 中AB 边上的高,符合题意,C .CE 不是ABC 的高,不符合题意,D .CE 不是ABC 的高,不符合题意.故选B .【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.8.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b =B .180a b =+°C .180b a =+︒D .360b a =+︒A 解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a ,∴a=(4-2)•180°=360°;∵五边形的外角和等于b ,∴b=360°,∴a=b .故选:A .【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键. 9.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8D 解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D .【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.10.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°D解析:D【分析】 根据三角形的外角的性质得到∠ADC=∠B+∠BAD ,得到x >70°,根据平角的概念得到x <180°,计算后进行判断得到答案.【详解】解:∵∠ADC=∠B+∠BAD ,∴x >70°,又x <180°,∴x 的度数可能为80°,故选:D .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、填空题11.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.8【分析】利用三角形的中线将三角形分成面积相等的两部分S △ABD=S △ACD=S △ABCS △BDE=S △ABDS △ADF=S △ADC 再得到S △BDE=S △ABCS △DEF=S △ABC 所以S △ABC=解析:8【分析】利用三角形的中线将三角形分成面积相等的两部分,S △ABD =S △ACD =12S △ABC ,S △BDE =12S △ABD ,S △ADF =12S △ADC ,再得到S △BDE =14S △ABC ,S △DEF =18S △ABC ,所以S △ABC =83S 阴影部分.【详解】解:∵D 为BC 的中点,∴12ABD ACD ABC S S S ==△△△, ∵E ,F 分别是边,AD AC 上的中点, ∴111,,222BDE ABD ADF ADC DEF ADF SS S S S S ===, ∴111,448BDE ABC DEF ADC ABC S S S S S ===, ∵113488BDE DEF ABC ABC ABC S SS S S S =+=+=阴影部分, ∴888333ABC S S ⨯===阴影部分, 故答案为:8.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S △=12×底×高.三角形的中线将三角形分成面积相等的两部分.12.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.【分析】根据求出mn 的长根据三角形三边关系求出k 的取值范围再根据k 为最长边进一步即可确定k 的取值【详解】解:由题意得n-9=0m-5=0解得m=5n=9∵mnk 为三角形的三边长∴∵k 为三角形的最长边解析:914k ≤<【分析】根据2|9|(5)0n m -+-=求出m 、n 的长,根据三角形三边关系求出k 的取值范围,再根据k 为最长边进一步即可确定k 的取值.【详解】解:由题意得n-9=0,m-5=0,解得 m=5,n=9,∵m ,n ,k ,为三角形的三边长,∴414k ≤<,∵k 为三角形的最长边,∴914k ≤<.故答案为:914k ≤<【点睛】本题考查了绝对值、偶次方的非负性,三角形的三边关系,根据题意求出m 、n 的长是解题关键,确定k 的取值范围时要注意k 为最长边这一条件.13.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.14.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上 解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<,解得3<h<6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.15.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数为___________.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B∠2=∠C+∠D∠3=∠E+∠F∠4=∠G+∠H∴∠A+∠B+∠C+∠D+∠E +∠F+解析:360°【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.16.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C ∆=72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.17.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE 解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC-∠A=20°∠=∠FDC+∠ACE=110°∴CFB故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键.18.已知等腰三角形的一边长等于11cm,一边长等于5cm,它的周长为______.【分析】题目给出等腰三角形有两条边长为11和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】分两种情况:当腰为11时11+11>511-11<5所以能构成三解析:27cm【分析】题目给出等腰三角形有两条边长为11和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠=︒∠=︒,则3150,222∠=_______.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC 又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于解析:49【分析】直接根据高相等的三角形,面积之比等于底之比.【详解】解:∵AD 是BC 边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆∵13AE AD = E AB ∆和BDE ∆的高相等∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49. 【点睛】此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系.三、解答题21.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.解析:(1)10°;(2)∠DAE =12(∠C−∠B);(3)45°. 【分析】 (1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE 、∠B 、∠C 的数量关系;(3)设∠ACB =α,根据角平分线的定义得∠CAG =12∠EAC =12(90°−α)=45°−12α,∠FCG =12∠BCF =12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B =40°,∠C =60°,∠BAC +∠B +∠C =180°,∴∠BAC =80°,∵AD 平分∠BAC ,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°−60°=30°,∴∠DAE=∠CAD−∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°−∠B−∠C,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°−∠C,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.22.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,FC的延长线与五边形ABCDE外角平分线相交于点P,求∠P的度数解析:∠P=25°.【分析】延长ED ,BC 相交于点G .由四边形内角和可求∠G=50°,由三角形外角性质可求∠P 度数.【详解】解:延长ED ,BC 相交于点G .在四边形ABGE 中,∵∠G=360°-(∠A+∠B+∠E )=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG ) =12∠G=12×50°=25°. 【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.23.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.24.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.解析:(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线, 111105522CBE CBD ∴∠=∠=⨯︒=︒;(2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.25.已知,a,b,c为ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.解析:﹣2a+4b﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a,b,c为ABC的三边,∴a+b>c,b+c>a,a+c>b∴|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b﹣c|=﹣[a﹣(b+c)]+2[b﹣(c+a)]+(a+b﹣c)=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.26.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.解析:∠COD=70°【分析】利用对顶角相等可得∠AOM的度数,再利用角平分线的定义和垂线定义进行计算即可.【详解】解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.【点睛】本题考查了垂线,关键是掌握对顶角相等,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.27.如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.解析:(1)证明见解析;(2)110°【分析】(1)延长BP 交AC 于D ,根据△PDC 外角的性质知∠BPC >∠1;根据△ABD 外角的性质知∠1>∠A ,所以易证∠BPC >∠A .(2)由三角形内角和定理求出∠ABC +∠ACB =140°,由角平分线和三角形内角和定理即可得出结果.【详解】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A ;(2)在△ABC 中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB , 在△PBC 中,∠P=180°﹣(∠PBC+∠PCB ) =180°﹣(12∠ABC+12∠ACB ) =180°﹣12(∠ABC+∠ACB ) =180°﹣12×140° =110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.28.观察探究及应用.(1)如图,观察图形并填空:一个四边形有_______条对角线;一个五边形有_______条对角线;一个六边形有_______条对角线;(2)分析探究:由凸n边形的一个顶点出发,可作_______条对角线,多边形有n个顶点,若允许重复计数,共可作_______条对角线;(3)结论:一个凸n边形有_______条对角线;(4)应用:一个凸十二边形有多少条对角线?解析:(1)2;5;9;(2)(n-3);n(n-3);(3)(3)2n n-;(4)54【分析】(1)根据图形数出对角线条数即可;(2)根据所画图形可推导出凸n边形从一个顶点出发可引出(n-3)条对角线,进而可得共可作n(n-3)条对角线;(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,即可解答;(4)把n=12代入(3)计算即可.【详解】解:(1)根据图形数出对角线条数,一个四边形有2条对角线,一个五边形有5条对角线,一个六边形有9对角线;故答案为:2;5;9;(2)∵从凸4边形的一个顶点出发,可作1条对角线,从凸5边形的一个顶点出发,可作2条对角线,从凸6边形的一个顶点出发,可作3条对角线,从凸7边形的一个顶点出发,可作4条对角线,…∴从凸n边形从一个顶点出发可引出(n-3)条对角线,若允许重复计数,共可作n(n-3)条对角线;故答案为:(n-3);n(n-3).(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,故答案为:(3)2n n-.(4)把n=12代入(3)2n n-计算得:1292⨯=54.故一个凸十二边形有54条对角线.【点睛】本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.。
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
八年级数学上册直角三角形与勾股定理专项练习【知识梳理】1.若 a 、b 、c 是Rt △ABC 的三边,,则a 2+b 2= 。
90=∠C 2.若 a 、b 、c 是△ABC 的三边,且a 2+b 2=c 2,则∠C= 。
3.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.4.直角三角形斜边上的中线等于 ;三角形中一条边上的中线等于这条边的一半,那么这条边所对的角是。
5.直角三角形中,30°的角所对的边等于 ;一直角边等于斜边的一半,这条直角边所对的角等于度。
【名题点拔】考点1 “双垂图”中的计算问题例1 已知:在Rt △ABC 中,∠C=90°,CD ⊥BA 于D ,∠A=60°,CD=,求线3段AB 的长。
练习已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,BC =4,AC =3,求线段AB 、CD 、BD 的长。
考点2 勾股定理在轴对称问题中的应用例2 如图,有一个直角三角形纸片,两直角边AC =6c m ,BC =8c m ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长。
考点3 勾股定理逆定理的应用例3 一个零件的形状如右图,按规定这个零件中∠A 与∠BDC 都应为直角, 工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗? 为什么?CC练习1、等腰三角形的周长是20 cm,底边上的高是6 cm,求它的面积.2、(1)在△ABC中,∠C=90°,AB=6,BC=8,DE垂直平分AB,求BE的长.(2)在△ABC中,∠C=90°,AB=6,BC=8,AE平分∠CAE,ED⊥AB,求BE的长.(3)如图,折叠长方形纸片ABCD,是点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.例1:(1)一轮船以16 n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12 n mi1e/h的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距(2)一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5 m,消防车的云梯最大升长为13 m,则云梯可以达到该建筑物的最大高度是(3)一棵树在离地面9m处断裂,树的顶部落在离底部12 m处,树折断之前有_______m.例2:如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端B下降至B',那BB'等于( )A.3m B.4 m C.5 m D.6 m例3:(1)在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求这里的水深是多少米?(2)学校旗杆顶端垂下一绳子,小明把它拉直到旗杆底端,发现绳子还多2米,他把绳子全部拉直且使绳的下端接触地面,绳下端离开旗杆底部6米,则旗杆的高度是多少米?例4:《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街道上直道行驶,如图某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.例6、如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?例7、如图,在一棵树的10 m高的D处有两只猴子,其中一只猴子爬下树走到离树20 m处的池塘A处,另一只爬到树顶后直接跃向池塘A处,如果两只猴子所经过的距离相等,试问这棵树有多高?例8、如图,点P是等边△ABC内的一点,分别连接PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连接OQ.(1)观察并猜想AP与CQ之间的大小关系,并说明你的结论;(2)已知PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,请说明理由.例9、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,A、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图2是方案二的示意图(点A关于直线X的对称点是A′,连接BA′交直线X于点P),P到A、B的距离之和S2=PA+PB.(1)求S1、S2,并比较它们的大小;(2)请你说明S2=PA+PB的值为最小;(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.一、选择题(每小题6分,共36分)1.在中,,,( )Rt ABC △90C ∠=BC =AC =A ∠=A .B .C .D .906045302.如图,已知中,,,是高和的交点,ABC △45ABC ∠=4AC =H AD BE 则线段的长度为( )BH AB .4C .D .53.如图4,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .34C .D .2234.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕的长是PQ ( )A BC cmD .2cm5.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是 ()A .B . 17252C .D .7246.如图,在等腰Rt △ABC 中,∠C=90º,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。
八上数学每日一练:含30度角的直角三角形练习题及答案_2020年解答题版答案解析答案解析答案解析2020年八上数学:图形的性质_三角形_含30度角的直角三角形练习题1.(2020历下.八上期末)如图,在等边中,点(2,0),点 是原点,点 是 轴正半轴上的动点,以 为边向左侧作等边 ,当时,求 的长.考点: 坐标与图形性质;等边三角形的性质;含30度角的直角三角形;勾股定理;2.(2020厦门.八上期中) 如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上,∠OAB =30°.(Ⅰ)若点C 在y 轴上,且△ABC 为以AB 为腰的等腰三角形,求∠BCA 的度数;(Ⅱ)若B (1,0),沿AB 将△ABO 翻折至△ABD . 请根据题意补全图形,并求点D的横坐标.考点: 坐标与图形性质;等腰三角形的性质;含30度角的直角三角形;翻折变换(折叠问题);3.(2020重庆.八上期中) 如图所示,测量旗杆AB的高度时,先在地面上选择一点C,使∠ACB=15°.然后朝着旗杆方向前进到点D,测得∠ADB=30°,量得CD=13 m,求旗杆AB 的高.考点: 等腰三角形的性质;含30度角的直角三角形;4.(2020安陆.八上期末)如图, 中,,,一同学利用直尺和圆规完成如下操作:分别以点 、 为圆心,以大于的长为半径画弧,两弧交于点,两点,直线 交 于 ,交 于 .请你观察图形,猜想 与 之间的数量关系,并证明你的结论.答案解析答案解析考点: 线段垂直平分线的性质;含30度角的直角三角形;5.(2017卢龙.八上期中) 如图,在Rt △ABC 中,∠C=90°,BD 平分∠ABC 交AC 于D ,DE ⊥AB 于E ,若DE=1cm ,∠CBD =30°,求∠A 的度数和AC 的长.考点: 角平分线的性质;含30度角的直角三角形;2020年八上数学:图形的性质_三角形_含30度角的直角三角形练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
中考数学专题练习19《直角三角形》【知识归纳】1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的;(3)在直角三角形中,斜边上的中线等于斜边的3.直角三角形的判定(1)两个内角的三角形是直角三角形;(2)一边上的中线等于这条边的的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是三角形【基础检测】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.122.(·贵州安顺·3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.(·四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+6. (·浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.7. (·湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .8.(·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【达标检测】一.选择题1.(•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,42.(•青岛,第4题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +23. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是A.5 B.10 C.12 D.135.(·湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.106. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )(第11题图)A. 21B. 20C. 19D. 188.(·四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.29.(·湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.11.(·四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.12.(·四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=______.13. (·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA =55,则BD的长为_______.14. 如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,=1.73).15. (·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.DO CEBA图4三.解答题16.(江西,23,10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.17.(·湖北咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【知识归纳答案】1.直角三角形的定义有一个角是 90°的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半3.直角三角形的判定(1)两个内角和为90°的三角形是直角三角形;(2)一边上的中线等于这条边的一半的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么a2+b2=c2逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形【基础检测答案】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.12【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6,故答选A.2.(·贵州安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.5.(四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C.D.1+【分析】由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=AB.【解答】解:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=0.5 AB=1.故选:A.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.6. (浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 .【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.7. (湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= 3 .【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.8.(湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AO B=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE= AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.【达标检测答案】一.选择题1.(•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是() A.,, B. 1,, C. 6,7,8 D. 2,3,4【解析】勾股定理的逆定理..知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.(•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +2【解析】含30度角的直角三角形.根据角平分线的性质即可求得CD的长,然后在直角△BDE 中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.故选C .【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.3. 如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个 【答案】D【解析】在△ABC 中,∠A=36°,AB=AC ,求得∠ABC=∠C=72°,且△ABC 是等腰三角形. 因为BD 是△ABC 的角平分线 所以∠ABD=∠DBC=36° 所以△ABD 是等腰三角形. 在△BDC 中有三角形的内角和求出∠BDC=72° 所以△BDC 是等腰三角形.所以BD=BC=BE 所以△BDE 是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE 是等腰三角形.共5个. 故选D .4.如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 于D ,交BC 于E ,连接AE ,若CE=5,AC=12,则BE 的长是 A .5B .10C .12D .13【解答】解:∵AD 是△ABC 的角平分线,DE ⊥AB ,∠C=90°, ∴CD=DE=1,又∵直角△BDE 中,∠B=30°, ∴BD=2DE=2, ∴BC=CD+BD=1+2=3.【答案】D.【解析】在Rt△CAE中,CE=5,AC=12,由勾股定理得:2213AE AC CE=+=又DE是AB的垂直平分线,∴BE=AE=13.故选D.5.(湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.6. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°【答案】D.【解析】根据直角三角形两锐角互余列式计算即可得解:(第11题图)∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°﹣60°=30°.故选D.7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A. 21B. 20C. 19D. 18【答案】A.【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=21.∴这个三角形的周长为21.故选A.8.(四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【考点】旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.9.(湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.【解析】直角三角形斜边上的中线.【解答】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.【点评】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.11.(四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是(0,3),(0,﹣1).【考点】坐标与图形性质.【分析】在平面直角坐标系中,根据勾股定理先求出直角三角形的另外一个直角边,再根据点P的坐标即可得出答案.【解答】解:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).12.(四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE ⊥BC,垂足为点E,则OE=______.[答案]12 5[考点]菱形的性质,勾股定理,三角形面积公式。
初中数学直角三角形斜边中线性质应用专项练习题(附答案详解)1.如图,在ABC 中,∠B=60°,CD 为AB 边上的高,E 为AC 边的中点,点 F 在BC 边上,∠EDF=60°,若 BF=3,CF=5,则AC 边的长为 .2.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F .(1)若AB =2,AD =3,求EF 的长;(2)若G 是EF 的中点,连接BG 和DG ,求证:DG =BG .3.如图所示,在ABC ∆中,BD AC ⊥于D ,CE AB ⊥于E ,点M ,N 分别是BC ,DE 的中点,求证:MN DE ⊥.4.△ABC 中,AC=BC ,∠ACB=90°,CD=BD ,∠1=∠2,求证:CM ⊥AD 。
5.如图所示,ABC ∆中,90BAC ∠=︒,延长BA 到D ,使12AD AB =,点E 是AC 的中点,求证:2BC DE .6.如图所示,CDE ∆中,135CDE ∠=︒,CB DE ⊥于V ,EA CD ⊥于A ,求证:2CE AB =.7.如图所示,四边形ACBD 中,90ADB ACB ∠=∠=︒,60DBC ∠=︒,点E 是AB 的中点,求DCE ∠的度数.8.如图所示,90DBC BCE ∠=∠=︒,M 为DE 的中点,求证:MB MC =.9.如图所示,ABC ∆中,,90,AB AC BAC D =∠=为BC 延长线上一点,过D 作DE AD ⊥,且DE AD =,求DBE ∠的度数.10.如图所示,ABC ∆中,,90,AB AC BAC D =∠=是AC 的中点,,DE DF DE ⊥交BA 的延长线于点,E DF 交AC 的延长线于点F ,求证:BE AF =.11.如图所示,ABC ∆中,,90,AB AC BAC D =∠=为BC 的中点,G 为AC 上一点,AE BG ⊥于点E ,连结DE .求证:2BE AE DE -=.12.如图所示,BCD ∆和BCE ∆中,90BDC BEC ∠=∠=︒,O 为BC 的中点,BD ,CE 交于A ,120BAC ∠=︒,求证:DE OE =.13.如图所示,E ,F 分别是正方形ABCD 的边AD ,CD 上的两个动点,且AE DF =,BE 交AF 于点H ,2AB =,连DH .求线段DH 长度的最小值.14.如图所示,ABC ∆中,2B A ∠=∠,CD AB ⊥于D ,E 为AB 的中点,求证:2BC DE =.15.如图所示,四边形ACBD 中,90ADB ACB ∠=∠=︒,60DBC ∠=︒,点E 是AB 的中点,求CE CD的值.16.如图,正方形ABCD 中,对角线AC 上有一点P ,连接BP 、DP ,过点P 作PE ⊥PB 交CD 于点E ,连接BE .(1)求证:BP=EP;(2)若CE=3,BE=6,求∠CPE的度数;(3)探究AP、PC、BE之间的数量关系,并给予证明.参考答案1.【解析】【分析】如图(见解析),先根据直角三角形的性质、勾股定理得出,4D B F D ==,再根据等边三角形的判定与性质得出4,60DH BDH =∠=︒,然后根据三角形的中位线定理、平行线的性质得出60EHD BDH ∠=∠=︒,从而可得EHD B ∠=∠,BDF HDE ∠=∠,最后根据三角形全等的判定定理与性质得出DE DF ==据此根据直角三角形斜边上的中线等于斜边的一半即可得.【详解】如图,过点D 作DG BC ⊥于点G3,5BF CF ==8BC BF CF ∴=+=在Rt BCD 中,60B ∠=︒,9030BCD B ∠=︒-∠=︒142BD BC ∴== 在Rt BDG 中,60B ∠=︒,9030BDG B ∠=︒-∠=︒12,2BG BD DG ∴====1GF BF BG ∴=-=,DF ==取BC 的中点H ,连接DH 、EH142DH BH BC BD ∴==== BDH ∴是等边三角形60BDH ∴∠=︒点E 是AC 边的中点∴EH 是ABC 的中位线//EH AB ∴60EHD BDH ∴∠=∠=︒60EHD B ∴∠=∠=︒又60BDF FDH BDH ∠+∠=∠=︒,60HDE FDH EDF ∠+∠=∠=︒BDF HDE ∴∠=∠在HDE 和BDF 中,EHD B DH DB HDE BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()HDE BDF ASA ∴≅13DE DF ∴==则在Rt ACD △中,12DE AC =,即2213AC DE == 故答案为:213.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质、三角形的中位线定理等知识点,通过作辅助线,构造等边三角形和全等三角形是解题关键. 2.(1)EF 2;(2)见解析【解析】【分析】(1)由AE 平分∠BAD ,可得∠DAF =45°,从而∠F =45°,可证△ADF ,△ECF 都是等腰直角三角形,求出CF 的长,最后根据勾股定理即可求出EF 的长;(2)连结CG ,易证∠BEG =∠DCG =135°,根据“SAS ”可证△BEG ≌△DCG ,从而可得DG =BG .【详解】解:(1)在矩形ABCD 中∵AE 平分∠BAD ,∴∠DAF =45°, ∴∠F =45°,∴△ADF,△ECF都是等腰直角三角形,∴DF=AD=3, CF=DF-CD= 1.在Rt△CEF中,∴EF=2.(2)连结CG,∵G是EF中点,∴CG⊥EF,∠ECG=∠CEF=45°.∴∠BEG=∠DCG=135°.∴EG=12EF=CG.∵AB=BE=CD,∴BE=CD.∴△BEG≌△DCG,∴DG=BG.【点睛】本题考查了矩形的性质,角平分线的定义,等腰直角三角形的判定与性质,勾股定理,以及全等三角形的判定与性质,证明△ADF,△ECF都是等腰直角三角形是解(1)的关键,证明△BEG≌△DCG是解(2)的关键.3.见解析【解析】【分析】连接ME、MD,根据直角三角形斜边上的中线等于斜边的一半可得MD=ME=12BC,再根据等腰三角形三线合一的性质证明即可;【详解】证明:连结MD ,ME ,点M 分别是Rt EBC ∆和Rt DBC ∆斜边的中点,MD ME ∴==1BC 2,又N 是DE 的中点, MN DE ∴⊥.【点睛】本题主要考查直角三角形和等腰三角形的性质,遇到直角三角形斜边上的中点时,往往连结斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得DM =EM 是解题的关键. 4.见解析.【解析】【分析】 过点C 作CE ⊥AB 交AB 于点E ,交AD 于点F ,AD 与CM 交于点G ,根据∠B=∠BCE=45°,CD=BD ,∠1=∠2证明△CDF ≌△BDM ,得到CF=BM ,然后再由AC=BC 及通过SAS 证明△ACF ≌△CBM ,得到∠CAF=∠BCM ,再根据角之间的等量代换可证明∠CFG+∠ECM=90°,问题得证.【详解】证明:过点C 作CE ⊥AB 交AB 于点E ,交AD 于点F ,AD 与CM 交于点G ,∵AC=BC ,∠ACB=90°,∴∠B=∠BCE=45°,在△CDF 和△BDM 中,,∴△CDF ≌△BDM (ASA ),∴CF=BM ,在△ACF 和△CBM 中,,∴△ACF ≌△CBM (SAS ),∴∠CAF=∠BCM,∵∠BCM +∠ECM =∠CAF+∠EAF=45°,∴∠ECM =∠EAF,∵∠AFE=∠CFG,且∠AFE+∠EAF=90°,∴∠CFG+∠ECM=90°,即∠CGF=90°,∴CM⊥AD.【点睛】本题主要考查等腰直角三角形的性质、全等三角形的判定和性质,正确作出辅助线,寻找合适的全等三角形是解题关键,有一定难度.5.见解析【解析】【分析】可知EF是△ABC的中位线,根据三角形中位线的性质,可得EF∥AB,EF=12AB,又由AD=12AB,即可得AD=EF,根据有一组对边平行且相等的四边形是平行四边形,可证得四边形AEFD是平行四边形.DE=AF,由在Rt△ABC中,∠BAC=90°,点E边BC的中点,根据直角三角形斜边的中线等于斜边的一半,可求得AF=12BC.所以DE=2BC.【详解】证明:取BC的中点F,连EF,AF,∵点E、F分别为边BC,AC的中点,即EF是△ABC的中位线,∴EF∥AB,EF=12 AB,即EF∥AD,∵AD=12 AB,∴EF=AD,∴四边形AEFD是平行四边形;∴AF=DE.∵在Rt△ABC中,∠BAC=90°,点E边BC的中点,∴AF=12 BC,∵四边形AFED是平行四边形,∴BC=2DE.【点睛】此题考查了平行四边形的判定与性质、三角形中位线的性质、直角三角形斜边上的中线的性质.灵活运用中点的有关性质解题是解题关键.6.见解析【解析】【分析】取CE的中点F,连接AF、BF,根据直角三角形斜边上的中线等于斜边的一半可得AF=EF=BF=CF,根据三角形的内角和等于180°求出∠ACE+∠BEC=45°,然后求出∠AEC+∠BCE=135°,再根据等腰三角形两底角相等求出∠BFC+∠AFE=90°,然后求出∠AFB=90°,从而判断出△ABF是等腰直角三角形,然后根据等腰直角三角形的直角边等于斜边的2可得AF=2AB,然后证明即可.【详解】证明:如图,取CE的中点F,连接AF、BF,∵CB⊥DE,EA⊥CD,∴AF=EF=BF=CF=12 CE,在△CDE中,∵∠CDE=135°,∴∠ACE+∠BEC=180°-135°=45°,∴∠AEC+∠BCE=(90°-∠ACE)+(90°-∠BEC)=180°-45°=135°,∴∠BFC+∠AFE=(180°-2∠BCE)+(180°-2∠AEC)=360°-2(∠AEC+∠BCE)=360°-2×135°=90°,∴∠AFB=180°-(∠BCF+∠AFE)=180°-90°=90°,∴△ABF是等腰直角三角形,∴AF=22AB,∴CE=2AF=2×22AB=2AB,即CE=2AB.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,三角形的内角和定理,等腰直角三角形的判定与性质,熟记各性质是解题的关键,作出图形更形象直观.7.30【解析】【分析】连接DE,根据直角三角形的性质得到DE=12AB=BE,CE=12AB=BE,根据三角形的外角性质计算即可;【详解】证明:连接DE,∵∠ACB=∠ADB=90°,E是AB的中点,∴DE=12AB =BE ,CE =12AB =BE , ∴ED =EC ,∠EDB =∠EBD ,∠ECB =∠EBC ,∴∠DEC =∠AED +∠AEC =2∠DBC =120°,∵ED =EC ,∴∠DCE =12×(180°-120°)=30°; 【点睛】本题主要考查直角三角形和等腰三角形的性质,遇到直角三角形斜边上的中点时,往往连结斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得DE =CE 是解题的关键. 8.见解析【解析】【分析】延长BM 交CE 于N ,易得DBM ENM ∆∆≌,BM =MN ,由直角三角形斜边中线性质可得CM =MN =BM .【详解】证明:延长BM 交CE 于N ,∵90DBC BCE ∠=∠=︒,∴CE ∥DB ,∴∠D =∠E ,在DBM ∆和ENM ∆中D=E DM=EMDMB=EMN ∠∠⎧⎪⎨⎪∠∠⎩∴DBM ENM ∆∆≌,BM MN =∴,∵∠BCE =90°,12CM BN BM ∴==. 【点睛】本题主要考查了直角三角形斜边中线的性质,解题的关键是正确作出辅助线.构造直角三角形.9.45°【解析】【分析】分别过点A 、E 分别作于AF BD ⊥于F ,EG BD ⊥于G ,由等腰直角三角形的性质可得AF BF CF ==,由同角的余角相等得FAD FDE ∠=∠,结合已知可证ADF DEG ∆∆≌ ,由全等三角形的对应边相等得DF=EG ,AF=DG ,则EG FD FG GD FG AF FG BF BG ==+=+=+= ,即△BEG 为等腰直角三角形,即可得DBE ∠的度数.【详解】解:分别过点A 、E 分别作于AF BD ⊥于F ,EG BD ⊥于G ,则AF BF CF ==,90FAD ADF ADF FDE ∠+∠=∠+∠=︒,∴FAD FDE ∠=∠,AD DE ⊥ AD DE =,ADF DEG ∴∆∆≌,DF EG ∴=,AF DG =,EG FD FG GD FG AF FG BF BG ∴==+=+=+=,∴△BEG 为等腰直角三角形,45DBE BEG ∴∠=∠=︒.故答案为45°. 【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,本题中作辅助线证出△BEG 为等腰直角三角形是解题的关键.10.详见解析【解析】【分析】连结AD ,根据等腰直角三角形的性质得AD ⊥BC ,AD=BD ,由同角的余角相等得B FAD ∠=∠ ,证明BDE ADF ∆∆≌ ,即可得出结论.【详解】证明:连结AD ,AB AC =,90BAC ∠=︒,BD DC = AD BC ∴⊥AD BD ∴=90B BAD BAD FAD ∠+∠=∠+∠=︒B FAD ∴∠=∠BDE BDA ADE ∠=∠+∠ FDA FDE ADE ∠=∠+∠ 90BDA FDE ∠=∠=︒ BDE FDA ∴∠=∠BDE ADF ∴∆∆≌BE AF ∴=.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.11.详见解析【解析】【分析】连结AD ,过点D 作DF DE ⊥交BG 于点F ,由等腰直角三角形的性质可得AD BD =,AD ⊥BC ,由等角的余角相等得ADE BDF ∠=∠,DAE DBF ∠=∠,根据ASA 可证出ADE BDF ∆∆≌ ,由全等三角形的对应边相等得AE=BF ,DE=DF ,则△EDF 为等腰直角三角形,即可得BE 2EF BF BE AE DE ∴=-=-=.【详解】 证明:连结AD ,过点D 作DF DE ⊥交BG 于点F ,∵,90,AB AC BAC D =∠=为BC 的中点,∴AD BD =,AD ⊥BC ,∵DF DE ⊥,∠BAC=90°,AE BG ⊥∴ADE BDF ∠=∠,DAE DBF ∠=∠, ∴ADE BDF ∆∆≌(ASA )∴AE=BF ,DE=DF ,∵DF DE ⊥∴2EF DE =∴BE EF 2BE AE BF DE -=-==. 【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,本题中求证ADE BDF ∆∆≌是解题的关键.12.见解析【解析】【分析】连接OD.因为∠BDC=∠BEC=90°,O 为BC 的中点;所以有OE OD =OB=OC ,进而∠COD=2∠CBD ,∠BOE=2∠BCE ;又因为∠BAC=120°;所以有∠CBD+∠BCE=60°,∠COD+∠BOE=120°;所以∠DOE=60°;从而证得△DOE 是等边三角形,所以DE=OE.【详解】连OD ,∵O为BC的中点,∵OE OD=OB=OC,∴∠COD=2∠CBD,∠BOE=2∠BCE.∵∠BAC=120°,∴∠CBD+∠BCE=60°,∴∠COD+∠BOE=120°,∴∠DOE=60°,∴△DOE是等边三角形,∴DE=OE.【点睛】此题考查了等边三角形的判定和性质,直角三角形斜边的中线等于斜边的一半,等腰三角形的性质及三角形外角的性质,解答此题的关键是要掌握分析题中的各种信息条件,找到相应的知识来解决问题,然后根据以往做题经验找出解决问题的方法.13.DH51【解析】【分析】根据正方形性质可得AB=DA,∠BAD=∠ADF=90°,又根据AE=DF,利用SAS可证得△ABE≌△DAF,于是∠ABE=∠DAF;由于∠DAF+∠BAH=∠ABE+∠BAH=90°,从而∠AHB=90°,取AB的中点O,连接OH、OD,则OH=12AB=1,在Rt△AOD中,根据勾股定理计算出OD的值;根据三角形的三边关系,可得OH+DH>OD,于是当O、D、H三点共线时,DH的长度最小为OD-OH,据此解答.【详解】解:∵四边形ABCD是正方形,∴AB=DA,∠BAD=∠ADF=90°,又∵AE=DF,∴∠ABE=∠DAF.∴∠DAF+∠BAH=∠ABE+∠BAH=90°,∴∠AHB=90°,取AB的中点O,连OH、OD,∴112OH AB==,225OD OA AD=+=,在OHD∆中有DH OD OH>-,即51DH>-.故O、H、D三点共线时DH最小,∴DH最小值为51-.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边的中线等于斜边的一半,勾股定理及三角形三条边的关系,确定出点H的位置是解答本题的关键.14.见解析【解析】【分析】取AC中点F,连接EF、DF,则EF为△ABC的中位线,结合条件可得到∠FEA=2∠A,结合直角三角形的性质可得到∠FDE=∠EFD,得到DE=EF,可得出结论.【详解】证明:取AC的中点F,连EF,DF,则EF为中位线,∴∠FEA=∠B=2∠A ,在直角三角形ACD 中,F 是斜边BC 的中点,∴DF=CF=AF ,∴∠FDA=∠A ,即有2∠FDA=∠FEA ,∵∠FEA=∠FDA+∠DFE ,∴∠DFE=∠FDA ,∴DE=EF ,∴BC=2DE .【点睛】本题考查了三角形中位线的判定与性质,直角三角形斜边的中线等于斜边的一半,三角形外角的性质,等腰三角形的判定等知识,正确作出辅助线是解答本题的关键.15.33CE CD = 【解析】【分析】根据直角三角形斜边上中线等于斜边的一半,可得出DE=CE=BE ,根据三角形外角的性质及等腰三角形的性质可求出30DCE ∠=︒,过E 作EM CD ⊥于M ,设1EM =,可求出CE 、CM 、CD 的值.【详解】证明:连结DE ,在Rt △ACB 和Rt △ADB 中,∵E 是AB 的中点,∴12DE AB =,12CE AB =, ∴DE CE EB ==,∴2DEA DBE ∠=∠,2AEC EBC ∠=∠,∴2120DEC DBC ∠=∠=︒,30DCE ∠=︒.过E 作EM CD ⊥于M ,设1EM =,则2CE =,CM =,∴CD =,∴CE CD =【点睛】本题考查了含30°角的直角三角形的性质,三角形外角的性质,等腰三角形的性质,勾股定理等知识,正确作出辅助线是解答本题的关键.16.(1)证明见解析;(2)∠EBC=30°;(3)BE 2=AP 2+PC 2,理由见解析.【解析】【分析】(1)利用正方形的性质得出△CBP ≌△CDP ,得出BP =DP ,利用四边形的内角和,得出EP =DP ,从而得出结论;(2)取BE 的中点F ,得出△CEF 是等边三角形,利用撒尿行内角和定理,得出∠EPC =30°; (3)过点P 作PC /⊥AC ,得出△BPC ≌△EPC /, 近而得出四边形ABEC /为平行四边形,在Rt △APC /中,利用勾股定理得出结论即可.【详解】(1)∵ 四边形ABCD 是正方形,∴CB =CD ,AC 平分∠BCD , 即 ∠BCP =∠DCP , 又CP 是公共边 所以△CBP ≌△CDP ∴ BP =DP , ∠PBC =∠PDC∵ ∠BPE -∠BCE =90°,∠BPE +∠BCE +∠PBC +∠PEC =360°∴∠PBC +∠PEC =90°∵ ∠PED +∠PEC =90°∴∠PED =∠PBC ∴∠PED =∠PDC ∴EP =DP ,∴ BP =DP .(2)取BE 的中点F ,连CF ,则CE =CF -EF =3, ∴△CEF 是等边三角形,则∠BEC =60°,∵∠BCE =90°,∴∠EBC +∠BEC =90°, ∴∠EBC =30°, ∵∠EBC +∠BCP =∠PEB +∠EPC , ∠PEB =∠BCP =45°∴∠EBC =∠EPC =30°﹒(3)过点P作PC/⊥AC,交CD的延长线于C/,得△BPC≌△EPC/, CP=C/P,BC=EC/, ∵AB=BC,∴AB=EC/∵AB∥EC/∴四边形ABEC/为平行四边形,∴AC/=BE,∵在Rt△APC/中,C/A2=AP2+C/P2∴BE2=AP2+PC2﹒。
八年级数学下册《直角三角形》练习题与答案(湘教版)一、选择题1.小明同学把一个含有450角的直角三角板在如图所示的两条平行线m,n上,测得,则的度数是( )A.450B.550C.650D.7502.如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个3.下列三角形中,可以构成直角三角形的有( )A.三边长分别为2,2,3B.三边长分别为3,3,5C.三边长分别为4,5,6D.三边长分别为1.5,2,2.54.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=( )A.34B.4C.4或34D.以上都不对5.如图, OD⊥AB于点D,OE⊥AC于点E,且OD=OE,则△AOD与△AOE全等的理由是( )A.SASB.ASAC.SSSD.HL6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°7.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,则AB等于 ( )A.2B.3C.4D.68.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b-1),则a和b的数量关系为( )A.6a-2b=1B.6a+2b=1C.6a-b=1D.6a+b=110.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是( )A.∠C=∠ABCB.BA=BGC.AE=CED.AF=FD11.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6B. 3C. 2D. 1.512.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD 相交于点P,连接AP.有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBD +S△PCE=S△PBC.其中正确的个数是( )A.2B.3C.4D.5二、填空题13.如图,在Rt△ABC中,∠B的度数是________度.14.等腰三角形一底角是30°,底边上的高为9 cm,则其腰长为________,顶角为________.15.已知等腰直角三角形的面积为2,则它的周长为.(结果保留根号)16.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.17.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S=6,则点D到AB的距△ADC离是________.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为.三、作图题19.如图,在Rt△ABC中,∠ABC=60°,BC=3.①在BC、BA上分别截取BD、BE,使BD=BE;②分别以D、E为圆心、以大于0.5DE的长为半径作圆弧,在∠ABC内两弧交于点O;③作射线BO交AC于点F.若点P是AB上的动点,则FP的最小值为.四、解答题20.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.21.如图,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.求证:△ADE≌△BEC.22.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.23.在△ABC中,∠ACB=90°,∠A,∠B,∠C所对的边分别为a,b,c,已知它的周长为626且c=26.(1)比较大小:6____26.(2)求△ABC的面积.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,C为线段BD上的一个动点,分别过点B,D在BD两侧作AB⊥BD,ED⊥BD,连结AC,EC.已知AB=5,DE=9,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问:点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的结论,请构图求出代数式x2+4+(12-x)2+9的最小值.参考答案1.D.2.C3.D.4.A.5.D.6.B.7.C8.D9.B10.B11.D.12.C13.答案为:25.14.答案为:18 cm 120°15.答案为:4+2 2.16.答案为:8.17.答案为:3.18.答案为:6.19.答案为1.20.证明:(1)∵AB=AC,∠B=30°∴∠B=∠C=30°∴∠BAC=180°﹣30°﹣30°=120°∵∠BAD=45°∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°∴∠ADC=∠CAD∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时∵∠B=30°∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.21.证明:∵∠1=∠2∴DE=EC.又∵∠A=∠B=90°,AE=BC∴Rt△ADE≌Rt△BEC(HL).22.解:(1)∠BAC=180°﹣60°﹣45°=75°;(2)∵AD⊥BC∴△ADC是直角三角形∵∠C=45°∴∠DAC=45°∴AD=DC∵AC=2∴AD= 2.23.解:(1)>;(2)∵∠ACB=90°,∠A,∠B,∠C所对的边分别为a,b,c它的周长为6+26且c=26∴a+b=6,a2+b2=c2=26∴(a+b)2=36∴a2+b2+2ab=36∴2ab=10∴12ab=52,即△ABC的面积为52.24.解:延长AD至点E,使AD=ED,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2 ∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172 ∴BC =2BD =17.25.解:(1)AC +CE =(8-x )2+25+x 2+81.(2)当A ,C ,E 三点共线时,AC +CE 的值最小.(3)如图,作BD =12,过点B 作AB ⊥BD ,过点D 作ED ⊥BD(点A 与点E 在BD 的异侧),使AB =2,ED =3,连结AE 交BD 于点C设BC =x ,则AE 的长即为x 2+4+(12-x )2+9的最小值.过点E 作EF ⊥AB ,交AB 的延长线于点F.在Rt △AEF 中,易得AF =2+3=5,EF =12∴AE =13x 2+4+(12-x )2+9的最小值为13.。
直角三角形的性质课前测试【题目】课前测试如图,已知Rt△ABC中,∠ACB=90°,∠B=15°,边AB的垂直平分线交边BC于点E,垂足为点D,取线段BE的中点F,联结DF.求证:AC=DF.【答案】证明:连接AE,∵DE是AB的垂直平分线(已知),∴AE=BE,∠EDB=90°(线段垂直平分线的性质),∴∠EAB=∠EBA=15°(等边对等角),∴∠AEC=30°(三角形的一个外角等于与它不相邻的两个内角的和),Rt△EDB中,∵F是BE的中点(已知),∴DF=BE(直角三角形斜边中线等于斜边的一半),Rt△ACE中,∵∠AEC=30°(已知),∴AC=AE(直角三角形30°角所对的直角边是斜边的一半),∴AC=DF(等量代换).【解析】分析:先根据线段垂直平分线的性质得:AE=BE,再利用直角三角形斜边中线的性质得:DF 与BE的关系,最后根据直角三角形30度的性质得AC和AE的关系,从而得出结论.证明:连接AE,∵DE是AB的垂直平分线(已知),∴AE=BE,∠EDB=90°(线段垂直平分线的性质),∴∠EAB=∠EBA=15°(等边对等角),∴∠AEC=30°(三角形的一个外角等于与它不相邻的两个内角的和),Rt△EDB中,∵F是BE的中点(已知),∴DF=BE(直角三角形斜边中线等于斜边的一半),Rt△ACE中,∵∠AEC=30°(已知),∴AC=AE(直角三角形30°角所对的直角边是斜边的一半),∴AC=DF(等量代换).【总结】本题考查了直角三角形含30度角的性质、直角三角形斜边中线及线段垂直平分线的性质,熟练掌握性质是关键.【难度】3【题目】课前测试如图1,平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)如图2,延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.【答案】(1)证明:∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)∠A=30°;(3)∠P的度数不变,∠P=30°,∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.【解析】分析:(1)易证∠B与∠BOC分别是∠A与∠AOC的余角,等角的余角相等,就可以证出;(2)易证∠DOB+∠EOB+∠OEA=90°,且∠DOB=∠EOB=∠OEA就可以得到;(3)∠P=180°﹣(∠PCO+∠FOM+90°)根据角平分线的定义,就可以求出.(1)证明:∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)解:∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA.∵∠DOB+∠EOB+∠OEA=90°,∴∠DOB=30°,∴∠A=30°;(3)∠P的度数不变,∠P=30°,证明:∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.【总结】本题主要考查了角平分线的定义和直角三角形的性质.【难度】3知识定位适用范围:沪教版,初二年级,成绩中等以及中等以上知识点概述:直角三角形是继等腰三角形、等边三角形后又一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,反映了直角三角形中特有的边角关系,这些性质主要用来解决与直角三角形相关的计算和证明问题.注意事项:学生主要想听运用直角三角形的性质解决与直角三角形相关的边角计算和证明问题重点选讲:①直角三角形的基本性质②含30°角的直角三角形③直角三角形斜边中线的应用知识梳理知识梳理1:直角三角形的性质直角三角形的性质定理性质定理1:直角三角形的两个锐角互余;性质定理2:在直角三角形中,斜边上的中线等于斜边的一半.知识梳理2:直角三角形性质定理推论直角三角形的性质定理推论推论1:在直角三角形中,如果有一个锐角等于30度,那么它所对的直角边等于斜边的一半;推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度.知识梳理3:直角三角形常用结论例题精讲【题目】题型1:直角三角形的基本性质如图所示,在△ACB中,∠ACB=90°,∠1=∠B.(1)求证:CD⊥AB;(2)如果AC=8,BC=6,AB=10,求CD的长.【答案】(1)证明:∵∠ACB=90°,∴∠1+∠BCD=90°,∵∠1=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;(2)CD=4.8直角三角形常用结论1.直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab=ch.2.含30°的直角三角形三边之比为1:3:23.含45°角的直角三角形三边之比为1:1:2【解析】分析:(1)先由∠ACB=90°,得出∠1+∠BCD=90°,而∠1=∠B,等量代换得到∠B+∠BCD=90°,再根据三角形内角和定理求出∠BDC=90°,根据垂直的定义即可证明CD⊥AB;(2)根据三角形的面积公式可得S△ABC=AB•CD=AC•BC,那么CD=,将数值代入计算即可求解.(1)证明:∵∠ACB=90°,∴∠1+∠BCD=90°,∵∠1=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;(2)解:∵S△ABC=AB•CD=AC•BC,∴CD===4.8.【总结】本题考查了直角三角形的性质,三角形内角和定理,垂直的定义,三角形的面积,比较简单.求出∠BDC=90°是解题的关键.【难度】3【题目】题型1变式练习1:直角三角形的基本性质8.小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)M为边AC上一点,则BD、MF的位置是.请你进行证明.(2)M为边AC反向延长线上一点,则BD、MF的位置关系是.(3)M为边AC延长线上一点,猜想BD、MF的位置关系是.【答案】(1)BD∥MF理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF;(2)BD⊥MF.(3)BD⊥MF.【解析】分析:(1)根据角平分线的定义与四边形的内角和定理求出∠ABD+∠AMF=90°,又∠AFM+∠AMF=90°,然后证明得到∠ABD=∠AFM,然后根据同位角相等,两直线平行可得BD∥MF;(2)先证明∠ABC=∠AME,再根据角平分线的定义可得∠ABD=∠AMF,然后根据∠ABD+∠ADB=90°得到∠AMF+∠ADB=90°,从而得到BD⊥MF;(3)先证明∠ABC=∠AME,再根据角平分线的定义可得∠ABD=∠AMF,然后根据∠AMF+∠F=90°得到∠ABD+∠F=90°,从而得到BD⊥MF.解:(1)BD∥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF;(2)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠C=∠AME+∠C=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠ABD+∠ADB=90°,∴∠AMF+∠ADB=90°,∴BD⊥MF;(3)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠ACB=∠AME+∠ACB=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠AMF+∠F=90°,∴∠ABD+∠F=90°,∴BD⊥MF.【点评】本题考查了直角三角形的性质,垂线的定义,平行线的判定,三角形的内角和定理,本题规律性较强,准确识图,准确找出角度之间的关系是解题的关键.【难度】3【题目】题型1变式练习2:直角三角形的基本性质如图,在直角△ABC中,D为斜边AB的中点,DE⊥DF,而E、F分别在AC和BC上,连结EF.观察AE、EF、BF能不能组成直角三角形.写出你的结论并说明理由.【答案】可以组成直角三角形,理由如下:如图,延长FD到F′,使DF′=DF,连接AF′、EF′,∵D为斜边AB的中点,∴AD=BD,在△ADF′和△BDF中,,∴△ADF′≌△BDF(SAS),∴AF′=BF,∠B=∠DAF′,∵∠BAC+∠B=90°,∴∠BAC+∠DAF′=∠BAC+∠B=90°,即∠EAF′=90°,又∵DE⊥DF,∴EF′=EF,∴△EAF′是以EF′为斜边的直角三角形,故AE、EF、BF能组成直角三角形,斜边为EF.【解析】分析:延长FD到F′,使DF′=DF,连接AF′、EF′,利用“边角边”证明△ADF′和△BDF全等,根据全等三角形对应边相等可得AF′=BF,全等三角形对应角相等可得∠B=∠DAF′,然后求出∠EAF′=90°,再根据线段垂直平分线上的点到线段两端点的距离相等可得EF=EF′,从而得解.解:如图,延长FD到F′,使DF′=DF,连接AF′、EF′,∵D为斜边AB的中点,∴AD=BD,在△ADF′和△BDF中,,∴△ADF′≌△BDF(SAS),∴AF′=BF,∠B=∠DAF′,∵∠BAC+∠B=90°,∴∠BAC+∠DAF′=∠BAC+∠B=90°,即∠EAF′=90°,又∵DE⊥DF,∴EF′=EF,∴△EAF′是以EF′为斜边的直角三角形,故AE、EF、BF能组成直角三角形,斜边为EF.【点评】本题考查了直角三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形是解题关键,也是本题的难点.【难度】3【题目】题型2:含30°角的直角三角形如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.【答案】15°【解析】分析:根据直角三角形两锐角互余求出∠PCD=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得PC=2PD,然后求出PB=PD,根据等边对等角可得∠PBD=∠PDB,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠PBD,然后求解即可.解:∵∠APC=60°,CD⊥AP,∴∠PCD=90°﹣∠APC=90°﹣60°=30°,∴PC=2PD,∵PC=2PB,∴PB=PD,∴∠PBD=∠PDB,又∵∠APC=∠PBD+∠PDB,∴∠PBD=∠APC=×60°=30°,∵∠ABC=45°,∴∠ABD=∠ABC﹣∠PBD=45°﹣30°=15°.【总结】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,等边对等角的性质,熟记性质并准确识图是解题的关键.【难度】3【题目】题型2变式练习1:含30°角的直角三角形如图,△ABC中,BD是AC边上的中线,BD⊥BC于点B,∠ABD=30°,求证:AB=2BC.【答案】证明:作AM⊥BD,交BD延长线于M,∵在Rt△ABM中,∠ABD=30°,∴AB=2AM,∵BD为AC边上的中线,∴AD=CD,∵DB⊥BC,∴∠DBC=∠M=90°,∵在△BCD和△MAD中,,∴△BCD≌△MAD(AAS),∴AM=BC,所以,AB=2BC.【解析】分析:作AM⊥BD,交BD延长线于M,在直角三角形ABM中,利用30度角所对的直角边等于斜边的一半得到B=2AM,.再利用AAS得出三角形BCD与三角形ADM全等,由全等三角形的对应边相等得到AM=BC,等量代换即可得证.证明:作AM⊥BD,交BD延长线于M,∵在Rt△ABM中,∠ABD=30°,∴AB=2AM,∵BD为AC边上的中线,∴AD=CD,∵DB⊥BC,∴∠DBC=∠M=90°,∵在△BCD和△MAD中,,∴△BCD≌△MAD(AAS),∴AM=BC,所以,AB=2BC.【总结】此题考查了含30度直角三角形的性质,全等三角形的判定与性质,熟练掌握性质是解本题的关键.【难度】3【题目】题型2变式练习2:含30°角的直角三角形如图所示,等边△ABC中,AD⊥BC于D,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为E,过E作EF⊥AC,垂足为F.(1)如图1,求证:2BD=2CF+BE;(2)若AB=4,过F作FQ⊥AB,垂足为Q,PQ=1,求BP的长.【答案】(1)证明:∵△ABC是等边三角形,AD⊥BC,∴BC=2BD,∠C=60°,∵EF⊥AC,∴∠EFC=90°,∴∠FEC=30°,∴EC=2FC,∵BC=BE+EC,∴2BD=2CF+BE;(2)PB=【解析】分析:(1)根据等边三角形的性质和含30°的直角三角形的性质即可得到结论.(2)设PB=x,解直角三角形求得CF=CE=2﹣x,AF=4﹣CF=2+x,AQ=AF=1+ x,列方程x+1+1+x=4,解得x=,于是得到结论.(1)证明:∵△ABC是等边三角形,AD⊥BC,∴BC=2BD,∠C=60°,∵EF⊥AC,∴∠EFC=90°,∴∠FEC=30°,∴EC=2FC,∵BC=BE+EC,∴2BD=2CF+BE;(2)解:如图,过F作FQ⊥AB于Q,设PB=x,∵PE⊥BC,∠B=60°,∴BE=x,CE=4﹣x,∵EF⊥AC,∠C=60°,∴CF=CE=2﹣x,∴AF=4﹣CF=2+x,∵∠BAC=60°,FQ⊥AB,∴AQ=AF=1+x,∴x+1+1+x=4,∴x=,∴PB=,如图2,过E作GE⊥AB于G,∴EG+EF=AD,2EG=PE,∴PE+EF=AD,即,PE+2EF=2AB,∴PB=.【总结】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟记等边三角形的性质是解题的关键.【难度】3【题目】题型3:直角三角形斜边中线的应用如图,已知AC⊥BC,AD⊥BD,E为AB的中点,(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【答案】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90°,∠ADB=90°,又∵E为AB的中点,∴CE=AB,DE=AB∴CE=DE,即△ECD是等腰三角形;(2)CD=.【解析】分析:(1)根据直角三角形的性质得到CE=AB,DE=AB,得到CE=DE,证明结论;(2)过点E作EH⊥CD,根据三角形的面积公式求出EH,根据勾股定理求出DH,根据等腰三角形的性质计算即可.(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90°,∠ADB=90°,又∵E为AB的中点,∴CE=AB,DE=AB∴CE=DE,即△ECD是等腰三角形;(2)解:∵AD=BD,∠ADB=90°,∴DE⊥AB,已知DE=4,EF=3,∴DF=5,过点E作EH⊥CD,∵∠FED=90°,EH⊥DF,∴EH==,∴DH==,∵△ECD是等腰三角形,∴CD=2DH=.【总结】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【难度】3【题目】题型3变式练习1:直角三角形斜边中线的应用如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若BC=20,DE=12,求△MDE的面积.【答案】(1)证明:连接ME、MD,∵BD⊥AC,∴∠BDC=90°,∵M是BC的中点,∴DM=BC,同理可得EM=BC,∴DM=EM,∵N是DE的中点,∴MN⊥DE;(2)48【解析】分析:(1)连接ME、MD,根据直角三角形的性质证明;(2)根据勾股定理求出MN,根据三角形的面积公式计算即可.(1)证明:连接ME、MD,∵BD⊥AC,∴∠BDC=90°,∵M是BC的中点,∴DM=BC,同理可得EM=BC,∴DM=EM,∵N是DE的中点,∴MN⊥DE;(2)解:∵BC=10,ED=6,∴DM=BC=10,DN=DE=6,由(1)可知∠MND=90°,∴MN===4,∴S△MDE=DE×MN=×12×8=48.【总结】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【难度】3【题目】题型3变式练习2:直角三角形斜边中线的应用已知,如图,在Rt△ABC中,∠C=90°,点E在AC上,AB=DE,AD∥BC.求证:∠CBA=3∠CBE.【答案】证明:取DE的中点F,连接AF,∵AD∥BC,∠ACB=90°,∴∠DAE=∠ACB=90°,∴AF=DF=EF=DE,∵AB=DE,∴DF=AF=AB,∴∠D=∠DAF,∠AFB=∠ABF,∴∠AFB=∠D+∠DAF=2∠D,∴∠ABF=2∠D,∵AD∥BC,∴∠CBE=∠D,∴∠CBA=∠CBE+∠ABF=3∠CBE.【解析】分析:取DE的中点F,连接AF,根据直角三角形的性质求出AF=DF=FE=DE,推出DF=AF=AB,根据等腰三角形的性质求出∠D=∠DAF,∠AFB=∠ABF,求出∠ABF=2∠D,∠CBE=∠D,即可得出答案.证明:取DE的中点F,连接AF,∵AD∥BC,∠ACB=90°,∴∠DAE=∠ACB=90°,∴AF=DF=EF=DE,∵AB=DE,∴DF=AF=AB,∴∠D=∠DAF,∠AFB=∠ABF,∴∠AFB=∠D+∠DAF=2∠D,∴∠ABF=2∠D,∵AD∥BC,∴∠CBE=∠D,∴∠CBA=∠CBE+∠ABF=3∠CBE.【总结】本题考查了等腰三角形的性质,直角三角形的性质,平行线的性质,三角形的外角性质的应用,能正确作出辅助线是解此题的关键,难度适中.【难度】3【题目】兴趣篇1已知:如图,在Rt△ABC中,∠C=90°,∠B=5∠A,CD⊥AB,垂足为D,求证:AB=4CD.【答案】证明:作斜边AB上的中线CM,∵∠C=90°,∠B=5∠A,∴∠A+∠B=∠A+5∠A=6∠A=90°,∴∠A=15°,∵CM是在Rt△ABC斜边AB上的中线,∴AM=CM,∴∠A=∠ACM=15°,∴∠CMD=30°,∵CD⊥AB,∴∠CDM=90°,∴CM=2CD,∴AB=2CM=4CD.【解析】【分析】作斜边AB上的中线CM,由∠C=90°,∠B=5∠A,根据三角形的内角和得到∠A+∠B=∠A+5∠A=6∠A=90°,求得∠A=15°,根据直角三角形的性质得到AM=CM,由等腰三角形的性质得到∠A=∠ACM=15°,根据外角的性质得到∠CMD=30°,于是得到CM=2CD,依此得到结论.证明:作斜边AB上的中线CM,∵∠C=90°,∠B=5∠A,∴∠A+∠B=∠A+5∠A=6∠A=90°,∴∠A=15°,∵CM是在Rt△ABC斜边AB上的中线,∴AM=CM,∴∠A=∠ACM=15°,∴∠CMD=30°,∵CD⊥AB,∴∠CDM=90°,∴CM=2CD,∴AB=2CM=4CD.【总结】本题考查了含30°角的直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.【难度】3【题目】兴趣篇2已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【答案】(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠CAD=∠CAB=60°.又∠ABC=∠ADC=90°,∴AD=AC,AB=AC,∴AB+AD=AC.(2)解:结论仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°,∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC,在△CDE和△CBF中,,∴△CDE≌△CBF(AAS),∴DE=BF.∵∠MAN=120°,AC平分∠MAN,∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE与Rt△ACF中,则有AE=AC,AF=AC,则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=AC+AC=AC.∴AD+AB=AC.【解析】分析:(1)根据含30°角的直角三角形的性质进行证明;(2)作CE⊥AM、CF⊥AN于E、F.根据角平分线的性质,得CE=CF,根据等角的补角相等,得∠CDE=∠ABC,再根据AAS得到△CDE≌△CBF,则DE=BF.再由∠MAN=120°,AC平分∠MAN,得到∠ECA=∠FCA=30°,从而根据30°所对的直角边等于斜边的一半,得到AE=AC,AF=AC,等量代换后即可证明AD+AB=AC仍成立.(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠CAD=∠CAB=60°.又∠ABC=∠ADC=90°,∴AD=AC,AB=AC,∴AB+AD=AC.(2)解:结论仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°,∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC,在△CDE和△CBF中,,∴△CDE≌△CBF(AAS),∴DE=BF.∵∠MAN=120°,AC平分∠MAN,∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE与Rt△ACF中,则有AE=AC,AF=AC,则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=AC+AC=AC.∴AD+AB=AC.【总结】此题综合考查了角平分线的性质、全等三角形的性质和判定及含30°角的直角三角形的知识;作出辅助线是正确解答本题的关键.注意:在探索(2)的结论的时候,能够运用(1)的结论.【难度】3【题目】备选试题1如图,在△ABC中,已知AB=AC=2a,∠ABC=15°,CD是腰AB上的高,求CD的长.【答案】a【解析】分析:过点C作CD⊥AB于D,根据等腰三角形的性质,三角形的内角与外角的关系得到∠DAC=30°.在直角△ACD中,根据30°角所对的直角边等于斜边的一半解得CD的长.解:过点C作CD⊥AB于D∵AB=AC,∴∠C=∠ABC=15°,∴∠DAC=30°,∵AB=AC=2a,∴在直角△ACD中CD=AC=a.【总结】本题主要考查了等腰三角形的性质:等边对等角.三角形的内角与外角的关系以及直角三角形中30度所对的直角边等于斜边的一半.【难度】3【题目】备选试题2如图,AF垂直平分BC于D,∠ACB=∠F=30°,AC=4cm,点M从点D出发以每秒1cm 的速度向终点F运动,设运动时间为t,△CMF的面积为S.(1)求S与t之间的函数关系;(2)连接BM,并延长交CF于P,当S=4时,判断△CMP的形状.【答案】(1)S=6﹣t;(2)直角三角形.【解析】分析:(1)根据∠ACB=∠F=30°,AC=4cm求得CD=2,DF=6,则用三角形CDF的面积减去三角形CDM的面积即可得到s;(2)将S=4代入求得的解析式即可求得DM的长,然后可以判断三角形CMP的形状.解:(1)∵∠ACB=∠F=30°,AC=4cm,∴AD=2,CD=BD=2,∵AF⊥BC,∴△ACD∽△CFD,∴=,即DF===6cm,∴S=CD•DF﹣CD•DM=×2(6﹣t)=6﹣t;(2)当S=4时,6﹣t=4,解得t=2,∴DM=2,∴AM=AC=CM=4,∴∠ABM=∠ACM=60°,∴∠CBP=30°,∴∠BPC=90°,∴△CMP是直角三角形.【总结】本题考查了三角形的面积、等腰三角形的判定等形状,与函数的知识结合起来考查是中考的热点.【难度】3。
2直角三角形第1课时直角三角形的性质与判定1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°第2题图第3题图3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.44.如图,数轴上点A表示的实数是.5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是()A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5D.∠A∶∠B∶∠C=2∶3∶57.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11C.5,12,12 D.1,1,28.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.求阴影部分的面积.9.下列定理中,没有逆定理的是()A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的周长相等D.等边三角形的三个角都相等10.下列命题的逆命题是真命题的是()A.对顶角相等B.同位角相等,两直线平行C.直角都相等D.全等三角形的面积相等11.在Rt△ABC中,已知其中两边分别为6和8,则其面积为.12.已知下列命题:①若a+b=0,则|a|=|b|;②等边三角形的三个内角都相等;③底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的有()A.1个B.2个C.3个D.0个13.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是()A.BC=EC B.EC=BEC.BC=BE D.AE=EC第14题图第15题图15.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 3 B.6 C.3 2 D.2116.已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为.17.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm.(杯壁厚度不计)18.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x →利用勾股定理求出AD的长,再计算三角形面积19.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.第2课时直角三角形全等的判定1.如图,点P是∠BAC内一点,PE⊥AC于点E,PF⊥AB于点F,PE=PF,则能直接得到△PEA≌△PFA的理由是()A.HL B.ASAC.AAS D.SAS第1题图第2题图2.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°第3题图第4题图4.如图,点D,A,E在直线l上,AB=AC,BD⊥l于点D,CE⊥l于点E,且BD=AE.若BD=3,CE=5,则DE=8.5.如图,AC⊥BC,BD⊥AD,AC=BD.求证:∠ABC=∠BAD.6.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和斜边分别对应相等7.如图所示,已知BE⊥AD,CF⊥AD,垂足分别为E,F,则在下列条件中选择一组,可以判定Rt△ABE≌Rt△DCF的是.(填序号)①AB=DC,∠B=∠C;②AB=DC,AB∥CD;③AB=DC,BE=CF;④AB=DF,BE=CF.8.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,且DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F.求证:AB=BF.9.如图,点C是路段AB的中点,小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,并且DA⊥AB于点A,EB⊥AB于点B.此时小明到路段AB的距离是50米,则小红到路段AB的距离是多少米?10.已知在Rt△ABC中,∠C=90°,∠B=30°,AB=4,则下列图中的直角三角形与Rt△ABC全等的是()11.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有()A.3对B.4对C.5对D.6对12.如图所示,过正方形ABCD的顶点B作直线a,过点A,C作a的垂线,垂足分别为E,F.若AE=1,CF=3,则AB的长为.第12题图第13题图13.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=时,△ABC和△PQA全等.14.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.15.如图1,E,F分别为线段AC上的两个动点,且DE⊥AC于点E,BF⊥AC于点F.若AB=CD,BF=DE,BD交AC于点M.(1)求证:AE=CF,MD=MB;(2)当E,F两点移动到如图2的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.参考答案:2直角三角形第1课时直角三角形的性质与判定1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D)A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为(B)A.35°B.55°C.56°D.65°第2题图第3题图3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为(D)A.1 B.2 C.3 D.44.如图,数轴上点A5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°.∴∠ACD=∠B.(2)∵AF平分∠CAB,∴∠CAF=∠DAE.又∵在Rt△AFC中,∠CFA=90°-∠CAF,在Rt△AED中,∠AED=90°-∠DAE,∴∠AED=∠CFE.又∵∠CEF=∠AED,∴∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是(C)A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5D.∠A∶∠B∶∠C=2∶3∶57.下列各组数中,以它们为边长的线段能构成直角三角形的是(D)A.2,4,5 B.6,8,11C.5,12,12 D.1,1,28.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.求阴影部分的面积.解:在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB=AC2+BC2=5.在△ABD中,∵AD=13,BD=12,AB=5,∴AB2+BD2=AD2.∴△ABD是直角三角形,∠ABD=90°.∴S阴影=S△ABD-S△ABC=12AB·BD-12BC·AC=30-6=24.9.下列定理中,没有逆定理的是(C)A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的周长相等D.等边三角形的三个角都相等10.下列命题的逆命题是真命题的是(B)A.对顶角相等B.同位角相等,两直线平行C.直角都相等D.全等三角形的面积相等11.在Rt△ABC中,已知其中两边分别为6和8,则其面积为12.已知下列命题:①若a+b=0,则|a|=|b|;②等边三角形的三个内角都相等;③底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的有(A)A.1个B.2个C.3个D.0个13.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB 于点E,则下列结论一定成立的是(C)A.BC=EC B.EC=BEC.BC=BE D.AE=EC第14题图第15题图15.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.2116.已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为17.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)18.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x →利用勾股定理求出AD的长,再计算三角形面积解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x.由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,∴152-x2=132-(14-x)2.解得x=9.∴AD=AB2-BD2=152-92=12.∴S△ABC=12BC·AD=12×14×12=84.19.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.解:(1)当a=19时,设b=k,则c=k+1,观察有如下规律:192+k2=(k+1)2.解得k=180.∴b=180,c=181.(2)当a=2n+1时,设b=k,则c=k+1,根据勾股定理a2+b2=c2得(2n+1)2+k2=(k +1)2,解得k=2n(n+1).∴b=2n(n+1),c=2n(n+1)+1.第2课时直角三角形全等的判定1.如图,点P是∠BAC内一点,PE⊥AC于点E,PF⊥AB于点F,PE=PF,则能直接得到△PEA≌△PFA的理由是(A)A .HLB .ASAC .AASD .SAS第1题图 第2题图2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(A) A .AB =AC B .∠BAC =90° C .BD =ACD .∠B =45°3.如图,∠B =∠D =90°,BC =CD ,∠1=40°,则∠2=(B) A .40° B .50° C .60°D .75°第3题图 第4题图4.如图,点D ,A ,E 在直线l 上,AB =AC ,BD ⊥l 于点D ,CE ⊥l 于点E ,且BD =AE.若BD =3,CE =5,则DE =8.5.如图,AC ⊥BC ,BD ⊥AD ,AC =BD.求证:∠ABC =∠BAD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠ACB =∠BDA =90°. 在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AC =BD ,AB =BA ,∴Rt △ABC ≌Rt △BAD(HL). ∴∠ABC =∠BAD.6.下列条件中不能判定两个直角三角形全等的是(A)A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和斜边分别对应相等7.如图所示,已知BE⊥AD,CF⊥AD,垂足分别为E,F,则在下列条件中选择一组,可以判定Rt△ABE≌Rt△DCF的是①②③.(填序号)①AB=DC,∠B=∠C;②AB=DC,AB∥CD;③AB=DC,BE=CF;④AB=DF,BE=CF.8.如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,且DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F.求证:AB=BF.证明:∵EF⊥AC,∴∠F+∠C=90°.∵∠ABC=90°,∴∠A+∠C=90°.∴∠A=∠F.又∵DB=BC,∠FBD=∠ABC=90°,∴△FBD≌△ABC(AAS).∴AB=BF.9.如图,点C是路段AB的中点,小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,并且DA⊥AB于点A,EB⊥AB于点B.此时小明到路段AB的距离是50米,则小红到路段AB的距离是多少米?解:∵DA⊥AB,EB⊥AB,∴△ADC和△BEC为直角三角形.∵点C是路段AB的中点,∴AC=BC.∵小明和小红两人从点C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,∴CD=CE.∴Rt△ADC≌Rt△BEC(HL).∴BE=AD=50米.答:小红到路段AB的距离是50米.10.已知在Rt△ABC中,∠C=90°,∠B=30°,AB=4,则下列图中的直角三角形与Rt△ABC全等的是(A)11.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD和CE交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有(D)A.3对B.4对C.5对D.6对12.如图所示,过正方形ABCD的顶点B作直线a,过点A,C作a的垂线,垂足分别为E,F.若AE=1,CF=3,则AB第12题图 第13题图13.如图,在Rt △ABC 中,∠C =90°,AC =10,BC =5,线段PQ =AB ,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP =5或10时,△ABC 和△PQA 全等.14.如图,在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF.(1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE =30°,求∠ACF 的度数.解:(1)证明:∵∠ABC =90°, ∴∠CBF =∠ABE =90°. 在Rt △ABE 和Rt △CBF 中,⎩⎨⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF(HL). (2)∵AB =CB ,∠ABC =90°, ∴∠CAB =∠ACB =45°.∴∠BAE =∠CAB -∠CAE =45°-30°=15°. 由(1)知Rt △ABE ≌Rt △CBF , ∴∠BCF =∠BAE =15°.∴∠ACF =∠BCF +∠ACB =15°+45°=60°.15.如图1,E ,F 分别为线段AC 上的两个动点,且DE ⊥AC 于点E ,BF ⊥AC 于点F.若AB =CD ,BF =DE ,BD 交AC 于点M.(1)求证:AE =CF ,MD =MB ;(2)当E ,F 两点移动到如图2的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.解:(1)证明:在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,BF =DE ,∴Rt △ABF ≌Rt △CDE(HL). ∴AF =CE.∴AF -EF =CE -EF ,即AE =CF. ∵DE ⊥AC ,BF ⊥AC , ∴∠DEM =∠BFM =90°.在△DEM 和△BFM 中,⎩⎨⎧∠DEM =∠BFM ,∠DME =∠BMF ,DE =BF ,∴△DEM ≌△BFM(AAS). ∴MD =MB.(2)AE =CF ,MD =MB 仍然成立.证明: 在Rt △ABF 和Rt △CDE 中,⎩⎨⎧AB =CD ,BF =DE ,∴Rt △ABF ≌Rt △CDE(HL). ∴AF =CE.∴AF +EF =CE +EF ,即AE =CF.在△DEM 和△BFM 中,⎩⎨⎧∠DEM =∠BFM ,∠DME =∠BMF ,DE =BF ,∴△DEM ≌△BFM(AAS). ∴MD =MB.。
八年级数学上册:含30°角的直角三角形的性质定理练习(含答案)一.选择题(共8小题)1.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B. 4.2 C.5.8 D.7第1题第2题第3题2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10 B.8 C. 5 D.2.53.如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若△BDC的面积为10,∠ABC=2∠A,则△ABC的面积为()A.25 B.30 C.35 D.404.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4cm B.2cm C.1cm D.m5.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB第5题第6题第7题第8题6.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()A.5m B.8m C.10m D.20m7.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米 B.9米C.12米 D.15米8.如图,已知∠ABC=60°,DA是BC的垂直平分线,BE平分∠ABD交AD于点E,连接CE.则下列结论:①BE=AE;②BD=AE;③AE=2DE;④S△ABE =S△CBE,其中正确的结论是()A.①②③B.①②④ C.①③④ D.②③④二.填空题(共10小题)9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________ .10.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF= _________ .11.如图,在△ABC中,∠C=90°,∠B=60°,AB=10,则BC的长为_________ .12.如图,在等腰三角形ABC中,AB=AC=12cm,∠ABC=30°,底边上的高AD= _______cm.第9题第10题第11题第12题13.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD= _________ cm.第13题第14题第15题第16题14.如图,在△ABC中.∠B=90°,∠BAC=30°.AB=9cm,D是BC延长线上一点.且AC=DC.则AD= _________ cm.15.如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为_________ 米.= _________ .16.在△ABC中,已知A B=4,BC=10,∠B=30°,那么S△ABC17.如图,△ABC是等边三角形,AD⊥BC,DE⊥AC,若AB=12cm,则CE= ______ cm.18.有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是_________ 海里.三.解答题(共5小题)19.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.20.如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=DC.21.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,求AC的长.22.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.23.如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.等边三角形(2):一、DABCCABC二、9、2;10、2;11、5;12、6;13、2;14、18;15、6;16、10;17、3;18、10三、19、(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.20、解:如图,连接DB.∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD,∵BA=BC,∠B=120°,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°﹣30°=90°,∴BD=DC,∴AD=DC.21、解:∵△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC, ∴∠2=∠3=30°;在Rt△B CD中,CD= BD,∠4=90°﹣30°=60°(直角三角形的两个锐角互余);∴∠1+∠2=60°(外角定理),∴∠1=∠2=30°,∴AD=BD(等角对等边);∴AC=AD+CD=AD;又∵AD=6,∴AC=9.22、解:∵△ABC中,∠ACB=90°,∠A=30°,AB=4,∴BC=AB=×4=2,∵CD是△ABC的高,∴∠CDA=∠ACB=90°,∠B=∠B,故∠BCD=∠A=30°,∴在Rt△BCD中,BD=BC=×2=1,∴BD=1.23、(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°∵∠AB C=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°∴AC=2AD,AC=2AB,∴AD+AB=AC;(2)解:结论AD+AB=AC成立.理由如下:在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°, ∴∠ADC=∠EBC,∴△ADC≌△EBC,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.。
直角三角形一、直角三角形的性质重点:直角三角形的性质定理与其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半;②推论:〔1〕在直角三角形中,假如一个锐角等于30°,那么它所对的直角边等于斜边的一半;〔2〕在直角三角形中,假如一条直角边等于斜边的一半,那么这条直角边所对的角为30°.难点:1.性质定理的证明方法.2.性质定理与其推论在解题中的应用.二、直角三角形全等的推断重点:驾驭直角三角形全等的断定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等〔HL〕难点:创立全等条件与三角形中各定理联络解综合问题。
三、角平分线的性质定理:角平分线上的点到这个角的两边的间隔相等.定理的数学表示:如图4,∵ OE是∠AOB的平分线,F是OE上一点,且CF⊥OA于点C,DF⊥OB于点D,∴ CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线.2.关于三角形三条角平分线的定理:〔1〕关于三角形三条角平分线交点的定理:图4三角形三条角平分线相交于一点,并且这一点到三边的间隔 相等.定理的数学表示:如图6,假如AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、 ∠ ABC 、∠ACB 的平分线,那么: ① AP 、BQ 、CR 相交于一点I ;② 假设ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,那么DI =EI =FI. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. 〔2〕三角形三条角平分线的交点位置与三角形形态的关系:三角形三个内角角平分线的交点肯定在三角形的内部.这个交点叫做三角形的内心〔即内切圆的圆心〕.3.关于线段的垂直平分线和角平分线的作图:〔1〕会作线段的垂直平分线; 〔2〕会作角的角平分线; 〔3〕会作与线段垂直平分线和角平分线有关的简洁综合问题的图形. 四、勾股定理的证明与应用 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:假如直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发觉并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方勾股定理的证明方法许多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会变更 ②依据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理cba HG FEDCBA常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理提示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因此在应用勾股定理时,必需明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的随意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题假如三角形三边长a ,b ,c 满意222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是断定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形态,在运用这肯定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 与222a b c +=只是一种表现形式,不行认为是唯一的,如假设三角形三边长a ,b ,c 满意222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描绘时,不能说成:当斜边的平方等于两条直角边的平方和时,bacbac cabcaba bcc baE D CBA这个三角形是直角三角形①可以构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以进步解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕;2221,22,221n n n n n ++++〔n 为正整数〕2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕7.勾股定理的应用勾股定理可以扶植我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在运用勾股定理时,必需把握直角三角形的前提条件,理解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进展计算,应设法添加协助线〔通常作垂线〕,构造直角三角形,以便正确运用勾股定理进展求解.8..勾股定理逆定理的应用勾股定理的逆定理能扶植我们通过三角形三边之间的数量关系推断一个三角形是否是直角三角形,在详细推算过程中,应用两短边的平方和与最长边的平方进展比较,切不行不加思索的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理与其逆定理的应用勾股定理与其逆定理在解决一些实际问题或详细的几何问题中,是密不行分的一个整体.通常既要通过逆定理断定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念假如一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
八下数学每日一练:含30度角的直角三角形练习题及答案_2020年综合题版答案答案答案2020年八下数学:图形的性质_三角形_含30度角的直角三角形练习题~~第1题~~(2019长兴.八下期末) 如图,在□ABCD 中,点E ,F 分别在CD ,BC 延长线上,AE ∥BD ,EF ⊥BF(1) 求证:四边形ABDE 是平行四边形(2) 若∠ABC=60°,CF= ,求AB 的长考点: 含30度角的直角三角形;平行四边形的判定与性质;~~第2题~~(2019莲都.八下期末) 如图,在菱形中, =60°, AB =2,点E 是AB 上的动点,作∠EDQ =60°交BC 于点Q ,点P 在AD 上,PD =PE .(1) 求证:AE =BQ ;(2) 连接PQ , EQ ,当∠PEQ =90°时,求的值;(3) 当AE 为何值时,△PEQ 是等腰三角形.考点: 全等三角形的判定与性质;等腰三角形的性质;含30度角的直角三角形;菱形的性质;~~第3题~~(2019哈尔滨.八下期中) 已知:矩形ABCD ,点O 为对角线AC 中点,点E 为矩形外部一点,连接OE ,BE ,OE=OC .(1) 如图1,求证:∠OEB+∠EBC=∠CAD ;(2) 如图2,设BE 交AC 于点F ,AB=BC ,FO=FE ,求证:BE= OA ;考点: 等腰三角形的性质;含30度角的直角三角形;矩形的性质;正方形的判定与性质;~~第4题~~(2019江门.八下期末) 如图,点E 、F 分别在矩形ABCD 的边BC 、AD 上,把这个矩形沿EF 折叠后,点D 恰好落在BC 边上的G 点处,且∠AFG=60°答案答案(1) 求证:GE=2EC ;(2) 连接CH 、DG ,试证明:CH ∥DG .考点: 平行线的判定;含30度角的直角三角形;矩形的性质;翻折变换(折叠问题);~~第5题~~(2019天河.八下期末) 如图,在菱形ABCD 中,∠A =60°,AD =8,F 是AB 的中点,过点F 作FE ⊥AD , 垂足为E , 将△AEF 沿点A 到点B 的方向平移,得到△A ′E ′F ′.(1) 求EF 的长;(2) 设P ,P ′分别是EF ,E ′F ′的中点,当点A ′与点B 重合时,求证四边形PP ′CD 是平行四边形,并求出四边形PP ′CD 的面积.考点: 等边三角形的判定与性质;含30度角的直角三角形;勾股定理;平行四边形的性质;菱形的性质;2020年八下数学:图形的性质_三角形_含30度角的直角三角形练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
E N
M D
C
B
A 直角三角形性质和应用练习
班级姓名 一、填空题 1、“内错角相等,两直线平行”的逆命题:________. 2、“直角三角形两锐角互余”逆定理。
(填:“有”或“没有”)。
3、在Rt ΔABC 中,∠A=30°则∠B=60°最直接的理由是 .
4、 在直角三角形中,斜边长为6cm ,则斜边上的中线为 cm.
5、在Rt △ABC 中,∠C=90度,∠B=15度,则∠A=______度
6、在Rt △ABC 中,∠C=90º,∠A=30º,AB=10cm ,则BC=_____cm 。
7、如图,在△ABC 中,AB=AC=10,CE=4,MN 是AB 的垂直平分线, BE =
8、如图,已知Rt △ABC 中,∠B AC=90º ,AD 是上的中线,AB=12,AC=5 那么AD = ,
9、如图:OC 是∠AOB 的平分线,点P 是OC 上的一点,PD ⊥OA ,PE ⊥OB ,
垂足分别为点D 、E ,若PD+PE =6,则PE = .
第7题 第8题 第9题
10、到一条线段两端点距离相等的点的轨迹是____.
11、在Rt △ABC 中,∠C=90°若a=5,b=12,则c=__________
12、已知A(2,-3)和B(4,2)二点,那么AB = ___________
二、选择题
1、下列定理中,没有逆定理的是 ……………………………… ( ) A 、两直线平行,同旁内角互补。
B 、等边对等角。
C 、全等三角形对应角相等。
D 、有一个角是60°的等腰三角形是等边三角形。
D
2
1
P C
A
B
E
O
D
B
A
E N M
D
C
B
A 2、如图,∠BCA=90,CD ⊥A
B ,则图中与∠A 互余的角
有( )个
A .1个
B 、2个
C 、3个
D 、4个
3、如图,在Rt △ABC 中,∠ACB=90°,CD 、CE ,
分别是斜边AB 上的高与中线,CF 是∠ACB 的平分线。
则∠1与∠2的关系是( )
A .∠1<∠2
B .∠1=∠2;
C .∠1>∠2
D .不能确定
4、在直角三角形ABC 中,若∠C=90°,D 是BC 边上的 一点,且AD=2CD , 则∠ADB 的度数是( )
A .100°
B .110°
C .120°
D .150°
5、三角形ABC 中,AB=AC ,AB 的垂直平分线MN 交AB ,
AC 于D,E ,若∠A=400,则∠EBC=( )。
A:150 B:200 C:300 D:无法判断。
6、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
三、计算和证明
1、已知:CD 垂直平分线段AB ,E 是CD 上一点,分别联结CA 、CB 、EA 、EB . 求证:∠CAE =∠CBE .
2、已知:如图,在△ABC 中,AB = AC , 点D 在BC 上 , ∠DAC = 90°, AD = 2
1
CD.
求:∠
BAC 的度数
E C B
D A A D
3、如图,在△ABC 中,∠B=∠C ,D 、E 分别是BC 、AC 的中点,AB=6,求DE 的长。
4、已知:∠ABC=∠ADC=90度,E 是AC 中点。
求证:(1)ED=EB (2)图中有哪些等腰三角形?
5、如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
A
D
E
B
C
第7题图
答案与提示: 一、填空题:
1. 两直线平行,内错角相等。
2. 有。
3. 直角三角形两锐角互余。
4. 3。
5. 75。
6. 5
7. 6
8. 6.5
9. 3 10. 这条线段的中垂线 11. 13 12. 29
二、选择题
1. C
2.B
3.B.4C. 5.C 6.D 三、计算和证明
1. 先证∠CAB=∠CBA ,∠EAD=∠EBD ,两边相减得∠CAE=∠CBE 。
2. 120°
3. 3
4. (1)ED=21AC ,EB=2
1
AC ,所以ED=EB 。
(2)△EAD ,△EDC ,△EAB ,△EBC ,△EDB 。
5.10km 处。
由题意得222210BE 15AE +=+,且AE+BE=25,解得AE=10.。