张鑫鹏—冻土地区冻胀的原因分析及解决措施.doc
- 格式:doc
- 大小:2.59 MB
- 文档页数:12
冻害对建筑物造成破坏的原因分析及防控措施【摘要】在我国高寒地区,建筑设计与施工必须考虑到防胀问题,不然会对整体建筑物造成影响和破坏,本文就此作了详细的论述,供参考。
【关键词】建筑物;冻胀;危害;防控冻土是指温度在零摄氏度以下且含有冰的各种土,主要分布在较为严寒的地区。
其中可以按照冻结时间将其分为两种,一种是季节冻土,另一种是多年冻土。
季节冻土因为受到季节的影响会呈现周期性的冻结、融化。
而多年冻土则是长时间持续冻结状态,长期不会融化,且在地面以下一定深度的位置。
1.冻胀的概念当土体中的水份超过一定标准时,其体积会增大,会出现土体整体或局部的膨胀现象,导致结构变形,对于这种现象就可以将其称为冻胀。
冻胀会由于土质、温度、含水量及土壤颗粒等几种方面的原因而产生冻胀力,会使其形态发生变化。
通过对我国高寒地区的深入研究发现,当冬季气温越低时,冻土的深度也就越大。
当土壤温度越低时,冻胀就会越严重,而且会使土壤上部的混凝土面板产生变形或断裂的现象。
其中冻胀的程度与土壤的含水量息息相关,含水量越大,冻胀就越严重。
2.冻土对建筑物的危害当地基出现冻胀情况时,会由于切向冻胀力与垂直冻胀力的共同作用而导致建筑物上升,或是在第二年春天时由于地基解冻而造成不均匀沉降的现象,会对建筑物造成一定的破坏。
在通常情况下在房屋向阳面地基土的冻层较浅且含冰量不是很多,而相对的阴面地基土的冻层较深且含冰量较多。
所以阴面土体的膨胀有较大的变化,会出现明显的往上抬拱的现象,使房屋基础受到的冻胀力不均匀。
当土层解冻时由于地基土中积聚的冰晶体融化会增加土中的含水量,并由于细粒土的排水能力不好或基底下一些土层仍未解冻,已融化的无法渗透到土层深处,基底土层处于饱和软化状态,进而造成建筑物发生下陷形成融陷现象。
由于周而复始的冻结、融化而使浅基础建筑物出现开裂的情况。
其中几种常见的房屋冻害主要分为以下几种。
2.1基础拉断此种情况通常发生在不采暖的轻型结构基础,如仓库、围墙基础等。
试论建筑物基础的冻胀及防冻技术措施摘要:我国地域辽阔,各地区气候差异较大,因此在一些寒冷地区,由于气候的原因就会导致冻土的形成,也就是土体冻胀,土体冻胀会导致建筑物基础受到破坏,影响建筑物的使用期限,同时也对人类居住安全带来威胁。
因此,本文首先介绍了建筑基础及冻土的概念,随后对基础冻胀表现及冻胀力的形成做简要分析,最后根据冻土对建筑物产生的破坏特征,提出相应的防冻技术措施,意在为寒冷地区地基施工提供参考借鉴。
关键词:建筑物基础;冻胀;防冻技术措施在我国主要存在冻土的地区是青藏高原以及东北、西北等地,由于气候严寒,这些地区广泛的分布着多年冻土以及季节性冻土。
冻土在我国约占总面积的75%左右,其中多年冻土为21.5%,其余则是季节性冻土[1]。
无论是多年冻土或是季节性冻土都对建筑物的寿命造成严重的危害,例如,黑龙江位于我国东北部,在冬季时经常会发生土体冻胀现象,潮湿的土体遇冷后凝固,产生向上的应力导致土体冻胀,而在春季到来之时,冻土吸取热量而融化,导致土体下沉,如此周而复始。
虽然形成多年冻土和季节性冻土的地质条件不同,但形成的过程是一样的,都会对建筑物的基础造成破坏,因此,如何防范以及采取相应的防冻技术措施就显得尤为重要。
一、建筑物基础以及冻土的概念1.建筑物基础通常来说,建筑物基础就是指建筑物埋在地下的部分,它是将作用在建筑上的荷载以及建筑物自身的重量传给地基的一个桥梁[2]。
因此,基础施工的质量好坏,直接关乎建筑物的安全使用性能,若基础建造不好则会引发建筑物的不均匀沉降,致使建筑物墙体出现裂缝,严重影响建筑物使用的安全性。
2.冻土的概念冻土一般分为两种,即多年冻土和季节性冻土。
多年冻土是连续3年以上,常年在0℃以下长期处于冰冻状态的土质。
季节性冻土是在冬季低温状态下冻结,在夏季高温状态下解冻则称为季节性冻土。
一般含水的土体和岩石,自身都含有一定水分,这也称之为天然含水量,地基基础设计规范GBJ7-89中用(W)来表示。
关于地基冻胀的真实原因、危害与措施科技信息.工程技术关于地基冻胀的寅实原因,危害与措旋辽源矿业(集团)梅河煤矿土建队王江梅河矿所在地属寒冷地区,也是建筑物倍受冻害影响的地区,纵观几十年来所建各类房屋,平房及单层之小建筑受冻害较为显着.如住宅区的仓房,花池,凉亭,围墙等.楼房因基础埋深一般都超过冻结深度,极少受冻害,但有的部位如台阶,门坡道,护坡等易被忽视,也常见受冻害而影响使用功能.因受冻害而影响使用功能深为用户所烦恼,且因此而影响建筑物的使用寿命及人身安全,问题就更为严重.因此有必要对地基冻胀的真实原因作一个分析,找出它的规律.从而采取一些有效的针对性的手段来防止它,避免它.一,地基冻胀的真实原因地基之冻胀之外和下列几点有关:(1)气温的高低.(2)土壤(地基)上部荷重的大小.(3)冻结速度.(4)冻结时土壤中水分的迁移和重分布.(5)土壤的颗粒组成.(6)土壤含水率的大小,地下水位的高低.从建筑观点看,尤以第(4),(5)两项来影响最大.(一)冻结时土壤中水分的迁移和重分布.冻胀和水是分不开的,但水在土中受冻后.土是怎样胀起来的?冻胀是怎样一个过程.1,当负温度进入土内,自由水首先冻结,出现冰晶体,此冰晶体与土壤颗粒表为束缚水膜所隔开,而束缚水膜由于分子力的作用,只能在更低的温度下才能结冻.地基土冻胀类别鉴别方法.(1)不冻胀土,地形特征:高岗地或高出周围地势2m以上的局部小土岗,地势平坦,无积水,排水条件较好,土量及地下水条件常年处于干和半干状态的粘性土,冻前地下水位1.5m以下,处于湿润状态的轻亚粘土.(2)弱冻胀土,地形特征:地势较高,排水条件良好,地势较低,有时积水,土量及地下水条件,冻前地下水位2m以下,处于硬塑的亚粘土, 或充分饱和,无自然排水条件的细砂土.(3)冻胀土地,形特征:地形平坦,排水条件较好,表面有积水,土量及地下水条件,冻前地下水位2m以下,处于硬塑性的亚粘土轻亚粘土.(4)强冻胀土,地形特征:地势平坦,地表偶然积水,排水条件较差,或地势低洼,积水较多.2,温度继续下降,束缚水膜内一部分水分子也开始结冰,冰晶体加大,束缚水膜变薄.我们把束缚水膜变薄的地方叫作"一线"(即冻结前线)把尚未冻结的区域(土壤更深一些的部位,束缚水膜还很厚)叫它做"二线".这期间,厚薄水膜间(即"二线"与"一线"之间)产生了压力差. 3,由于压力差的作用.束缚水由厚的地方向薄的地方迁移和重分布,使水分的不断朝"一线"(即冻结前线)集中.并在那儿冻结.这种迁移,一直继续到冻结区域内的水膜连续性被破坏为止,由于水分的迁移集中,使冰晶体不断扩大,在有水源补给的情况下(如地表水的渗漏和地下水位的升高)这种现象更为严重.4,当温度继续下降,一方面更多的束缚水参加冻结,另一方面冻结区域不断向深处发展.这样,就使土的体积不断增大形成冻胀.所以,土壤在受冻后体积的增大,不仅是由于土中的水在转变为冰时体积的膨胀(9%)而主要是由于土在冻结过程中,土中水分的迁移和重分布.(二)土壤的颗粒组成与冻胀的关系一般认为,土粒径在0.05--0.005之间者,因粒径小毛细压力大,地下水通过毛细管作用而上升至基础底面,受冻后在基底形成夹冰层,致使土壤受冻膨胀而发生隆起.另外,土的粒径小,则相对来讲,束缚水膜较厚,在土冻结时即成为水分迁移的宽广通路.按土壤粒径划分.小于0.05ram之颗粒所占比重大于10%者,即为冻胀性土壤,0.05--0.O05mm之间的粘土,虽然毛细压力很大,束缚水膜相对很厚,但因渗透性较差,因此,冻胀性反而轻得多.中粗沙土壤,因是骨架结构,粒度大,毛细压力小,束缚水膜也相对很薄,且颗粒间接触点少,点上压力就大,接触点上的束缚水大部分被挤掉,水分在冻结时无从迁移所以属非冻胀性土.综上所述,地基冻胀之真正原因,是土壤在冻结过程中,土中水分的迁移和重分布,(在有补给水源的情况下就更为严重)二是土的颗粒所形成的毛细压力将地下水吸至基底受冻后形成夹冰层,找出这一规律后,不难看出,只要想办法制止土中水分的迁移,切断补给水源,减少地基土的毛细压力,就能有效地,有针对性的防止和避免冻害影响. 二,地基冻胀的危害地基冻胀的危害,可分为两个阶段.1,冻胀阶段:土壤结冻时,膨胀不均匀(阴阳两面),引起建筑物不均匀变形和裂缝,特别是浅基础平房,当地基冻胀力大于基底上的荷载时,建筑物就会受冻而被抬起,严重者可引起破坏和倒塌.2,融解阶段:当气温升高,冻土融解时,胀大部分复原,再加上土中冰层化成水,使地基饱和,降低承载力,从而引起建筑物不均匀下沉和变形(即通称融陷).无论冻胀和融陷,因为一般都是不均匀的每年如此冻融交替,造成建筑物变形,开裂,严重者引起破坏.因冻害而变形的房屋,一般有下列四种情形.1,沿门窗四角开裂,因此处断面薄弱,荷重小容易冻胀.2,已住人的采暖房屋,因室内外温差而致内外墙冻胀沉降不同,引起内隔墙开裂.内冻害而变形的房屋一般有下列几种:(1)因基础洞口的大小与地面耐力集中荷载有关,集中荷载又由地基的面积大小和局部荷载有关.(2)因房屋的占地面积和地势的不均有关.(3)由地表建筑物周围是否排水畅通和有集水有关.3,因室外内采暖保温情况不一,造成基础两侧冻切力及冻胀合力差,产生扭转力矩,把墙挤歪或出现水平裂缝.4,虽然考虑了冻结深度,但忽视了施工质量,基础两侧不平,因冻胀而把基础拦腰挤起,造成上部裂缝.三,防止地基冻害的措施通过上述的分析,中粗砂类土壤,因是骨架结构粒度大,束缚水膜相对很薄,颗粒问的接触压力大,接触点上的大部分束缚水膜被挤掉, 使受冻时,水分无通路可迁移,且毛细压力又小,地下水不能通过毛细管作用而上升到基底,属于非冻胀性土,所以中粗沙类土可作为防止地基受冻害的一件有力武器,下面从设计和施工两个方面谈一下,防止地基受冻害的措施.(一)设计方面1,浅基础的平房建筑(包括台阶,门坡道,护坡,花池,凉亭等)应于基础下面加设300--500mm的中粗沙(或砂砾土,炉渣等可)垫层,低洼,潮湿地区的浅基础和不允许出现冻害的台阶,门坡通道等.应将沙垫层置于冻结线处或冻结线以下.我矿目前的设计状况,一般非主要建筑如住宅区仓房等均不出图,使施工无所依据,且造成冻害后果也不好追查,今后应从设计方面改变这一局面.2,设计冻胀变形缝.在两种不同形式的基础和可能产生不均匀沉降的地方,如门台阶,外门坡道,室外平台,护坡等与建筑物的连接处,以及采暖与非采暖房间连接处,均应设置20—30mm的变形缝.3,采用独立式基础.由于独立式基础荷重大,有利于减小冻胀变形,所以围墙之类的建筑宜采用柱形基础.在冻胀性强的地基上建筑楼房可采用桩基础. 4,在建筑物四周作明沟或育沟排水,切断水分迁移的补给条件.5,在室外暖气沟2米范围内,不建非采暖建筑.6,在有冻害威胁的地区建造房屋,设置圈梁和于转角处做配筋砌体,必要时角端基础可适当加深.(二)施工方面1,基础冬季施工时,应采取措施不使地基受冻.2,作好场地排水,不使施工用水,雨水(特别是封冻前的最后一次雨水)灌人地基.3,砂垫层暖季应水撼,冬季或接近冬雪时不能水撼应干夯.4,毛石基础砌筑时要注意两侧面要平整或稍向倾斜,万不能出台或向外倾斜,尤其是满槽装的基础尤应注意,以免受基础两侧冻切力和冻结力的扭曲面破坏,灰缝要用砂浆封严.5,不能交付使用的越冬工程,冬季应做好复盖保温.6,在砖石工程砌筑时应清出冰雪.7,在拌制砂浆时,所用的砂中不得含有冰块和直径大于1厘米的冻结块.8,拌合砂浆时水的温度不得超过40℃,在对材料加热时应首先选用将水加热的方法.9,冬季施工所用的砂浆流动性,应比在常温下适当增大,特别是砌筑主体工程时,应优先选用掺盐砂浆法,必须采用一块砖一块石一铲灰的方法不得大面积铺灰,砌砖灰缝应控制在1厘米以内.10,当气温低于一15℃时砂浆的温度应保证上墙时不冻结(不挂腊).l1,冬季施工所用的砂浆应比在夏季施工时提高一个标号,因为冬季施工砂浆的强度损失较大,一般在50%左右.。
简述寒地道路冻胀原因分析与防治措施作者:蔡智军来源:《中国科技博览》2015年第19期[摘要]在寒冷地区,铺筑高级路面的道路或砂石路面及其附属构造物、隧道、挡土墙、人行道和坡面等。
由于土或岩石中产生的冻胀作用,常常使这些构造遭受较大的破坏。
土所产生的冻胀引起道路的冻害。
造成道路破损,因而影响车辆的通行,降低道路的使用寿命。
本文主要阐述寒地道路冻胀的破坏原因和防治方法进行。
[关键词]寒地道路冻胀原因防治中图分类号:U569 文献标识码:A 文章编号:1009-914X(2015)19-0385-01所谓的道路冻胀,主要是冬季在路基土中沿着温度的降低方向生成了冰晶体形状的霜柱,使路面产生隆起的一种现象。
隧道侧墙的破坏主要由于土中霜柱的作用使土体沿冷却方向的横向产生冻胀,从而使隧道的侧壁,向冷空气侵入的隧道中心轴方向推移,因而沿着侧墙部分的水平方向产生了作用力。
坡面上的冻胀作用是沿着垂直方向发生的。
冻胀作用使道路产生的破坏状态在中央部分冻胀量最大,因而沿路面中心线的纵断方向上产生纵向裂缝。
这种冻胀破坏与冬季期间道路除雪情况以及路面施工接缝情况有密切关系。
施工时在路面中心如果有接缝,则接缝处水平方向的抗拉强度比路面其他部分要小。
为了防止上述的冻胀现象所引起的道路破坏,首先需要了解冻胀发生的机理,因此对引起道路冻害的一些因素,如土质、气温、土中水等要详细进行调查,特别是对防止道路等土木构造物产生冻胀作用采用的措施研究中,应注意易引起地基冻胀的土是否发生了冻结,因而确定土的冻结深度是非常必要的。
另外,对道路附属构造物上部的填土是否会产生冻胀,也有必要进行确定。
在那些寒冷地区,对冻结深度的确定及其深度范围土的冻胀可能性的判断都成为冻胀调查的要点。
道路的冻害防止措施,当前主要采用置换法、隔温法及稳定土的处治方法等。
一般情况下,所采取的措施从经济性、施工方便及可靠性方面考虑,主要采取非冻胀敏感的粒状材料置换冬季期间最大冻结深度约70%范围的置换法。
浅谈冬季农田水利工程的冻胀破坏及防治措施随着我国农田水利工程数量与日俱增,逐渐的暴露出诸多问题,其中动机的冻胀破坏问题显得尤为重要,必须要积极的结合先进的技术加以防范,才能够保证农田水利工程的质量和安全。
本文主要讲述了冻胀和盐胀的基本概念,冻胀对农田水利工程带来破坏的主要原因以及相应的防范措施。
标签:冬季;水利工程;防治措施随着我国农村经济的快速发展,我国农田水利工程得到了进一步的发展,农业作为我国社会经济的重要组成部分,必须要重视农田水利工程的质量和安全,及时的采取措施避免质量和安全事故的发生,才能够促进我国农村经济的可持续性发展。
一、冻胀与盐胀的概念由于受到外界因素的影响,进而就会导致土体内的水分超过一定的数量,冻结土层的体积就会不断的增加,从而导致土体出现膨胀的现象,即冻胀。
土壤冻胀主要因素包括了气温、含水量以及压力等诸多因素的影响。
冻胀的过程中会产生相应的冻胀力,进而出现形态变化。
土的冻胀力主要就是含水体冻结的时候就会导致土体内的水变成冰体,体积膨胀受到一定的约束。
比如我国新疆地区的冻胀现象比较常见,土壤的温度越低,冻胀就会越严重,从而会对农田水利工程的影响越大。
一般情况下,黏性土壤不能进行建筑物的垫层使用,土壤中具有一定的硫酸钠,如果硫酸钠超过设计规定范围,并且温度降到一定数值的时候,含盐浓度就会超过硫酸钠的溶解度,从而会结晶,进而改变了土壤的形态,即盐胀。
二、冻胀对农田水利工程造成破坏原因及存在的问题1、对渠道混凝土板衬砌的破坏预制混凝土受到冻胀之后就会出现诸多问题,比如延伸缩缝以及沉降缝错位等诸多问题,其主要原因就是因为外界水源的补给,冻结土壤中的水分就会不断的增加,冻胀受到土壤含水量的影响。
一般情况下土壤含水量越大,冻结变形就会越大。
大部分灌溉渠道在冬季停水期的时候处于无水的状态,水分主要就是由衬砌板底部下层的回归水补充,从而会逐渐的形成冰晶,导致土体内部的冰晶数量不断的增多,水分结冰导致体积不断的膨胀,受到水平方向挤压或者推力产生水平位移,最终会导致结构发生变化。
浅谈路基土的冻胀分析及防冻害措施【摘要】在我国的高寒地区,由于气温极低容易产生路基土的冻害现象,本文通过对路基土的冻胀机理和冻胀的影响因素进行了详细的分析,并得出了相对应的防治冻害的相关措施,为高寒地区路基土的设计、施工、维护等方面提供指导。
【关键词】:路基土;冻胀;防治措施中图分类号:u213.1 文献标识码:a 文章编号:一、前言路基土在极低的气温下,会产生冻结现象,水分的冰析作用和迁移积聚现象是导致路基土不均匀冻胀的直接原因。
冻胀的强弱程度跟土体在发生冻结时候的温度、土体内含水量的多少和水的来源、土的颗粒的大小和外部荷载的作用等多方面的因素有关。
二、路基土的冻胀影响因素分析1、土质对路基土产生冻胀的影响土体中的矿物质成分、密实度和粒度的成分是土质对路基土产生冻胀影响的最主要原因。
当路基土的土颗粒的粒径在0.1 mm以上时因为空隙较大,使得水分容易被排出,因此不会发生冻胀。
当土颗粒的粒径减小到一定程度,空间的空隙减小到一定程度之后,就容易发生冻胀。
当土颗粒粒径在0.1—0.05 mm范围之间,土体就会产生冻胀,这个范围内土体冻胀的可能性最大;当土体颗粒粒径在0.002 mm以下的时候,土颗粒分散性增大使得水分迁移量减小,使得土体的冻胀性逐渐减弱。
矿物成分对冻胀的影响不会发生在颗粒较粗路的路基土中。
土的密实程度也会对土的冻胀造成影响,在含水率固定的条件下,路基土密度的降低会增大土体之间的孔隙。
当密实度较小的土体发生冻结的时候,留有充分的孔隙和空间让冰发生自由膨胀也不会引起土颗粒间间距的变化,这时的土体产生的冻胀量比较小。
随着密实度的增大,自由水充填到了土颗粒间的孔隙之中,因此路基中水分在变成冰后的膨胀空间就会受到限制使得路基土冻胀程度变大。
当土体处于一个标准的密实度范围内,土颗粒间的孔隙在最小的范围内,这时的土体的密实度就阻碍水分的迁移,使得冻胀量也就达到了最大值。
2、水对路基土产生冻胀的影响路基土中的含水率,是促使路基土产生冻胀的基本条件。
土体产生冻胀的原因[浅析中国北方寒季建筑物土体的冻胀及防冻技术措施]1 冻土的概念及特性凡含有水的岩石及土体,均含有一定的水份,在地基基础设计规范GBJ7-89用(W)来表示天然的含水量。
冬季当温度降低到其冻结温度时,土中的孔隙水结成冰,伴随冰体的产生,固结了土体中微细的颗粒。
各种土体中冰的离析作用,将伴随着一系列非常复杂的物理及化学变化。
以及达到受力的改变。
水分增减,孔隙深液浓度的增大和土体不均匀变形,引起应力产生应变,这是符合材料力学的虎克定律。
这就是冻土产生的根本原因。
不同的土粒比重它的孔隙比是有区别的。
粘土的透水性能较差,吸水率较高,它的冻胀力也越大。
2 土冻胀过程齐市地区按规范(GBJ7-89)规定,季节性冻土标准冻深为2.2M。
冬季期间,潮湿的土体受冻后固结,产生向上的法向应力产生冻胀。
春融季节,冻土吸收外部的热量,出现融化,引起土体沉陷。
周而复始引起土体冻胀――沉陷。
尽管季节性冻土区或者长年冻土区地质条件不一,但这种过程同样存在。
他们的性质有相似的一面也有差别的一面。
对于象齐市地区这种冻土曲线特点应是自上而下单向冻结,冻结过程比较缓慢,往往需要四-六个月的时间,即十月末直至第二年的四月份左右,齐市也把此段视为冬季施工阶段。
最大冻结期间多在一至二月份。
当春暖花开冻土层处于上下双向融化(地热作用)融化速度较迅速,仅一、二个月的时间。
3 冻土地区建筑物的破坏特征3.1 桩、柱下独立钢筋砼基础寒冷地区桩,柱下独立钢砼的基础,冻害相当普遍严重。
某地区的桩埋入土中长度为6M,每年冻拨约50MM左右,据多年统计,现已拨出1000MM左右。
国家标准(GB*****-92)规定:如平均气温低于50时,不得浇水养护,在冬季施工期中,环境气温较低,这种情况下使用薄膜养生液、防水纸或塑料薄膜等封闭材料来封闭混凝土中的多余拌合水,以实现混凝土的自然养护。
但应注意,有些薄膜养生液(例如以水玻璃为主要成分的薄膜养生液)低温下成膜性能差,甚至不能成膜或出现冻胶现象。
浅谈季节冻土区冻土冻胀原理摘要季节冻土区冻土冻胀造成工程破坏,影响工程正常使用。
我们只有熟悉和了解冻土成分、结构、物理性质、土体的冻胀、冻胀的影响因素,才能结合实际情况采取相应的工程措施,使土体的冻胀破坏对工程影响最小。
关键词冻土区构造冻胀原理随着我国经济建设的发展,在冻土地区各项工程建设也在大规模进行。
冻土作为建筑物的地基有着不同于融土的很多特性,如果不能正确认识它、了解它的性能,仍按常规融土地基设计理论与方法进行各项工程设计和施工,势必造成工程破坏,影响工程正常使用。
了解冻土的目的在于了解其成分、结构、性质和状态;从而了解其冻胀现象、规律以及工程因素对其的影响,从而更好的认识、掌握在冻土区进行工程建设的理论与方法。
一、冻土凡是温度等于或低于0℃以下,并含有冰胶结层的土为冻土。
土的冻胀和融沉对建筑物的危害,均是由于图中水相变所致。
土体冻结时,不仅其温度处于0℃以下,更重要的特征是其中有冰的存在,它使得原来松散的介质,表现出固体的性质,其物理-力学性质有很大改变,例如抗压强度增大、压缩性减小等,而融化时,由于抗减强度的下降,造成工程的破坏或失事。
1.冻土的基本成分。
冻土由固体部分、液体部分和气体部分组成。
固体部分由土的骨架和负温矿物组成。
冻土的骨架一般是矿物和极少数的有机沉淀物;负温矿物包括水、冰盐合晶和负温下结晶水化物,其中冰的形成和特征以及与冻土骨架相对数量和空间排列,对冻土性质影响极大。
液体部分是未冻水。
这种水是各种可溶物质的自然水,它在冻土中被吸附在土颗粒表面,作为吸附水存在。
气体部分有水蒸气、空气、沼气以及其他气体。
处在自由状态和吸附式密封状态。
自由气体的数量取决于土的孔隙度,吸附气体的数量与冻土骨架的数量、成分和孔隙有关,并与冻土有机含量相关。
2.冻土的结构。
冻土的结构是指微观上的矿物质点及其聚合物、冰晶的形状和大小以及冰胶结的形式。
3.冻土的构造。
根据冻结强度、边界条件、土体从单向冻结还是从多向冻结、有无地下水源补给条件等,决定着在冻结过程中冻土中冰晶体的形状、大小及与矿物颗粒间的相对排列方式,从而形成不同的冻土构造。
冻土地区冻胀的原因分析
及解决措施
土建室张鑫鹏
2019-10-16
1 成因分析 (1)
1.1 水结冰后膨胀 (1)
1.2 毛细现象和冰晶体的形成 (1)
2 影响冻胀的因素 (3)
2.1 土质对冻胀的影响 (3)
2.2 土中水分对冻胀的影响 (3)
2.3 温度对冻胀的影响 (4)
3 冻胀的破坏影响 (4)
4 应对的解决措施 (5)
4.1 置换法 (6)
4.2 隔温法 (7)
4.3 隔水法 (8)
4.4 稳定土处理法 (8)
5 结束语 (9)
参考文献 (9)
冻土地区冻胀的原因分析及解决措施
张鑫鹏
摘要:冻土地区路基的病害及其相应的防治措施一直是困扰工程的难题。
如冻胀、融沉等。
**处于北方严寒地区,在道路铺设,和基础设置等方面,受到冻胀的影响很大,往往为了解决冻胀问题花费更大精力和投资,并且存在特殊地质条件和投资控制等因素影响,有些项目无法完全避免冻胀的产生和影响,处理不当会给日后使用带来很大影响,根据冻胀原理和多年的经验教训,本文着重分析冻胀的起因和处理措施等,希望能为今后设计和施工带来更多帮助和解决思路。
关键词:冻土地区;冻胀;成因;解决措施
1成因分析
1.1水结冰后膨胀
我们知道,水在摄氏零度结冰,体积比原体积大十分之一,水结冰的过程中体积增大,产生占位空间,挤动了其它物体,作用在其它物体上的力就是冻胀力。
这种单独的原位冻胀造成破坏力相对较小。
1.2毛细现象和冰晶体的形成
土体的冻胀分为原位冻胀和分凝冻胀两种。
而对工程中破坏巨大的是由于外界水分迁移补给形成的分凝冻胀,是由毛细
现象和冰晶体共同作用形成的。
毛细现象是指土中水在表面张力作用下,沿着孔隙向上及其他方向移动的现象。
在形成毛细通道时就构成毛细水的上升。
当冰冻季节冻结时,土中水分向冻结区迁移并积聚,土颗粒孔隙中的自由水在0℃以下时,自由水首先冻结成冰晶体。
随着**温的继续下降,周围未冻结区土中的水分会向表层冻结冰晶体迁移积聚,使冻结区土层中水分逐渐增大,冻结后的冰晶体也不断增大,只要冻结区周围还存在着水源,并且还存在适当的水源补给通道即毛细通道,能够源源不断地补充给冰冻体所需的水分,在这一不平衡的引力不间断地作用下,未冰冻区的水分不断地向冰冻区迁移积聚,使冰晶体不断扩大,在土层中形成冰夹层,土层在冰夹层作用下体积会发生膨胀,也就是冻胀。
冻结区域冰晶体不断增大,不断吸引周围的水分,不断发生体积继续膨胀现象,一直继续到切断冰晶体所需的补给水源,此时的水分继续
迁移积聚、冰晶体继续增大才会停止。
2影响冻胀的因素
2.1土质对冻胀的影响
土的冻胀主要是由于水分的迁移导致的水分大量积聚而引起的。
土中水的迁移取决于当地的土质条件。
含粉粒多的细粒土的渗透性较强,且毛细水可以及时补给,故水更易大量聚集,所以细粒土的冻胀很明显。
当地下水位相同时,土壤的冻胀量随土颗粒大小而异,颗粒越粗,冻胀量越小;颗粒越细,冻胀量越大。
粉性土冻胀量最大,粘性土次之,砂砾土最小。
冻土的水分迁移量为粉粒>粘粒>砂粒。
主要原因是:当粒径大于0.1mm,在无粉、粘土颗粒充填情况下,表面能很低,表面吸附作用几乎没有,很难形成薄膜机械或毛细机构,冻胀性很小;当粒径尺寸为0.1~0.05mm的细砂时,就是饱和水状态下冻结,冻胀性也很小;但当粒径处于0.05~0.005mm 时,土具有最大的冻胀性;当粒径小于0.005或更小时,因为颗粒的分散性极大,表面能相当高,土中水多为土粒强烈束缚,强吸附水量增大。
如果这种粒径的含量超过50%,因土中孔隙过小,造成了水流通路的阻塞,形成不透水的隔离层使水迁移困难,则冻胀性急剧减小,故土的分散性对冻胀性的影响最严重。
2.2土中水分对冻胀的影响
我们知道,土的冻胀是由于土中水分冻结成冰造成的土体积
膨胀,可见水分是冻胀的首要条件,而土中水分的多少是影响冻胀的基本因素。
水的主要来源一个是大**降水及各种排水和人工灌溉引起的回归水,而大**降水影响最大的是冻前的降水量。
第二个是地下水,而且关键是地下水距地表的距离。
地下水位越高,土的冻胀就越大。
2.3温度对冻胀的影响
负温是冻胀产生的必要条件之一,土体在负温下冻结,而且在不同的负温下显示出不同的冻胀特性,在开敞的体系中,其冻胀可分3个阶段:第一阶段,土体冻胀强度随负温的降低而剧烈地增长,其增长值约占最大冻胀值的70~80%;负温变化范围为起始冻结温度至-3℃左右。
第二阶段,土体冻胀强度增长缓慢,其增长值一般占最大冻胀值的10~20%负温变化在-3~-7℃。
第三阶段,土体冻胀率处于稳定或略有增长,一般在5%左右,负温变化在-7~-10℃。
3冻胀的破坏影响
水分迁移和积聚,冰晶体不断扩大形成冰夹层,土体随之发生隆起,出现冻胀现象。
当土层解冻时,土中积聚的冰晶体融化,土体随之下陷,即出现融陷现象。
反复的冻胀和融陷现象造成工程中巨大破坏。
造成积水冻结膨胀形成冻胀病害,其最大量有50 mm,一般在30 mm~40 mm,多在25mm 以下。
冻胀形成时间从10 月到次年3 月末,之后便趋于稳定。
近几年小区改造等项目中,如果遇到地下水位较高、土质软弱、施工夯实不足等情况,常引起较明显的冻胀现象,造成道路铺装的拱起、散水倒坡、单元门无法正常开启等影响。
随着4月初的融陷,又造成冻胀和融陷幅度不均匀,铺装成波浪形,道路开裂等破坏。
2019年12月,**至大连客运正式运营。
哈大客专造价超千亿元,设计时速350公里,实际运行时速却不到200公里。
原定于2019年4月1日提速计划延迟,据媒体报道,因2019年下半年,哈大客专路基出现大面积冻胀。
4应对的解决措施
**地区属寒带地区,随着自然环境和**候变暖,**的开发建设,人员增加,生产、生活的活动,**温也不断的升高,因此,工程建设防冻胀冻切的方法也在不断变化。
****开发建设初期,冻土层最深可达3米,而最近几年来冻土层深仅2.1米。
冻胀现象的产生必须同时具备土质、温度、地下水三个因素的作用。
因此,为了防止道路冻胀作用的产生,只要消除这三个因素中的一个,就能达到防治目的。
工程中的防治道路冻害措施可以归纳为“置换法”、“隔温法”、“隔水法”及“稳定土处理法”。
4.1置换法
置换法是采用非冻胀材料换填部分冻胀性土的方法。
置换深度应该由防止冻胀引起的路面破坏和春融期土基及底基层承载能力降低来决定,在防止冻胀引起的路面破坏时,最好采用不易引起冻胀的材料换填到理论最大冻结深度。
但根据大量国内外文献,一般说来,只要置换到理论最大冻深的70%即可。
考虑到冰害作用受积雪、除雪程度,日照等影响很大,所以置换率一般还需根据当地具体情况分析。
实际项目中,由于置换深度较大,成本较高,很难完全采用这种方式,而多数采取部分置换为中砂等,厚度多为
300~500mm,一方面置换部分冻土,另外也能起到缓解冻胀力的作用。
4.2隔温法
为了防止道路的冻胀破坏,在采用隔温材料时,要选择热传
导率小的材料,才有较好的隔温性能。
材料的隔温性能要持久,承载能力要高,耐水性好,并且要经济。
满足这些条件的材料有聚苯乙烯薄板等。
采用这种方法,要注意在隔温层上的垫层施工工艺的问题。
因为运输垫层材料以及采用机械压实过程容易使隔温材料破坏,并且会将粗粒材料压入隔温层中。
为此,可以在隔温层上撒铺数厘米厚的砂,然后再铺20~30cm的砂砾进行碾压。
4.3隔水法
防止地面雨水、雪水下渗,同时加强路基排水,确保路基面以下一定深度范围内地基土的含水量不会由于地表水下渗而增大。
可以采取在基床表层范围内铺设复合土工膜隔水的措施,以达到封闭的效果。
并结合降低地下水位等措施。
对于新建公路来说,通常采用提高路基高度的设计方法,使路基远离水源,从而有效地降低路基冻胀现象。
4.4稳定土处理法
道路的基层如使用不够稳定的土类,可掺入适当数量的水泥进行处理,能提高其强度和承载能力,并增加抗冻和抗水性能。
但水泥剂量过大也会产生收缩裂缝。
至于粉碎、拌合与压实等工序也很重要,必须合乎要求。
这种方式比较常见的使用在实际项目中。
5结束语
在以上这些措施中,工程中应首先考虑采用在预想冻深范围内换填冻胀土的置换法,而在冻结深度较大、交通量比较少或缺
少优质置换材料的情况下,适于采用隔温法防止冻胀。
稳定土处理法则是用于粘性土构成的软弱路基情况,也可与置换法配合使用。
道路冻害的防治措施,除以上论述的常用方法外,还有不少具体方法。
考虑施工时的实际情况,综合运用各种防治措施和手段,因地制宜,就地取材,才能取得既经济又有效的防冻胀效果。
参考文献
JGJ 118-2019 冻土地区建筑地基基础设计规范
CJJ 37-2019 城市道路设计规范。