高数第九章习题答案
- 格式:pdf
- 大小:158.42 KB
- 文档页数:13
作 业 9—1一.填空:1.已知D 是长方形域:,10;≤≤≤≤y b x a 且⎰⎰=Dd x yf 1)(σ,则⋅=b adx x f )(2 .解:⎰⎰=Dd x yf σ)(⎰⎰⋅=baydy dx x f 1)(21⎰⋅badx x f )( 故⎰⋅=badx x f )( 22.若D 是由1=+y x 和两个坐标轴围成的三角形域,且⎰⎰⎰⋅=Ddx x dxdy x f 1)()(ϕ,那么.=)(x ϕ)()1(x f x -解:⎰⎰=Ddxdy x f )(⎰⎰-⋅=xdy x f xdx 1010)(⎰⋅-10)()1(dx x f x ⎰⋅=1)(dx x ϕ二、单项选择题:1. 设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心在(-1,1)处,记1I =⎰⎰---12222D xy x y dxdy e;2I =⎰⎰---22222D xy x y dxdy e;3I =⎰⎰---32222D xy x y dxdy e.则1I ,2I ,3I 大小顺序为( B )。
A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤2I ≤1I D. 3I ≤1I ≤2I解:因为三个被积函数一样,均为正值,213D D D ⊃⊃,故2I ≤1I ≤3I 2. 设D 是第二象限的一个有界闭区域,且10<<y ,记1I =⎰⎰Dd yx σ3;2I =⎰⎰Dd x y σ32;3I =⎰⎰Dd x y σ321.1I ,2I ,3I 的大小顺序是( )。
A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤1I ≤2I D. 3I ≤2I ≤1I 解:因10<<y ,故212y y y <<,而03<x ,从而323321x y yx x y <<,选(C )。
三.利用二重积分定义证明: 1.σσ=⎰⎰Dd (其中σ为D 的面积)解:ini iiDf d σηξσλ∑⎰⎰=→∆=⋅10),(lim 1i ni σλ∑=→∆⋅=11limσσσλλ==∆=→=→∑01lim limini故 σσ=⎰⎰Dd (其中λ是各iσ∆的最大直径)2.k d y x kf D=⎰⎰σ),(⎰⎰Dd y x f σ),( (其中k 为常数)解:=⎰⎰Dd y x kf σ),( ini iif σηξλ∑=→∆1),(lim i ni i i f k σηξλ∑=→∆=1),(limi ni i i f k σηξλ∑=→∆=1),(lim ⎰⎰=Dd y x f k σ),( (k 为常数)四.利用二重积分的性质估计下列积分的值: 1.}10,10|),{(,)(⎰⎰≤≤≤≤=+=Dy x y x d y x xy I 其中Dσ解: 10,10≤≤≤≤y x∴2)(0≤+≤y x xy∴⎰⎰⎰⎰≤≤+≤DDd d y x xy 22)(0σσ2.}4|),{(,)49(22⎰⎰≤+=++=Dy x d y x I 22yx其中Dσ 解: 中在D ,422ππσ=⋅=,()22222249499yx y x y x ++≤++≤++2549922≤++≤y x∴ σσσ25)49(922≤++≤⎰⎰⎰⎰DDd y x d即 ππ10036≤≤I五.根据二重积分的性质比较下列积分的大小: 1.⎰⎰⎰⎰++DDd y x d y x σσ32)()(与其中积分区域D 是由圆周2)1()2(22=-+-y x 所围成。
第九章 曲线积分与曲面积分作业13 对弧长的曲线积分1.计算d Lx s ⎰,其中L 为直线y x =及抛物线2y x =所围成的区域的整个边界.解:L 可以分解为[]1:,1,0,1L y x y x '==∈及[]22:,2,0,1L y x y x x '==∈1211d d d LL L x s x s x s x x x x =+=+⎰⎰⎰⎰⎰()()113222001121d 1414883212x x x x =++=+⋅+=+2.4433d L x y s ⎛⎫+ ⎪⎝⎭⎰,其中L 为星形线33cos ,sin x a t y a t = =在第一象限内的弧π02t ⎛⎫≤≤ ⎪⎝⎭.解:L 为33cos ,sin ,0,,2x a t y a t t π⎡⎤= =∈⎢⎥⎣⎦223cos sin ,3sin cos ,3sin cos dx dya t t a t t ds a t tdt dt dt=-== 原式()4722442233031cossin 3sin cos 1sin 2sin 222a t t a t tdt a t tdt ππ⎛⎫=+⋅=- ⎪⎝⎭⎰⎰()7772223333003311cos 2cos 2cos 2cos 2883a t d t a t t a ππ⎛⎫=-+=-+= ⎪⎝⎭⎰ 3.计算d xyz s Γ⎰,其中Γ折线ABC ,这里A ,B ,C 依次为点)3,4,1(),3,2,1(),0,0,0(.解:[]:,,2,3,0,1,123x y zAB x t y t z t t ds =====∈= []:1,3,,2,4,BC x z y t t ds dt ===∈=[]:,,4,3,0,1,143x y zCA x t y t z t t ds =====∈=142d d d 231318ABBCxyz s xyz s xyz s t t t t dt Γ=+=⋅⋅+⋅⋅=⎰⎰⎰⎰⎰4.()22d xy z s Γ+⎰,其中Γ为螺线cos ,sin ,x t t y t t z t = ==上相应于t 从0变到1的一段弧.解:Γ为[]cos ,sin ,,0,1,x t t y t t z t t ds = ==∈=()()112222201d (222x y z s t t t t Γ+=⋅=+-+⎰⎰⎰ ()()1532222122222253t t ⎡⎤=+-⋅+==⎢⎥⎣⎦5.计算22d Lx y s +⎰,其中L :0,22>=+a ax y x .解:将L 参数化,22cos ,sin cos ,cos ,cos ,x r t y r t r ar t r a t x a t ==⇒===cos sin ,,,sin 2,cos 2,22y a t t t dx a tdt dy a tdt ds adt ππ⎡⎤=∈-=-==⎢⎥⎣⎦222222222d 2cos 2sin 2Lx y s a tdt a ta ππππ-+====⎰⎰⎰6.计算22ed x y Ls +⎰,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分[]12:0,0,,;:sin,cos ,0,,;4L y x a ds dx L x a t y a t t ds adt π⎡⎤=∈===∈=⎢⎥⎣⎦2123:,,;L y xx ds L L LL ⎡=∈==++⎢⎣⎦从而22400ed 4aax yxax aLa s e dx e adt e e ππ+=+⋅+=++⎰⎰⎰112244a a a a aa a e e e e e ππ=-++-=+-作业14 对坐标的曲线积分1.计算下列第二型曲线积分:(1) ()()d d L x y x x y y ++-⎰,其中L 为按逆时针方向绕椭圆22221x y a b+=一周;解:L 为cos ,sin ,:02x a t y b t t π==→原式()()20sin cos sin cos cos sin a t a t b t b t a t b t dt π=-++-⎡⎤⎣⎦⎰ 22222200sin 2cos 2sin 2cos 20224a b ab t a b ab t t dt t ππ⎛⎫⎛⎫++=-=+= ⎪ ⎪⎝⎭⎝⎭⎰(2)()d d 1d x x y y x y z Γ+++-⎰,其中Γ是从点()1,1,1到点()2,3,4的一段直线;解:Γ是111,1,12,13,:01213141x y z x t y t z t t ---===+=+=+→--- 原式()()()1121231121t t t t dt =+++++++-⎡⎤⎣⎦⎰()()1126146713t dt t t=+=+=⎰(3)d d d y x x y z Γ-+⎰,其中Γ是圆柱螺线2cos ,2sin , 3 x t y t z t ===从0t =到2πt =的一段弧;解:Γ是2cos ,2sin , 3 ,:02x t y t z t t π===→原式()()202sin 2sin 2cos 2cos 3t t t t dt π=--+⎡⎤⎣⎦⎰ ()()2200432dt t πππ=-+=-=-⎰(4) 计算曲线积分(12e )d (cos e )d y y Lxy x y x y +--⎰,其中L 为由点A (-1, 1)沿抛物线2y x =到点O (0, 0), 再沿x 轴到点B (2, 0)的弧段.解:由于积分曲线是分段表达的,需要分段积分2:,:10AO y x x =-→;:0,:02OB y x =→原式222221(12e )d (cos e )2dx (e )d x x xx x x x x x -=+--+⎰⎰2223221(12e 2cos 2e )d d x x x x x x x x -=+-++⎰⎰()222004211113sin e d de 21sin1sin11xx x x xx x xee ----=-+++=-++=+-⎰⎰2. 设力F 的大小等于作用点的横坐标的平方,而方向依y 轴的负方向,求质量为m 的质点沿抛物线21x y -=从点()1,0移动到点()0,1时,力F 所作的功.解:{}{}{}2220,10,,,,:1,:01F x x ds dx dy L x y y =-=-==-→()()11352240028123515L L y y W Fds x dy y y dy y ⎛⎫==-=--+=--+=- ⎪⎝⎭⎰⎰⎰3.把对坐标的曲线积分()(),d ,d LP x y x Q x y y +⎰化成对弧长的曲线积分,其中L为:(1) 在xOy 平面内沿直线从点()0,0到点()1,1; (2) 沿抛物线2y x =从点()0,0到点()1,1.解:(1):,:01,0;L y x x dx ds =→>==()()()(),,,d ,d ,,d L L P x x Q x x P x y x Q x y y P x x Q x x x +⎡⎤+=+=⎡⎤⎣⎦⎰⎰⎰(2)2:,:01,0;L y x x dx ds =→>=()()()()22,2,,d ,d ,2,d L L P x x xQ x x P x y x Q x y y P x x xQ x x x +⎡⎤⎡⎤+=+=⎣⎦⎰⎰⎰作业15 格林公式及其应用1.填空题(1) 设L 是三顶点(0, 0), (3, 0), (3, 2)的三角形正向边界,(24)d (536)d Lx y x y x y -+++-=⎰12 .(2) 设曲线L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形边界,d d L x yx y ++⎰不能直接用格林公式的理由是_所围区域内部有不可导的点_.(3)相应于曲线积分(,,)d (,,)d (,,)d LP x y z x Q x y z y R x y z z++⎰的第一型的曲线积分是⎰. 其中L 为从点(1, 1 ,1)到点(1, 2, 3)的直线段. 2.计算33(e sin )d (ecos )d x xLI y y x y x y =-++⎰,其中L 是沿半圆周x =从点),0(a A -到点),0(a B 的弧.解:L 加上:0,:BA x x a a =→-构成区域边界的负向()3322(e sin )d (e cos )d 3cos axxLDaI y y x y x y x y d ydy σ-=-++=-+-⎰⎰⎰⎰34230233cos 2sin 4a aaa d r dr ydy a πππθ-=-+=-+⎰⎰⎰v3.计算e 31d e 33d xy xy Ly x y x x x y y ⎡⎤⎡⎤+-+++-+⎣⎦⎣⎦⎰,其中L 为椭圆 22221x y a b+=正向一周. 解:原式()()e 33e 31xy xyD x x y y x y dxdy x y ⎡⎤∂∂=+-+-+-+⎢⎥∂∂⎣⎦⎰⎰ 44Ddxdy ab π==⎰⎰4.计算曲线积分[]()sin d ()cos πd ,LI f x y x f x y x y '=+-⎰其中)(x f '为连续函数,L 是沿圆周222(1)(π)1πx y -+-=+按逆时针方向由点(2,2π)A 到点)0,0(O 的一段弧.解:令1:,:02L y x x π=→ 则,原式()[]111π()sin d ()cos πd L L L L DI dxdy f x y x f x y x y +'=-=--+-⎰⎰⎰⎰⎰()222π1()sin ()cos ππd 2f x x f x x x x ππππ'⎡⎤=-⋅+-+-⎣⎦⎰ ()()222422223π1()sin ππ1222222x f x x ππππππππ⎡⎤=-⋅+--=-⋅++=-⎢⎥⎣⎦5.计算22d d L x y y xx y -+⎰,其中L 为(1)圆周()()22111x y -+-=(按反时针方向);解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,而且原点不在该圆域内部,从而由格林公式,原式0= (2)闭曲线1x y +=(按反时针方向).解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周220.01x y +=(1L 也按反时针方向),在圆环域上用格林公式得, 原式()1122d d d d 1001120.01L L Dx y y xx y y xdxdy x y π--===+=+⎰⎰⎰⎰ 6.证明下列曲线积分在xOy 平面内与路径无关,并计算积分值: (1)()()(),0,0e cos d sin d a b x y x y y -⎰;解:由于()()e sin e sin e cos x xx y y y x y∂∂-=-=∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,00,,b a b →→积分即可, 原式()()0sin e cos d cos 11cos cos 1bax a ay dy b x b e b e b =-+=-+-=-⎰⎰ (2)()()()()2,14231,023d 4d xy yx x xy y -++-⎰;解:由于()()233442423x xy x y xy y x y∂∂-=-=-+∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿直线10,1,:122110x y y x x --==-→--积分也可, 原式=()()()24321211341d x x x x x x x ⎡⎤---++--⎣⎦⎰()()243213235141d x x x x x ⎡⎤=-+----⎣⎦⎰()()2543213115x x x x x ⎡⎤=-+----=⎣⎦ (3)()()()()π,20,0ecos d e sin d yy x m x x my y -+-⎰.解:由于()()e sin e cos e cos y y y x my x x m x y∂∂-==-∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,0,0,2ππ→→积分即可,原式()()20cos e sin d y ex m dx my y ππ=-+-⎰⎰()2200sin 2my x mx π⎛⎫=-+- ⎪⎝⎭2m m π=--7.设()f x 在(),-∞+∞上具有连续导数,计算()()2221d 1d L y f xy x x y f xy y y y +⎡⎤+-⎣⎦⎰, 其中L 为从点23,3⎛⎫ ⎪⎝⎭到点()1,2的直线段.解:由于()()()()2222111y f xy x y f xy f xy xyf xy x y y y y ⎡⎤+⎧⎫∂∂'⎡⎤-=+-=⎨⎬⎢⎥⎣⎦∂∂⎩⎭⎣⎦在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线12:2,,:31L xy y x x==→积分即可,原式()()()()2122232421122d d 22x f f x x x x x x x⎡⎤-+⎢⎥-⎣⎦+⎰13xdx =⎰1232x ⎛⎫= ⎪⎝⎭1942-==- 8.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数的全微分,并求出它的一个原函数:(1)()()e e d e 1e d x y x yx y x x y ⎡⎤⎡⎤+-+-+⎣⎦⎣⎦;解:由于()()e 1e e e x y x yx y x e e x y x y∂∂⎡⎤⎡⎤-+=-=+-⎣⎦⎣⎦∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则()(),e 1e ,e e x y x y u u u u du dx dy x x y x y y x∂∂∂∂=+=-+=+-∂∂∂∂ 从而()()()e 1e e 1e x y x yu x dy y x g x ⎡⎤=-+=-++⎣⎦⎰()()()e e e e =e x y x y x ux y y g x g x x x∂''=+-=-+⇒∂ ()=e x x x x x g x xd xe e dx xe e c =-=-+⎰⎰,()()1e 1e x y u x y x c =+--++(2)()()223238d 812e d yx y xy x x x y y y ++++;解:由于()()32222812e 31638y x x y y x xy x y xy x y∂∂++=+=+∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则原式3223224d 412e d yydx y x x dy x dy y y =++++()3322224d 412de yydx x dy y x x dy d y =++++⎰()()()32241212e d yyd yx d x y d ye y =++-⎰()32241212e y y d yxx y ye =++-可取32241212e yyu yx x y ye =++-(3)()()222cos cos d 2sin sin d x y y x x y x x y y ++-解:可取折线()()()0,0,0,x x y →→作曲线积分()()22202d 2sin sin d sin cos yx u x x y x x y y y x x y =+-=+⎰⎰9.设有一变力在坐标轴上的投影为2,28X x y Y xy =+=-,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:{}2,28F x y xy =+-,质点在此场内任意曲线L 移动时,场力所作的功为()()228Lw x y dx xy dy =++-⎰由于()2282xy y x y x y∂∂⎡⎤-==+⎣⎦∂∂在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16 对面积的曲面积分1.计算下列对面积的曲面积分: (1)()d xy yz zx S ∑++⎰⎰,其中∑为锥面z =被柱面222x y ax +=所截得的有限部分; 解:∑为x y z z z ===dS ==,:02cos ,22D r a ππθθ≤≤-≤≤原式2cos 2302d d cos a Dzx S x y d r dr πθπθθ∑-==⎰⎰⎰⎰⎰⎰()()42242422cos cos 12sin sin sin 4a d d πππθθθθθθ--+=⎰⎰ (2)()222d xy z S ∑++⎰⎰,其中∑为球面2222x y z ax ++=.解:∑为两块y y x a x x =±==dS ==,:0,02D r a θπ≤≤≤≤原式12222d 2d Da a ax S ax S ∑∑+=+=⎰⎰⎰⎰22Da a +2334aDaad πθ=⎰223340=888a d a r aa a πππ--=-=2.计算d y S ∑⎰⎰,∑是平面4=++z y x 被圆柱面122=+y x截出的有限部分.解:∑为两块4,1,1x y z x y z z =--=-=-,dS =,:01,02D r θπ≤≤≤≤原式D=13220sin 03ar d r dr ππθθθ==⋅=⎰ (或由()(),,,,x y z x y z ∈∑⇒-∈∑,而积分微元反号推出)3.求球面2222a z y x =++含在圆柱面ax y x =+22内部的那部分面积. 解:∑为两块x y z z z ===dS ==,:0,02D r a θπ≤≤≤≤原式12d 2DS dS ∑∑=+=⎰⎰⎰⎰cos 22=2a ad πθπθ-⎰⎰()()cos 222202=2sin 41242a ad a a a d a a ππθππθθθπ-⎛⎫-=-=- ⎪⎝⎭⎰⎰⎰4.设圆锥面z =()a h 为圆锥面的底面半径,为高,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为()00,0,zDDzdS ∑==⎰⎰200ad r dr πθ==⎰⎰DDdS dxdy ∑==⎰⎰ad rdr πθπ==⎰⎰023h z ==,故重点坐标为20,0,3h ⎛⎫ ⎪⎝⎭5.求抛物面壳()2212z x y =+()01z ≤≤的质量,此壳的密度按规律z ρ=而变更. 解:(2212Dm dS x y ρ∑==+=⎰⎰⎰⎰2012d r π=⎰()()22532200222(1112253515t t t πππ⎛⎫⎡⎤=+-=+-+=- ⎪⎢⎥ ⎪⎣⎦⎝⎭⎰作业17 对坐标的曲面积分1.d d d d d d z x y x y z y z x ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分前侧.解::01,03,cos 0,0yz y z x D y z x x α=≤≤≤≤>==原式=d d d d d d 0d d yzzxD D z x y x y z y z x y z z x ∑∑∑++=++⎰⎰⎰⎰⎰⎰⎰⎰13100032d 262yz D y z dy π====⎰2.计算曲面积分2()d d d d z x y z z x y ∑+-⎰⎰,其中∑为旋转抛物面221()2z x y =+下侧介于平面0z =及2z =之间的部分. 解:22221(),,,:4;2x y xy z x y z x z y D x y =+==+≤:02,yz x D z y =≤≤≤原式=1122()d d ()d d d d zx y z z x y z z x y ∑∑∑+++-⎰⎰⎰⎰⎰⎰((22221d d d d ()d d 2yz yz zxD D D z y z z y z x y z x =-++⎰⎰⎰⎰⎰⎰22222300112d ()d d 222yzzx D D y z x y z x dz d r dr πθ=++=+⎰⎰⎰⎰⎰224232000222824z dz r dr z πππππ=+=+⋅=⎰⎰3.计算d d d d d d xy y z yz z x xz x y ∑++⎰⎰其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧.解:分片积分。
第九章解答:1、(1))271,91,31()1,1,1(----或; (2)321+; (3)→→+j i 362、(1)A (2)A3.解:方程两边对x 求导并移项得:⎪⎩⎪⎨⎧=--=+2532322dx dzdx dy x dx dz z dx dy y 由此可解得⎪⎪⎩⎪⎪⎨⎧+-+-=+---=z y y x dxdz z y z x dx dy 61094661015410169)1,1,1(=dx dy ,161)1,1,1(-=dx dz )161,169,1(-∴→=T 所求切线方程为:1191161--=-=-z y x 法平面方程为:0)1()1(9)1(16=---+-z y x 即024916=--+z y x 4. 将锥面方程变形为: )3(0)3(),,(222≥=---=z y x z z y x F在锥面上任取一点),,(000z y x ,则曲面在该点的法向量))3(2,2,2()),,(),,,(),,,((000000000000---==→z y x z y x F z y x F z y x F n z y x 所以该点的切平面方程为 0))(3()()(000000=----+-z z z y y y x x x将顶点坐标(0,0,3)代入上方程得0)3(202020=-+--z y x 所以过锥面上任一点),,(000z y x 处的切平面都过锥面的顶点(0,0,3)。
→→→→→→+-=-+-+-=-kj i ku j u i u gradu z y x 42)2,1,1()2,1,1()2,1,1()2,1,1(.5解:方向的方向导数最处沿向量在点函数→→→+--=∴k j i P z xy u 42)2,1,1(2211)4(2|)2,1,1(|22=+-+=-grad 其最大值为6.同37.)21,0(0)24(),(0)22(2),(:2222-⎪⎩⎪⎨⎧=+==+++=得唯一驻点解方程组解y e y x f e y y x e y x f xyx x xx yy x xy x xx e f y e f y y x e f 22224),12(4),122(4=+=+++=求二阶导数04,08042)21,0(2>=>=-⨯=--A B AC 又处,在点21)21,0()21,0(-=--∴f 处有极小值,极小值为函数在8. 解:此题为有条件极值问题,在椭圆上任取一点),,(z y x M 则 22222||zy x OM d ++==其中点M 受到两个限制条件:⎩⎨⎧=-++==--=01),,(0),,(2221z y x z y x y x z z y x ϕϕ 作拉格朗日函数 )1()(),,(2221222-+++--+++=z y x y x z z y x z y x L λλ令⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==--==++==+-==+-=)5(01)4(0)3(02)2(022)1(0222221212121z y x y x z z L y y L x x L z y x ϕϕλλλλλλ由)5()4(,)2()1(及代入知y x =-得: x z x z 21,22-==01222=-+∴x x 故 32,231 =±-==z y x 得两个驻点)32,231,231(±-±-。
-.《高"tt雪;')( ;r,乞履>rm习IA全航44, ’ ’i,、、J·.,-一,rr-T令,,、-M-·.‘FEE-’‘....l i··付守年,2-·’、fp····.,...、付’创刊令,-2、.四.,。
-H‘.,.JA、。
当”、句,‘-、,.-.-----号ri咱也k fi'l企:,i(r'J ;(,) f尔1’在.i!Iii i ra、2所l'..t全微分r.. l.主R F列的数的全做分:l I ) :二X)... ...:.. ; (2):=··-:14)u=‘., .( 3): sτ兰==:、f叶’.,.I·.·、-= .,ii: ”l' .‘Ez---虫”·飞”( I ) I晏为t;_=(,-干)‘1曹寸、-于)r1r.ii·i i·dz =ι二,I x+ , _ •h,,店,问向f t:l曾il=,l: \-二-.....,..,.h’,:1 2 l I崎').J...+二二,I‘冉、,1: d‘。
‘1’fr l'..lt、,I‘.“i,)dε =-飞、··....( l、牛+‘.}‘ii:_ -J '们飞!-+\1、厅可丁2( 3 > I叫11• , Iv飞+,--,--咱自---,电·、,、句’‘‘. t I--,l:,l 1、·"l1..t..1...-F‘{’. .,..,.,1: ·=、·,1‘φ. • ,I,A‘.11.,MFa,.’}iuyt吁《-Itl48 一、o,�舷学’{第七版)"F筋习忍金’E8ε27.6 一二一一-二I.JO 号i S 2 127. 8 !:, · 12.钊JU 1: l校纷iaF I乎):内政之佣的地(,j i克i:丁j宫。
习题9-1(A )1.求下列各函数的表达式: (1)设函数22),(y x y x f -=,求(,)f y x --,),(x x f -.解:(,)f y x --22)()(x y -+-=22x y -=,0)(),(22=--=-x x x x f .(2)设函数)1(3-+=x f y z ,已知1=y 时,x z =,求)(x f 及z 的表达式.解:由1=y 时,x z =,有)1(13-+=x f x ,即,所以1)1()(3-+=x x f ;而1)1(3-+=-+=x y x f y z .(3)设函数y y x y x f +-=1)1(),(2,求),(xy y x f +.解:2222))(()()(/1)/1()(),(y x y x y x yx y x y x x y x y y x x y y x f -=-+=+-+=+-+=+. (4)设函数xy y x y x f =+-),(,求),(y x f 的表达式. 解:(方法1)因为4)()(4)2(244),(222222y x y x y xy x y xy x xy y x y x f --+=+--++==+-,所以),(y x f 422x y -=.(方法2)令v y x u y x =+=-、,则22uv y v u x -=+=、,于是 422),()(22u v u v u v xy y x y x f v u f -=-+==+-=,,所以),(y x f 422x y -=.2.求下列各函数的定义域,并作定义域草图: (1))ln(x y z -=; (2)221arcsin xy y z -+=;(3)221arcsin yx x x y z --+=; (4)41)16ln(2222-++--=y x y x z .1]1)1[(1)1(333-+-=-=-x x x f解:(1)由0>-x y 且0≥x ,得定义域}0,),{(≥>=x x y y x D .(2)由022>-x y 及1≤y ,有1≤<y x ,得定义域}1),{(≤<=y x y x D .(3)由0100122>--≥≠≤y x x x xy、、、,有0122>≤<+x x y y x 、、,得定义域}0,,1),{(22≠≤<+=x x y y x y x D .(4)由040162222≥-+>--y x y x 、,有16422<+≤y x ,或4222<+≤y x ,得定义域}42),{(22<+≤=y x y x D .3.求下列极限:(1)(,)(1,1)2lim2x y x yx y →-+; (2)xxy a y x sin lim ),0(),(→;(3)22)0,0(),(1sinlim y x x y x +→; (4)2)1,0(),(2tan limxy xyy x →;(5)22(,)(1,1)sin()lim x y x y x y →--; (6)231lim )1,1(),(-+-→xy xy y x .解:(1)(,)(1,1)2121lim2213x y x y x y →--==-++.(2)(,)(0,)(,)(0,)sin limlim x y a x y a xy xya x x →→==.(3)因为221sinyx +有界,而0lim )0,0(),(=→x y x ,所以=+→22)0,0(),(1sinlim yx x y x 0.(4)2111211lim tan lim 212tan lim)1,0(),()1,0(),(2)1,0(),(=⨯⨯==→→→y xy xy xy xy y x y x y x .(5)222222(,)(1,1)(,)(1,1)sin()()sin()limlim 21 2.x y x y x y x y x y x y x y →→-+-==⨯=-- (6)=++=-++-=-+-→→→)23(lim 1)23)(1(lim231lim)1,1(),()1,1(),()1,1(),(xy xy xy xy xy xy y x y x y x 4.4.证明下列极限不存在:(1)(,)(0,0)lim x y x yx y →-+; (2)242)0,0(),(lim y x y x y x +→.证明:(1)沿)1(-≠=k kx y 取极限,则k kkx x kx x y x y x x x kx y +-=+-=+-→→=11lim lim00,当k 取不同值时,该极限值不同,所以极限(,)(0,0)limx y x yx y →-+不存在.(2)沿0=y 取极限,00lim lim 024200==+→→=x x y y x yx ; 沿2x y =取极限,212lim lim 44024202==+→→=x x y x y x x x x y . 由于2420242002lim lim y x y x y x y x x x y x y +≠+→=→=,所以极限242)0,0(),(lim y x yx y x +→不存在.习题9-1(B )1.某厂家生产的一种产品在甲、乙两个市场销售,销售价格分别为y x 、(单位:元),两个市场的销售量21Q Q 、各自是销售价格的均匀递减函数,当售价为10元时,销售量分别为2400、850件,当售价为12元时,销售量分别为2000、700件.如果生产该产品的成本函数是(2012000+=C )21Q Q +,试用y x 、表示该厂生产此产品的利润L . 解:根据已知,设y a b Q x a b Q 222111-=-=、,由10=x 时,24001=Q ;12=x 时,20001=Q ,有⎩⎨⎧=-=-,,2000122400101111a b a b 得、2001=a44001=b ,于是x Q 20044001-=.由10=y 时,8502=Q ;12=y 时,7002=Q ,有⎩⎨⎧=-=-,,70012850102222a b a b 得、752=a16002=b ,于是y Q 7516002-=.两个市场销售该产品的收入为22217516002004400y y x x yQ xQ R -+-=+=, 该产品的成本(2012000+=C y x Q Q 15003200040008800012000)21-+-+=+y x 15004000132000--=. 根据利润等于收入减去成本,得)15004000132000(751600200440022y x y y x x L ----+-= 132000752003100840022---+=y x y x .2.求下列极限:(1)y y x xy )11(lim ),2(),(++∞→; (2)22)0,0(),(1e lim 22yx y x y x +-+→; (3)4422),(),(lim y x y x y x ++∞∞→; (4)(,)lim x y →解:(1)==+=++∞→+∞→211),2(),(),2(),(e ])11[(lim )11(lim x xy y x y y x xyxy e . (2)法1: 令t y x =+22,则当)00()(,,→y x 时,+→0t ,所以 =-=+-+→+→t y x t t y x y x 1e lim 1e lim 022)0,0(),(221. 法2:因为)00()(,,→y x 时,1e 22-+y x 与22y x +是等价无穷小,所以1lim 1e lim 2222)0,0(),(22)0,0(),(22=++=+-→+→y x y x y x y x y x y x . (3)因为224424424422110yx y x y y x x y x y x +≤+++=++≤, 而00lim ),(),(=∞∞→y x , 0)11(lim 22),(),(=+∞∞→y x y x ,根据“夹逼准则”得0lim 4422),(),(=++∞∞→yx y x y x . (4)令θρθρsin cos ==y x 、,则当)00()(,,→y x 时,0→ρ(其中θ在区间)20[π,内任意变化),所以==+<≤→→θθρπθρsin cos lim lim20022)0,0(),(yx xy y x 0.3.证明极限22222)0,0(),()(lim x y y x y x y x -+→不存在.证明:沿0=y 取极限,00lim )(lim 202222200==-+→→=x x y y x y x x x y ;沿x y =取极限,11lim )(lim 0222220==-+→→=x x x y x y y x y x .因此,极限22222)0,0(),()(lim x y y x y x y x -+→不存在.4.讨论函数⎪⎩⎪⎨⎧=+≠++=0002)(222222y x y x yx xy y x f ,,,,在点),(00处的连续性. 解:沿x y =取极限,由)00(11lim 2lim)(lim 0220,,f yx xyy x f x x x y x x y ≠==+=→→=→=,有 )00()(lim )0,0(),(,,f y x f y x ≠→,所以函数)(y x f ,在点),(00处不连续.习题9-2(A )1. 求下列函数的偏导数:(1)2z xy =; (2)2cos sin()z xy x y =++;(3)z = (4)2ln(ln )z x y =+;(5)yz x=(0>x ); (6)z = (7)22y x xyz +=; (8)arctanx yz x y+=-; (9)yx z u =; (10)zy x u )tan(22-=.解:(1)2z y x ∂=+∂2z xy y ∂=∂. (2)2sin cos cos()sin 2cos()zxy xy y x y y xy x y x∂=-⋅++=-++∂, 2sin cos cos()sin 2cos()zxy xy x x y x xy x y y∂=-⋅++=-++∂. (3)12z x x y ∂==∂+ 122z y x y ∂=⋅=∂+. (4)22122ln ln z x x x x y x y ∂=⋅=∂++,22111ln (ln )z y y x y y x y ∂=⋅=∂++. (5)x yxy xyx y xy x y xy x y xy y x z sin cos 21)(sin cos 2332+=-⋅-=∂∂, xyx y x yy x x x y xy x y xy x y z sin cos 211sin cos 2-=⋅-=∂∂. (6))1(212)1(11xy xy yxy y xy x z --=--⋅--=∂∂,)1(212)1(11xy xy x xy x xy y z --=--⋅--=∂∂. (7)2/3223222222)(y x y y x y x x xy y x y xz+=++⋅-+=∂∂, 由变量y x 、的对称性,得2/3223)(y x x y z +==∂∂. (8)222211()1()()1()z x y x y yx y x x y x yx y∂⋅--⋅+-==+∂-++-, ()22221()1()1()1()x y x y z xx y y x y x y x y⋅---⋅+∂==+∂-++-. (9)z z yy z z x u y x y x ln 11ln =⋅=∂∂,z z y x y x z z y u y xy x ln )(ln 22-=-⋅=∂∂, yyx y xz yxz y x z u --==∂∂1.(10)zy x x z x y x x u )(sec 22)(sec 222222-=⋅-=∂∂, z y x y z y y x y u )(sec 2)2()(sec 222222--=-⋅-=∂∂,222)tan(z y x z u --=∂∂. 2. 求曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与x 轴正向的夹角.解:z x ∂=∂,111112x x y y z x ====∂==∂, 用α表示曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与y 轴正向的夹角,则21tan =α,所以432621arctan '≈=α. 3. 设xy x y x z xsec)1(e 2-++=,求)0,1(x z 及)0,1(y z .解:因为1e )0(-+=x x z x ,,所以=11d (1,0)(e 1)(e 1)d xx x x x z x x-=+-=+=e 1+,因为e )1(+=y y z ,,所以1)e (d d)0,1(0=+==y y y yz .4. 求下列函数的高阶导数:(1)设13323+--=xy xy y x z ,求22223223,,,,z z z z zy x x y x y x∂∂∂∂∂∂∂∂∂∂∂∂.解:xz ∂∂ ,33322y y y x --= y z ∂∂ ;9223x xy y x --=22x z ∂∂ ,62xy = 33xz ∂∂ ,62y = 22y z ∂∂ ;1823xy x -= y x z ∂∂∂2 ,19622--=y y x xy z ∂∂∂2 .19622--=y y x (2)设xy x z ln =,求22x z ∂∂,22y z ∂∂和23yx z ∂∂∂; 解:1ln ln +=⋅+=∂∂xy xy y x xy x z ,yxxy x x y z =⋅=∂∂, x xy y x z 122==∂∂,222y x y z -=∂∂,y xy x y x z 12==∂∂∂,2231yy x z -=∂∂∂. 5. 验证:(1)设函数x yz u arctan =,证明0222222=∂∂+∂∂+∂∂zu y u x u .证:因为2222)()/(1y x yzx y x y z x u +-=-⋅+=∂∂,22222)(y x xyz x u +=∂∂, 2221)/(1y x xzx x y z y u +=⋅+=∂∂,22222)(y x xyz y u +-=∂∂,x y z u arctan =∂∂,022=∂∂zu, 所以,00)()(222222222222=++-+=∂∂+∂∂+∂∂y x xyzy x xyz z u y u x u . (2)设y x z =)1,0(≠>x x ,求证z yzx x z y x 2ln 1=∂∂+∂∂.证明:=∂∂xz ,1-y yx =∂∂y z ,ln x x yy z x x z y x ∂∂+∂∂ln 1 x x xyx y x yy ln ln 11+=-y y x x += .2z =原结论成立.习题9-2(B )1.设一种商品的需求量Q 是其价格1p 及某相关商品价格2p 的函数,如果该函数存在偏导数,称Q p p Q E 111∂∂-=为需求对价格1p 的弹性、Qp p Q E 222∂∂-=为需求对价格2p 的交叉弹性.如果某种数码相机的销售量Q 与其价格1p 及彩色喷墨打印机的价格2p 有关,为 222110250120p p p Q --+=, 当501=p ,52=p 时,求需求对价格1p 的弹性、需求对价格2p 的交叉弹性. 解:由211250p p Q -=∂∂,22210p p Q--=∂∂, 有1111250Qp Q p p Q E =∂∂-=,Qp p Q p p Q E 222222210+=∂∂-=,当501=p ,52=p 时,50255050250120=--+=Q 需求对价格1p 的弹性:1.0250505015501121======Q p p p Qp E 、、,需求对价格2p 的交叉弹性:=+=====5052225502221210Q p p p Qp p E 、、2.2. 设22arcsiny x x z +=,求x z ∂∂,yz ∂∂.解: =∂∂xz '⎪⎪⎭⎫⎝⎛+⋅+-xy x x y x x 2222211322222)(||y x y y y x +⋅+=.||22y x y += =∂∂yz'⎪⎪⎭⎫⎝⎛+⋅+-yy x x y x x 2222211=y y x x 1sgn 22+-=. 3. 设函数⎪⎩⎪⎨⎧=≠-+=,,,,,x y x y y x yx y x f 0)(证明在)00(,点处),(y x f 的两个偏导数都不存在.证:因为极限x xf x f x x ∆=∆-∆→∆→∆1lim )00()0(lim00,,不存在,极限yf y f y ∆-∆→∆)00()0(lim0,,xx ∆-=→∆1lim0不存在,所以在)00(,点处),(y x f 的两个偏导数都不存在. 4. 设y x yx z -+=arctan ,求22x z ∂∂,22y z ∂∂和y x z ∂∂∂2.解:2222)()()()(11y x yy x y x y x y x y x xz+-=-+---++=∂∂,22222)(2y x xy x z +=∂∂, 2222)()()()(11y x xy x y x y x yx y x yz +=-++--++=∂∂,22222)(2y x xy y z +-=∂∂, 22222222222(2)()()z x y y y y x x y x y x y ∂+--=-=∂∂++.5. 设函数222ln z y x u ++=,证明2222222221z y x z u y u x u ++=∂∂+∂∂+∂∂.证明:将函数改写为)ln(21222z y x u ++=,则 222z y x xx u ++=∂∂,2222222222222222)()(2z y x x z y z y x x x z y x x u ++-+=++⋅-++=∂∂, 由变量的对称性,有222222222)(z y x y z x y u ++-+=∂∂,222222222)(z y x z y x z u ++-+=∂∂,所以2222222222222222222)()()()(z y x z y x y z x x z y z u y u x u ++-++-++-+=∂∂+∂∂+∂∂ 22222222221)(zy x z y x z y x ++=++++=. 习题9-3(A )1.求下列函数的全微分:(1)1sin()z x y=+; (2)22z x y =+; (3)xyz e =; (4)yxz tanln =; (5)22y x z u +=; (6)ln(32)u x y z =-+.解:(1)因为1cos()z x x y ∂=+∂,221111cos()()cos()z x x y y y y y ∂=+⋅-=-+∂,所以2211111d cos()d cos()d cos()(d d )z x x x y x x y y y y y y=+-+=+⋅-.(2)因为2z xyx ∂=+∂,2z x y ∂=+∂22(dz xydx x dy =++. (3)因为x yx yx z e 2-=∂∂,x yxy z e 1=∂∂,所以 )d d (e 1d e 1d e d 22x y y x xy x x x y z x yx yx y-=+-=.(4)因为2122cot sec cs c z x x x x y y y y y ∂=⋅=∂,22222cot sec ()csc z x x x x x y y y y y y ∂=⋅-=-∂, 所以)d d (2csc 2d 2csc 2d 2csc 2d 22y x x y y xyy y x y x x y x y z -⋅=-=(5)因为z xz x u y x ln 222+=∂∂,z yz y u y x ln 222+=∂∂,12222)(-++=∂∂y x z y x zu ,所以z z y x y z yz x z xz u y xy xy xd )(d ln 2d ln 2d 122222222-+++++⋅+⋅=]d )d d (ln 2[2222z zy x y y x x z zy x +++⋅=+.(6)因为132u x x y z ∂=∂-+,332u y x y z ∂-=∂-+,232u z x y z∂=∂-+,所以 d 3d 2d d 3d 2d d 32323232x y z x y zu x y z x y z x y z x y z--+=++=-+-+-+-+.2.求函数zxyu )(=在点)1,2,1(-处的全微分.解:).ln()( ,1)( ),()(121x y x y y u x x y z y u xy x y z x u z z z ⋅=∂∂⋅=∂∂-⋅=∂∂-- 在点)1,2,1(-处,分别有.2ln 21,41 ,21)1,2,1()1,2,1()1,2,1(=∂∂-=∂∂=∂∂---zuyu xu因此,我们有.2ln 21d 41 21dz y dx dz +-=3.求函数)41ln(22y x z -+=当1=x ,2=y 时的全微分.解 因为22418y x x x z -+=∂∂,22412y x yy z -+-=∂∂,821=∂∂==y x xz ,421-=∂∂==y x yz ,所以y x z d 4d 8d )2,1(-=,4.求函数xy e z =在点()2,1处当2.0,1.0=∆=∆y x 时的全微分.解 由于,2,,,212212e yz e xz xe y z ye x z y x y x xy xy =∂∂=∂∂=∂∂=∂∂====所以,当2.0,1.0=∆=∆y x 时,函数xye z =在点(2,1)处的全微分为.5.02.021.0222e e e dz =⋅+⋅=习题9-3(B )1. 计算()2.021.04的近似值.解: 设函数(,)yz f x y x ==.显然,要计算的值是函数在 1.04, 2.02x y ==时的函数值()1.04,2.02.f取1,2,0.04,0.02.x y x y ==∆=∆=因为 ,),(1-=y x yx y x f ,ln ),(x x y x f y y =(1,2)1,f =(1,2)2,x f =(1,2)0,y f =所以 由公式得 2.02(1.04)120.0400.02 1.08≈+⨯+⨯=. 2.计算3397.102.1+的近似值. 解:考虑函数33y x z +=,取03.002.02100-=∆=∆==y x y x 、、、,而33223yx x z x +=',33223yx y z y +=',3)21(=,z 、2/1)21(=',x z 、2)21(=',y z ,则)(97.102.10033y y x x z ∆+∆+=+,y y x z x y x z y x z y x ∆'+∆'+≈)()()(000000,,,95.206.001.03)03.0(202.05.03=-+=-⨯+⨯+=.3. 设函数⎪⎩⎪⎨⎧=+≠++=,0,0,0,),(2222222y x y x y x y x y x f 在点)0,0(O 点处讨论偏导数的存在性、偏导数的连续性以及函数),(y x f 的可微性.解:因为00lim )00()0(lim==∆-∆→∆→∆x x xf x f ,,,00lim )00()0(lim==∆-∆→∆→∆x y yf y f ,,,所以在)0,0(O 点处函数)(y x f ,的两个偏导数都存在,且0)10(0)00(==,、,y x f f .再讨论可微性,函数在)0,0(O 处的全增量用z ∆表示,则222)()()()00()00(y x yx z y f x f z y x ∆+∆∆⋅∆=∆=∆-∆-∆,,,记22)()(y x ∆+∆=ρ,则2/3222)0,0(),(0])()[()(lim )00()00(limy x yx yf x f z y x y x ∆+∆∆∆=∆-∆-∆→∆∆→ρρ,,不存在(沿0=∆x 取极限,其值为0;沿x y ∆=∆取极限,其值为22/1),所以函数)(y x f ,在)0,0(O 点处不可微.进而得偏导(函)数在)0,0(O 点处不连续(若偏导(函)数在)0,0(O 点处连续,根据可微的充分条件,则函数在点)0,0(O 可微,与函数不可微矛盾).习题9-4(A )1.求下列函数的全导数: (1)设函数 32,sin ,t v t u ez vu ===-,求dtdz ; (2)设函数t uv z sin +=,而t e u =,t v cos =,求全导数dtdz ; (3)设函数y x z cos 2=而)(x y y =是x 的可微函数,求xzd d . 解:(1)dtdv v z dt du u z dt dz ∂∂+∂∂==)6(cos 3)2(cos 22sin 2223t t e t e t e t t v u vu -=⋅-+---. (2)tzdt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t+-= (3)=⋅-=∂∂+∂∂=xy y x y x x y y z x z x z d d sin cos 2d d d d 222cos sin ().x y x y y x '-⋅ 2.求下列函数的一阶偏导数:(1)设函数v uz e =,而y x u +=,y x v -=,求x z ∂∂和yz∂∂; (2)设函数122)(++=xy y x z ,求x z ∂∂和yz ∂∂. 解:(1)1e 1e 12⋅-⋅=∂∂∂∂+∂∂∂∂=∂∂v uv uvu v x v v z x u u z x z =-=v uv u v e 2yx yx y x y -+--e )(22, 21e 1e (1)u uv vz z u z v u y u y v y vv ∂∂∂∂∂=+=⋅-⋅-∂∂∂∂∂2+e u v v u v ==22e ()x yx y x x y +--, (2)这是幂指函数求导,为方便求导,将它写作复合函数,为此令122+=+=xy v y x u 、,则vu z ==⋅+=∂∂∂∂+∂∂∂∂=∂∂-y u u x vu xv v z x u u z x z v v ln 21)]ln()1(2[)(2222122y x y y x xy x y x xy ++++++,=⋅+=∂∂∂∂+∂∂∂∂=∂∂-x u u y vu y v v z y u u z y z v v ln 21)]ln()1(2[)(2222122y x x yx xy y y x xy ++++++. 3. 求下列函数的一阶偏导数(其中函数f 具有一阶连续的偏导数或导数):(1)(e )xyx z f y=,; (2))(22y x xy f z -=,;(3))(22y x xf z +=; (4)(,,)u f x xy xyz =. 解:(1)121e xy z f f y x y ∂''=⋅+⋅=∂121e xyf y f y''+, 122()e xy z x f f x y y ∂''=⋅-+⋅=∂122e xy xf x f y''-+. (2)212122f x f y x f y f xz '+'=⋅'+⋅'=∂∂,21212)2(f y f x y f x f y z'-'=-⋅'+⋅'=∂∂.(3)=+⋅'+=∂∂2222yx xf x f x z f y x x f '++222,12y z xf y ⨯∂'==∂f yx xy '+22.(4)1231231uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂, 123230uf f x f xz xf xzf y∂'''''=⋅+⋅+⋅=+∂, 123300uf f f xy xyf z∂''''=⋅+⋅+⋅=∂. 4. 设函数)(22y x f y z -=,其中)(u f 是可微函数,证明211y zy z y x z x =∂∂+∂∂. 证:因为)()(22)()(2222222222y x f y x f xy x y x f y x f y x z --'-=⋅--'-=∂∂, )()(2)(1)()2()()(222222222222222y x f y x f y y x f y x f y y x f y y x f y z --'+-=--⋅-'--=∂∂, 所以222222222222112()12().()()()z z yf x y yf x y x x y y f x y yf x y f x y ''∂∂--+=-++∂∂---2222)(yzy x f y y =-=. 5.设函数)(x y xyf z =,其中)(u f 是可微函数,证明z yz y x z x2=∂∂+∂∂. 证:因为)()()()()(22x yf x y x y yf xy x y f xy x y yf x z '-=-⋅'+=∂∂,)()(1)()(xyf y x y xf x x y f xy x y xf y z '+=⋅'+=∂∂,所以 z xy xyf x y f y x y xyf x y f y x y xyf y z y x z x2)(2)()()()(22=='++'-=∂∂+∂∂. 6.利用全微分形式的不变性求函数)cos(222z y x eu zy +++=+ 的全微分.解 令=+=w z y v ,222z y x ++,由一阶全微分形式的不变性,我们有dw w dv e dw wudv v u du v )sin (-+=∂∂+∂∂=, 注意到w v ,又都是z y x ,,的函数,并且,v vdv dy dz dy dz y z∂∂=+=+∂∂ 222.w w w dw dx dy dz xdx ydy zdz x y z∂∂∂=++=++∂∂∂ 将它们带入上式,得.)]sin(2[ )]sin(2[)sin(2 )(2)sin()( )sin (222222222222dz z y x z e dyz y x y edx z y x x zdz ydy xdx z y x dz dy e dww dv e du z y zy z y v ++-+++-+++-=++⋅++-+=-+=+++习题9-4(B )1.求下列函数的二阶偏导数(其中函数f 具有二阶连续偏导数): (1)),(y x xy f z +=; (2))(22y x x f z +=,;解:(1)21f f y xz '+'=∂∂,21f f x y z'+'=∂∂,221211222211211222)()(f f y f y f f y f f y y xz ''+''+''=''+''+''+''=∂∂, 221211222211211222)()(f f x f x f f x f f x x yz''+''+''=''+''+''+''=∂∂, 221211122211211122)()()(f f y x f xy f f f x f f x y f xy zy x z ''+''++''+'=''+''+''+''+'=∂∂∂=∂∂∂. (2)212f x f xz '+'=∂∂,221220f y f y f y z'='+⋅'=∂∂,2221211222212121122442)2(22)2(f x f x f f f x f x f f x f xz''+''+''+'=''+''+'+''+''=∂∂, 2222222122242)20(22f y f f y f y f yz''+'=''+⋅''+'=∂∂, 221222212242)2(2f xy f y f x f y xy zy x z ''+''=''+''=∂∂∂=∂∂∂. 2. 设函数)(3x yxy f x z ,=,其中函数)(v u f ,有二阶连续偏导数,求yx z y z y z ∂∂∂∂∂∂∂222、、.解:2214213)1(f x f x f xf x x y z '+'='+'=∂∂, 24253111221*********11()()2z x xf f x xf f x f x f xf y x x∂''''''''''''''=+++=++∂, )(2)(422221221221141322f x yf y x f x f x y f y x f x x y z y x z ''-''+'+''-''+'=∂∂∂=∂∂∂ 2211421324f y f y x f x f x ''-''+'+'=. 3.设),(y x f z =有连续的一阶偏导数,且θθsin ,cos r y r x ==.求θ∂∂∂∂zr z ,,并证明 .)()()(1)(22222y z x z z r r z ∂∂+∂∂=∂∂+∂∂θ解 由链式法则,得cos sin ,sin cos .z z x z y z z r x r y r x yz z x z y z z r r x y x yθθθθθθθ∂∂∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂=+=-⋅+⋅∂∂∂∂∂∂∂于是有222)(1)(θ∂∂+∂∂z r r z 222)cos sin (1)sin (cos y zr x z r r y z x z ∂∂⋅+∂∂⋅-+∂∂⋅+∂∂⋅=θθθθ.)()(22yz x z ∂∂+∂∂=习题9-5(A )1.若函数)(x y y =分别由下列方程确定,分别求xy d d : (1)1cos y x y =+; (2)yx y e 2+=; (3)xyy x arctan ln22=+;解 (1)法1:设()1cos F x y y x y =--,,则cos 1sin x y F y F x y =-=+、, 所以d cos .d 1sin x y F y y x F x y=-=+ 法2:方程1cos y x y =+两边同时对x 求导,有d d cos sin d d y yy x y x x=-,解得d cos d 1sin y yx x y=+. (2)方程yx y e 2+=两边同时对x 求导,有xy x y yy d d e 1d d 2+=,解得yy x y e 21d d -=. (3)令()221(,)arctanln arctan ,2y yF x y x y x x==+- 则 ,),(22y x y x y x F x ++=,),(22yx xy y x F y +-= y x F F dx dy -= .xy yx -+-= 2. 设()y y x =由方程 1yy xe =+所确定的隐函数,求 202.x d ydx=解 令 (.)1; 1yyy dy e F x y xe y dx xe =+-=--, 当0x =时01y =+,此时x dy e dx==,所以222(1)()(1)yy y y y y dy dy e xe e e xe d ydx dx dx xe --+=--,222022(01)(0)2(01)x d y e e e e dx =--+=-=-. 3.设函数y x z =,而函数)(x y y =由方程yy x e +=确定,求全导数xz d d . 解:方程yy x e +=两边同时对x 求导,有x y x y y d d e d d 1+=,得yx y e 11d d +=, =+=∂∂+∂∂=-x y x x yx x y y z x z x z yy d d ln d d d d 1y y y x x yx e1ln 1++-. 4. 若函数),(y x z z =分别由下列方程确定,求x z ∂∂及yz∂∂. (1)21z y xz -=; (2)xyz z y x 2222=-+; (3)22)sin(xyz xyz =; (4)yz z x ln =. 解:(1)法1:设1)(2--=xz y z z y x F ,,,则x yz F z F z F z y x -==-=22、、,所以xyz z F F y z x yz z F F x z z y z x --=-=∂∂-=-=∂∂222,. 法2:方程21z y xz -=两边对x 求导,有20z zyzz x x x∂∂--=∂∂,得x yz z x z -=∂∂2, 方程21z y xz -=两边对y 求导,有022=∂∂-+∂∂y z x z y z yz ,得xyz z y z --=∂∂22.(以下都按方法2作)(2)方程xyz z y x 2222=-+两边同时对x 求导,有xzxy yz x z zx ∂∂+=∂∂-2222,得 xyz yzx x z +-=∂∂, 方程xyz z y x 2222=-+两边同时对y 求导,有yzxy xz y z zy ∂∂+=∂∂-2222,得 xy z xz y y z +-=∂∂(或由变量y x 、的对称性,得xyz xzy y z +-=∂∂).(3)方程22)sin(xyz xyz =两边对x 求导,有xz xyz yz x z xyz yz xyz ∂∂+=∂∂+⋅2)2()cos(222, 即0)2](1)[cos(22=∂∂+-x z xyzyz xyz ,而01)cos(2≠-xyz ,所以022=∂∂+xzxyz yz ,得x z xyz yz x z 222-=-=∂∂,由变量y x 、对称性有yzy z 2-=∂∂. (4)方程yzz x ln =改写为)ln (ln y z z x -=, 方程)ln (ln y z z x -=两边对x 求导,有x zz x x z z z y z x z ∂∂+=∂∂+∂∂=)1(1ln 1,得zx z x z +=∂∂,方程)ln (ln y z z x -=两边对y 求导,有)11(ln 0y y z z z y z y z -∂∂+∂∂=,得)(2z x y z y z +=∂∂. 5.设04222=-++z z y x ,求22xz∂∂.解: 令,4),,(222z z y x z y x F -++=则 ,2x F x = ,42-=z F z,2zx F F x z z x -=-=∂∂222(2)(2)z z xz x x z ∂-+∂∂=∂- 2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=6.若函数),(z y x x =,),(z x y y =,),(y x z z =都是由方程0),,(=z y x F 确定的隐函数,其中),,(z y x F 有一阶连续非零的偏导数,证明1-=∂∂⋅∂∂⋅∂∂xzz y y x . 证:因为zx y z x y F F x zF F z y F F y x -=∂∂-=∂∂-=∂∂、、,所以1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7.若z 是,x y 的函数,并由 222()zx y z yf y ++=确定,求,z z x y∂∂∂∂.解:令 222(,,)()z F x y z x y z yf y =++-22()+()12()2()x y z F x z z zF y f f y y y z zF z yf z f y y y='=-''=-=-,,,因此,2212()()2x zF z x x z z x F z yf f zy y y∂=-=-=∂''-⋅-,2()()()2()().1()()2y zz z z z z zy f yf y f f F z y y y y y y z z y F z yf f zy y y ''----+∂=-=-=∂''-22-习题9-5(B )1.设函数xyz u e =,而函数)(x y y =、)(x z z =分别由方程xyy e =及z xz e =确定,求全导数xud d . 解:方程xyy e =两边同时对x 求导,有)d d ()d d (e d d xy x y y x y x y x y xy+=+=,得xy y x y -=1d d 2, 方程z xz e =两边同时对x 求导,有x z xz x z x z xz z d d d d e d d ==+,得xxz zx z -=d d ,所以 xxz z xy xy y xz yz x z z u x y y u x u x u xyz xyzxyz -+-+=∂∂+∂∂+∂∂=e 1e e d d d d d d 2 )11(e2-+-+=z yzxy z xy yz xyz.2.设函数32yz x u =,而),(y x z z =由方程xyz z y x 3222=++确定,求)1,1,1(xu ∂∂.解:方程xyz z y x 3222=++两边同时对x 求导,有)(322xzxy yz x z zx ∂∂+=∂∂+,用1=x 、11==z y 、代入,有 (1,1,1)(1,1,1)223(1)zz xx∂∂+=+∂∂,得1)1,1,1(-=∂∂xz .于是x z yz x xyz x u ∂∂+=∂∂22232,所以13232)1,1,1()1,1,1(-=-=∂∂+=∂∂xzxu .3.设),(xyz z y x f z ++=,求x z ∂∂,y x ∂∂,zy ∂∂. 解: 令,z y x u ++= ,xyz v = 则 ),,(v u f z = 把z 看成y x ,的函数对x 求偏导数得xz∂∂ )1(x z f u ∂∂+⋅= ),(x z xy yz f v ∂∂+⋅+整理得xz ∂∂ ,1v u vu xyf f yzf f --+=把x 看成y z ,的函数对y 求偏导数得)1(0+∂∂⋅=yx f u ),(y xyz xz f v ∂∂+⋅+整理得yx ∂∂ ,v u vuyzf f xzf f ++-= 把y 看成z x ,的函数对z 求偏导数得)1(1+∂∂⋅=z y f u ),(zyxz xy f v ∂∂+⋅+ 整理得zy ∂∂ .1v u vu xzf f xyf f +--=4.若函数),(y x z z =由方程133=-xyz z 确定,求yx z∂∂∂2.解:方程133=-xyz z 两边对x 求导,有0)(332=∂∂+-∂∂xz xy yz x z z,得xy z yz x z -=∂∂2,由变量y x 、的对称性,得xyz xzy z -=∂∂2.法1:等式0)(2=∂∂+-∂∂xzxy yz x z z两边同时对y 求导,有 0)(2222=∂∂∂+∂∂+∂∂+-∂∂∂+∂∂∂∂yx z xy x z x y z y z y x z z x z y z z, 即2222242222222)()2()(2)(xy z y x xyz z z xy z xyz z xy z yz x xy z xz y z y x z xy z ---=---+-+=∂∂∂- 所以=∂∂∂y x z 2322224)()2(xy z y x xyz z z ---. 法2:)(22xyz yz y y x z -∂∂=∂∂∂ 322224222)()2()()2())((xy z y x xyz z z xy z x yz z yz xy z y z y z ---=--∂∂--∂∂+=.5.设 (,)F u v 具有连续的偏导数,方程 [(),()]0F a x z b y z --=(其中,a b 是非零常数)确定z 是,x y 的隐函数,且0aFu bFv +≠,求z zx y∂∂+∂∂. 解:令 (),()u a x z v b y z =-=-因此,x u u z u v u vF aF aF zx F aF bF aF bF ∂=-=-=∂--+y v v z u v u vF bF bF zy F aF bF aF bF ∂=-=-=∂--+,1u v u v u vaF bF z z x y aF bF aF bF ∂∂+=+=∂∂++. 6. 求由下列方程组所确定函数的导数或偏导数: (1)⎩⎨⎧=++=++,,41222z y x z y x 求x y d d 和xzd d . (2)⎩⎨⎧-=+=,,v u y v u x uu cos e sin e 求x v y u x u ∂∂∂∂∂∂、、及y v∂∂.解:(1)方程组⎩⎨⎧=++=++41222z y x z y x ,两边同时对x 求导,有⎪⎩⎪⎨⎧=++=++,,0d d 2d d 220d d d d 1x z z x y y x x zx y 消去xz d d ,有0)d d 1(d d =+-+x y z x y y x ,得z y x z x y --=d d ,而z y yx x y x z --=--=d d 1d d .(2)方程组⎩⎨⎧-=+=vu y v u x uu cos e sin e ,两边同时对x 求导, 有⎪⎩⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=)2(.sin cos e 0)1(cos sin e 1x vv u v x u x u x v v u v x u x u u u ,(1)sin v ⨯-(2)cos v ⨯,有xux u v v v u∂∂+∂∂-=)cos (sin e sin , 得)cos (sin e 1sin v v vx u u -+=∂∂,再代入到(2)之中得)]cos (sin e 1[e cos v v u v x v uu -+-=∂∂. 方程组⎩⎨⎧-=+=v u y v u x u u cos e sin e ,两边同时对y 求导,有⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=.sin cos e 1cos sin e 0y vv u v y u y u y v v u v y u y u u u , 与前面解法类似,得)cos (sin e 1cos v v vy u u -+-=∂∂,)]cos (sin e 1[e in v v u v s y v u u -++=∂∂.习题9-6(A )1.求下列函数的极值:(1)222),(y x x y x f --=; (2)x y x y x y x f 936),(2233+++-=; (3))2(e ),(2y y x y x f x++=; (4)2/322)(1),(y x y x f +-=.解:(1)定义域为全平面,并且函数处处可微.由⎩⎨⎧=-==-=,,,,02)(022)(y y x f x y x f y x 得唯一驻点)01(,.2)01(0)01(02)01(-====<-==,、,、,yy xy xx f C f B f A ,042>=-B AC ,根据二元函数极值的充分条件,点)01(,是函数的极大值点,极大值为1)0,1(=f ,该函数无极小值.(2)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+-==++=,,,,063)(09123)(22y y y x f x x y x f y x 即⎩⎨⎧=-=++,,0)2(0)3)(1(y y x x 得函数的所有驻点是)23()03()21()01(4321,、,、,、,----P P P P . 66)(0)(126)(+-====+==y y x f C y x f B x y x f A yy xy xx ,、,、,,对上述诸点列表判定:所以函数的极大值为4)2,3(=-f ,极小值为4)0,1(-=-f .(3)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+==+++=,,,,0)22(e )(0)21(e )(2y y x f y y x y x f xyx x 得唯一驻点(01)-,.x yy x xy x xx y x f y y x f y y x y x f e 2)()22(e )()22(e )(2=+=+++=,、,、,, 01>=A 、0=B 、2=C ,022>=-B AC ,根据二元函数极值的充分条件,点)10(-,是函数的极小值点,极小值1)1,0(-=-f ,该函数无极大值.(4)定义域为全平面,函数处处可微.由⎪⎩⎪⎨⎧=+-==+-=,,,,03)(03)(2222y x y y x f y x x y x f y x 得唯一驻点)00(,.由于在)00(,点处函数的二阶偏导数不存在,不能用定理8.2判定,为此根据极值的定义,当022≠+y x (即非)00(,点)时)00(1)(1),(2/322,f y x y x f =<+-=,所以点)00(,是该函数的极大值点,极大值为1)0,0(=f ,该函数无极小值. 2.求函数 5020(0,0)z xy x y x y=++>> 的极值. 解: 由 22500200z y xx z x yy ∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩,解出 52.x y ⎧⎨=⎩=,222232310040, 1, z z z x y x x y y∂∂∂===∂∂∂∂ 在点(5,2)处,233100404130, 0552AC B A -=⋅-=>=>所以函数在(5,2)处由极小值 (5.2)30z=.3.求曲面 21 (0)z xy z -=>上到原点距离最近的点.解:设 222F,,,(1)x y z x y z z xy λλ+++--2()=,则 2202022010Fx y x F y x y F z z z z xy λλλ∂⎧=-=⎪∂⎪∂⎪=-=⎪∂⎨⎪∂=+=⎪∂⎪⎪--=⎩,解出 0011.x y z λ=⎧⎪=⎪⎨=⎪⎪=-⎩,,, 因为(0,0,1)是 2222d x y z =++在0z >时的唯一驻点,由题意可知在0z >的曲面上存在与原点距离最小的点,所以(0,0,1)即为所求的点. 4. 将正数12分成三个正数z y x ,,之和 使得z y x u 23=为最大. 解 令 )12(),,(23-+++=z y x z y x z y x F λ,则223323020012x y z F x y z F x yz F x y x y z λλλ'⎧=+=⎪'=+=⎪⎨'=+=⎪⎪++=⎩,,,,解得唯一驻点)2,4,6(, 故最大值为.691224623max =⋅⋅=u5. 用面积为12(m 2)铁板做一个长方体无盖水箱,问如何设计容积最大?解 设水箱的长、宽、高分别为z y x 、、,体积为V ,则目标函数为xyz V =(,0>x ,0>y 0>z ),附加条件是1222=++yz xz xy . 设)1222()(-+++=yz xz xy xyz z y x L λ,,(000>>>z y x ,,),由(2)0(2)02()02212x yz L yz y z L xz x z L xy x y xy xz yz λλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩,,,,得唯一可能极值点12===z y x 、, 根据实际意义,当长方体表面积一定是其体积有最大值,所以当长、宽都为2(m ),高为1(m )时无盖长方体水箱容积最大(此时体积为4(m 3)). 6.在斜边长为l 的直角三角形中,求周长最大的三角形及其周长.解:设两直角边长分别为y x 、,三角形周长为L ,则目标函数是l y x L ++=(00>>y x ,),附加条件为222l y x =+.设)()(222l y x l y x y x F -++++=λ,,由⎪⎩⎪⎨⎧=+=+==+=,,,222021021l y x y F x F y x λλ在00>>y x ,时得唯一可能极值点2l y x ==,由实际意义,斜边长为一定的直角三角形中,周长有最大值,所以当两直角边长都为2l (即等腰直角三角形)时,其周长最大,且最大周长为l )21(+.7.有一宽为24cm 的长方形铁板,把它折起来做成一断面为等腰梯形的水槽.问怎么折才能使断面的面积最大.解 设折起来的边长为xcm ,倾角为α(图8-17),那么梯形的下底长为242x -,上底长为2422cos x x α-+,高为sin x α,所以断面的面积为1[(2422cos )242]sin 2=-++-⋅A x x x x αα,即2224sin 2sin cos sin (012,0)2A x x x x πααααα=-+<<<≤.为求其最大值,我们先来解方程组222224sin 4sin 2sin cos 0,24cos 2cos +(sin cos )0.x A x x A x x x ααααααααα=-+=⎧⎨=--=⎩ 由于sin 0,0x α≠≠,将上述方程组两边约分,得122cos 0,24cos 2cos cos 20.=-+=⎧⎨=-+=⎩x A x x A x x ααααα 解这个方程组,得,8().3x cm πα==根据题意,断面面积的最大值一定存在,又由A 的定义,0,12;0.x α≠≠因此最大值点只可能在区域的内部或开边界2πα=上取到.但当2πα=时,2242A x x =-的最大值为72.因此,该函数的最大值只能在区域的内点处取得,而它只有一个稳定点,因此可以断定(8,)=483723A π>是其最大值.即将铁板折起8cm ,并使其与水平线成3π角时所得断面面积最大.24242x-ax a。
第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。
二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。
例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。
则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。
称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。
值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。
第9章(之1) (总第44次)*1. 微分方程7359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A )解 微分方程的阶数是未知函数导数的最高阶的阶数.*2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D )解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 xxec e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由xxe c e c y -+=21, xx ec e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明 '=-+--y e x e x x x 3332321212sin cos ,''=----y e x e x x x 3332321212sin cos ,代入方程得 ''+'+=y y y 0, 此外,,1)0(0)0(='=y y 故y e x x =-2333212sin 是初始值问题的解.*5.验证y e e t Ce x t xx=+⎰20d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明 '=+⋅+⎰y ee t e e Ce xt xx x x 220d =++ye x x 2, 即 2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y ee t Ce xt x x=+⎰2d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解 将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy . (2)xC x C y 21+=. 解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322xC y =''. 从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy . 所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y '-1)0(x -从而可得所求微分方程为0='+y y x .第9章(之2)(总第45次)教学容:§9.2 .1可分离变量的方程; §9.2 .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211xC y +-=. (2)222y x e yx y -='; 解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe x x +-=)21(2122.(3)042)12(=-+'+y y e y e x .解: 12d 42d +-=-x xe y e y y ,C x e y ln 21)12ln(21)2ln(21++-=-, 即 ()()e x C y-+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. 分离变量,)1)(1(y x y --=',x x y y d )1(1d -=-,并积分 x x y yd )1(1d -=-⎰⎰ 得c x x y +-=--221)1ln(,所求通解为 x x ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C eC x x +=-221,○2代入○1即可得原方程的通解xx Cey -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解:Θy '=21xy -,∴21d d xx y y -= (0≠y ), 21d d xx y y -=⎰⎰,∴C x y +=arcsin ln , ∴ x Ce y arcsin =,Θπ6)21(e y -=,∴21arcsin 6Ce e =-π,∴1-=C , ∴ x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: Θ22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 2222x x Ce xe --+=, Θ 1)0(=y , 101=⇒+=∴c c , 2)1(x e x y -+=∴.(3)xex y y cos cot =+',1)2(=πy ;解: Θ xex y y cos cot =+', ∴x x P cot )(=,xex Q cos )(=.∴ ⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y xx x x x d e e e d cot cos d cot )d e e (e sin ln cos sin ln ⎰+=-x C x x x)d sin e (csc cos ⎰+=x x C x x x C xcsc )e(cos -=,由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112xx y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx ex x c e y dx x dx x 222)11( ⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x22211x xc 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:x xy 121212-+=.**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数). 解:将x 看作是y 的函数,原方程可化为yx y y dy dx 1ln 1=+,这是一阶线性方程,将其中yy Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解 1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy ey c e x y y dy y y dy y y y y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x y x()d d =+2,即d d yxxy x -=-2,分离变量得d d y y x x -=2,积分得y Ce x =+222,在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x e y .**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系. 解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v , 得)ln(1mg k C -=,即得 v mg k e kmt =-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx . 解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1().只要令0=Y ,就可以得到法线在x 轴上的截距为 y y x X '+= .据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为 y k x 2211+-=().***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程. 解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xyy 2='. 设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yx y 2-='. 这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221. ***9.作适当变换,求微分方程 1224+-='-x e y y的通解. 解 原方程可化为4122=++'y ye x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x eC ez x xx xd 412d 212d 2}44{1212x x C x +++=.***10.作适当变换,求微分方程 d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解.解:令ux y =2,代入方程整理得 xxu u d tan d =,积分得 Cx u =sin ,以 x y u 2= 代入上式,即得原方程的通解: Cx xy =2sin .第9章 (之3) (总第46次)教学容:§9.2 .3齐次型方程;9.2.4伯努利方程.**1.求下列微分方程的通解:(1) )ln ln 1(d d x y xyx y -+=; 解: Θ )ln ln 1(d d x y x y x y -+=, ∴ dx dy =x y (1+xyln ),这是一个一阶齐次型方程.令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=xdxu u du ln ,得c x u ln ln ln ln +=,即cx e u =. 以 xy u =代入,得所求的通解为cxxe y =.(2)()arctan xy y yxx '-=. 解:方程可化为xy xy y arctan1+=',这是一个一阶齐次型方程.令 x y u =,则 ux y =,即u x u y '+=',于是原方程可化为ux u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得 x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Cey x yx 22+=arctan . **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解. 解: Θ 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2, 令 yxu = , 则 u u dy du yu 12+=+, u u du 1+=y dy , ∴⎰+uu du 1=⎰y dy,c y u ln ln )1ln(212+=+∴, cy u =+∴12, 即 2221y c u =+ , 代回即得22y x +1=22y c , 1)2(=y Θ, ∴52=c , 因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为11d d -+=-+=x y x yx y y x x y ,令 x y u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量x x u uu u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+- ⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程)(222111c y b x a c y b x a f y ++++='在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++s b t a c y b x a sb t ac y b x a 2222211111 1221b a b a ≠Θ,∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112b a b a c b c b h b a b a c a c a k解:0)32()12(=++++dy y x dx y x Θ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒x t ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dtdst s t s 32210)32(21++-=⇒=+++⇒, 令dt dutu dt ds t s u +=⇒=, 23)1)(13(3221+++-=⇒++-=+∴u u u dt du t u u dt du t u , ⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dtdu u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t ct u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy Θ xxy x y y ln 1'12-=-∴-- 令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xx x x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: Θ 0d d )2(=+-y x x xy y , x y d d +y x 1=212y x, y y '-21+211y x =x 2, 21y u =,x u d d +x 21x u 1=, ∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C e x u x x x x d 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21, ∴ []x C xy +=-2121, ∴xC x y +=.(3)'=-y y xy x 3222()解一:令u y =2,原方程化为: d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得 u Ce u x =, 以u y =2代入上式,原方程通解为 y Ce y x22=.解二:原方程写成d d x y y x yx -=-2232, 令x z -=1,则方程化为:322d d yz y y z =+, 则通解 z eC y e y yy y y =+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y+= , 故原方程通解:1122x yC y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y . 解:x y yy', xy y y 22'21-=-∴-=-Θ,令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e xxe C e x e x C e x t xx x x x x x x x,Θ****6.作适当的变换求方程 12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x yxx y e x d sin d sin ,令z y =sin 2,得d d z x x x ze x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x exeC ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x eCex x +++=++原方程的通解为 sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x+='+⎰ξξξ,求y x ().解:两边关于x 求导得212yy y '-=-, 解得 y Ce x 21=+, 由yx ==00,求得C =-1,故原方程的解为:y e x21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程. 解:x y x x yy y 22211+=+'=(),(), 212yy xy x '-=- 令y z 2=,解得z y x C x ==-2()由y ()11=, 得 C =2, 曲线方程为: x y x 222+=.***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器的水才会完全流尽?解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(rghA t t h t t h πα=∆-∆+-, 令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h gh r At h πα解得 200222+=t g rAh πα, 代入0=h , 980=g , 50=r , 4π=A , 62.0=α, 得10304=t (秒).第9章 (之4)(总第47次)教学容:§9.3可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( ) (A )y x =-()12(B )y x =+-()122142(C )y x =-+121122() (D )y x =--()12542解:(C )(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+ 解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: Θ 0='+''y y x 是一不显含因变量y 的二阶方程, 令 y p '= ⇒ y ''x p d d =∴0=+'p p x , ⇒p p d =xxd -,⇒⎰⎰-=x xp p d d ⇒ 1ln ln ln C x p +-= ⇒xC p 1=, ∴=xy d d x C 1, x x C y d d 1=, ⎰⎰=x x C y d d 1 ,21ln C x C y +=. (2)()1212+''+'=x y xy ; 解:''++'=+y x x y x 211122, '=++y x x C 1121(), y x C x C =+++121212ln()arctan.(3)()02='+''y y y ;解:∵()02='+''y y y , 令 y p '=, 则 yppy d d ='',代入方程有 0d d 2=+⋅⋅p ypp y , 0)d d (=+⋅⇒p ypy p , 因为求通解,所以 p 满足 0d d =+⋅p ypy . 由⎰⎰-=⇒-=y yp p y y p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒, ⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111 212C x C y +=⇒. ∴ 通解:212C x C y +=. (4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y , 即d d p p yy y =+212, 得 p C y =+121(),所以 d d yyC x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解. 所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将 (1)、(2) 两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(2) 式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以 21y y - 是齐次方程 0)()(=+'+''y x Q y x P y 的解.***2.已知23211,1,1x y x y y +=+==是方程22222xy x y x y =+'-''的三个特解,问能否求出该方程得通解?若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y xy x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解. 所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t e e -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t e t e t e -'-"0421********=-⨯-+=t t t t e t te te t e ,()()2222"41t t t e t e t e ----'-=-+-⨯--=--241240222222e t e tte t e t t t t (), 故22,t t e e -是方程的解,且≠=-2222t t t e ee 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为: 1,121-==c c ,所以特解为:x e y x -=.**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明 x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t x t x t a t x t x t a t x t x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题:(1)方程08=+''y y 的通解为=y _______________.解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x+=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x xC C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________. 解:)(21515C x C e y x +=-.(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx+=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ, 通解为:xe x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c , 所以特解为:x e x y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ; 解:02942=++λλ, i i5221042116164±-=±-=-±-=λ,通解为:)5sin 5cos (212x c x c ey x+=-.代入初始条件有: πππe c c ey =⇒=+=-221)0()2(,)5cos 55sin 5()5sin 5cos (2)2(212212x c x c e x c x c ey x x+-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x+-=-π.(3)10)0(,6)0(,034='==+'+''y y y y y ;解: 0342=++λλ, 0)3)(1(=++λλ, 所以通解为 x xe c e c y 321--+=.代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x xe ey 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x210100d ()解:将原方程对x 求导得 ''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为:y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C , 故所求问题的解为:xe y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='xxu u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得: )()(x x ϕϕ='', 且由原方程还有:1)0(=ϕ,微分方程的通解为: xxeC e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C , 故所求函数为:x e e x x x ch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x gdtx d . 又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x gdt x d , 解得方程的通解为:tg tgec ec x 102101-+=.又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x 所以 tg t gee x 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg e e 10101010100-+=,即: 510=t gch, 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xtg g x gx =-+=- , 其中g =980厘米/秒2其解为:x C g t C g t =+1222cossin , 振动周期为 T g ==≈222490028ππ..第9章 (之7)(总第50次)教学容:§9.4.3二阶线性常系数方程的解法; §9.4.4高阶线性常系数微分方程 **1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin(C )Ax B x C x D x +++(cos sin ) (D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ;解:∵ 022=--λλ, ∴1,22,1-=λ, 0Θ不是特征根.设 01b x b y p +=, 代入原方程,得:1222011+=---x b x b b ,有:1,010-=b b ,特解为:x y -=.(2)xey y y -=+'+''2.解: ∵ 1- 是二重特征根, ∴ 设 02b e x y xp -=, 0202b e x b xe y xxp ---=',02002022b e x b xe b e x b e y x x x x p----+--='', 代入 xe y y y -=++'2'', 解得:210=b ,特解为:xe x y -=221.**4.求微分方程''-'+=y y y xe x32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x h e C e C y 221+=,设特解为x p e B Ax x y )(+=,代入方程得: 1,21-=-=B A . 故方程的通解为xxx e x x eC e C y ⎪⎪⎭⎫ ⎝⎛+-+=22221,代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为 x xe x x ey ⎪⎪⎭⎫ ⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根: 2,021-==λλ,所以方程0'2=+''y y 的通解为 xh e c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b , 所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y xp h 212221-++=+=-.2)对于方程xe y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y xp =, 代入方程有:810=b , xp e y 281=, 所以方程的通解为:x xp h e ec c y y y 222181++=+=-.3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为: x b x b y p sin cos 10+=, 代入方程有:x b x b y p cos sin '10+-=, x b x b y p sin cos "10--=,x x b x b x b x b cos cos sin 2sin cos 1010=+---, 得:525120=-=b b , x x y p sin 52cos 51+-=,所以方程的通解为:x x e c c y y y xp h sin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x6925sin 的通解.解:特征方程r r 2690-+=的根为r 123,=,相应齐次方程的通解为xh e x C C y 321)(+=设特解为y e A x B x p x=+(cos sin ),代入方程得:A B ==43,故方程的通解为 y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(00y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得''=+y y 1其通解为: y C e C exx=+--121 ,代入初始条件y y (),()0000='=,得 C C 1212==, 故所求曲线方程为:y e e x xx =+-=--1211()ch .***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m Stmg mg d d sin cos 22=-θμθ 且 S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ 代入初始条件得C v C 1020==,,故物体滑下的距离与时间的关系为S gt v t =-+1220(sin cos )θμθ***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xtkx mg d d 22+=, 且 0)0(0)0(='=x x ,. 方程的通解为: x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos.***10. 求下列方程的通解: (1)02)4(=''+'''-y y y;解: 02234=+-λλλ, 0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y.解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c ec e c y xx 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dya b dty d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =, t e x =,dtdyx dx dt dt dy dx dy 1==,⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dt y d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()te f cy dt dy a b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222, 得证.(1)令 x t ln =, te x =,原方程化为:0222=--y dt dydty d . 其通解为t t e c e c y -+=221.将x 代入,得:xc x c y 221+=. (2) 令 x t ln =, te x =,原方程化为:tte y dt dy dty d =+-2222, 上述方程的相应其次方程的通解为:()t c t c e y t h sin cos 21+=.令上述方程一个特解为:()10b t b e y t p +=,代入方程得:0,110==b b , 即:t e y t p =.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度, ma B kv mg =--, v 为下降速度,因为 22,dt x d dt dv a dt dx v ===, 所以 22dt xd m B dt dx k mg =--,即 m Bg dt dx m k dtx d -=+22 , 其特征方程为: 02=+λλmk , 解得特征根为 m k-==21,0λλ.所以对应的齐次方程的通解为:21c e c x t mkh +=-.由于0是特征方程的单根,故设其特解为:t b x 01=, 代入方程有:m B g b m k -=0, 得 kBmg b -=0. 所以微分方程的通解为:t kBmg c e c x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c mk c c 求得:222221,kgm Bm c k Bm g m c -=-=, 所以x 与t 的关系可表示为: t k B mg e k g m Bm x t m k-+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为 f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12 (3)'='=f f f f ()(),()()0110,将此代入(2),(3)得C C C C C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos所以原方程的解为: f x C x x ()cos sin cos sin =++⎛⎝⎫⎭⎪1111.第9章 (之8) (总第51次)教学容:§9.6 微分方程应用举例 (机动)第9章 (之9) (总第52次)教学容:§9.7 差分方程1. 已知t t e y 3=是二阶差分方程tt t e ay y =+-+11的一个特解,求a .解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t t y y ; 解:tt C y )27(-=(2) 431-=--t t y y ;解:23+=tt C y(3) 051021=-++t y y t t ; 解:)61(125)5(-+-=t C y tt (4) tt t y y 2124=-+; 解:144-+=t t t t C y (5) tt t t y y 21⋅=-+. 解:tt t C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y y t t sin 1=-+; 解:t B t B Y t cos sin 21+=(2) t y y t t πcos 31-=++. 解:)sin cos (21t B t B t Y t ππ+=4. 设t y 为第t 期国民收入,t C 为第t 期消费,I 为每期投资(I 为常数).已知t y ,t C ,I 之间有关系 I C y t t +=,βα+=-1t t y C ,其中10<<α,0>β,试求t y ,t C . 解:t y 满足:βα+=--I y y t t 1,解得 αβα-++=1I C y tt , 从而 =-=I y C t t ααβα-++1I C t.5. 已知差分方程t t t cy y by a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意Λ,2,1=t ,有0>t y ;(2) 在变换tt y u 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解;(3) 求方程t t t y y y =++1)21(的满足初始条件20=y 的解. 解:(1)归纳法证明. (2)令 t t y u 1=,即t t u y 1=,111++=t t u y , 则原方程化为线性差分方程 b au cu t t =-+1, 其一般解为 a c ≠时, ac bcaC u tt -+=)( ; a c =时, b C u t +=. (3)令 tt y u 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t , 所以原方程的一般解为 t t u y 1=21+=C ,代入 20=y ,得 23-=C , 所以 特解为 2=t y .。
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= 222{(,)|(,)R ,1};x y x y y x ∈+≠ 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim yx yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f yx xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yx e x y + ,验证 z xy +=∂∂+∂∂yzyx z x 证明:x yx yx ye x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂ 解:1-=∂∂y zx y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : u zu y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(xf x x →= 不存在, 0000lim )0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在 2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx z z y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(),(2222y x y x y x y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。