人教版高一物理必修1 力的合成
- 格式:ppt
- 大小:2.09 MB
- 文档页数:26
高一物理必修一力的合成和分解力是物体之间相互作用的结果,它可以合成和分解。
力的合成是指多个力同时作用在同一物体上时,所产生的效果与单独作用于物体上的力相同的现象,而力的分解则是将一个力拆分成多个分力的过程。
力的合成可以用几何法或分力法来描述。
几何法是通过绘制力的向量图来确定结果力的大小和方向。
首先将各个力的起点相连,然后将最后一个力的终点与起点相连,即可得到合成力的大小和方向。
而分力法则是将一个力拆分成两个垂直方向的分力,通过几何关系和三角函数来求解结果力的大小和方向。
例如,当一个物体受到两个相互垂直的力时,可以利用几何法或分力法来求解合成力。
假设物体受到两个力F1和F2的作用,F1的大小为10N,方向向右;F2的大小为8N,方向向上。
根据几何法,我们可以将F1和F2的向量相连并求出合成力的大小和方向。
根据分力法,我们可以将F1拆分成横向力和纵向力,然后通过三角函数来求解结果力的大小和方向。
在物理学中,力的分解也是一个重要的概念。
通过力的分解,我们可以将一个复杂的力拆分成多个简单的分力,从而更容易地分析物体的运动和受力情况。
例如,当一个斜面上的物体受到重力和斜面法向力时,可以将重力和斜面法向力分解成平行和垂直于斜面的两个分力,然后分析物体在斜面上的运动和受力情况。
力的合成和分解不仅在静力学中有重要应用,在动力学中也有着广泛的应用。
例如,当一个物体受到多个力的作用时,可以利用力的合成来求解物体的加速度和速度;而在运动过程中,可以利用力的分解来分析物体在各个方向上的受力情况。
因此,力的合成和分解是物理学中的重要概念,对于我们理解物体的运动和受力情况具有重要意义。
除了在物理学中有着重要的应用之外,力的合成和分解也是工程学和实际生活中的常见问题。
例如,在工程设计中,需要考虑多个力同时作用在同一结构上的情况,通过力的合成可以求解结构的受力情况;而在实际生活中,人们常常需要分解各种复杂的力,以便更好地理解和应对不同的情况。
第4节力的合成和分解第1课时力的合成和分解学习任务1.知道合力和分力的概念,知道平行四边形定则的内容。
2.能区别矢量和标量。
3.知道力的合成和分解的方法,会用作图法和计算法进行力的合成与分解。
合力和分力1.共点力几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫作共点力。
如图所示:2.合力与分力假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,这几个力叫作那个力的分力。
3.合力与分力的关系合力与分力之间是一种等效替代的关系,合力作用的效果与分力作用的效果相同。
如图所示,一个成年人提起一桶水,使水桶保持静止,用力为F;两个孩子共同提起同样的一桶水并使之保持静止,用力分别为F1和F2 。
问题1一个成年人提起一桶水,使水桶保持静止,则成年人对水桶向上的拉力是多少?提示:200 N。
问题2当两个孩子共同提起同样的一桶水并使之保持静止,用力分别为F1和F2 ,此时两小孩对水桶的拉力是多少呢?提示:200 N。
问题3该成年人用的力与两个孩子的力作用效果是否相同?二者能否等效替代?提示:作用效果相同,能等效替代。
问题4F与F1、F2是什么关系?提示:F与F1、F2是合力与分力的关系,F是F1和F2的合力,F1和F2是F的两个分力。
1.合力与分力的性质2.合力与分力的大小关系(1)合力大小可以大于、等于或小于分力的大小,如图甲所示。
(2)两个分力大小一定时,夹角越大合力越小,如图乙所示。
(3)合力一定,若两分力大小相等,则两等大分力的夹角越大,分力越大,如图丙所示。
【典例1】(多选)下列关于合力与分力的说法中正确的是()A.合力与分力同时作用在物体上B.分力同时作用于物体时共同产生的效果与合力单独作用时产生的效果是相同的C.合力可能大于分力,也可能小于分力D.当两分力大小不变时,增大两分力间的夹角,则合力一定减小[思路点拨]解答本题时需要把握以下两点:(1)合力与分力作用效果相同,但不同时作用在物体上。
高一物理(人教版)必修第一册精品讲义—力的合成和分解课程标准课标解读1.能根据力的作用等效理解合力与分力的概念,体会等效替代的物理思想与方法。
2.了解力的合成与分解,知道矢量和标量。
3.通过实验探究力的合成和分解的方法,掌握力的平行四边形定则的应用。
4.能应用力的合成和分解的方法求解有关问题。
1、知道合力与分力的概念,体会等效替代的思想。
2、通过实验探究,得出力的合成和分解遵从的法则——平行四边形定则。
3、会利用作图和三角函数知识求解合力和分力。
4、知道矢量相加遵从平行四边形定则,标量相加遵从算术法则。
能区别矢量和标量。
知识点01共点力作用在同一物体上,且作用线交于同一点。
知识点02合力和分力1、定义:如果一个力单独作用的效果跟某几个力共同作用的效果相同,这个力叫作那几个力的合力,那几个力叫作这个力的分力.2、关系:合力与分力是等效替代关系.知识点03力的合成和分解1.力的合成(1)定义:求几个力的合力的过程.(2)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图甲所示,F1、F2为分力,F为合力.②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的起点到第二个矢量的终点的有向线段为合矢量.如图乙,F1、F2为分力,F为合力.2.共点力合成的方法(1)作图法.(2)计算法:根据平行四边形定则作出力的示意图,然后利用勾股定理、三角函数、正弦定理等求出合力.3.合力范围的确定(1)两个共点力的合力范围:|F1-F2|≤F≤F1+F2.①两个力的大小不变时,其合力随夹角的增大而减小.②合力的大小不变时,两分力随夹角的增大而增大.③当两个力反向时,合力最小,为|F1-F2|;当两个力同向时,合力最大,为F1+F2.(2)三个共点力的合力范围①最大值:三个力同向时,其合力最大,为F max=F1+F2+F3.②最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min=0;如果不能,则合力的最小值等于最大的一个力减去另外两个力的大小之和,即F min=F1-(F2+F3)(F1为三个力中最大的力).【即学即练1】如图甲所示,射箭时,释放箭的瞬间若弓弦的拉力为100N,对箭产生的作用力为120N,其弓弦的拉力如图乙中F1和F2所示,对箭产生的作用力如图中F所示,则弓弦的夹角α应为(cos53°=0.6)()A.53°B.127°C.143°D.106°答案D 解析弓弦拉力的合成如图所示,由于F 1=F 2,由几何知识得2F 1cos α2=F ,有cos α2=F 2F 1=0.6,所以α2=53°即α=106°,故D 正确.4.力的分解是力的合成的逆运算,遵循的法则:平行四边形定则或三角形定则.5.力的分解方法:(1)按力产生的效果分解;(2)正交分解.如图,将结点O 受力进行分解.【即学即练2】(多选)如图所示是剪式千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时汽车对千斤顶的压力为1.0×105N,此时千斤顶两臂间的夹角为120°,则下列判断正确的是()A.此时两臂受到的压力大小均为5.0×104NB.此时千斤顶对汽车的支持力为1.0×105NC.若继续摇动把手,将汽车顶起,两臂受到的压力将增大D.若继续摇动把手,将汽车顶起,两臂受到的压力将减小答案BD解析设两臂受到的压力大小均为F1,汽车对千斤顶的压力为F,两臂间夹角为θ,则有F=2F1cosθ5N,θ=120°时,F1=1.0×105N,2,由此可知,当F=1.0×10A错误;由牛顿第三定律知,B正确;若继续摇动把手,F不变,θ减小,则F1将减小,C错误,D正确.知识点04矢量和标量1、矢量:既有大小又有方向的物理量,叠加时遵循平行四边形定则,如速度、力等.2、标量:只有大小没有方向的物理量,求和时按代数法则相加,如路程、速率等.3、矢量是既有大小又有方向的物理量,但既有大小又有方向的物理量并不一定是矢量。