并网光伏发电站系统设计
- 格式:doc
- 大小:37.50 KB
- 文档页数:4
分布式光伏发电并网系统设计分布式光伏发电并网系统是指将多个光伏发电系统通过电网连接在一起,并与电网进行互动交流的一种发电模式。
这种系统设计能够提高太阳能的利用效率,减少对传统能源的依赖,实现能源的可持续利用。
下面将从硬件设计、控制策略和经济效益三个方面进行详细介绍。
在硬件设计方面,分布式光伏发电并网系统通常由光伏组件、逆变器、电网连接器、配电柜以及监控装置等组成。
光伏组件是整个系统的核心部分,它将太阳能转化为直流电能。
逆变器则将直流电转换为交流电,并与电网进行连接。
电网连接器用于连接逆变器与电网,确保系统的安全稳定运行。
配电柜用于进行电能的分配和管理,保证电能的正常供应。
监控装置用于对光伏发电系统进行实时监控和管理。
通过合理的硬件设计,可以提高光伏发电系统的效率和稳定性。
在控制策略方面,分布式光伏发电并网系统采用的常见控制策略有功率控制和电压控制两种。
功率控制策略是指根据电网的负荷需求,调节光伏发电系统的输出功率,使得光伏系统的发电功率和电网负荷需求保持匹配。
电压控制策略是指根据电网的电压变化情况,调节光伏发电系统的输出电压,保持电网的电压稳定。
这两种控制策略可以相互结合,实现光伏系统与电网的协同运行。
同时,还可以通过智能控制算法,对系统进行优化调节,提高发电效率和降低电能损耗。
在经济效益方面,分布式光伏发电并网系统能够降低电网运营成本,减少对传统能源的依赖,提高能源利用效率。
通过光伏发电系统的建设和运营,可以实现电能的分散生产和就近消费,减少电能的传输损耗。
同时,光伏发电系统还可以向电网出售多余的电能,从而实现电能的双向流动。
这样既可以降低居民和企业的用电成本,又可以提供额外的经济收益。
另外,分布式光伏发电并网系统还可以减少对传统能源的消耗,降低能源的排放,对环境保护和气候变化具有重要意义。
综上所述,分布式光伏发电并网系统设计是一项复杂而重要的工程,它涉及各个方面的技术和管理问题。
只有通过合理的硬件设计、高效的控制策略和科学的经济分析,才能实现分布式光伏发电并网系统的稳定运行和经济效益。
并网光伏系统设计方案并网光伏系统设计方案1. 概述本文档旨在提供一种完整的设计方案,用于实现并网光伏系统。
该系统通过将光伏发电系统与电网相连接,实现对光伏电能的高效利用。
本文档将涵盖并网光伏系统的整体设计、组件选择和系统连接等方面的内容。
2. 设计目标本系统的主要设计目标包括:•提高光伏电能的有效利用;•实现光伏电能的平滑并网;•提供可靠的电能供应;•实现系统的安全运行。
3. 系统组成本并网光伏系统主要由以下组件组成:•光伏阵列:用于将太阳能转化为直流电能;•逆变器:将直流电转化为交流电,并对交流电进行电压和频率的调节;•电网连接器:用于将逆变器输出的交流电与电网相连接;•电能计量器:对系统的发电量和购电量进行计量;•监控系统:监测系统的运行状况,并提供实时数据。
4. 设计步骤设计并网光伏系统的步骤如下:4.1 光伏阵列设计光伏阵列的设计需要考虑以下因素:•太阳能辐射强度:根据所在地区的太阳能辐射数据,确定光伏阵列的装机容量;•阵列布局:根据光伏阵列的装机容量和场地条件,确定阵列的布局方式(如平面布置、斜面布置等);•组件选择:选择合适的光伏组件,考虑其转换效率、功率温度系数等性能指标;•连接方式:确定光伏组件之间的串并联连接方式,以确保系统的输出电压和电流适应逆变器的需求。
4.2 逆变器选择与设计逆变器的选择与设计需要考虑以下因素:•输出功率:根据光伏阵列的装机容量和预期的并网电压,确定逆变器的输出功率范围;•电压稳定性:选择具有较好电压稳定性的逆变器,以确保系统的输出电压在合理范围内;•频率调节:选择逆变器能够提供频率调节功能,以适应电网的需求;•保护功能:选择具有多重保护功能的逆变器,以确保系统的安全运行。
4.3 系统连接与调试系统连接与调试的步骤如下:•将光伏阵列的输出与逆变器的输入相连接;•将逆变器的输出与电网连接器相连接;•进行系统的初步调试,检查电流、电压等参数是否正常;•进行系统的安全性检查,确保系统的工作安全可靠。
光伏并网发电系统典型接入方案及要求全套1接入方案分类及要求⑴单点接入方案。
按照接入电压等级,分为接入IOkV、380/220V 两类:按照接入位置,分为接入变电站/配电室/箱变、开闭站∕≡己电箱、环网柜和线路四类:按照接入方式,分为专线接入和工接两类;按照接入产权,分为接入用户电网和接入公共电网两类。
(2)多点接入方案。
考虑单个项目多点接入用户电网,或多个项目汇集接入公共电网情况,设计多点接入组合方案。
按照接入电压等级,分为多点接入380V组合方案、多点接入IOkV组合方案、多点接入IOkV/38OV组合方案三类。
按照接入产权,分为接入单一用户组合方案、接入公共电网组合方案两类。
(3)计量点设置。
对于接入用户电网,计量点设置分为两类,一是装设双向关口计量电能表,用户上、下网电量分别计量另一类装设发电量计量电能表,用于发电量和电价补贴计量。
对于接入公共电网,计量点设置在产权分界点处,装设发电量计量电能表,用于电量计量和电价补偿。
(4)防孤岛检测和保护。
分布式光伏发电系统逆变器必须具备快速主动检测孤岛、检测到孤岛后立即断开与电网连接的功能。
接入IOkV 的分布式光伏发电项目,形成双重检测和保护策略。
380V电压等级由逆变器实现防孤岛检测和保护功能,但在并网点应安装易操作、具有明显开断指示的开断设备。
⑸通信方式。
根据配电网区域发展差异,按照降低接入系统投资和满足配网智能化发展的要求考虑通信方式。
优先利用现有配网自动化系统和营销集抄系统通信。
(6)发电系统信息采集。
接入IOkV的项目,采集电源并网状态、电流、电压、有山无功、发电量等电气运行工况。
接入380V的项目,暂只采集电能信息,预留并网点断效工位等信息采集的能力。
2.接入设计方案光伏发电系统单点接入方案表方案标号输入电压运营模式接入点送出回路数单并点参考容量XGF1O-T-I IOKW全额专线1回1MW^6MW上网接入模式变电(接入站公共IOkV电网)母线XGF10-T-2专线1回40OkW~6MW接入IOkV开关站、配电室或箱变XGF10-T-3T接1回400kW-IOkV IMW线路XGF1O-Z-I自发专线1回40OkW~6MW自用/ 接入>ħ里用户上网IOkV(接入母线用户电网)XGF380-T-1380V全额配电1回≤100kW,上网箱/线8kW及以下模式路可单相接入XGF380-T-2(接入箱变1回20kW~公共或配400kW电网)电室低压母线XGF380-乙1自发用户1回≤400kW,自用/ 配电8kW及以下余量上网箱/线路可单相接入(接入用户1回XGF380-Z-220kW~用户箱变400kW电网)或配电室低压母线光伏发电系统多点接入方案表方案标号接入电压运营模式接入点XGF380-Z-Z1380V/220自发多点接入配电箱/线路、箱变或配电室低压母线(用户)XGF1O-Z-Z1自IOkV用/多点接入用户IokV母线、用户箱变或配电室(用户)XGF380/10-Z-Z110kV∕380V余以380V一点或多点接入配量上网(接入用户电网)电箱/线路、箱变或配电室低压母线(用户),以IOkV一点或多点接入用户IOkV母线、用户箱变或配电室(用户)XGF38O-T-Z1380V/220全额多点接入配电箱/线路、箱变或配电室低压母线(公用)XGF380/10-T-Z1上10kV∕380V网模式(接入公共电网)以380V一点或多点接入配电箱/线路、箱变或配电室低压母线(公用),以IokV一一点或多点接入IokV配电室或箱变开关站变电站IOkV母线、T接IOkV线路(公用)。
20MWp并网光伏发电站项目系统总体设计方案1.1阵列单元光伏电池组件选择光伏发电系统通过将大量的同规格、同特性的太阳能电池组件,经过若干电池组件串联成一串以达到逆变器额定输入电压,再将这样的若干串电池板并联达到系统预定的额定功率。
这些设备数量众多,为了避免它们之间的相互遮挡,须按一定的间距进行布置,构成一个方阵,这个方阵称之为光伏发电方阵。
其中由同规格、同特性的若干太阳能电池组件串联构成的一个回路是一个基本阵列单元。
每个光伏发电方阵包括预定功率的电池组件、逆变器和低压配电室等组成。
若干个光伏发电方阵通过电气系统的连接共同组成一座光伏电站。
(1)太阳能电池分类太阳电池种类繁多,形式各样,按基体材料分类主要有以下几种:a)硅太阳电池:主要包括单晶硅(Single Crystaline-Si)电池、多晶硅(Polycrystaline-Si)电池、非晶硅(Amorphous-Si)积,所以适合于荒漠区大型并网光伏电站和聚焦型光伏电站,而国内的配套政策支持力度不足,大型高压并网光伏电站项目较少,因此国内跟踪装置生产商的研发投入较少,目前还未实现产业化生产,造成跟踪装置价格相对较贵,反过来又制约了跟踪装置在大型高压并网光伏电站上的使用。
根据已建工程调研数据,若采用斜单轴跟踪方式,系统实际发电量可提高约18%,若采用双轴跟踪方式,系统实际发电量可提高约25%O在此条件下,以固定安装式为基准,对IMWp光伏阵列采用三种运行方式比较如表5-3o4.3 IMWp由表中数据可见,固定式与自动跟踪式各有优缺点:固定式初始投资较低、且支架系统基本免维护;自动跟踪式初始投资较高、需要一定的维护,但发电量较倾角最优固定式相比有较大的提高,假如能很好的控制后期维护工作增加的成本,采用自动跟踪式运行的光伏电站单位电度发电成本将有所降低。
若自动跟踪式支架单价能进一步降低,同时又较好解决阵列同步性及减少维护工作量,则自动跟踪式系统相较固定安装式系统将更有竞争力。
分布式光伏发电系统并网连接设计引言:随着能源需求的增加和环境问题的日益突出,光伏发电作为一种清洁、可再生的能源形式,受到了广泛关注。
分布式光伏发电系统作为一种可利用分散在各种建筑物上的光伏组件进行发电的系统,具有灵活性高、能源利用效率高等优势,在国内外得到了快速发展。
本文将针对分布式光伏发电系统的并网连接设计进行详细探讨。
一、分布式光伏发电系统概述分布式光伏发电系统是将一系列光伏组件通过逆变器将直流电能转换成交流电能,再通过与电网的连接将其输出到电网上供应给用户使用的系统。
其基本组成包括光伏组件、逆变器、电网连接等。
二、分布式光伏发电系统并网连接设计的原则1. 稳定可靠性:并网连接设计必须保证光伏发电系统的稳定性和可靠性,确保其长期稳定运行。
2. 安全性:并网连接设计应满足国家安全要求,确保系统运行过程中不会对用户和电网造成危害。
3. 高效性:并网连接设计应考虑系统的效率,最大程度地提高光伏发电系统的发电能力。
4. 经济性:并网连接设计不仅要考虑系统的建设成本,还需综合考虑系统的运维成本和回收周期等经济指标。
三、分布式光伏发电系统并网连接设计的关键技术1. 电网连接方式的选择:根据不同的应用场景和需求,选择合适的电网连接方式,包括并网型逆变器、微逆变器和光伏直流汇流箱等。
2. 并网保护装置的设计:设计适当的并网保护装置,确保光伏发电系统在电网故障时能够迅速脱网并恢复。
3. 功率控制策略的设计:通过合理的功率控制策略,使光伏发电系统能够更好地适应电网负荷变化,并提高系统的功率利用率。
4. 电网接口电路的设计:合理设计电网接口电路,满足电网对直流和交流电的要求,确保光伏发电系统与电网之间的交互符合电网规范和标准。
四、分布式光伏发电系统并网连接设计的实施步骤1. 确定需求和设计目标:根据实际需求和设计目标,明确系统的容量、并网类型以及装机地点等关键参数。
2. 选取合适的设备:根据设计要求和预算限制,选取合适的光伏组件、逆变器和其他配套设备。
摘要随着社会生产的日益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。
地球中的化石能源是有限的,总有一天会被消耗尽。
随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。
可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。
其中太阳能资源在我国非常丰富,其应用具有很好的前景。
光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。
光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。
给出了硬件主回路并对各部分的功能进行了分析,同时选用TI公司的DSP芯片TMS320F2812作为控制CPU,阐述了芯片特点及选择的原因。
并对并网逆变器的控制及软件实现进行了研究。
文中对于光伏电池的最大功率跟踪(MPPT)技术作了阐述并提出了针对本设计的实现方法。
最后对安全并网的相关问题进行了分析探讨。
文章的主要内容如下:1.目前国内外光伏发电的现状和发展前景,并对光伏并网发电系统的功能、分类和特点作了简单介绍,对光伏并网发电系统建立了一个总体认识。
2.研究了光伏电池的基本发电原理和输出特性。
重点研究了光伏电池的输出特性和其影响因素,并得出相应的结论。
3.并网逆变器主要包括DC/DC及DC/AC两部分,文中分析了各部分设计重点,明确了选用TI公司的DSP芯片TMS320F2812作为控制CPU的原因及优点,同时给出了控制及软件实现方法。
4.光伏电池发电输出是非线性的,存在输出最大功率(CMPPT)跟踪问题。
本文阐述了常用的最大功率点跟踪方法,并结合本设计提出了改进方法。
使光伏电池工作于最大输出功率点上,获得高效功率输出。
5.在实际太阳能并网发电系统中,太阳能电池的输出及电网的电压是不断波动的,如何实现安全并网以及在运行中对各种故障的检测及报警进行了探讨,重点对“孤岛效应”进行了分析。
光伏发电并网系统设计介绍一、一般规定1.1 光伏系统接入方案应结合电网规划、分布式电源规划,按照就近分散接入与就地平衡消纳的原则进行设计。
1.2 光伏系统宜采用10kV及以下电压等级接入电网。
1.3 光伏系统模式可采用自发自用/余量上网和全额上网两种模式。
1.4 自发自用/余量上网模式的光伏系统并网容量不应超过所接入变压器容量。
1.5 光伏系统接入电压等级应根据装机容量选取,并满足下列要求:1 单个并网点容量为8kWp及以下宜接入220V;2 单个并网点容量为8kWp~400kWp宜接入380V;3 单个并网点容量为400kWp~6MWp宜接入10kV;4 自发自用/余量上网模式总装机容量超过1MWp,宜接入10kV;5 最终并网电压等级应综合参考有关标准和电网实际条件,通过技术经济比选论证后确定。
1.6 光伏系统在变电站低压并网时,单台变压器的并网点不应超过1个,项目规划审批范围内总并网点数量不应超过4个。
1.7 光伏系统在并网处应设置并网专用开关柜(箱),并应设置专用标识和“警告”、“双电源”等提示性文字和符号。
二、10kV并网2.1 10kV光伏系统的并网点应按如下进行选择:1 自发自用/余量上网模式的并网点可为用户开关站、配电室或箱变的10kV母线,如图2.1所示;2 全额上网模式的并网点可为公共电网10kV母线或线路,如图2.2 所示。
图2.1 10kV自发自用/余量上网模式一次系统接线示意图图2.210kV全额上网模式一次系统接线示意图2.2 10kV光伏系统的并网系统一般由光伏进线柜、压变柜、计量柜、并网柜、隔离柜、无功补偿柜及站用电等设备组成。
如图2.3所示。
图2.3 10kV并网系统方案示意图2.3 10kV自发自用/余电上网模式光伏系统的保护及计量配置应符合下列规定:1 光伏并网柜继电保护装置应具有过压、失压(欠压)保护功能,失压保护的电压信号应采集自光伏配电房隔离柜的电压互感器;2 光伏并网柜继电保护装置应具有过频率和低频率保护,保护装置的频率信号应采集自光伏配电房隔离柜的电压互感器;3 光伏并网柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与用户配电房中光伏接入柜继电保护定值相配合;4 用户配电房中的计量柜应设置双向电表,光伏配电房中的计量柜应设置单向电表;5 光伏配电房计量柜的电压互感器宜采用移动小车式安装,电流互感器宜采用固定式安装;6 计量柜应设置三相电压指示仪;7 光伏进线柜宜按一台变压器对应一个光伏接入柜进行设置;8 光伏进线柜应具有变压器的温度保护和瓦斯保护等保护跳闸功能;9 光伏进线柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与光伏配电房光伏并网柜继电保护定值相配合;10 光伏进线柜不应具有检有压合闸功能;11 变压器室和光伏进线柜不在同一箱变内的,变压器室内应设置变压器出线柜;12 容量超过800kVA的变压器出线柜内应设置断路器。
分布式光伏发电系统电网接入及并网运行设计一、引言分布式光伏发电系统是指将太阳能光伏电池组件分布在不同的地理位置上并互相连接,形成一个分布式的发电网络。
与传统的集中式光伏发电系统相比,分布式光伏发电系统具有灵活性高、容错性强、能源利用效率高等优点。
本文旨在探讨分布式光伏发电系统的电网接入及并网运行设计,以确保系统的高效运行和安全性。
二、分布式光伏发电系统的电网接入设计1. 运行模式选择根据电网接入的需求和条件,选择适合的运行模式,包括独立运行模式、并网运行模式以及并网与独立运行模式的混合模式。
并网运行模式是分布式光伏发电系统的主要运行方式,可实现与电网的互联互通。
2. 电网接口设计确保分布式光伏发电系统与电网之间的接口匹配,采用适当的电网接口设计,包括逆变器、并网保护设备、电力电容器等。
逆变器的选择要考虑系统的功率输出、效率和稳定性,并网保护设备要满足电网接入的安全要求,电力电容器要提供有利于功率因数校正的功能。
三、分布式光伏发电系统的并网运行设计1. 并网运行策略制定合理的并网运行策略,确保系统平稳地接入和退出电网,包括并网时的功率控制策略、电压控制策略以及频率控制策略等。
根据电网的要求,合理调整并网功率的大小,避免对电网稳定性产生不利影响。
2. 互动控制系统设计设计互动控制系统,实现光伏发电系统与电网之间的实时信息交互和控制。
通过互动控制系统,可以监测光伏发电系统的功率输出、电流电压等参数,实时调整并网运行策略,保持系统的稳定性和可靠性。
3. 安全保护系统设计设计安全保护系统,保护光伏发电系统和电网的安全运行。
安全保护系统包括过压保护、欠压保护、过流保护、短路保护等功能,确保系统在异常情况下能够及时断开并网连接,避免事故的发生。
4. 功率管理系统设计设计功率管理系统,实现对分布式光伏发电系统的功率分配和调度。
通过功率管理系统,可以根据电网需求和自身条件,合理分配和调整系统的功率输出,最大程度地利用光伏发电系统的发电能力,实现经济运行和高效利用。
光伏发电站接入电力系统设计规范
GBT50866-2023
1. 引言
光伏发电是一种清洁、可再生的能源形式,越来越受到人们的
关注和应用。
为了确保光伏发电站接入电力系统的安全和可靠运行,制定了《光伏发电站接入电力系统设计规范GBT-2023》。
2. 规范适用范围
该规范适用于各种类型的光伏发电站,包括分布式光伏发电站
和集中式光伏发电站。
3. 光伏发电站接入方式
光伏发电站可以通过并网方式或独立运行方式接入电力系统。
根据具体情况,选择合适的接入方式。
4. 电力系统设计要求
光伏发电站接入电力系统的设计要求包括但不限于以下几个方面:
- 电压规范:根据国家标准和电力系统的要求确定合适的电压
等级。
- 电流容量:根据发电站的发电容量和电力系统的需求确定合
适的电流容量。
- 短路电流和接地电流:对光伏发电站的短路电流和接地电流
进行计算和评估,确保系统的安全性。
- 远方短路:对远方电网的短路电流进行分析和计算,确保系
统的稳定性。
- 电力设备选型:根据发电站的需求和电力系统的要求选择合
适的电力设备,如逆变器、变压器等。
5. 其他要求
该规范还包括对光伏发电站运行监测、安全保护、接地等方面
的要求,以确保光伏发电站的安全运行和有效发电。
6. 结论
《光伏发电站接入电力系统设计规范GBT50866-2023》是一份
重要的设计规范,它为光伏发电站接入电力系统提供了指导和标准。
制定和遵守该规范,能够确保光伏发电站的安全性、可靠性和高效
运行。
某20kW并网光伏发电系统设计某20kW并网光伏发电系统设计摘要:本论文从系统设计、电路结构及控制器等几方面介绍了某20kW并网光伏发电系统设计。
在系统设计方面,该系统采用单板逆变器以及并联式电池组。
在电路结构方面,系统采用了金属氧化物半导体场效应管(MOSFET)作为开关元件,并通过开环控制模式来控制发电系统的输出功率。
在控制器方面,该系统采用了基于FPGA(Field Programmable Gate Array)控制器的PWM控制。
关键词:光伏发电系统;并网;逆变器;MOSFET;控制器;FPGA;PWM本论文介绍的是某20kW并网光伏发电系统的设计。
该系统可将太阳能光能转换成电能以及其它形式的能量输出到电网中,并能够自身进行电路保护。
1. 系统设计该20kW并网光伏发电系统的设计采用了单板逆变器和并联式电池组。
并联式电池组的设计是为了保证系统能够持续并稳定地输出电能。
单板逆变器采用了铝轻质化材料,能够有效地降低系统的重量,并保证系统的稳定性。
2. 电路结构系统电路采用MOSFET作为开关元件,由于该元件具有低导通电阻、大尺寸等优点,因此能够减少其开关过程中的损耗,提高系统的效率。
电路采用开环控制模式,通过在MOSFET上进行周期性的开关操作来实现对发电系统的输出功率的控制。
此外,系统在输出侧采用了滤波电容,有效地抑制了输出电压的波动和干扰。
3. 控制器该系统采用了基于FPGA控制器的PWM控制。
控制器通过对发电系统的开关元件进行周期性开关操作以实现对其输出功率的控制。
在PWM控制的过程中,控制器采用了数字信号处理技术,能够高精度地控制系统的输出功率以及输出电压的波动。
总之,该论文介绍了一种20kW的并网光伏发电系统的设计。
通过使用单板逆变器以及并联式电池组、MOSFET开关元件,以及FPGA控制器的PWM控制技术,该系统能够实现太阳能光能的高效转换,稳定地输出电能,并在输出侧采用滤波电容进行功率波动抑制。
分布式光伏发电并网系统设计随着人们对可再生能源的需求日益增长,光伏发电作为一种清洁、可再生的能源形式,逐渐受到广泛关注。
为了更好地利用光伏发电的潜力,分布式光伏发电并网系统被设计出来。
本文将从系统设计的角度对分布式光伏发电并网系统进行详细介绍。
首先,分布式光伏发电并网系统的设计需要考虑到光伏发电的特点。
光伏发电是一种不可控的能源形式,其输出受到天气条件的限制。
设计系统时应充分考虑到这一点,确保系统在不同天气条件下的可靠性和稳定性。
其次,分布式光伏发电并网系统的设计需要考虑到光伏发电的功率变化。
光伏发电的输出功率随着太阳辐射强度的变化而变化,系统设计需要设计一个能够实时控制输出功率的装置,以保持系统的稳定运行。
另外,分布式光伏发电并网系统的设计需要考虑到光伏发电的电力质量问题。
由于光伏发电的输出是直流电,需要将其转换为交流电并与电网进行连接。
设计系统时应设计一个有效的逆变器,以确保输出的电流和电压符合电网的要求,避免对电网造成污染和损坏。
此外,分布式光伏发电并网系统的设计还需要考虑到系统的安全性和可靠性。
由于分布式光伏发电并网系统通常连接到电网中,设计师需要设计一种保护装置,以防止系统的过电压、过电流和短路,确保电网的安全运行。
最后,分布式光伏发电并网系统的设计还需要考虑到监控和控制问题。
设计师需要设计一个监控系统,能够实时监测分布式光伏发电系统的运行状态和输出功率。
此外,还需要设计一个控制系统,能够根据监测到的数据,对系统进行调节和控制,以达到系统的最佳性能。
综上所述,分布式光伏发电并网系统的设计需要充分考虑光伏发电的特点,同时要解决功率变化、电力质量、安全性和可靠性以及监控和控制等问题。
只有在这些方面进行全面考虑和设计,才能确保分布式光伏发电并网系统的有效运行和可持续发展。
大型分布式光伏并网发电系统的设计随着可再生能源的快速发展和环境保护的日益重视,光伏发电作为一种清洁、可持续的发电方式得到了广泛应用。
大型分布式光伏并网发电系统是指将多个光伏发电站以并网方式连接在一起,形成一个整体运行的电力系统。
下面将介绍大型分布式光伏并网发电系统的设计。
1.光伏发电站选择首先,需要选择适合的光伏发电站。
考虑到系统规模较大,应选择大型光伏发电站,确保发电量和系统的可靠性。
同时,需要根据地理位置、太阳能资源和土地可利用性等因素进行选择。
2.并网逆变器的选用并网逆变器是将光伏发电的直流电能转换为交流电能并注入电网的核心装置。
在设计大型分布式光伏并网发电系统时,需要选择高效、稳定的并网逆变器。
并网逆变器的容量应根据光伏发电站的总装机容量和日均发电量进行确定。
3.建设并网连接系统-电网连接点的选择:选择合适的电网连接点,满足电能注入要求。
-电缆线路的设计:设计合理的电缆线路,减小线路损耗,确保电能输送效率。
-并网保护装置的设置:设置过流、过压、过频等保护装置,确保系统的安全运行。
-监控系统的建设:建设完善的监控系统,实时监测光伏发电站的运行状况,及时发现并处理故障。
4.电网调度与运营管理-电网调度:根据电网需求和光伏发电站的发电情况,进行电网调度,合理分配电能。
-发电计划管理:制定发电计划,合理安排光伏发电站的运行时间和发电量,保证系统的稳定运行。
-故障处理与维修:建立完善的故障处理和维修机制,确保系统在发生故障时能够及时处理和修复。
5.技术经济分析与评估设计大型分布式光伏并网发电系统时需要进行技术经济分析与评估,从经济角度评估系统的可行性,包括投资成本、运行成本和收益预测等因素。
同时,还需要评估该系统对减少温室气体排放和环境保护的贡献。
总结:大型分布式光伏并网发电系统的设计需要充分考虑光伏发电站的选择、并网逆变器的选用、建设并网连接系统、电网调度与运营管理以及技术经济分析与评估等方面。
并网光伏发电站系统设计随着全球能源需求的迅速增长和对清洁能源的重视,光伏发电作为一种可持续的能源源头,正逐渐受到国际社会的关注和推崇。
并网光伏发电站系统的设计是实现光伏发电高效运行和电力系统安全可靠供电的关键。
本文将对并网光伏发电站系统设计进行详细阐述。
一、并网光伏电站系统设计的背景二、并网光伏发电站系统设计的基本原理1.光伏发电系统光伏发电系统由光伏阵列、逆变器、配电系统和监控系统组成。
光伏阵列负责将太阳光转化为直流电能,逆变器将直流电能转换为交流电能,配电系统将电能传输到电力系统中,监控系统实时监测系统运行情况。
2.并网接入并网光伏电站通过逆变器将光伏发电的交流电能与电力系统的交流电网相连接,实现电力的互联互通。
同时,通过电力系统的监测与控制,保证光伏电站的运行安全和电流质量。
三、并网光伏发电站系统设计的关键技术1.光伏阵列设计光伏阵列设计是并网光伏电站系统设计的重要环节。
光伏阵列的布置和组串方式直接影响光能的吸收利用效率。
同时,必须考虑光伏阵列的朝向、倾角和面积等因素,以最大化太阳辐射的吸收。
2.逆变器设计逆变器是将光伏发电系统的直流电能转换为交流电能的核心设备。
逆变器的设计需要考虑其转换效率、稳定性和电流质量。
此外,逆变器还应具备防雷、过热等保护功能,以确保系统的安全运行。
3.配电系统设计配电系统设计包括电缆布置和配电装置选型等方面。
电缆布置需要考虑线路的损耗以及电缆的尺寸和敷设方式等因素。
配电装置选型则需根据负荷情况和配电网络的结构来确定,以实现电能在各个环节的平衡分配。
4.监控系统设计监控系统设计是确保光伏电站运行安全和电流质量的关键。
监控系统应包括对光伏阵列、逆变器、配电系统以及电力系统的实时监测和数据分析功能。
同时,还应具备故障自动报警和故障处理等功能,以便及时采取措施,保证系统的稳定运行。
四、并网光伏发电站系统设计的步骤1.确定电站容量和布置方案根据实际需求和地理环境等因素,确定光伏电站的容量和布置方案,以满足电力需求和最大化光能的吸收利用效果。
光伏发电并网系统的参数设计及优化1.接入点的位置:接入点的位置应尽量选择光照强度高、阴影影响少的地方,以确保光伏发电系统的发电量最大化。
2.光伏组件的安装角度:根据所在地的纬度和季节变化,选择合适的安装角度可以最大程度地利用太阳光的入射角度,增加光伏组件的发电效率。
3.运行控制策略:光伏发电并网系统应采用最佳运行控制策略,如最大功率点追踪算法,确保系统能够在各种气候条件下实现最大的发电效率。
4.逆变器的选择:逆变器是光伏发电并网系统的关键组件之一,选择具有高效率、稳定性和可靠性的逆变器可以提高系统的发电效率和可靠性。
5.电池储能系统的设计:在光伏发电并网系统中引入电池储能系统可以平衡光伏发电系统的电力输出和负荷需求之间的差异,提高系统的稳定性和可靠性。
6.并网电压的控制:并网电压的稳定性对于光伏发电并网系统至关重要,通过合理设计并网电压控制系统,可以确保系统的运行稳定性,减少对网络的干扰。
7.并网电流的控制:通过合理控制光伏发电系统的并网电流,可以避免过载问题,保证系统的稳定性和可靠性。
8.故障检测和故障隔离:设计一个有效的故障检测和故障隔离系统可以快速发现并处理系统中的故障,减少对整个系统的影响。
9.保护装置的设计:合理设计光伏发电并网系统的保护装置,可以保护系统不受过电流、过电压、过温等问题的影响,延长系统的寿命。
10.监测和维护:通过使用监测系统和定期维护,及时发现和解决系统中的问题,确保光伏发电并网系统处于良好的工作状态。
总之,光伏发电并网系统的参数设计及优化是一个复杂而关键的过程,需要综合考虑多个因素。
只有在充分了解系统的工作原理和特点的基础上,才能有效地设计和优化光伏发电并网系统的参数,提高系统的发电效率、稳定性和可靠性。
并网光伏发电站系统设计
一、系统设计
(一)一般规定
1、并网光伏发电系统中的设备与材料的选型和设计应符合国家相关规定,主要设备应通过国家批准的认证机构的产品认证。
2、并网光伏发电系统中材料强度设计值和其它物理、力学性能可按照国家相关规定的要求执行。
3、并网光伏发电系统中所选用的电气设备,在其外壳的显著位置应有防触电警示标识。
4、并网光伏发电系统中材料的防火性能应符合GB50016的规定。
支架结构件和连接件应采用不燃材料,保温材料和密封材料宜采用不燃烧或难燃材料,其防火封堵结构应采用防火密封材料。
各类电气设备的防火性能应符合国家相关规定。
5、并网光伏发电站向当地交流负载提供电能和向电网发送的电能质量应符合公用电网的电能质量要求。
6、装机容量超过1MWp的光伏系统,应配置小型气象设备。
(二)材料与设备
1、光伏组件
(1)光伏组件的安全性应符合GB/T20047.1的规定。
(2)晶体硅光伏组件、薄膜光伏组件、聚光光伏组件的性能要求应符合行业规范的认证要求和相关规定。
(3)晶硅组件衰减率首年不高于2.5%,后续每年不高于0.6%,25年内不高于17%;双面电池组件的功率衰减在1年内不高于2.5%(正面),25年内不高于14.5%,30年不高于17%;薄膜组件衰减率首年不高于5%,后续每年不高于0.4%,25年内不高于15%。
(4)所有组件工作温度范围为-400C~+85℃,初始功率(出厂前)不应低于组件标称峰值功率。
(5)组件型号应具备相关国际国内产品认证。
2、汇流箱
(1)汇流箱的额定电压和电流应满足并网光伏发电系统使用的要求。
(2)应具有下列基本保护功能如下:
①每一输入回路具有短路保护功能;
②输出回路设置具有隔离功能的断路器。
(3)汇流箱宜设置组串监测装置,其监测信号需传送到监控装置。
(4)户外安装的汇流箱防护等级应不低于IP54。
(5)外壳正面应有铭牌、安全警示标识等,箱内应附电路原理图和接线图、使用说明书及产品合格证等。
3、逆变器
(1)选用逆变器时应该综合考虑如下因素:逆变器类型要求、容量、转换效率、直流侧超配能力、相数、频率、冷却方式、功率因数、过载能力、温升、效率、输入输出电压、最大功率点跟踪(MPPT)、PID防护及修复能力、保护和监测功能、通信接口、防护等级、接入双绕组变压器的载波同步能力等技术条件。
(2)选用的并网逆变器的要求如下:
①舍变压器型的并网逆变器中国效率不应低于96.5%,不合变压器型的并网逆变器中国效率不应低于98%(单项二级拓扑结构的光伏逆变器相关指标分别不应低于94.5%和97_3%),微型逆变器相关指标分别不应低于95%和95.5%;
②并网逆变器宜采用转换效率更高的多电平技术,逆变器在各负载点的加权系数如下盍2所示;
③使并网光伏发电系统接入公共连接点的谐波注入电流应符合GB/T14549的规定;
④使并网光伏发电系统接入电网后,公共连接点的电压偏差应符合GB/T12325的规定;
⑤使并网光伏发电系统公共连接点的电压波动和闪变应符合GB/T12326的规定;
⑥使并网光伏发电系统公共连接点的电压不平衡及引起的电压不平衡度应符合GB/T15543的规定;
⑦并网逆变器应实现自动化运行,运行状态应可视,通讯应提供包括RS485或以太网远程通讯接口,应实现局域监控和远程监控功能;
⑧并网逆变器应具有低电压穿越功能,并入35kV及以上电压等级电网的逆变器应具备电网支撑能力,并入10/20kV及以下电压等级电网的逆变器应具备故障脱离功能,并网逆变器的低电压穿越能力要求应符合NB/T32004的规定;
⑨并网逆变器应按照PID防护及修复能力、保护和监测功能、通信接口、防护等级、接入双绕组变压器的载波同步能力等技术条件进行选择;
⑩并网逆变器可靠性及保护功能应符合NB/T32004的规定,对于不接地光伏直流系统可设置具有报警功能的绝缘监视器,在配置防反二极管的系统中应考虑其对绝缘阻抗监测的影响;
⑪并网逆变器应具有防孤岛运行保护功能;
⑫并网逆变器应具备在环境温度45℃时过载10%的情况下长期安全稳定运行的能力;
4、主变压器
(1)主变压器应按照GB/T17468的要求选型。
(2)主变压器的一般技术要求应符合GB/T6451、GB/T10228、GB20052、DL/T572及GB24790的规定。
(3)电力变压器油应符合GB2536的规定,330kV以上电压等级的变压器油应符合超高变压器油的新型变压器应经过技术经济指标比较,确认技术先进合理可选用。
(4)宜优先选用环保、节能的电力变压器消防方式(如充氮灭火等)。
(5)城市变电站宜采用低噪声变压器。
(三)光伏方阵
1、并网光伏发电系统的光伏方阵,宜优先选择太阳辐射量最优的角度。
2、光伏阵列布置
(1)光伏方阵应根据站区地形、设备特点和施工条件等因素合理布置。
大、中型地面并网光伏发电站的光伏方阵宜采用单元模块化的布置方式。
(2)固定式布置的光伏方阵、光伏组件安装方位角宜采用正南方向;
3、逆变器(室)的布置
地面并网光伏发电站的集中式逆变器(室)宜结合光伏方阵单元模块化布置,宜采用就地布置方式。
逆变器(室)宜根据工艺要求布置在光伏方阵单元模块的中部,且靠近主要通道处。