物理气相沉积技术
- 格式:pptx
- 大小:925.47 KB
- 文档页数:48
物理气相沉积技术1简介物理气相沉积(Physical Vapor Deposition,PVD)是一种表面处理技术,它基于原子、分子或离子在真空条件下从固体源“蒸发”或“剥离”,并在另外一个表面生成薄膜或涂层的过程。
PVD技术广泛应用于半导体、电子、机械、医疗等领域,可以改善材料表面的性能、延长使用寿命,也可以改变物体的颜色和外观。
2工艺流程PVD技术是在真空下完成的,因此主要工具是真空室,其次是沉积源,对于不同的应用场景,沉积源也会有所不同。
例如,如果是进行金属沉积,则沉积源可以是纯净金属,或者是通过将金属块或箔片加热,使其蒸发或溅射而得到的。
如果需要沉积金属氧化物,则需要放置源材料和氧气在沉积室中进行反应。
在PVD过程中,首先需要将材料放入真空室中,制备必要的工艺条件,使得沉积源的物质能够蒸发、溅射并扩散到目标基板上。
其中一个关键参数是真空度,PVD通常在10^-4~10^-8torr的高真空条件下进行。
另一个参数是沉积源与基板的距离,过近会导致过度热量和膜的不均匀厚度,过远影响膜的成形。
3分类根据真空沉积源材料的不同,PVD可分为四种类型:蒸发、离子镀、磁控溅射和分子束外延。
其中,蒸发和离子镀常常被用于制备功能性和装饰性薄膜涂层,磁控溅射则常被用于制备金属、半导体和陶瓷等薄膜,而分子束外延则适用于高质量、高洁净度的材料制备。
4应用PVD技术的应用涵盖了许多领域。
其中,电子和半导体产业是其中的重要应用领域之一。
在芯片制造过程中,PVD技术用于制备镀膜、金属连线等的处理;在随着显示技术的发展,PVD技术也被广泛应用于液晶显示器、有机EL显示器、柔性显示器等各种显示器领域。
此外,在航空航天、汽车、医疗、光学等领域都有PVD技术的应用。
5结论总的来说,PVD技术是一种成熟、广泛应用的表面处理技术。
它可以对各种材料表面进行处理,使其具有功能性和装饰性,可以改善产品的表面性能。
然而,由于技术的复杂性和设备的昂贵性,PVD技术在应用过程中也存在一定的限制性。
书山有路勤为径,学海无涯苦作舟
PVD(物理气相沉积)简介
1. PVD 简介PVD 是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放
电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被
蒸发物质及其反应产物沉积在工件上。
2. PVD 技术的发展PVD 技术出现于二十世纪七十年代末,制备的薄膜具
有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。
最初在高速钢刀
具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高
可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层
应用研究。
与CVD 工艺相比,PVD 工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复
杂刀具的涂层;PVD 工艺对环境无不利影响,符合现代绿色制造的发展方向。
目前PVD 涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。
PVD 技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第
一代的TiN 发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN- AlN、CNx、DLC 和ta-C 等多元复合涂层。
3. 星弧涂层的PVD 技术增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。
增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控
制,使材料的离化率更高,薄膜性能更加优异。
Materials Surface Engineering 材料表面工程
第1章气相沉积技术与磁控溅射
第七章气相沉积技术
一、气相沉积技术及其分类
气相沉积技术是近年来迅速发展的表面技术,它利用气相在各种材料或制品的表面进行沉积,制备单层或多层薄膜,使材料或制品获得所需的各种优异性能。
该技术也被称为“干镀”,主要分PVD 和CVD :物理气相沉积(Physical Vapor Deposition )化学气相沉积(Chemical Vapor Deposition )等离子化学气相沉积(Plasma Chemical Vapor Deposition )气相沉积技术
(1)物理气相沉积(Physical Vapor Deposition,PVD):是在真空条件下,采用各种物理方法,将固态的镀料转化为原子、分子或离子态的气相物质后,再沉积于基体表面从而形成固体薄膜的一类薄膜制备方法。
(2)化学气相沉积(Chemical Vapor Deposition,CVD):把还有构成薄膜元素的一种或几种化合物、单质气体提供给基体,借助气相作用或基体表面上的化学作用形成薄膜。
(3)兼具二者优势的等离子化学气相沉积(PCVD)
气相沉积的特点
①气相沉积的环境为密闭的高真空环境,原料的转化率高,
减少材料的浪费。
②气相沉积可降低来自空气的污染,所得的沉积膜纯度高。
③能在低温条件下制备高熔点物质。
④便于制备多层复合膜,层状复合材料和梯度材料。
成
具
机械零件
塑料模具
冲压模具
汽
车工业︱发动机零
件。
真空度介绍1atm=760torr=760mmHg=1.1325*105Pa(N/m2)=1.01325Bar=14.7Psi(lb/m2)粗略真空(rough vacuum):气压从<760torr-1troo中度真空(medium vacuum):气压从1torr-10-3torr高真空(high vaccum):气压从10-3torr-10-7torr超高真空(ultra-high vaccum):气压<10-7torr真空邦浦(一) 定义:凡能将一特定空间内之气体去除,以减低气体分子数目,造成某种程度之真空状态之机件,统称为真空邦浦._(二) 分类:在未介绍各种真空邦浦之结构,原理,功能等特性前,先让我们依照不同性质将真空邦浦加以分类,以得一概括之认识.依抽气型态:______ 排气式:将气体由特定空间内去除并排出至大气.______ 储气式:欲除去之气体不排至大气,而利用物理或化学作用永久或暂时性吸附在系统内.真空邦浦真空帮浦的分类机械帮浦(mechanical pump)回转油垫帮浦(rotary oil-sealed pump)此种帮浦的简单构造如图所示.机械帮浦(mechanical pump)* 工作压力范围:粗略真空中度真空~ 10-2 Torr~ 10-3 Torr (two stage)* 抽气速率:转子之转速约120 ~ 2000 l/min* 用途:低真空抽气作为Diffusion Pump,Roots Pump,Turbomolecular Pump之前置邦浦.冷冻帮浦(cryo pump)冷冻帮浦低温抽气主体构造如图所示.分为两个不同温度的低温面,第一级 (first stage)温度为50~80.K,第二级 (second stage )温度为10~20.K,在设计上,为防止辐射热对第二级的影响,第一级要将第二级完全罩住,且不可透光,同时第一级要有足够的间隙使气体能进入第二级,因此第一级通常设计成百叶窗式的45.挡片;第二级设计成倒悬的杯状,杯内部贴附有活性炭吸附材料.冷冻帮浦(cryo pump)冷冻帮浦(cryo pump)抽气时气体由系统经高真空阀而进入帮浦主体,首先碰到温度为70.K的第一级,这时水气 (H2O)和部份约二氧化碳 (C02)将丧失动能脱离气态而凝结在此低温面上,其余的气体则丧失部份动能而进入第二级,在10.K的低温下除He,H,和Ne外所有气体都将冷凝而附著在此低温面上,这种因冷却而丧失动能脱离气态的现象称之为低温冷凝作用(Cryocondensation ),至於He,Ne,H,等气体再次丧失动能后进入第二级之内部而被低温的活性炭吸附住,这种抽气现象称之为低温吸附作用(Cryosorption) .如前所示,冷冻帮浦只靠冷凝,吸附是不够的.不过在低温时有另一优点可以协助捕获不易冷凝的气体分子,此即为低温捕获.低温邦浦主要靠这三种原理来达到抽气的目的.冷冻帮浦(cryo pump)Cyropump若长期使用或是吸入大量气体,其抽气量将会降低,此时必须要对Cyropump 作再生的动作,那就是将Cyropump内部温度回升到室温,然后通以氮气来回数次,藉此将原本吸附的气体带出,如此Cyropump将可恢复原状,不过若因操作不当有油气进入Cyropump污染了内部的活性炭,则必须全部更换活性炭才有办法恢复原抽气量.冷冻帮浦-再生冷冻帮浦(cryo pump)* 工作压力范围:中度真空高度真空1.压力范围:10-3~10-10.torr2.抽气速率大小:(对空气)500~10000 l / sec3.用途:高真空或超高真空抽气使用4.特点:乾净,无油气污染反应性溅镀反应性溅镀物气相沉积(PVD)处 ,又可分为真空蒸镀( Vacuum Evaporation),溅射(Sputtering), 子蒸镀(Ion Plating) 等三种型态.溅镀法是在辉光放电的环境下, 用动传递的方式,以子轰击置於阴极的靶材,将靶原子溅射出并积於基板上.在溅镀化合物薄膜时, 直接以化合物做为靶材,溅镀出的薄膜成份会与靶材成份相差很大,故一般在溅镀化合物薄膜时,通常将反应气体混合於放电气体中,以控制化合物薄膜的组成与性质,此种溅镀方法称为反应性溅镀法.在反应性溅射中,所通入的反应气体可能被消耗的途径包含在靶材表面被吸附(adsorbed),(包括腔体内部其它表面含基板表面) , 与溅射原子发生化学吸附(chemisorption).反应性溅镀脉冲直溅镀脉冲直溅镀脉冲直反应式磁控溅镀系统所采用的电源系统为脉冲式电源供应系统,有别於传统的直式电源与射频式电源,脉冲式电源供应系统可提供五种同的电压输出模式,如图所示,分别为(1)DC+,(2)DC-,(3)UP+,(4)UP-以及(5)BIPOLAR.可依照同的制程需求而采用同的模式,且可调整脉冲频 ,脉冲宽及工作周期以达到制程的最佳化.脉冲直溅镀脉冲直溅镀脉冲式电源系统除上述功能外,还可藉由被动抑弧方式解决电弧放电的问题.如图所示,Ton+/-分别表示为正放电时间及负放电时间,Toff即表示为中断放电时间,Imax为脉冲式电源的最大输出电 ,Arc level表示当电值超过此范围时进入电弧放电区.被动抑弧的工作方式为当制程中发生常放电现象时 ,系统中的电值会发生遽增的现象,此时脉冲电源供应器将延缓电源输出,以抑制常放电现象持续进 ,即图中的arc avoidance. 常放电现象再发生时,则电压及电又将恢正常供输.脉冲直溅镀物理气相沉积(PVD)技术第一节概述物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。
PVD(物理气相沉积)简介1. PVD简介PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
2. PVD技术的发展PVD技术出现于二十世纪七十年代末,制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。
最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。
与CVD工艺相比,PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层;PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。
目前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。
PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。
3. 星弧涂层的PVD技术增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。
增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。
过滤阴极弧:过滤阴极电弧(FCA)配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。
磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。
物理气相沉积相场法
物理气相沉积(Physical Vapor Deposition,PVD)是一种常
见的薄膜沉积技术,它利用物理过程将固体材料沉积到基底表面上。
PVD工艺通常包括蒸发、溅射和激发等步骤,通过这些步骤可以在
基底表面上形成具有特定性能和结构的薄膜。
PVD技术广泛应用于
半导体、光学薄膜、装饰涂层等领域。
而相场法(Phase Field Method)是一种数值模拟方法,用于
研究材料相变、界面演变等问题。
相场法基于对材料相场的描述,
通过偏微分方程来模拟材料微观结构的演化过程。
相场法可以模拟
多相流体、相变动力学、晶体生长等现象,因此在材料科学和凝聚
态物理领域得到了广泛的应用。
将物理气相沉积和相场法结合起来,可以实现对薄膜生长过程
的更加深入的理解和控制。
相场法可以用来模拟薄膜生长过程中的
晶体结构演变、界面动力学等现象,从而为优化PVD工艺提供理论
指导。
同时,PVD技术可以提供实验数据,验证相场模拟的准确性,从而相互印证,推动材料薄膜制备技术的发展。
总的来说,物理气相沉积和相场法各自在材料制备和数值模拟
领域有着重要的应用,结合起来可以为材料薄膜制备过程提供更深入的理论基础和技术支持。
这种多角度的结合有助于推动材料科学和工程领域的发展,促进新材料的研发和应用。
pvd是什么意思
PVD(Physical Vapor Deposition):物理气相沉积,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
PVD一般用来表面改性或镀涂层,包括真空蒸镀、离子溅射、离子镀等。
①离子溅射镀膜技术:
离子溅射镀膜技术是在真空室中,利用荷能粒子轰击靶材表面,通过粒子的动量传递打出靶材中的原子及其他粒子,并使其沉积在基体上形成薄膜的技术。
粒子溅射镀膜可实现大面积快速沉积,镀膜密度高,附着性好。
②应用:
溅射镀膜材料不受限制,凡能制成靶的材料均可以溅射成膜,广泛应用于机械、电子、化学、光学、塑料等行业。
离子溅射MoS2用于轴承解决了轴承的润滑问题,实现了固体自润滑。
化学气相沉积技术是一种化学气相生长法,是把含有构成薄膜元素的一种或几种化合物、单质气体供给基体,借气相作用或在基体表面上的化学反应生成要求的薄膜。
可镀膜层:TiC、TiN、Ti(CN)、Al2O3、ZrO2、TiO2金刚石或类金刚石等。
利用CVD技术可实现钢球或滚子的陶瓷化,在金属球或滚子表面形
成陶瓷层,提高滚动体的耐磨性、耐温性、润滑性、耐蚀性等性能。
如飞机舱门轴承球。
物理气相沉积(PVD)技术
物理气相沉积技术(PVD)是利用热蒸发、离子溅射或辉光放电等物理过程,在基体表面沉积所需涂层的技术。
物理气相沉积可镀制金属、合金、氧化物、氮化物、碳化物等膜层;膜层附着能力强,工艺温度低,一般无或很少变形。
物理沉积法物理气相沉积法用物理的方法使镀膜材料气化,在基体表面沉积成膜的方法物理气相沉积(Physical Vapor Deposition简称PVD) 是用物理的方法(如蒸发、溅射等)使镀膜材料气化,在基体表面沉积成膜的方法。
除传统的真空蒸发和溅射沉积技术外,还包括近30 多年来蓬勃发展起来的各种离子束沉积,离子镀和离子束辅助沉积技术。
其沉积类型包括: 真空蒸镀、溅射镀、离子镀等。
物理气相沉积技术虽然五花八门,但都必须实现气相沉积三个环节,即镀料(靶材) 气化一气相输运一沉积成膜。
中文名物理气相沉积法沉积类型真空蒸镀、溅射镀、离子镀等各种沉积技术的不同点主要表现为在上述三个环节中能源供给方式不同,同一气相转变的机制不同,气粒子形态不同,气相粒子荷能大小不同,气相粒子在输运过程中能量补给的方式及粒子形态转变不同,镀料粒子与反应气体的反应活性不同,以及沉积成膜的基体表面条件不同而已。
与化学气相沉积相比,主要优点和特点如下:I)镀膜材料广泛,容易获得:包括纯金属、合金、化合物,导电或不导电,低熔点或高熔点,液相或固相,块状或粉末,都可以使用或经加工后使用。
2)镀料汽化方式:可用高温蒸发,也可用低温溅射。
3)沉积粒子能量可调节,反应活性高。
通过等离子体或离子束介人,可以获得所需的沉积粒子能量进行镀膜,提高膜层质量。
通过等离子体的非平衡过程提高反应活性。
4)低温型沉积:沉积粒子的高能量高活性,不需遵循传统的热力学规律的高温过程,就可实现低温反应合成和在低温基体上沉积,扩大沉积基体适用范围。
可沉积各类型薄膜:如金属膜、合金膜、化合物膜等。
5)无污染,利于环境保护。
物理气相沉积技术已广泛用于各行各业,许多技术已实现工业化生产。
其镀膜产品涉及到许多实用领域。
pvd 物理气相沉积工艺
PVD物理气相沉积工艺是一种常用的薄膜制备技术,广泛应用于微电子、光电子、材料科学等领域。
它采用物理方式将固态材料转化为气相,再通过各种方法沉积到基底上,从而形成具有特定功能和性能的薄膜材料。
PVD物理气相沉积工艺有多种方法,其中最常见的包括磁控溅射、电弧离子镀、激光溅射等。
这些方法都基于相同的原理,即通过外加能量将材料转化为气态,然后将气态材料沉积到基底上。
在磁控溅射工艺中,通过在真空环境下施加磁场,使金属靶材表面的原子被电子轰击击碎,并以高速运动的方式沉积到基底上。
这种方法可以制备出高质量、致密的薄膜,具有优异的粘附力和膜层均匀性。
电弧离子镀工艺则利用电弧放电产生的高能离子束,在真空环境下将金属靶材表面的原子击碎并沉积到基底上。
电弧离子镀工艺可以制备出具有较高密度和较高结晶度的薄膜,适用于制备金属薄膜和复合薄膜。
激光溅射工艺则利用激光束对靶材进行照射,将靶材表面的原子击碎并沉积到基底上。
激光溅射工艺具有高度的可控性和可重复性,可以制备出高质量、高纯度的薄膜,广泛应用于光学薄膜、显示器件等领域。
PVD物理气相沉积工艺具有许多优点,例如制备过程简单、操作方便、沉积速率高、薄膜质量好等。
它可以制备出各种材料的薄膜,如金属薄膜、合金薄膜、氧化物薄膜等,具有广泛的应用前景。
总的来说,PVD物理气相沉积工艺是一种重要的薄膜制备技术,具有广泛的应用领域和优势。
通过不同的方法和参数的选择,可以制备出具有不同性质和功能的薄膜材料,为各种领域的研究和应用提供了重要的支持和推动。