2020年浙江新高考数学二轮复习教师用书:专题一 5 第5讲 导数的简单应用
- 格式:doc
- 大小:370.50 KB
- 文档页数:19
专题5. 2导数在研究函数中的应用(1)(A 卷基础篇)(新教材人教A 版,浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·全国高二课时练习)设函数()f x 的图象如图所示,则导函数()'f x 的图象可能为( )A .B .C .D .【答案】C 【解析】∵()f x 在(,1)-∞,(4,)+∞上为减函数,在(1,4)上为增函数, ∴当1x <或4x >时,()0f x '<;当14x <<时,()0f x '>. 故选:C .2.(2020·河北张家口市·高三月考)下列函数中,在其定义域上为增函数的是( ) A .4y x = B .2x y -=C .cos y x x =+D .12y x =-【答案】C 【解析】对于A 选项,函数4y x =为偶函数,在()0,∞+上递增,在(),0-∞上递减; 对于B 选项,函数2xy -=在R 上递减;对于C 选项,1sin 0y x '=-≥在R 上恒成立,则函数cos y x x =+在其定义域R 上递增; 对于D 选项,函数12y x =-在()0,∞+上递减. 故选:C .3.(2020·赣州市赣县第三中学高三期中(文))已知函数21()ln 2f x x x =-,则其单调增区间是( ) A .()1,+∞ B .()0,∞+C .(]0,1D .[]0,1【答案】A 【解析】 由21()ln 2f x x x =-,函数定义域为()0,∞+, 求导211()x f x x x x='-=-,令()0f x '>,得1x >或1x <-(舍去)所以()f x 单调增区间是()1,+∞ 故选:A.4.(2020·张家界市民族中学高二月考)函数22y x x=+的单调递增区间为( )A .(),1-∞B .)+∞C .()1,+∞D .(),0-∞【答案】C 【解析】3222222x y x x x-'=-=,由0y '>得3220x ->,即1x >, 所以函数22y x x=+的单调递增区间为(1,)+∞. 故选:C5.(2020·全国高三专题练习)如图所示为()y f x '=的图象,则函数()y f x =的单调递减区间是( )A .(),1-∞-B .()2,0-C .()()2,0,2,-+∞D .()(),1,1,-∞-+∞【答案】C 【解析】由导函数图象,知20x -<<或2x >时,()0f x '<,∴()f x 的减区间是(2,0)-,(2,)+∞. 故选:C .6.(2019·江西九江市·高二期末(理))函数()22ln f x x x =-的递增区间是( )A .10,2⎛⎫ ⎪⎝⎭B .1,02⎛⎫-⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭C .1,2⎛⎫+∞⎪⎝⎭D .1,2⎛⎫-∞-⎪⎝⎭和10,2⎛⎫ ⎪⎝⎭【答案】C 【解析】因为()22ln f x x x =-的定义域为(0,)+∞,1()4f x x x'=-, 由()0f x '>,得140x x ->,解得12x >,所以()f x 的递增区间为1(,)2+∞. 故选:C.7.(2020·四川内江市·高三三模(文))函数xy x e =⋅的图像大致为( )A .B .C .D .【答案】C 【解析】'(1)x y x e =+⋅,当1x >-时,'0y >,当1x <-时,'0y <,所以函数x y x e =⋅在(1,)-+∞上单调递增,在(,1)-∞-上单调递减. 故选:C8.(2020·广东深圳市·高三开学考试)已知函数()f x 与f x 的图象如图所示,则不等式组()()03f x f x x '<⎧⎨<<⎩解集为( )A .0,1B .()1,3C .1,2D .()1,4【答案】B 【解析】由导函数与原函数单调性关系知图中实线是()'f x 的图象,虚线是()f x 的图象,不等式组()()03f x f x x <⎧⎨<<'⎩解集是{|13}x x <<. 故选:B .9.(2020·全国高三专题练习)已知()'f x 是定义在R 上的函数()f x 的导函数,且满足()()0xf x f x '+>对任意的x ∈R 都成立,则下列选项中一定正确的是( ) A .(2)(1)2f f > B .(1)(2)2f f > C .(2)(1)2f f <D .(1)(2)2f f < 【答案】D 【解析】令()()F x xf x =,则()()()0xf x x F x f '='+>,故()F x 为R 上的增函数, 所以()()21F F >即()()221f f >, 故选:D.10.(2020·黄梅国际育才高级中学高二期中)已知函数()2ln 1f x x a x =-+在()1,3内不是单调函数,则实数a 的取值范围是( ) A .()2,18 B .[]2,18C .(][),218,-∞+∞D .[)2,18【答案】A 【解析】 ∵()'2a f x x x=-,()2ln 1f x x a x =-+在()1,3内不是单调函数, 故20ax x-=在()1,3存在变号零点,即22a x =在()1,3存在零点, ∴218a <<. 故选:A.第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2020·长顺县文博高级中学有限公司高三月考)函数322611y x x =-+的单调减区间是__________.【答案】()0,2 【解析】()261262y x x x x '=-=-,令0y '<,解得02x <<,所以函数的单调减区间为()0,2. 故答案为:()0,212.(2020·全国高三专题练习)函数()52ln f x x x =-的单调递减区间是______.【答案】20,5⎛⎫ ⎪⎝⎭【解析】()f x 的定义域是()0,∞+,()252'5x f x x x-=-=, 令()'0f x <,解得:205x <<,所以()f x 在20,5⎛⎫ ⎪⎝⎭递减,故答案为20,.5⎛⎫ ⎪⎝⎭13.(2019·全国高三月考(文))已知0a >,函数3()2f x x ax =-在[1,)+∞上是单调增函数,则a 的最大值是_______. 【答案】6 【解析】2()6f x x a '=-,令()0f x '>,得6a x >6a x <-16a≤,解得6a . 故答案为:614.(2018·全国高二专题练习) 函数()32267f x x x =-+在区间______上是增函数,在区间______上是减函数.【答案】(),0-∞和()2,+∞ ()0,2 【解析】2'()612f x x x =-=6(2)x x -,令'()0f x <,解得:02x <<,令'()0f x >,解得:0x <或2x >.函数()32267f x x x =-+在区间(,0)-∞,(2,)+∞上是增函数,在区间(0,2)上是减函数.15.(2020·浙江高一期末)已知2()(3)f x x b x =+-是定义在R 上的偶函数,则实数b =_____,写出函数2()2g x x x=+-在(0,)+∞的单调递增区间是______ 【答案】3 )2,+∞【解析】()f x 是定义在R 上的偶函数,()()f x f x ∴-=,()22(3)(3)x b x x b x ∴---=+-,解得3b =,()(2221x x g x x x+'=-+=, 令()0g x '>,解得x >()g x ∴的单调递增区间是)+∞.故答案为:3;)+∞.16.(2020·全国高三专题练习)已知()lg f x x x =,那么()f x 单调递增区间__________;()f x 单调递减区间__________.【答案】1,e ⎛⎫+∞ ⎪⎝⎭ 10,e ⎛⎫ ⎪⎝⎭【解析】因为()lg f x x x =,故11()lg lg lg lg lg ln10ln10f x x x x x e ex x '=+⋅=+=+=.令()0f x '=可得1ex =,即1x e=. 又()f x '为增函数,故当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0f x '>,()f x 单调递增.故答案为:(1) 1,e ⎛⎫+∞ ⎪⎝⎭;(2)10,e ⎛⎫ ⎪⎝⎭17.(2019·山西运城市·高三期中(文))设函数()-=-x xf x e ae (a 为常数).若()f x 为奇函数,则a =________;若()f x 是[2,2]-上的减函数,则a 的取值范围是________.【答案】1 41≥-a e 【解析】 (1)若()-=-xx f x eae 为奇函数则()()xxx x f x e ae x e ae f --=-=-+-=-,则1a =(2)若()f x 是[2,2]-上的减函数,则()x xf x e ae -'=--在[2,2]-上小于或者等于零,即0x x e ae ---≤在[2,2]-上恒成立,2x e a --≤,可知2xy e-=-在[2,2]-上单调递增,所以41≥-a e .三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.(2020·甘肃省岷县第二中学高二期中(理))求函数()33f x x x =-的递减区间.【答案】()1,1- 【解析】 ∵233fxx ,∴令2330x ,解得11x -<<.∴函数()33f x x x =-的递减区间为()1,1-.19.(2019·甘肃省武威第一中学高二月考(理))求函数ln ()(0)xf x x x=>的单调区间. 【答案】增区间为(0e),,减区间为(e )+∞,. 【解析】 由()f x 得()()2221·ln ln ''ln 1ln 'x xx x x x x x f x x x x ---===, 令()'0f x =,即21ln 0xx -=,得1ln 0x -=,从而e x =,令()'0f x >,即21ln 0xx ->,得e x <,此时()f x 为增函数,又0x >,得增区间为()0e ,,令()'0fx <,即21ln 0xx-<,得e x >,此时()f x 为减函数,减区间为()e +∞,.20.(2020·横峰中学月考(文))已知()1xf x e ax =--. (1)当2a =时,讨论()f x 的单调区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围.【答案】(1)()f x 的单调递增区间为()ln 2,+∞,单调递减区间为(),ln 2-∞;(2)0a ≤ 【解析】(1)当2a =时,()21xf x e x =--则()'2x f x e =-,令()'20x f x e =->,得ln 2x > 令()'20x fx e =-<,得ln 2x <所以()f x 的单调递增区间为()ln 2,+∞ 单调递减区间为(),ln 2-∞(2)由题可知:()f x 在定义域R 内单调递增 等价于()'0x f x e a =-≥由()'x fx e a =-在R 上单调递增,又0x e >则000a a -≥⇒≤21.(2020·西宁市海湖中学高二月考(文))已知函数()31f x x ax =--. (1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围. (2)若()f x 的单调递减区间为(1,1)-,求a 的值. 【答案】(1)(],3-∞;(2)3. 【解析】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立, 所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞ (2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得33aa x -<<, 所以()f x 的单调递减区间为(,)33a a -, 又已知()f x 的单调递减区间为(1,1)-,所以(,)33a a -=(1,1)-, 所以13a=,即3a =. 22.已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求的单调区间.【答案】(Ⅰ).(Ⅱ)①当时,的单调递减区间为;单调递增区间为,.②当时,的单调递减区间为,;单调递增区间为,.③当时,为常值函数,不存在单调区间.④当时,的单调递减区间为,;单调递增区间为,.【解析】(Ⅰ)解:当时,,.……2分由于,,所以曲线在点处的切线方程是. ……4分(Ⅱ)解:,. …………6分①当时,令,解得.的单调递减区间为;单调递增区间为,.…8分当时,令,解得,或.②当时,的单调递减区间为,;单调递增区间为,. ……10分③当时,为常值函数,不存在单调区间.……………11分④当时,的单调递减区间为,;单调递增区间为,. …………14分。
专题强化训练1.函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:选A.因为f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.所以f (x )在x =1处取得最小值,且f (1)=12-ln 1=12.2.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫-43,0 B.⎝⎛⎭⎫0,43 C.⎝⎛⎭⎫-∞,-43,(0,+∞) D.⎝⎛⎭⎫-∞,-43∪(0,+∞) 解析:选C.因为f ′(x )=3x 2-2mx ,所以f ′(-1)=3+2m =-1,解得m =-2.所以f ′(x )=3x 2+4x .由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即f (x )的单调递增区间为⎝⎛⎭⎫-∞,-43,(0,+∞),故选C. 3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C.由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或a ≥-4⇔a ≥-2 6.4.(2019·台州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C.因为f ′(x )=2x +b ,所以F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,所以⎩⎪⎨⎪⎧F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,所以f (x )=(x +2)2≥0,f (x )min =0.5.(2019·温州瑞安七校模拟)已知函数f (x )=(x -x 1)·(x -x 2)(x -x 3)(其中x 1<x 2<x 3),g (x )=e x -e -x ,且函数f (x )的两个极值点为α,β(α<β).设λ=x 1+x 22,μ=x 2+x 32,则( )A .g (α)<g (λ)<g (β)<g (μ)B .g (λ)<g (α)<g (β)<g (μ)C .g (λ)<g (α)<g (μ)<g (β)D .g (α)<g (λ)<g (μ)<g (β)解析:选D.由题意,f ′(x )=(x -x 1)(x -x 2)+(x -x 2)(x -x 3)+(x -x 1)(x -x 3), 因为f ′(x 1+x 22)=-(x 2-x 1)24<0,f ′(x 2+x 32)=-(x 2-x 3)24<0,因为f (x )在(-∞,α),(β,+∞)上递增,(α,β)上递减, 所以α<λ<μ<β,因为g (x )=e x -e -x 单调递增, 所以g (α)<g (λ)<g (μ)<g (β). 故选D.6.(2019·宁波诺丁汉大学附中高三期中考试)已知函数f (x )=x +2b x +a ,x ∈[a ,+∞),其中a >0,b ∈R ,记m (a ,b )为f (x )的最小值,则当m (a ,b )=2时,b 的取值范围为( )A .b >13B .b <13C .b >12D .b <12解析:选D.函数f (x )=x +2bx+a ,x ∈[a ,+∞),导数f ′(x )=1-2bx2,当b ≤0时,f ′(x )>0,f (x )在x ∈[a ,+∞)递增,可得f (a )取得最小值, 且为2a +2b a ,由题意可得2a +2ba =2,a >0,b ≤0方程有解;当b >0时,由f ′(x )=1-2bx 2=0,可得x =2b (负的舍去),当a ≥2b 时,f ′(x )>0,f (x )在[a ,+∞)递增,可得f (a )为最小值, 且有2a +2ba=2,a >0,b >0,方程有解;当a <2b 时,f (x )在[a ,2b ]递减,在(2b ,+∞)递增, 可得f (2b )为最小值,且有a +22b =2,即a =2-22b >0, 解得0<b <12.综上可得b 的取值范围是(-∞,12).故选D.7.(2019·浙江“七彩阳光”联盟模拟)函数f (x )=2x 2+3x2e x的大致图象是( )解析:选B.由f (x )的解析式知有两个零点x =-32与x =0,排除A ,又f ′(x )=-2x 2+x +32e x ,由f ′(x )=0知函数有两个极值点,排除C ,D ,故选B.8.(2019·成都市第一次诊断性检测)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝⎛⎭⎫4t ,2处的切线与曲线C 2:y =e x +1+1也相切,则t 的值为( )A .4e 2B .4e C.e 24 D.e4解析:选A.由y =tx ,得y ′=t 2tx ,则切线斜率为k =t 4,所以切线方程为y -2=t4⎝⎛⎭⎫x -4t ,即y =t4x +1.设切线与曲线y =e x +1+1 的切点为(x 0,y 0).由y =e x +1+1,得y ′=e x +1,则由e x 0+1=t 4,得切点坐标为⎝⎛⎭⎫ln t 4-1,t 4+1,故切线方程又可表示为y -t 4-1=t4⎝⎛⎭⎫x -ln t 4+1,即y=t 4x -t 4ln t 4+t 2+1,所以由题意,得-t 4ln t 4+t 2+1=1,即ln t4=2,解得t =4e 2,故选A. 9.(2019·金华十校高考模拟)已知函数f (x )=23x 3-x 2+ax -1,若曲线存在两条斜率为3的切线,且切点的横坐标都大于0,则实数a 的取值范围为____________.解析:由题意知,f (x )=23x 3-x 2+ax -1的导数f ′(x )=2x 2-2x +a .2x 2-2x +a =3有两个不等正根,则⎩⎪⎨⎪⎧Δ=4-8(a -3)>012(a -3)>0,得3<a <72.答案:⎝⎛⎭⎫3,72 10.(2019·湖州市高三期末)定义在R 上的函数f (x )满足:f (1)=1,且对于任意的x ∈R ,都有f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.解析:设g (x )=f (x )-12x ,因为f ′(x )<12,所以g ′(x )=f ′(x )-12<0,所以g (x )为减函数,又f (1)=1, 所以f (log 2x )>log 2x +12=12log 2x +12,即g (log 2x )=f (log 2x )-12log 2x >12=g (1)=f (1)-12=g (log 22),所以log 2x <log 22,又y =log 2x 为底数是2的增函数, 所以0<x <2,则不等式f (log 2x )>log 2x +12的解集为(0,2).答案:(0,2)11.(2019·绍兴、诸暨高考二模)已知函数f (x )=x 3-3x ,函数f (x )的图象在x =0处的切线方程是________;函数f (x )在区间[0,2]内的值域是________.解析:函数f (x )=x 3-3x ,切点坐标(0,0),导数为y ′=3x 2-3,切线的斜率为-3, 所以切线方程为y =-3x ;3x 2-3=0,可得x =±1,x ∈(-1,1),y ′<0,函数是减函数,x ∈(1,+∞),y ′>0函数是增函数,f (0)=0,f (1)=-2,f (2)=8-6=2,函数f (x )在区间[0,2]内的值域是[-2,2]. 答案:y =-3x [-2,2]12.(2019·台州市高三期末考试)已知函数f (x )=x 2-3x +ln x ,则f (x )在区间[12,2]上的最小值为________;当f (x )取到最小值时,x =________.解析:f ′(x )=2x -3+1x =2x 2-3x +1x(x >0),令f ′(x )=0,得x =12,1,当x ∈(12,1)时,f ′(x )<0,x ∈(1,2)时,f ′(x )>0,所以f (x )在区间[12,1]上单调递减,在区间[1,2]上单调递增,所以当x =1时,f (x )在区间[12,2]上的最小值为f (1)=-2.答案:-2 113.(2019·唐山二模)已知函数f (x )=ln x -nx (n >0)的最大值为g (n ),则使g (n )-n +2>0成立的n 的取值范围为________.解析:易知f (x )的定义域为(0,+∞). 因为f ′(x )=1x -n (x >0,n >0),当x ∈⎝⎛⎭⎫0,1n 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1n ,+∞时,f ′(x )<0, 所以f (x )在⎝⎛⎭⎫0,1n 上单调递增,在⎝⎛⎭⎫1n ,+∞上单调递减, 所以f (x )的最大值g (n )=f ⎝⎛⎭⎫1n =-ln n -1.设h (n )=g (n )-n +2=-ln n -n +1.因为h ′(n )=-1n-1<0,所以h (n )在(0,+∞)上单调递减.又h (1)=0,所以当0<n <1时,h (n )>h (1)=0,故使g (n )-n +2>0成立的n 的取值范围为(0,1). 答案:(0,1)14.(2019·浙江东阳中学期中检测)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是________.解析:设g (x )=e x (2x -1),y =ax -a ,由题意存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,g (x )min =-2e-12,当x =0时,g (0)=-1,g (1)=e>0,直线y =ax -a恒过(1,0),斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e ≤a <1.答案:32e≤a <115.设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max=-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).16.(2019·浙江金华十校第二学期调研)设函数f (x )=e x -x ,h (x )=-kx 3+kx 2-x +1. (1)求f (x )的最小值;(2)设h (x )≤f (x )对任意x ∈[0,1]恒成立时k 的最大值为λ,证明:4<λ<6. 解:(1)因为f (x )=e x -x ,所以f ′(x )=e x -1, 当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减, 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增, 所以f (x )min =f (0)=1.(2)证明:由h (x )≤f (x ),化简可得k (x 2-x 3)≤e x -1, 当x =0,1时,k ∈R , 当x ∈(0,1)时,k ≤e x -1x 2-x3,要证:4<λ<6,则需证以下两个问题; ①e x -1x 2-x 3>4对任意x ∈(0,1)恒成立; ②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立.先证:①e x -1x 2-x 3>4,即证e x -1>4(x 2-x 3),由(1)可知,e x -x ≥1恒成立,所以e x -1≥x ,又x ≠0,所以e x -1>x , 即证x ≥4(x 2-x 3)⇔1≥4(x -x 2)⇔(2x -1)2≥0, (2x -1)2≥0,显然成立,所以e x -1x 2-x 3>4对任意x ∈(0,1)恒成立;再证②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立.取x 0=12,e -114-18=8(e -1),因为e <74,所以8(e -1)<8×34=6,所以存在x 0∈(0,1),使得e x 0-1x 20-x 30<6,由①②可知,4<λ<6.17.(2019·宁波市高考模拟)已知f (x )=x +a 2x ,g (x )=x +ln x ,其中a >0.若对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)成立,求实数a 的取值范围.解:对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)⇔当x ∈[1,e]有f (x )min ≥g (x )max , 当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在x ∈[1,e]上单调递增, 所以g (x )max =g (e)=e +1.当x ∈[1,e]时,f ′(x )=1-a 2x 2=x 2-a2x2,因为a >0,所以令f ′(x )=0得x =a .①当0<a <1时,f ′(x )>0,所以f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=a 2+1.令a 2+1≥e +1得a ≥e ,这与0<a <1矛盾. ②当1≤a ≤e 时,若1≤x <a ,则f ′(x )<0,若a <x ≤e ,则f ′(x )>0,所以f (x )在[1,a ]上单调递减,在[a ,e]上单调递增, 所以f (x )min =f (a )=2a ,令2a ≥e +1得a ≥e +12,又1≤a ≤e , 所以e +12≤a ≤e.③当a >e 时,f ′(x )<0,所以f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=e +a 2e.令e +a 2e ≥e +1得a ≥e ,又a >e ,所以a >e.综合①②③得,所求实数a 的取值范围是⎣⎢⎡⎭⎪⎫e +12,+∞. 18.(2019·宁波九校联考)已知函数f (x )=e -x -11+x .(1)证明:当x ∈[0,3]时,e -x ≥11+9x; (2)证明:当x ∈[2,3]时,-27<f (x )<0.证明:(1)要证e -x ≥11+9x ,也即证e x ≤1+9x .令F (x )=e x -9x -1,则F ′(x )=e x -9.令F ′(x )>0,则x >2ln 3.因此,当0≤x <2ln 3时,有F ′(x )<0,故F (x )在[0,2ln 3)上单调递减;当2ln 3<x ≤3时,有F ′(x )>0,故F (x )在[2ln 3,3]上单调递增.所以,F (x )在[0,3]上的最大值为max{F (0),F (3)}. 又F (0)=0,F (3)=e 3-28<0.故F (x )≤0,x ∈[0,3]成立, 即e x ≤1+9x ,x ∈[0,3]成立.原命题得证.(2)由(1)得:当x ∈[2,3]时,f (x )=e -x -11+x ≥11+9x -11+x.令t (x )=11+9x -11+x,则t ′(x )=-(1+9x )-2·9+(1+x )-2=1(1+x )2-9(1+9x )2=(1+9x )2-9(1+x )2(1+9x )2(1+x )2=72x 2-8(1+9x )2(1+x )2≥0,x ∈[2,3].所以,t (x )在[2,3]上单调递增,即t (x )≥t (2)=-1657>-1656=-27,x ∈[2,3],所以f (x )>-27得证.下证f (x )<0. 即证e x >x +1令h (x )=e x -(x +1)则h ′(x )=e x -1>0, 所以h (x )在[2,3]上单调递增,所以,h (x )=e x -(x +1)≥e 2-3>0,得证.另证:要证11+9x -11+x>-27,即证9x 2-18x +1>0,令m (x )=9x 2-18x +1=9(x -1)2-8在[2,3]上递增,所以m (x )≥m (2)=1>0得证.。
第五节导数的综合应用- 备考方向明确 h ------------------------- 方向比勢力更重要 ---------------知识链条完善- --------------------------- 把散落的知识连起来 ------------一、 利用导数解决实际生活中的优化问题1. 分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函 数关系式y=f(x)并确定定义域.2. 求导数f ' (x),解方程f ' (x)=0.3. 判断使f ' (x)=0的点是极大值点还是极小值点.4. 确定函数的最大值或最小值,还原到实际问题中作答. 提醒:注意实际问题中函数定义域的确定. 二、不等式问题1. 证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.2. 求解不等式恒成立或有解问题,可以考虑将参数分离出来,将参数范围问题转 化为研究新函数的值域问题.3. 方程解(函数的零点)个数问题可根据函数的单调性、极值等应用数形结合思 想求解.1. 与不等式有关的结论 (1)对任意 x,f(x)>g(x)? f(x)-g(x)>0? [f(x)-g(x)] min >0.⑶存在x i,x 2,f(x 1)>g(x 2)? f(x) ma?g(x) min.⑷对任意x,存在X o,f(X)>g(X o) ? f(x) min>g(x) min.(5) f(x) > a 或f(x) < a 对x € D恒成立? f(x) min > a 或f(x) max< a.(6) 若存在x € D,使f(x) > a 或f(x) < a? f(x) max》a 或f(x) min < a.2. 与生活优化有关的结论如果函数在开区间内只有一个极值点,那么该极值点就是最值点(不必再与端点的函数值比较).温故知新1. 设f(x)=a(x-5) 2+6In x,其中a€ R,曲线y=f(x)在点(1,f(1)) 处的切线与y轴相交于点(0,6).则a等于(A )(A) J (B)1 (C)2 (D)- 1解析:因为f(x)=a(x-5) 2+6ln x,故f' (x)=2a(x-5)+ -.x令x=1,得f(1)=16a,f ' (1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=*.故选A.2. 已知函数f(x)=e x在点(0,f(0))处的切线为I,动点(a,b)在直线I上,则2a+2-b 的最小值是(D )(A)4 (B)2 (C)2 2 (D) 2解析:由题得f ' (x)=e x,f(0)=e 0=1,k=f ' (0)=e 0=1. 所以切线方程为y-1=x-0即x-y+1=0,所以a-b+1=0,所以a-b=-1,所以2a+2-b>2芦卫=2尹=2〒二2(当且仅当a=l,b=- 1时取等号).故选D.3. _______ 已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x o,且x o>0,则a的取值范围是________ .解析:显然当a=0时,函数有两个不同的零点,不符合. 当a z 0 时,由f' (x)=3ax 2-6x=0,得x i=0,X2=-.a当a>0时,函数f(x)在(-乂,0),( ?,+ 乂)上单调递增,在(0, M)上单调递减,又a af(0)=1,所以函数f(x)存在小于0的零点,不符合题意;当a<0时,函数f(x)在(-乂,勻,(0,+ 乂)上单调递减,在(2,0)上单调递增,a a所以只需f(勻>0,解得a<-2.a答案:(-乂,-2)—咼频考点突破' ------------------------- ^在训练中掌握方法j - 考点一利用导数研究生活中的优化问题【例1]设函数f(x)在R上可导,其导函数是f ' (x),且函数f(x)在x=-2处取得极小值,则函数y=xf ' (x)的图象可能是()解析:因为函数f(x)在R上可导,其导数为f' (x),且函数f(x)在x=-2处取得极小值,所以当x>-2 时,f ' (x)>0;当x=-2 时,f ' (x)=0;当xv-2 时,f ' (x)<0,所以当x>-2时,xf ' (x)<0,函数y=xf ' (x)单调递增;当x<-2时,xf ' (x)>0,函数y=xf ' (x)单调递减,故选A.◎S 在求实际问题中的最大值或最小值时,一般先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.考点二不等式恒成立、不等式有解问题【例2] 设f(x)= a +xln x,g(x)=x 3-x 2-3.x(1)如果存在X1,X 2€ [0,2]使得g(x i)-g(x 2) >M成立,求满足上述条件的最大整数M;⑵如果对于任意的s,t € [1,2],都有f(s) > g(t)成立,求实数a的取值范围.思路点拨:(1)存在x i,x 2€ [0,2],使得g(x i)-g(x 2) >M成立,等价于[g(x l)-g(x 2)] max》M.⑵对任意的s,t € [ 1,2],都有f(s) > g(t)成立,等价于f(x) min> g(x) max.解:(1)由g(x)=x 3-x 2-3,得g‘ (x)=3x 2-2x=3x(x- |).由g‘ (x)>0 得x<0 或x>|,由g‘ (x)<0 得0<x<3,3又x€ [0,2],所以g(x)在[0, 2]上是单调递减函数,3在[?,2]上是单调递增函数,3所以g(X)min=g(;)=- 887 ,g(X)ma)=g(2)=1. 故[g(X 1)-g(X 2)]maF g(X)max-g(x) min = 罟》M, 则满足条件的最大整数M=4.(2) 对于任意的s,t € [1,2],都有f(s) > g(t)成立, 等价于在区间[1 ,2]上,函数f(x) min》g(x) max.由(1)可知在区间[}2]上,g(x)的最大值为g(2)=1. 在区间[丄,2]上,f(x)= a+xln x > 1恒成立等价于a>x-x2ln x恒成立.2 x设h(x)=x-x 2ln x,h ' (x)=1-2xIn x-x,可知h' (x)在区间[1,2]上是减函数,又h' (1)=0,所以当1<x<2 时,h ' (x)<0;当!<x<1 时,h ' (x)>0.即函数h(x)=x-x 2ln x在区间(苏1)上单调递增,在区间(1,2)上单调递减,所以h(x) max=h(1)=1,即实数a的取值范围是[1,+ 乂).◎也“恒成立”与“存在性”问题的求解是“互补”关系,即f(x) >g(a)对于x € D恒成立,应求f(x)的最小值;若存在x € D,使得f(x) >g(a)成立,应求f(x)的最大值.求解时注意等号是否成立.[迂移輕已知函数f(x)=x 2ln x-a(x 2-1),a € R,若当x> 1时,f(x) >0成立,求a的取值范围.解:f ' (x)=2xln x+(1-2a)x=x(2ln x+1-2a), 其中x> 1.当a< 2 时,f ' (x) > 0,函数f(x)在[1,+ 乂)上单调递增,故f(x) >f(1)=0,1当a>1 时,令f' (x)=0,得X=e=1 1若X€ [1, eT,则f‘ (X)<0,函数f(x)在[1,訂]上单调递减,f(x) <f(1)=0,不符合题意.综上,a的取值范围是(-乂, !].考点三利用导数研究函数零点问题【例3】设函数f(x)=- l x3+x2+(m2-1)x(x € R),其中m>0.3(1) 当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;⑵求函数f(x)的单调区间与极值;⑶已知函数f(x)有三个互不相同的零点0,X1,X2,且X1VX2,若对任意的x €[x 1,X2],f(x)>f(1) 恒成立,求实数m的取值范围.解:(1)当m=1 时,f(x)=- £x3+x2,f ' (x)=-x 2+2x,故f' (1)=1,即曲线y=f(x)在点(1,f(1))处的切线斜率为1.(2) f ' (x)=-x 2+2x+m 1= -[x-(1-m)][x-(1+m)],令f' (x)=0,得x=1-m 或x=1+m,m>0故1+m>1-m,当X变化时,f ' (x),f(x) 的变化情况如表:所以f(x)的单调减区间是(-8,1-m),(1+m,+ 8),单调增区间是(1-m,1+m), 于是函数f(x)在x=1-m处取得极小值f(1-m)=- 2vm+rm--;3 3在x=1+m处取得极大值f(1+m)= 2vm+rm--.3 3⑶由题设知f(x)=-x( -x2-x-m2+1)=- l x(x-x i)(x-x 2),3 3所以方程-x2-x-m2+1=0有两个相异的非零实根x i,x 2,3故由根与系数的关系得X I+X2=3且厶=1+彳(m2-1)>0,3解得mM或m<-!(舍去),2 2因为X I<X2,所以2X2>X I+X2=3? X2>- >1,2若X I<1<X2,则f(1)=- l(1-x i)(1-x 2)>0,3而f(x 1)=0,不合题意,若K X1VX2,则对?x € [x i,x 2],有x>0,x-x 1 > 0,x-x 2< 0,所以f(x)=- 1 x(x-x i)(x-x 2) >0.3又f(x i)=f(x 2)=0,故f(x)在[x i,x 2]上的最小值为0,于是对?x € [x i,x 2],f(x)>f(1) 恒成立,得f(1)=m 2-1 <0? - — <m<?,3 3 3综上,实数m的取值范围是(1,三).2 3OS (1)函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解.(2) 研究函数零点(变号零点)所在区间,要利用函数零点存在定理确定.(3) 单调函数至多一个零点.[I迂務ai罐(2018 •全国H卷)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x> 0 时,f(x) > 1;⑵若f(x)在(0,+ 乂)只有一个零点,求a.(1)证明:当a=1 时,f(x) > 1 等价于(x 2+1)e-x-1 < 0.设函数g(x)=(x 2+1)e-x-1,则g‘ (x)=-(x 2-2x+1) • e-x=-(x-1) 2e-x.当X M 1 时,g ' (x)<0,所以g(x)在(0,+ g)上单调递减.而g(0)=0,故当x>0 时,g(x) <0,即f(x) > 1.⑵解:设函数h(x)=1-ax 2e-x.f(x)在(0,+ )上只有一个零点等价于h(x)在(0,+ ^)上只有一个零点.(i )当a< 0 时,h(x)>0,h(x) 没有零点;(ii)当a>0 时,h ' (x)=ax(x-2)e :当x€ (0,2)时,h ' (x)<0;当x€ (2,+ )时,h ' (x)>0.所以h(x)在(0,2)上单调递减,在(2,+ )上单调递增.故h(2)=1-算是h(x)在(0,+ s)上的最小值.e2①若h(2)>0,即a<e r,h(x)在(0,+ s)上没有零点.2 .,②若h(2)=0,即a=}h(x)在(0,+ s)上只有一个零点.2③若h(2)<0,即a>e r,因为h(0)=1,所以h(x)在(0,2)上有一个零点;由⑴知,当x>0时,e x>x2,3 3 3所以h(4a)=1-嗥=1-单 >1-理=1-丄>0,ae(e2a) (2a j故h(x)在(2,4a)上有一个零点.因此h(x)在(0,+ s)上有两个零点.2综上,当f(x)在(0,+ s)上只有一个零点时,a=e j.-解题规范夯实°------------------------- 在平凡的事情上精益求精 ----------利用导数证明不等式【例题】(2015 •全国I卷)设函数f(x)=e 2x-aIn x.(1)讨论f(x)的导函数f' (x)零点的个数;⑵证明:当a>0 时,f(x) >2a+aln 2 .a(1)解:f(x)的定义域为(0,+ s),2xf‘ (x)=2e - a(x>0). ①x当a< 0时,厂(x)>0,f ' (x)没有零点;当a>0时,因为y=e2x在(0,+ s)上单调递增,y=-旦在(0,+ s)上单调递增,x所以f ' (x)在(0,+ s)上单调递增.又f' (a)>0,当 b 满足0<b<a且b<* 时,f ' (b)<0,故当a>0时,f ' (x)存在唯一零点.⑵证明:由(1),可设f ' (x)在(0,+ 乂)上的唯一零点为X0,当x € (0,x 0)时,f '(x)<0;当x € (x 0,+ g)时,f ' (x)>0.故f(x)在(0,x 0)上单调递减,在(x 0,+ g)上单调递增,所以当X=X0时,f(x)取得最小值,最小值为f(x 0).由于2e2x0-三=0, ②X。
第1讲 导数的概念与导数的计算最新考纲 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知 识 梳 理1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→Δy Δx=0limx ∆→f (x 0+Δx )-f (x 0)Δx .(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)曲线的切线与曲线不一定只有一个公共点.( ) (3)(2x )′=x ·2x -1.( )(4)若f (x )=e 2x ,则f ′(x )=e 2x .( )解析 (1)f ′(x 0)是函数f (x )在x 0处的导数,(f (x 0))′是常数f (x 0)的导数即(f (x 0))′=0;(3)(2x )′=2x ln 2; (4)(e 2x )′=2e 2x .答案 (1)× (2)√ (3)× (4)× 2.函数y =x cos x -sin x 的导数为( ) A.x sin x B.-x sin x C.x cos xD.-x cos x解析 y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x .答案 B3.(选修2-2P18AT7改编)曲线y=sin xx在x=π2处的切线方程为()A.y=0B.y=2πC.y=-4π2x+4πD.y=4π2x解析∵y′=x cos x-sin xx2,∴y′|x=π2=-4π2,当x=π2时,y=2π,∴切线方程为y-2π=-4π2⎝⎛⎭⎪⎫x-π2,即y=-4π2x+4π.答案 C4.(2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a =________.解析y′=a-1x+1,由题意得y′|x=0=2,即a-1=2,所以a=3.答案 35.(2017·丽水调研)如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f′(5)=________;f(5)=________.解析f′(5)=-1,f(5)=-5+8=3.答案-1 36.(2017·舟山调研)定义在R上的函数f(x)满足f(x)=12f′(1)e2x-2+x2-2f(0)x,则f(0)=________;f(x)=________.解析 ∵f (x )=12f ′(1)e 2x -2+x 2-2f (0)x , ∴f ′(x )=f ′(1)e 2x -2+2x -2f (0), ∴f ′(1)=f ′(1)+2-2f (0),∴f (0)=1, 即1=12f ′(1)e -2,∴f (x )=e 2x +x 2-2x . 答案 1 e 2x +x 2-2x考点一 导数的运算【例1】 分别求下列函数的导数: (1)y =e x ln x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x . 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ·1x =⎝ ⎛⎭⎪⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x . (4)∵y =ln 1+2x =12ln(1+2x ), ∴y ′=12·11+2x ·(1+2x )′=11+2x.规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;(3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【训练1】 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2;(4)y =ln(2x -5).解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.(3)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x . ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u . 则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5. 考点二 导数的几何意义(多维探究) 命题角度一 求切线的方程【例2-1】 (1)函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A.2x -y -4=0B.2x +y =0C.x -y -3=0D.x +y +1=0(2)已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,则过点P 的切线方程为________. 解析 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故函数f (x )的图象在点(1,-2)处的切线方程为y -(-2)=x -1,即x -y -3=0. (2)设切点坐标为⎝ ⎛⎭⎪⎫x 0,13x 30,由y ′=⎝ ⎛⎭⎪⎫13x 3′=x 2,得 y ′|x =x 0=x 20,即过点P 的切线的斜率为x 20,又切线过点P ⎝ ⎛⎭⎪⎫2,83,若x 0≠2,则x 20=13x 30-83x 0-2,解得x 0=-1,此时切线的斜率为1;若x 0=2,则切线的斜率为4.故所求的切线方程是y -83=x -2或y -83=4(x -2), 即3x -3y +2=0或12x -3y -16=0.答案 (1)C (2)3x -3y +2=0或12x -3y -16=0 命题角度二 求参数的值【例2-2】 (1)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A.1B.2C.-1D.-2(2)(2017·温州调研)若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 (1)设切点为(x 0,y 0),y ′=1x +a,所以有⎩⎪⎨⎪⎧y 0=x 0+1,1x 0+a =1,y 0=ln (x 0+a ),解得⎩⎪⎨⎪⎧x 0=-1,y 0=0,a =2.(2)∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x . ∵f (x )存在垂直于y 轴的切线, ∴f ′(x )存在零点,∴x +1x -a =0有解, ∴a =x +1x ≥2(x >0). 答案 (1)B (2)[2,+∞) 命题角度三 公切线问题【例2-3】 (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x , ∴y ′=1+1x ,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为 y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.答案 8规律方法 (1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9(a ≠0)都相切,则a 的值为( ) A.-1或-2564 B.-1或214 C.-74或-2564D.-74或7解析 由y =x 3得y ′=3x 2,设曲线y =x 3上任意一点(x 0,x 30)处的切线方程为y -x 30=3x 20(x -x 0),将(1,0)代入得x 0=0或x 0=32.①当x 0=0时,切线方程为y =0,由⎩⎨⎧y =0,y =ax 2+154x -9得ax 2+154x -9=0,Δ=⎝ ⎛⎭⎪⎫1542+4·a ·9=0得a =-2564.②当x 0=32时,切线方程为y =274x -274,由⎩⎪⎨⎪⎧y =274x -274,y =ax 2+154x -9得ax 2-3x -94=0,Δ=32+4·a ·94=0得a =-1.综上①②知,a =-1或a =-2564. 答案 A[思想方法]1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解. [易错防范]1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x ;③复合函数求导分不清内、外层函数.2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.基础巩固题组(建议用时:40分钟)一、选择题1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=()A.0B.1C.2D.3解析∵y=e ax-ln(x+1),∴y′=a e ax-1x+1,∴当x=0时,y′=a-1.∵曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D2.若f(x)=2xf′(1)+x2,则f′(0)等于()A.2B.0C.-2D.-4解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2,∴f′(0)=2f′(1)=-4.答案 D3.(2017·杭州质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C.答案 C4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为()A.eB.-eC.1e D.-1e解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1 x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1e.答案 C5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A.-1B.0C.2D.4解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.答案 B 二、填空题6.(2015·天津卷改编)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________;f (x )在x =1处的切线方程为________.解析 f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.f (x )=3x ln x ,f (1)=0,∴f (x )在x =1处的切线方程为y =3(x -1),即为3x -y -3=0.答案 3 3x -y -3=07.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=08.(2015·陕西卷)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析 y ′=e x ,曲线y =e x 在点(0,1) 处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1) 三、解答题9.(2017·长沙调研)已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, ∴当x =2时,y ′=-1,y =53,∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 故α的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.10.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.能力提升题组 (建议用时:25分钟)11.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 017(x )等于( ) A.-sin x -cos x B.sin x -cos x C.-sin x +cos xD.sin x +cos x解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x , ∴f n (x )是以4为周期的函数, ∴f 2 017(x )=f 1(x )=sin x +cos x ,故选D. 答案 D12.已知函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A.4B.-14C.2D.-12解析 f ′(x )=g ′(x )+2x .∵y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=2,∴f ′(1)=g ′(1)+2×1=2+2=4,∴曲线y =f (x )在点(1,f (1))处的切线的斜率为4. 答案 A13.(2016·全国Ⅱ卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2). ∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案 1-ln 214.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.15.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k ,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(k =2,…,n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |. 解 (1)设点P k -1的坐标是(x k -1,0), ∵y =e x ,∴y ′=e x ,∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1=e x k -1(x -x k-1),令y =0,则x k =x k -1-1(k =2,…,n ). (2)∵x 1=0,x k -x k -1=-1, ∴x k =-(k -1), ∴|P k Q k |=e x k =e -(k -1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1) =1-e -n 1-e -1=e -e 1-n e -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-n e -1.。
第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =,y =1x,y =2,y =3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (a +b )的复合函数)的导数.知 识 梳 理1.函数y =f ()在=0处的导数(1)定义:称函数y =f ()在=0处的瞬时变化率f (x 0+Δx )-f (x 0)Δx=ΔyΔx为函数y =f ()在=0处的导数,记作f ′(0)或y ′|=0,即f ′(0)= Δy Δx=f (x 0+Δx )-f (x 0)Δx.(2)几何意义:函数f ()在点0处的导数f ′(0)的几何意义是在曲线y =f ()上点(0,f (0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(0)(-0). 2.函数y =f ()的导函数如果函数y =f ()在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f ()在开区间内的导函数.记作f ′()或y ′. 3.基本初等函数的导数公式4.若f ′(),g ′()存在,则有: (1)[f ()±g ()]′=f ′()±g ′(); (2)[f ()·g ()]′=f ′()g ()+f ()g ′(); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g x (g ()≠0). 5.复合函数的导数复合函数y =f (g ())的导数和函数y =f (u ),u =g ()的导数间的关系为y ′=y u ′·u ′,即y 对的导数等于y 对u 的导数与u 对的导数的乘积. [常用结论与易错提醒]1.f ′(0)与0的值有关,不同的0,其导数值一般也不同.2.f ′(0)不一定为0,但[f (0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f ()的导数f ′()反映了函数f ()的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′()|反映了变化的快慢,|f ′()|越大,曲线在这点处的切线越“陡”.基 础 自 测1.思考辨析(在括号内打“√”或“×”) (1)f ′(0)与(f (0))′表示的意义相同.( )(2)曲线的切线与曲线不一定只有一个公共点.( ) (3)(2)′=·2-1.( )(4)若f ()=e 2,则f ′()=e 2.( )解析 (1)f ′(0)是函数f ()在0处的导数,(f (0))′是常数f (0)的导数即(f (0))′=0;(3)(2)′=2ln 2;(4)(e 2)′=2e 2.答案 (1)× (2)√ (3)× (4)× 2.函数y =cos -sin 的导数为( ) A.sin B.-sin C.cosD.-cos解析 y ′=(cos )′-(sin )′=cos -sin -cos =-sin . 答案 B3.(2018·全国Ⅱ卷)曲线y =2ln(+1)在点(0,0)处的切线方程为________________. 解析 ∵y =2ln(+1),∴y ′=2x +1.当=0时,y ′=2,∴曲线y =2ln(+1)在点(0,0)处的切线方程为y -0=2(-0),即y =2. 答案 y =24.(2019·南通一调)若曲线y =ln 在=1与=t 处的切线互相垂直,则正数t 的值为________. 解析 因为y ′=ln +1, 所以(ln 1+1)(ln t +1)=-1, ∴ln t =-2,t =e -2. 答案 e -25.定义在R 上的函数f ()满足f ()=12f ′(1)e 2-2+2-2f (0),则f (0)=________;f ()=________.解析 ∵f ()=12f ′(1)e 2-2+2-2f (0),∴f ′()=f ′(1)e 2-2+2-2f (0), ∴f ′(1)=f ′(1)+2-2f (0),∴f (0)=1, 即1=12f ′(1)e -2,∴f ′(1)=2e 2,∴f ()=e 2+2-2. 答案 1 e 2+2-26.已知曲线y =e -,则其图象上各点处的切线斜率的取值范围为________;该曲线在点(0,1)处的切线方程为________.解析 由题意得y ′=-e -,则由指数函数的性质易得y ′=-e -∈(-∞,0),即曲线y =e -的图象上各点处的切线斜率的取值范围为(-∞,0).当=0时,y ′=-e -0=-1,则曲线y =e -在(0,1)处的切线的斜率为-1,则切线的方程为y -1=-1·(-0),即+y -1=0. 答案 (-∞,0) +y -1=0考点一 导数的运算【例1】 求下列函数的导数:(1)y =2sin ; (2)y =cos x ex ;(3)y =sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2;(4)y =ln(2-5).解 (1)y ′=(2)′sin +2(sin )′=2sin +2cos .(2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x .(3)∵y =sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12sin(4+π)=-12sin 4, ∴y ′=-12sin 4-12·4cos 4=-12sin 4-2cos 4.(4)令u =2-5,y =ln u .则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【训练1】 分别求下列函数的导数: (1)y =eln ;(2)y =⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =-sin x 2cos x2;(4)y =ln 1+2x .解 (1)y ′=(e)′ln +e(ln )′=eln +e ·1x=⎝⎛⎭⎪⎫ln x +1x e.(2)∵y =3+1+1x 2,∴y ′=32-2x3.(3)∵y =-12sin ,∴y ′=1-12cos .(4)∵y =ln 1+2x =12ln(1+2),∴y ′=12·11+2x ·(1+2)′=11+2x .考点二 导数的几何意义多维探究角度1 求切线的方程【例2-1】 (1)(2019·绍兴一中模拟)已知函数f ()=e +2sin ,则f ()在点(0,f (0))处的切线方程为( ) A.+y -1=0 B.+y +1=0 C.3-y +1=0D.3-y -1=0(2)已知曲线y =133上一点P ⎝ ⎛⎭⎪⎫2,83,则过点P 的切线方程为________.解析 (1)因为f ()=e +2sin ,所以f ′()=e +2cos .所以f ′(0)=3,f (0)=1.由导数的几何意义可知,函数f ()在点(0,f (0))处的切线方程为y -1=3,即为3-y +1=0,故选C. (2)设切点坐标为⎝ ⎛⎭⎪⎫x 0,13x 30,由y ′=⎝ ⎛⎭⎪⎫13x 3′=2,得y ′|=0=20,即过点P 的切线的斜率为20,又切线过点P ⎝ ⎛⎭⎪⎫2,83,若0≠2,则20=13x 30-83x 0-2, 解得0=-1,此时切线的斜率为1;若0=2,则切线的斜率为4. 故所求的切线方程是y -83=-2或y -83=4(-2),即3-3y +2=0或12-3y -16=0.答案 (1)C (2)3-3y +2=0或12-3y -16=0 角度2 求参数的值【例2-2】 (1)(2019·嘉兴检测)函数y =3-的图象与直线y =a +2相切,则实数a =( ) A.-1 B.1 C.2D.4(2)(2019·杭州质检)若直线y =与曲线y =e +m (m ∈R ,e 为自然对数的底数)相切,则m =( ) A.1 B.2 C.-1D.-2解析 (1)由题意得⎩⎨⎧y ′=3x 2-1=a ①,y =x 3-x =ax +2 ②,将①代入②,消去a 得3-=(32-1)+2,解得=-1,则a =2,故选C.(2)设切点坐标为(0,e 0+m ).由y =e +m ,得y ′=e +m ,则切线的方程为y -e 0+m =e 0+m (-0) ①,又因为切线y =过点(0,0),代入①得0=1,则切点坐标为(1,1),将(1,1)代入y =e +m 中,解得m =-1,故选C. 答案 (1)C (2)C 角度3 公切线问题【例2-3】 (一题多解)已知曲线y =+ln 在点(1,1)处的切线与曲线y =a 2+(a +2)+1相切,则a =________.解析 法一 ∵y =+ln , ∴y ′=1+1x,y ′|=1=2.∴曲线y =+ln 在点(1,1)处的切线方程为y -1=2(-1),即y =2-1.∵y =2-1与曲线y =a 2+(a +2)+1相切,∴a ≠0(当a =0时曲线变为y =2+1与已知直线平行).由⎩⎨⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得a 2+a +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2-1.设y =2-1与曲线y =a 2+(a +2)+1相切于点(0,a 20+(a +2)0+1).∵y ′=2a +(a +2),∴y ′|=0=2a 0+(a +2). 由⎩⎨⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.答案 8规律方法 (1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·苏州调研)已知曲线f ()=a 3+ln 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若存在过点(1,0)的直线与曲线y =3和y =a 2+154-9(a ≠0)都相切,则a 的值为( )A.-1或-2564B.-1或214C.-74或-2564D.-74或7解析 (1)f ′()=3a 2+1x,则f ′(1)=3a +1=2,解得a =13.(2)由y =3得y ′=32,设曲线y =3上任意一点(0,30)处的切线方程为y -30=320(-0),将(1,0)代入得0=0或0=32.①当0=0时,切线方程为y =0,由⎩⎨⎧y =0,y =ax 2+154x -9得a 2+154-9=0,Δ=⎝ ⎛⎭⎪⎫1542+4·a ·9=0得a =-2564. ②当0=32时,切线方程为y =274-274,由⎩⎪⎨⎪⎧y =274x -274,y =ax 2+154x -9得a 2-3-94=0,Δ=32+4·a ·94=0得a =-1.综上①②知,a =-1或a =-2564.答案 (1)13(2)A基础巩固题组一、选择题1.若f ()=2f ′(1)+2,则f ′(0)等于( ) A.2 B.0 C.-2D.-4解析 ∵f ′()=2f ′(1)+2,∴令=1,得f ′(1)=-2, ∴f ′(0)=2f ′(1)=-4. 答案 D2.设曲线y =e a -ln(+1)在=0处的切线方程为2-y +1=0,则a =( ) A.0 B.1 C.2D.3解析 ∵y =e a -ln(+1),∴y ′=a e a -1x +1,∴当=0时,y ′=a -1.∵曲线y =e a -ln(+1)在=0处的切线方程为2-y +1=0,∴a -1=2,即a =3.故选D. 答案 D3.曲线f ()=3-+3在点P 处的切线平行于直线y =2-1,则P 点的坐标为( ) A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)解析 f ′()=32-1,令f ′()=2,则32-1=2,解得=1或=-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2-1上,故选C. 答案 C4.(2019·诸暨统考)已知f ()的导函数为f ′(),若满足f ′()-f ()=2+,且f (1)≥1,则f ()的解析式可能是( ) A.2-ln + B.2-ln - C.2+ln +D.2+2ln +解析 由选项知f ()的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎢⎡⎦⎥⎤f (x )x ′=1+1x ,故f (x )x=+ln +c (c 为待定常数),即f ()=2+(ln +c ).又f (1)≥1,则c ≥0,故选C. 答案 C5.(一题多解)(2018·全国Ⅰ卷)设函数f ()=3+(a -1)2+a .若f ()为奇函数,则曲线y =f ()在点(0,0)处的切线方程为( ) A.y =-2 B.y =- C.y =2D.y =解析 法一 因为函数f ()=3+(a -1)2+a 为奇函数,所以f (-)=-f (),所以(-)3+(a -1)(-)2+a (-)=-[3+(a -1)2+a ],所以2(a -1)2=0.因为∈R ,所以a =1,所以f ()=3+,所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 法二 因为函数f ()=3+(a -1)2+a 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f ()=3+(经检验,f ()为奇函数),所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 法三 易知f ()=3+(a -1)2+a =[2+(a -1)+a ],因为f ()为奇函数,所以函数g ()=2+(a -1)+a 为偶函数,所以a -1=0,解得a =1,所以f ()=3+,所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 答案 D6.已知y =f ()是可导函数,如图,直线y =+2是曲线y =f ()在=3处的切线,令g ()=f (),g ′()是g ()的导函数,则g ′(3)=( )A.-1B.0C.2D.4解析 由题图可知曲线y =f ()在=3处切线的斜率等于-13,∴f ′(3)=-13.∵g ()=f (),∴g ′()=f ()+f ′(),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 答案 B 二、填空题7.(2018·天津卷)已知函数f ()=eln ,f ′()为f ()的导函数,则f ′(1)的值为________. 解析 由题意得f ′()=eln +e ·1x,则f ′(1)=e.答案 e8.(2018·全国Ⅲ卷)曲线y =(a +1)e 在点(0,1)处的切线的斜率为-2,则a =________. 解析 y ′=(a +1+a )e ,由曲线在点(0,1)处的切线的斜率为-2,得y ′|=0=(a +1+a )e|=0=1+a =-2,所以a =-3.答案 -39.(2018·台州调考)已知函数f ()=a ln ,∈(0,+∞),其中a 为实数,f ′()为f ()的导函数,若f ′(1)=3,则a 的值为__________;f ()在=1处的切线方程为________.解析 f ′()=a ⎝⎛⎭⎪⎫ln x +x ·1x =a (1+ln ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.f ()=3ln ,f (1)=0,∴f ()在=1处的切线方程为y =3(-1),即为3-y -3=0. 答案 3 3-y -3=010.设曲线y =e 在点(0,1)处的切线与曲线y =1x(>0)在点P 处的切线垂直,则P 的坐标为________.解析 y ′=e ,曲线y =e 在点(0,1) 处的切线的斜率1=e 0=1.设P (m ,n ),y =1x(>0)的导数为y ′=-1x 2(>0),曲线y =1x (>0)在点P 处的切线斜率2=-1m2(m >0),因为两切线垂直,所以12=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1) 三、解答题11.已知点M 是曲线y =133-22+3+1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=2-4+3=(-2)2-1≥-1,∴当=2时,y ′min =-1,y =53, ∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率=-1, ∴切线方程为3+3y -11=0.(2)由(1)得≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 故α的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 12.已知曲线y =133+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =133+43上,且y ′=2, ∴在点P (2,4)处的切线的斜率为y ′|=2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(-2),即4-y -4=0.(2)设曲线y =133+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|=0=20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=20(-0),即y =20·-2330+43.∵点P (2,4)在切线上,∴4=220-2330+43,即30-320+4=0,∴30+20-420+4=0, ∴20(0+1)-4(0+1)(0-1)=0,∴(0+1)(0-2)2=0,解得0=-1或0=2,故所求的切线方程为-y +2=0或4-y -4=0.能力提升题组13.(2018·萧山月考)已知f 1()=sin +cos ,f n +1()是f n ()的导函数,即f 2()=f 1′(),f 3()=f ′2(),…,f n +1()=f n ′(),n ∈N *,则f 2 018()等于( )A.-sin -cosB.sin -cosC.-sin +cosD.sin +cos解析 ∵f 1()=sin +cos ,∴f 2()=f 1′()=cos -sin ,∴f 3()=f 2′()=-sin -cos ,∴f 4()=f 3′()=-cos +sin ,∴f 5()=f 4′()=sin +cos ,∴f n ()是以4为周期的函数,∴f 2 018()=f 2()=-sin +cos ,故选C.答案 C14.(2019·无锡模拟)关于的方程2|+a |=e 有3个不同的实数解,则实数a 的取值范围为________.解析 由题意,临界情况为y =2(+a )与y =e 相切的情况,y ′=e =2,则=ln 2,所以切点坐标为(ln 2,2),则此时a =1-ln 2,所以只要y =2|+a |图象向左移动,都会产生3个交点,所以a >1-ln 2,即a ∈(1-ln 2,+∞).答案 (1-ln 2,+∞)15.若直线y =+b 是曲线y =ln +2的切线,也是曲线y =ln(+1)的切线,则b =________. 解析 y =ln +2的切线为:y =1x 1·+ln 1+1(设切点横坐标为1). y =ln(+1)的切线为:y =1x 2+1+ln(2+1)-x 2x 2+1(设切点横坐标为2).∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1, 解得1=12,2=-12,∴b =ln 1+1=1-ln 2. 答案 1-ln 216.(2019·湖州适应性考试)已知函数f ()=|3+a +b |(a ,b ∈R ),若对任意的1,2∈[0,1],f (1)-f (2)≤2|1-2|恒成立,则实数a 的取值范围是________.解析 当1=2时,f (1)-f (2)≤2|1-2|恒成立;当1≠2时,由f (1)-f (2)≤2|1-2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f ()在(0,1)上的导函数f ′()满足|f ′()|≤2,函数y =3+a +b 的导函数为y ′=32+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎨⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1].答案 [-2,-1]17.设函数f ()=a -b x,曲线y =f ()在点(2,f (2))处的切线方程为7-4y -12=0. (1)求f ()的解析式;(2)证明曲线f ()上任一点处的切线与直线=0和直线y =所围成的三角形面积为定值,并求此定值.解 (1)方程7-4y -12=0可化为y =74-3, 当=2时,y =12.又f ′()=a +b x 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f ()=-3x . (2)设P (0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(-0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(-0).令=0,得y =-6x 0,从而得切线与直线=0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =,得y ==20,从而得切线与直线y =的交点坐标为(20,20).所以点P (0,y 0)处的切线与直线=0,y =所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|20|=6. 故曲线y =f ()上任一点处的切线与直线=0,y =所围成的三角形面积为定值,且此定值为6.18.如图,从点P 1(0,0)作轴的垂线交曲线y =e 于点Q 1(0,1),曲线在Q 1点处的切线与轴交于点P 2.再从P 2作轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P 点的坐标为(,0)(=1,2,…,n ).(1)试求与-1的关系(=2,…,n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.解 (1)设点P -1的坐标是(-1,0),∵y =e ,∴y ′=e ,∴Q -1(-1,e -1),在点Q -1(-1,e -1)处的切线方程是y -e -1=e -11(--1),令y =0,则=-1-1(=2,…,n ).(2)∵1=0,--1=-1,∴=-(-1),∴|PQ |=e =e -(-1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-ne -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.。
板块命题点专练(五) 导数及其应用命题点一导数的运算及几何意义1.(2018·全国卷Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2x B.y=-xC.y=2x D.y=x解析:选D ∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又∵f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.2.(2018·全国卷Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为________.解析:∵y=2ln(x+1),∴y′=2x+1.令x=0,得y′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),∴切线方程为y=2x.答案:y=2x3.(2018·全国卷Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=________.解析:∵y′=(ax+a+1)e x,∴当x=0时,y′=a+1,∴a+1=-2,解得a=-3.答案:-3命题点二函数单调性、极值、最值1.(2017·浙江高考)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )解析:选D 由f′(x)的图象知,f′(x)的图象有三个零点,故f(x)在这三个零点处取得极值,排除A、B;记导函数f′(x)的零点从左到右分别为x1,x2,x3,又在(-∞,x1)上f ′(x )<0,在(x 1,x 2)上f ′(x )>0,所以函数f (x )在(-∞,x 1)上单调递减,排除C ,故选D.2.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1解析:选A 因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )ex -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]ex -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)ex -1=(x +2)(x -1)ex -1.令f ′(x )>0,解得x <-2或x >1, 令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1.3.(2013·浙江高考)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k(k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1 处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值解析:选C 当k =1时,f (x )=(e x-1)(x -1),0,1是函数f (x )的零点.当0<x <1时,f (x )=(e x -1)(x -1)<0,当x >1时,f (x )=(e x-1)(x -1)>0,1不会是极值点.当k =2时,f (x )=(e x -1)(x -1)2,零点还是0,1,但是当0<x <1,x >1时,f (x )>0,由极值的概念,知选C.4.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎪⎫-32×⎝⎛⎭⎪⎫1+12=-332. 答案:-3325.(2018·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:法一:f ′(x )=6x 2-2ax =2x (3x -a )(x >0). ①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增, 又f (0)=1,∴f (x )在(0,+∞)上无零点. ②当a >0时,由f ′(x )>0,得x >a3;由f ′(x )<0,得0<x <a3,∴f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a3,+∞上单调递增. 又f (x )在(0,+∞)内有且只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,∴a =3. 此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上单调递增,在[0,1]上单调递减. 又f (1)=0,f (-1)=-4,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 法二:令f (x )=2x 3-ax 2+1=0, 得a =2x 3+1x 2=2x +1x2.令g (x )=2x +1x 2,则g ′(x )=2-2x3.由g ′(x )<0,得0<x <1;由g ′(x )>0,得x >1, ∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∵f (x )在(0,+∞)内有且只有一个零点, ∴a =g (1)=3,此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上单调递增,在[0,1]上单调递减. 又f (1)=0,f (-1)=-4,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 答案:-36.(2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x. (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x, 所以f ′(x )=[ax 2-(2a +1)x +2]e x. 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x=(ax -1)(x -2)e x.若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.7.(2018·全国卷Ⅲ)已知函数f (x )=(2+x +ax 2)·ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .解:(1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x. 设函数g (x )=ln(1+x )-x1+x , 则g ′(x )=x+x2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0, 故当x >-1时,g (x )≥g (0)=0,且仅当x =0时,g (x )=0,从而f ′(x )≥0,当且仅当x =0时,f ′(x )=0. 所以f (x )在(-1,+∞)上单调递增. 又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)①若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾. ②若a <0, 设函数h (x )=f x 2+x +ax 2=ln(1+x )-2x2+x +ax2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0, 故h (x )与f (x )符号相同. 又h (0)=f (0)=0, 故x =0是f (x )的极大值点, 当且仅当x =0是h (x )的极大值点.h ′(x )=11+x-+x +ax 2-2x+2ax+x +ax22=x 2a 2x 2+4ax +6a +x +ax 2+x +2. 若6a +1>0,则当0<x <-6a +14a, 且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0, 故x =0不是h (x )的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0, 所以x =0不是h (x )的极大值点.若6a +1=0,则h ′(x )=x 3x -x +x 2-6x -2,则当x ∈(-1,0)时,h ′(x )>0; 当x ∈(0,1)时,h ′(x )<0. 所以x =0是h (x )的极大值点, 从而x =0是f (x )的极大值点.综上,a =-16.8.(2013·浙江高考)已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax . (1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值. 解:(1)当a =1时,f ′(x )=6x 2-12x +6,所以f ′(2)=6. 又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值.f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ).令f ′(x )=0,得到x 1=1,x 2=a . 当a >1时,g (a )=⎩⎪⎨⎪⎧0,1<a ≤3,a 2-a ,a >3.当a <-1时,得综上所述,f (x )的闭区间[0,2|a |]上的最小值为 g (a )=⎩⎪⎨⎪⎧3a -1,a <-1,0,1<a ≤3,a 2-a ,a >3.命题点三 导数的综合应用1.(2013·浙江高考)设a ,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab =________.解析:由于不等式0≤x 4-x 3+ax +b ≤(x 2-1)2,即-x 4+x 3≤ax +b ≤x 3-2x 2+1,记f (x )=x 3-2x 2+1,g (x )=-x 4+x 3,显然f (x )-g (x )=x 4-2x 2+1=(x 2-1)2,所以当x ≥0时,f (x )≥g (x ),当且仅当x =1时取“=”,而f ′(x )=3x 2-4x ,g ′(x )=-4x 3+3x 2,f ′(1)=g ′(1)=-1,因此,当y =ax +b 为f (x )与g (x )在x =1处有公切线时,才能使0≤x 4-x 3+ax +b ≤(x 2-1)2恒成立,此时a =f ′(1)=-1,b =1(切点为(1,0)),所以ab =-1.答案:-12.(2018·浙江高考)已知函数f (x )=x -ln x .(1)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8-8ln 2; (2)若a ≤3-4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.证明:(1)函数f (x )的导函数为f ′(x )=12x -1x .由f ′(x 1)=f ′(x 2),得12x 1-1x 1=12x 2-1x 2. 因为x 1≠x 2, 所以1x 1+1x 2=12. 由基本不等式得12x 1x 2=x 1+x 2≥24x 1x 2.因为x 1≠x 2,所以x 1x 2>256.由题意得f (x 1)+f (x 2)=x 1-ln x 1+x 2-ln x 2=12x 1x 2-ln(x 1x 2).设g (x )=12x -ln x ,则g ′(x )=14x (x -4),当x 变化时,g ′(x ),g (x )的变化情况如表所示:所以g (x )在[256,+∞)上单调递增, 故g (x 1x 2)>g (256)=8-8ln 2, 即f (x 1)+f (x 2)>8-8ln 2. (2)令m =e-(|a |+k ),n =⎝⎛⎭⎪⎫|a |+1k 2+1,则f (m )-km -a >|a |+k -k -a ≥0,f (n )-kn -a <n ⎝ ⎛⎭⎪⎫1n -a n -k ≤n ⎝ ⎛⎭⎪⎫|a |+1n -k <0,所以存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =x -ln x -ax.设h (x )=x -ln x -ax,则h ′(x )=ln x -x2-1+ax2=-gx -1+ax 2,其中g (x )=x2-ln x .由(1)可知g (x )≥g (16),又a ≤3-4ln 2,故-g (x )-1+a ≤-g (16)-1+a =-3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减, 因此方程f (x )-kx -a =0有唯一一个实根.综上,当a ≤3-4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.3.(2017·浙江高考)已知函数f (x )=(x -2x -1)e -x ⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围. 解:(1)因为(x -2x -1)′=1-12x -1,(e -x )′=-e -x,所以f ′(x )=⎝ ⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x=-x2x -1--x2x -1⎝ ⎛⎭⎪⎫x >12.(2)由f ′(x )=-x2x -1--x2x -1=0,解得x =1或x =52.当x 变化时,f ′(x ),f (x )的变化情况如下表:又f (x )=12(2x -1-1)2e -x≥0,所以f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e 12-. 4.(2014·浙江高考)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ).(1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 解:(1)因为a >0,-1≤x ≤1,所以 (ⅰ)当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数;若x ∈[a,1],则f (x )=x 3+3x -3a ,f ′(x )=3x 2+3>0,故f (x )在(a,1)上是增函数; 所以g (a )=f (a )=a 3.(ⅱ)当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数,所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明:令h (x )=f (x )-g (a ), (ⅰ)当0<a <1时,g (a )=a 3. 若x ∈[a,1],h (x )=x 3+3x -3a -a 3, 得h ′(x )=3x 2+3, 则h (x )在(a,1)上是增函数,所以h (x )在[a,1]上的最大值是h (1)=4-3a -a 3,且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4;若x ∈[-1,a ],h (x )=x 3-3x +3a -a 3,得h ′(x )=3x 2-3,则h (x )在(-1,a )上是减函数, 所以h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.(ⅱ)当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x +2,得h ′(x )=3x 2-3,此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 5.(2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0. 设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增. 故h (2)=1-4ae2是h (x )在(0,+∞)上的最小值.①当h (2)>0,即a <e24时,h (x )在(0,+∞)上没有零点.②当h (2)=0,即a =e24时,h (x )在(0,+∞)上只有一个零点.③当h (2)<0,即a >e24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点.由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e4a =1-16a32a2>1-16a3a4=1-1a>0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e24.6.(2018·全国卷Ⅰ)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2.解:(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明:由(1)知,当且仅当a >2时,f (x )存在两个极值点. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f x 1-f x 2x 1-x 2=-1x 1x 2-1+a ·ln x 1-ln x 2x 1-x 2=-2+a ·ln x 1-ln x 2x 1-x 2=-2+a ·-2ln x 21x 2-x 2,所以f x 1-f x 2x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f x 1-f x 2x 1-x 2<a -2.。
文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.知能专练(五)导数及其应用一、选择题1. 曲线f (x )=xlnx 在点(1, f (l ))处的切线的倾斜角为() JT兀解析:选B 因为A-Y ) =-rln w 所以f (x )=ln x+1,所以f 9(1)=1,所以曲线 = .rln x 在点(1, f (l ))处的切线的倾斜角为2. 已知e 为自然对数的底数,则函数y=xe ”的单调递增区间是() A. [ — 1, 4-°°) B. ( — 8, — 1] C. [1, +°°)D. (—8, 1]解析:选 A 令 ” =£(l + x )M0,又 J>0, /. 1+-Y ^0»—1.3. 函数/Cr )=3Y+ln x-2x 的极值点的个数是() A. 0 C. 2解析:选A 函数泄义域为(0, +8),C r / \ Q 」c 6Y —2-Y +1 且 f (x) =6x+一一2= ・由于 40,呂3=6丘一2%+1 中 J=-20<0, 所以g (£>0恒成立,故/ C Y )>0恒成立.即f (0在立义域上单调递增,无极值点.4. (2017 •浙江高考)函数y =f3的导函数3的图象如图所则函数y= f3的图象可能是()&)的图象有三个零点,故f (x )在这三个零点处取得极值,排除A 、B ;记导函数£ 3的零点从左到右分别为血 心4又在(一8,幻上£ &)〈0, 在(也 北)上f 6)>0,所以函数f (x )在(一8,山)上单调递减,排除C,故选D.B ・1D.无数个解析:选D 由£3的图象知,fA示I)版本可编辑.欢迎下载支持.5・已知常数a, b、c都是实数,fix) = ax 4-bx-\- ex— 34的导函数为£3, f 3W0的解集为{A<-2^A<3},若f(0的极小值等于一115,则A的值是()A -里22C. 2D. 5解析:选C由题意知,f值一115,“ 3=3/+2加+cW0的解集为[一2, 3],且在x=3处取得极小r3a>0.故有v 一2X3=子,3a3 =27a+9b+3c—34= —115,6.若0<-¥i<Ac<l ,则( )A・ e X1— e X| >ln 疋―In 羽B・ e x:—e A| <ln 疋—In 羽C・ A^e x, >-Yie X1D・挹e&〈*,e”2解析:选C构适函数f&)=e'—In”则f U)=e v-£=:---------------------------- ,令f &)=0,得昶‘x x-1 = 0,根据函数y=£与y=2的图象可知两函数图象的交点也丘(0,1),即Ax)=e x-ln 在■ A(0,1)上不是单调函数,无法判断f GO与f(疋)的大小,故A, B错:构造函数=-,则以 3xe x X—1 e x=—_= --------- ;-- •故函数g(x) =~在(0, 1)上单调递减,故gCrJ >g(上),上e “ >-vie 12 ,故选C.二、填空题7.设函数f(x) =Ar(e x-l) -|x=,则函数f(x)的单调增区间为_______________ •解析:因为f3 = Af(e x— 1)-討,所以f 3 = e r— 1+xe x—x= (e x— 1) (x+1).令f' C Y)>0,即(丁一1)・C Y+1)>0,解得曲(一 8, 一1)或曲(°, +8).所以函数f&)的单调增区间为(一8, — 1)和(0, +8).答案:(一8, — 1)和(0, +°°)解得a=2.版本可编辑.欢迎下载支持.8. 已知函数f(x)=*£+2ax-ln X,若f(x)在区间2上是增函数,则实数日的取值范 用为 _______ .解析:由题意知f' 3=卄2&—抑在[扌,2〕上恒成立,即2a2-x+*£, 2上恒成 立.又Ty= —x+£在#, 2上单调递减,.・.(一卄斗尸善,・・.2&諾,即aN#.答案:扌,+8)9. 已知函数fG")=/+2&f+1在x=l 处的切线的斜率为1,则实数日= ________________ ,此时函数y=f(x)在[0, 1]上的最小值为 _______ .解析:由题意得f 3=3/+仏,则有f (l)=3Xf+4aXl = l,解得尸一*,所以f(x) =・£ 一/+1, 则 f r3 =3/—2从当 xW [0, 1]时,2由 f r(X)=3左一 2x>0 得寸awi ;・ 2由 f r(-¥)=3”一2X0 得 0<X§,所以函数f3在(|,1上单调递增,在(0, |)上单调递减,所以函数f3在三处取得极 小值,即为最小值,所以最小值为彳|)=(|卜(|}+1=||.三. 解答题10. 已知函数 KY )=ln A^~l.X (1) 求函数f(x)的单调区间;(2) 设加GR,对任意的aE ( —1,1),总存在Ao 6 [1, e ],使得不等式aa —f(xo)< 0成立,求 实数也的取值范围.解:(D 函数的左义域为(0, +8), 又 f (-¥)= ---- =——.X X X令f rC Y )>0,得X >1,因此函数f(0的单调递增区间是(1, +8)・ 令f C Y XO,得0<Kl,因此函数的单调递减区间是(0,1).(2)依题意,[1, e ].答案:一* 2327版本可编辑.欢迎下载支持.由⑴知,fCv)在-re[b e]上是增函数, /• /'(-v)M x=/'(e) =ln e4--—1=-. e ee e加的取值范帀是一5 I11. 设函数 f3F —「21nx.⑴若f(x)在x=2时有极值,求实数a 的值和f3的单调区间;(2)若f(£在泄义域上是增函数,求实数a 的取值范用. 解:(1) •・•/(£在x=2时有极值,.•・£ ⑵=0,又 AT>0, .\X 9 (X ), f(x)关系如下表:X (°,1)12 (i 2)2 (2, +8)f' 3+—+f3・・.f(x)(0,[2, +8),E ,2).(2)若在泄义域上是增函数,则f' (-Y )20在-Y>0时恒成立,r( 、, a 2 ax — 2x+ avr 3=a+u —一= ----------- 5——•x x x•二转化为-Y>0时a.f —2w+a20恒成立, 即"2畫I 恒成立,9r 91当且仅当尸戶时等号成立,・・.a21.故实数日的取值范围为[1, +8).{血 x i —'wo,e血x —i -解得一X X□(2•辽一5/+2) >由 f' (.r) =0 有必=扌,xz=2,版本可编辑.欢迎下载支持.12.已知函数f(x)=eH+ax-a(aGR 且aHO).(1)若函数f(x)在.v=0处取得极值,求实数a的值:并求岀此时f(x)在[一2, 1]上的最大值:(2)若函数f(x)不存在零点,求实数a的取值范围.解:(1)函数f(£的定义域为R, f (£=£+&,f (O)=e°+a=O, .・.a= —1, :,F (x)=e"—l,•・•在(一 8, 0)上f (A-XO, f(x)单调递减,在(0, +8)上f' (x)>0, f(x)单调递增,・・.尸0时,f3取极小值.・"=一1符合要求.易知f(0在[一2, 0)上单调递减,在(0, 1]上单调递增,且f(一2) =Z+3, f(l)=e, f(—2)>f(l).e•'•fCr)在[―2, 1]的最大值为2+3.(2)T 3=e”+a,由于J>0・①当a>0时,Z C Y)>0, f(x)是增函数.且当%>1 时,f(£=£+a(x-l)>0・当M0时,取;v=—一•••函数存在零点,不满足题意.②当a<0 时,令f* Cv)=e'+a=0,得x=ln(—a)・在(一8, ln( —a))上f' (x)<0, f(x)单调递减,在(In(—a), +8)上F 3>0, f(x)单调递增,.\x=ln( — a)时,/(-Y)取最小值.函数f(*)不存在零点,等价于f(ln(—“))=』'+aln( —a) —a=—2a+aln( —a)>0,解得—e2<a<0.综上所述.所求的实数a的取值范用是(一『0)・。
专题限时集训(十三) 导数的简单应用[专题通关练] (建议用时:30分钟)1.已知函数f (x )的导函数f ′(x )满足下列条件: ①f ′(x )>0时.x <-1或x >2; ②f ′(x )<0时.-1<x <2; ③f ′(x )=0时.x =-1或x =2. 则函数f (x )的大致图象是( )A [根据条件知.函数f (x )在(-1,2)上是减函数.在(-∞.-1).(2.+∞)上是增函数.故选A.]2.已知直线2x -y +1=0与曲线y =a e x+x 相切(其中e 为自然对数的底数).则实数a 的值是( )A.12 B .1 C .2D .eB [由题意知y ′=a e x+1=2.则a >0.x =-ln a .代入曲线方程得y =1-ln a .所以切线方程为y -(1-ln a )=2(x +ln a ).即y =2x +ln a +1=2x +1⇒a =1.]3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10.则数对(a .b )为( ) A .(-3,3) B .(-11,4)C .(4.-11)D .(-3,3)或(4.-11)C [f ′(x )=3x 2+2ax +b .依题意可得⎩⎪⎨⎪⎧f′1=0,f 1=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a2=10,消去b 可得a 2-a -12=0.解得a =-3或a =4.故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时.f ′(x )=3x 2-6x +3=3(x -1)2≥0.这时f (x )无极值.不合题意.舍去.故选C.]4.已知f (x )=x 2+ax +3ln x 在(1.+∞)上是增函数.则实数a 的取值范围为( ) A .(-∞.-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-2 6.+∞)D .[-5.+∞)C [由题意得f ′(x )=2x +a +3x =2x2+ax +3x ≥0在(1.+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1.+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g 1≥0⇔-26≤a ≤26或⎩⎪⎨⎪⎧a≥-4,a≥-5⇔a ≥-2 6.故选C.]5.(20xx·重庆七校联考)函数f (x )(x >0)的导函数为f ′(x ).若xf ′(x )+f (x )=e x.且f (1)=e.则( )A .f (x )的最小值为eB .f (x )的最大值为eC .f (x )的最小值为1eD .f (x )的最大值为1eA [设g (x )=xf (x )-e x.则g ′(x )=f (x )+xf ′(x )-e x=0. 所以g (x )=xf (x )-e x为常数函数. 因为g (1)=1×f (1)-e =0. 所以g (x )=xf (x )-e x=g (1)=0. 所以f (x )=ex x .f ′(x )=exx -1x2. 当0<x <1时.f ′(x )<0. 当x >1时.f ′(x )>0. 所以f (x )≥f (1)=e.]6.(20xx·西安八校联考)已知曲线f (x )=e x+x 2.则曲线在(0.f (0))处的切线与坐标轴围成的图形的面积为________.②当a >0时.令f ′(x )=-2ax2+x +1x =0.则-2ax 2+x +1=0.易知其判别式为正. 设方程的两根分别为x 1.x 2(x 1<x 2). 则x 1x 2=-12a<0.∴x 1<0<x 2.∴f ′(x )=-2ax2+x +1x =-2a x -x1x -x2x.x >0.令f ′(x )>0.得x ∈(0.x 2).令f ′(x )<0得x ∈(x 2.+∞).其中x 2=1+8a +14a.∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增.在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减. 10.设函数f (x )=ln x -2mx 2-n (m .n ∈R ). (1)讨论f (x )的单调性;(2)若f (x )有最大值-ln 2.求m +n 的最小值. [解] (1)函数f (x )的定义域为(0.+∞).f ′(x )=1x -4mx =1-4mx2x. 当m ≤0时.f ′(x )>0.∴f (x )在(0.+∞)上单调递增; 当m >0时.令f ′(x )>0.得0<x <m 2m. 令f ′(x )<0.得x >m 2m. ∴f (x )在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增. 在⎝⎛⎭⎪⎫m 2m ,+∞上单调递减. (2)由(1)知.当m ≤0时.f (x )在(0.+∞)上单调递增.无最大值. 当m >0时.f (x )在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增.在⎝ ⎛⎭⎪⎫m 2m ,+∞上单调递减. ∴f (x )max =f ⎝⎛⎭⎪⎫m 2m =ln m 2m -2m ·14m -n =-ln 2-12ln m -12-n =-ln 2. ∴n =-12ln m -12.∴m +n =m -12ln m -12.点.则P .Q 两点间距离的最小值为________.32 [y ′=e -x-x e -x=(1-x )e -x.令(1-x )e -x=1.则e x =1-x .e x+x -1=0.令h (x )=e x +x -1.易得h (x )是增函数.且h (0)=0.则方程e x+x -1=0有且只有一解x =0.易求得过曲线y =x e -x上点(0,0)的切线方程为y =x .由题意可得.P .Q 两点间距离d 的最小值即两平行直线x -y =0和x -y +6=0间的距离.所以最小值为d min =62=3 2.]【押题2】 已知函数f (x )=ax 2+bx -ln x (a .b ∈R ).(1)当a =-1.b =3时.求函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值和最小值; (2)当a =0时.是否存在正实数b .使当x ∈(0.e](e 是自然对数的底数)时.函数f (x )的最小值是3?若存在.求出b 的值;若不存在.说明理由.[解] (1)当a =-1.b =3时.f (x )=-x 2+3x -ln x .且x ∈⎣⎢⎡⎦⎥⎤12,2.则f ′(x )=-2x +3-1x =-2x2-3x +1x =-2x -1x -1x.令f ′(x )>0.得12<x <1;令f ′(x )<0.得1<x <2.所以函数f (x )在⎝ ⎛⎭⎪⎫12,1上单调递增.在(1,2)上单调递减.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤12,2上仅有极大值点x =1.且这个极大值点也是最大值点.故函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值为f (1).且f (1)=2. 又f (2)-f ⎝ ⎛⎭⎪⎫12=(2-ln 2)-⎝ ⎛⎭⎪⎫54+ln 2=34-2ln 2=34-ln 4<0.所以f (2)<f ⎝ ⎛⎭⎪⎫12. 故函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最小值为f (2).且f (2)=2-ln 2.综上.函数f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值为2.最小值为2-ln 2. (2)当a =0时.f (x )=bx -ln x .则f ′(x )=b -1x =b ⎝ ⎛⎭⎪⎫x -1b x.①当0<b ≤1e .即1b≥e 时.f ′(x )<0.所以f (x )在(0.e]上单调递减.所以f (x )min =f (e)=b e -1≤0.②当b >1e .即0<1b <e 时.令f ′(x )<0.得0<x <1b .所以f (x )在⎝ ⎛⎭⎪⎫0,1b 上单调递减;令f ′(x )>0.得1b<x <e.所以f (x )在⎝ ⎛⎭⎪⎫1b,e 上单调递增.。
高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现.预测高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查.1.导数的定义f′(x)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f xΔx.2.导数的几何意义函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).3.导数的运算(1)基本初等函数的导数公式①c′=0(c为常数);②(x m)′=mx m-1;③(sin x)′=cos x; ④(cos x)′=-sin x;⑤(e x)′=e x; ⑥(a x)′=a x ln a;⑦(ln x)′=1x;⑧(log a x)′=1x ln a.(2)导数的四则运算法则①[f(x)±g(x)]′=f′(x)±g′(x);②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);③[f xg x ]′=f′x g x-f x g′xg2x.④设y=f(u),u=φ(x),则y′x=y′u u′x.4.函数的性质与导数在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增.如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.5.利用定积分求曲线围成图形的面积的步骤:①画出图形;②确定被积函数;③求出交点坐标,确定积分的上、下限;④运用微积分基本定理计算定积分,求出平面图形的面积.特别注意平面图形的面积为正值,定积分值可能是负值.被积函数为y=f(x),由曲线y=f(x)与直线x=a,x=b(a<b)和y=0所围成的曲边梯形的面积为S.①当f (x )>0时,S =⎠⎛ab f (x )d x ;②当f (x )<0时,S =-⎠⎛ab f (x )d x ;③当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .高频考点一 导数的几何意义及应用 例1、(2018年全国Ⅲ卷理数)曲线在点处的切线的斜率为,则________.【答案】-3 【解析】,则 所以【变式探究】(1)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 解析:基本法:由题意可得f ′(x )=3ax 2+1, ∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.速解法:∵f (1)=2+a ,由(1,f (1))和(2,7)连线斜率k =5-a1=5-a ,f ′(x )=3ax 2+1,∴5-a =3a +1,∴a =1.答案:1(2)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析:基本法:令f (x )=x +ln x ,求导得f ′(x )=1+1x ,f ′(1)=2,又f (1)=1,所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.设直线y =2x -1与曲线y =ax 2+(a +2)x +1的切点为P (x 0,y 0),则y ′|x =x 0=2ax 0+a +2=2,得a (2x 0+1)=0,∴a =0或x 0=-12,又ax 20+(a +2)x 0+1=2x 0-1,即ax 20+ax 0+2=0,当a =0时,显然不满足此方程, ∴x 0=-12,此时a =8.速解法:求出y =x +ln x 在(1,1)处的切线为y =2x -1由⎩⎪⎨⎪⎧y =2x -1y =ax 2+a +2x +1得ax 2+ax +2=0, ∴Δ=a 2-8a =0,∴a =8或a =0(显然不成立).【变式探究】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3解析:基本法:y ′=a -1x +1,当x =0时,y ′=a -1=2,∴a =3,故选D. 答案:D高频考点二 导数与函数的极值、最值例2、(2018年浙江卷)已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】 (1). (1,4) (2). 【解析】由题意得或,所以或,即,不等式f (x )<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。
第5讲 函数的综合应用考点1 函数与方程例 1.(1)已知函数2,0,(),0.x a x f x x x ⎧->=⎨-<⎩若()y f x =的图象上存在两个点,A B 关于原点对称,则实数a 的取值范围是( ) A .[1,)-+∞ B .(1,)-+∞ C .[1,)+∞D .(1,)+∞【答案】D【解析】设00x >,则00x -<,()y f x =的图象上存在两个点,A B 关于原点对称, 则0020xa x -+=在()0,∞+上有解,即002xa x =+在()0,∞+上有解,由002xy x =+在()0,∞+上的值域为(1,)+∞,则实数a 的取值范围是(1,)+∞.故选:D .(2)已知函数()()22log ,2log 4,2x x f x x x ≥⎧=⎨-<⎩,若函数()y f x k =-有两个零点,则k 的取值范围是( ) A .(),2-∞ B .(),1-∞ C .()2,+∞D .()1,+∞【答案】D【解析】由函数2log y x =与()2log 4y x =-的图象关于直线2x =对称, 可得()f x 的图象如图所示,所以当1k >时,直线y k =与函数()y f x =的图象有两个交点.故选:D . 【点睛】解决函数零点(方程有根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【跟踪演练】1.(1)对于函数()y f x =与()y g x =,若存在0x ,使()()00f x g x =-,则称()()00,M x f x ,0(,N x -()0)g x -是函数()f x 与()g x 图象的一对“隐对称点”.已知函数()()1f x m x =+,()ln xg x x=,函数()f x 与()g x 的图象恰好存在两对“隐对称点”,则实数m 的取值范围为( ) A .()1,0- B .(),1-∞- C .()()0,11,+∞D .()(),11,0-∞--【答案】A【解析】由题意函数()1y m x =--与ln xy x=的图象有两个交点, 令()ln x h x x =,则()21ln xh x x-'=,∴当()0,x e ∈时,()0h x '>,()h x 单调递增; 当(),x e ∈+∞时,()0h x '<,()h x 单调递减; 又()1y m x =--恒过点()1,0,当1x >时,()0h x >, 在同一坐标系中作出函数()1y m x =--、()ln xh x x=的图象,如图,由图象可知,若函数()1y m x =--与ln xy x=的图象有两个交点,则0m >, 当直线()1y m x =--为函数ln xy x=图象的切线时,由()11h '=可得1m -=, ∴01m <-<即()1,0m ∈-.故选:A .(2)已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ) A .[0,)+∞ B .(1,)+∞ C .(0,)+∞D .[,1)-∞【答案】B【解析】若要使方程()0f x x a +-=即()f x x a =-+有且只有一个实数根, 则函数()y f x =的图象与直线y x a =-+有且仅有一个交点, 在同一坐标系中作出函数()y f x =及y x a =-+的图象,如图,数形结合可得,若函数()y f x =的图象与直线y x a =-+有且仅有一个交点, 则1a >,所以实数a 的取值范围为(1,)+∞.故选:B .考点2 函数性质的综合例2.(1)已知函数()f x 是定义在R 上的奇函数,()()22f x f x +=-,且()2,0x ∈-时,()()2log 31f x x =-+,则()2021f =( )A .4B .2log 7C .2D .-2【答案】D【解析】因为()()22f x f x +=-,所以函数()f x 是周期为4的周期函数, 则(2021)(50541)f f f =⨯+=(1)22(1)log (31)log 42f =--=-+=-=-,故选:D .(2)已知函数()13xbf x a a=--(0a >且1a ≠)是奇函数,且(1)2f =. ①求,a b 的值及()f x 的定义域;②设函数()()2g x kf x =-有零点,求常数k 的取值范围; ③若2(2)(3)0f t f t ++->,求t 的取值范围. 【答案】①3a =,6b =-, ()f x 的定义域为(,0)(0,)-∞+∞;②(2,0)(0,2)-;③(2,1)(1,2)--⋃.【解析】①由(1)2f = 得12ba =-又()f x 是奇函数, (1)(1)2f f ∴-=-=- 即233aba=-,注意到0a > 解得3a =,6b =- 2()131x f x =+- ,由310x -≠ 得0x ≠∴()f x 的定义域为(,0)(0,)-∞+∞②3,6a b ==-,∴31()()2231x x g x kf x k +=-=--()g x ∴有零点,即关于x 的方程312031x x k +-=-有实数解 ∴2(31)31x x k -=+ (0)x ≠有实数解 2(31)423131x x x-=-++ , 311x +>且312x +≠ ∴2(31)2231x x --<<+且2(31)031xx -≠+ ∴k 的取值范围是(2,0)(0,2)-③先证明函数2()131x f x =+-在(0,)+∞上单调递减 设0m n >>,则331m n >>31310m n ∴->->223131m n ∴<--,22113131m n+<+--即()()f m f n <∴函数2()131xf x =+-在(0,)+∞上单调递减 由2(2)(3||)0f t f t ++->得2(2)(3||)f t f t +>-- 又()f x 是奇函数2(2)(3||)f t f t ∴+> 223||t t ∴+< ∴1||2t <<所以t 的取值范围是(2,1)(1,2)--⋃【点睛】本题考查了奇函数的性质和单调性的应用以及函数的零点,考查了利用函数的单调性解不等式. 【跟踪演练】2.(1)设()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+,已知当02x <<时,1()21x f x -=+,则(2022)(2023)f f +=( )A .2B .2-C .1D .1-【答案】B【解析】根据题意,()f x 是定义域为(,)-∞+∞的奇函数,则()()f x f x -=-,且(0)0f =;又由(1)(1)f x f x -=+即有(2)()f x f x +=-,则(2)()f x f x +=-,进而得到(4)(2)()f x f x f x +=-+=,()f x 为周期为4的函数, 则(2022)(24505)(2)f f f =+⨯=(0)0f =-=,(2023)(12024)(1)(1)f f f f =-+=-=-,当02x <<时,1()21x f x -=+,则f (1)11212-=+=,则(2023)(1)f f =-2=-,故(2022)(2023)0(2)2f f +=+-=-,故选:B .(2)已知函数()f x 是定义在R 上的偶函数,且()00f =,当0x <时,()f x 单调递增.若实数a 满足()13a f f -+⎛> ⎝⎭,则a 的取值范围是( )A .31,22⎛⎫-- ⎪⎝⎭ B .31,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭C .42,33⎛⎫-- ⎪⎝⎭D .42,,33⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可知()f x 为偶函数,且在(),0-∞上单调递增,所以()f x 在()0,+∞上单调递减,所以()f x 的图象越靠近y 轴对应的函数值越大,因为()13a f f -+⎛> ⎝⎭,所以13a -+<,所以11233a -+-<, 所以112a -+<-,所以112a +>,所以31,,22a ⎛⎫⎛⎫∈-∞--+∞ ⎪⎪⎝⎭⎝⎭,故选:B . 【点睛】本题考查了利用函数的奇偶性和单调性求解抽象不等式的解集,常见利用函数性质求解抽象不等式的方法:(1)根据奇偶性分析出函数在对称区间上的单调性;(2)将关于函数值的不等式中的自变量通过奇偶性转变到同一单调区间内; (3)通过单调性得到自变量的大小关系,由此求解出不等式的解集.考点3 函数的极值与极值点个数例3.(1)已知函数()f x 的导函数()()()1f x a x x a '=+-,若()f x 在x a =处取得极大值,则实数a 的取值范围是( ) A .()1,0- B .()2,+∞C .()0,1D .(),3-∞-【答案】A【解析】由()f x 在x a =处取得极大值可知,当x a <时,()0f x '>;当x a >时,()0f x '<,其等价于①存在(),,b x b a ∀∈,使得(1)()0a x x a +->, 且②存在(),,c x a c ∀∈,使得(1)()0a x x a +-<;若0a >时,(1)()0a x x a +->的解集为(,1)(,)a -∞-⋃+∞,不满足②即不存在(,)x a c ∈,使得(1)()0a x x a +-<,故0a >时()f x 在x a =不是极大值;若10a -<<时,(1)()0a x x a +->的解集为(1,)a -,(1)()0a x x a +-<的解集为(,1)(,)a -∞-⋃+∞,满足①②,故10a -<<时,()f x 在x a =处取得极大值;若1a =-,(1)()a x x a +-恒小于等于0,不满足①,故1a =-时,()f x 在x a =取不到极大值;若1a <-时,(1)()0a x x a +->的解集为(,1)a -,不满足②,故1a <-时,()f x 在x a =处取不到极大值.综上,a 的取值范围是()1,0-.故选:A.【点睛】本题考查了利用导数极值求参数取值范围,其中求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4)检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值。
第五节 指数函数1.根式的性质 (1)(na )n=a .(2)当n 为奇数时,n a n=a . (3)当n 为偶数时,nan=|a |=⎩⎪⎨⎪⎧a a ≥0,-a a <0.(4)负数的偶次方根无意义. (5)零的任何次方根都等于零. 2.有理指数幂 (1)分数指数幂 ①正分数指数幂:a =na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂:a=1a m n=1na m(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质 ①a r·a s=ar +s(a >0,r ,s ∈Q );②(a r )s=a rs(a >0,r ,s ∈Q ); ③(ab )r =a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质图象a >10<a <1定义域 R 值域 (0,+∞) 性质过定点(0,1)当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1在R上是增函数在R上是减函数1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)4-44=-4.( )(2)(-1)=(-1)=-1.( )(3)函数y=2x-1是指数函数.( )(4)函数y=ax2+1(a>1)的值域是(0,+∞).( )[答案](1)×(2)×(3)×(4)×2.化简[(-2)6]-(-1)0的结果为( )A.-9 B.7C.-10 D.9B[原式=(26)-1=8-1=7.]3.函数y=a x-a(a>0,且a≠1)的图象可能是( )A B C DC[法一:令y=a x-a=0,得x=1,即函数图象必过定点(1,0),符合条件的只有选项C.法二:当a>1时,y=a x-a是由y=a x向下平移a个单位,且过(1,0),A,B,D都不合适;当0<a<1时,y=a x-a是由y=a x向下平移a个单位,因为0<a<1,故排除选项D.] 4.(教材改编)已知0.2m<0.2n,则m________n(填“>”或“<”).>[设f(x)=0.2x,f(x)为减函数,由已知f(m)<f(n),∴m>n.]5.指数函数y=(2-a)x在定义域内是减函数,则a的取值X围是________.【导学号:51062037】(1,2) [由题意知0<2-a<1,解得1<a<2.]指数幂的运算化简求值:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-(0.01)0.5;(2).[解] (1)原式=1+14×⎝ ⎛⎭⎪⎫49-⎝⎛⎭⎪⎫1100=1+14×23-110=1+16-110=1615.7分(2)原式==1a .15分[规律方法] 1.指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. [变式训练1] 化简求值: (1)(0.027)-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫279-(2-1)0; (2)56a ·b -2·(-3a b -1)÷(4a ·b -3).[解](1)原式=⎝ ⎛⎭⎪⎫271 000-72+⎝ ⎛⎭⎪⎫259-1 =103-49+53-1=-45.7分=-54·1ab 3=-5ab 4ab 2.15分指数函数的图象及应用(1)(2017·某某模拟)定义运算ab =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=12x的图象是( )(2)若曲线y =|2x-1|与直线y =b 有两个公共点,求b 的取值X 围. (1)A [(1)因为当x ≤0时,2x≤1; 当x >0时,2x>1. 则f (x )=12x =⎩⎪⎨⎪⎧2x,x ≤0,1,x >0,故选A.](2)曲线y =|2x-1|与直线y =b 的图象如图所示,由图象可得,如果曲线y =|2x-1|与直线y =b 有两个公共点,8分则b 的取值X 围是(0,1).15分[规律方法] 指数函数图象的画法(判断)及应用(1)画(判断)指数函数y =a x(a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a .(2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. [变式训练2] (1)函数f (x )=a x -b的图象如图251,其中a ,b 为常数,则下列结论正确的是( )图251A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)方程 2x=2-x的解的个数是________. 【导学号:51062038】(1)D(2)1 [(1)由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1,函数f(x)=a x-b的图象是在y=a x的基础上向左平移得到的,所以b<0.(2)方程的解可看作函数y=2x和y=2-x的图象交点的横坐标,分别作出这两个函数图象(如图).由图象得只有一个交点,因此该方程只有一个解.]指数函数的性质及应用☞角度1 比较指数式的大小(1)已知a=2,b=3,c=25,则( )A.b<a<c B.a<b<cC.b<c<a D.c<a<b(2)(2016·某某高考)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.( )A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b(1)A(2)B[(1)a=2=4,b=3,c=25=5.∵y=x在第一象限内为增函数,又5>4>3,∴c>a>b.(2)∵f(x)≥|x|,∴f(a)≥|a|.若f(a)≤|b|,则|a|≤|b|,A项错误.若f(a)≥|b|且f(a)≥|a|,无法推出a≥b,故C项错误.∵f(x)≥2x,∴f(a)≥2a.若f(a)≤2b,则2b≥2a,故b≥a,B项正确.若f(a)≥2b且f(a)≥2a,无法推出a≥b,故D项错误.故选B.]☞角度2 解简单的指数方程或不等式不等式2x 2-x <4的解集为______.{x |-1<x <2}()或-1,2[∵2x 2-x <4,∴2x 2-x <22,∴x 2-x <2,即x 2-x -2<0,∴-1<x <2.] ☞角度3 探究指数型函数的性质已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.[解] (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3=-(x +2)2+7, 则g (x )在区间(-∞,-2)上单调递增,2分在区间[-2,+∞)上单调递减,又函数y =⎝ ⎛⎭⎪⎫13x在R 上是减函数,因此f (x )的单调递增区间是[-2,+∞),单调递减区间是(-∞,-2).6分(2)由f (x )有最大值3知,ax 2-4x +3有最小值-1,则有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a=1.10分(3)由f (x )的值域是(0,+∞)知,ax 2-4x +3的值域为R ,则必有a =0.15分 [规律方法] 1.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.解简单的指数方程或不等式可先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.3.探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.易错警示:在研究指数型函数的单调性时,当底数a 与“1”的大小关系不确定时,要分类讨论.[思想与方法]1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较.[易错与防X]1.指数函数的单调性取决于底数a的大小,当底数a与1的大小关系不确定时应分0<a<1和a>1两种情况分类讨论.2.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.3.对可化为a2x+b·a x+c=0或a2x+b·a x+c≥0(≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的X围.课时分层训练(七) 指数函数A组基础达标(建议用时:30分钟)一、选择题1.函数f(x)=2|x-1|的大致图象是( )A B C DB [f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1.所以f (x )的图象在[1,+∞)上为增函数,在(-∞,1)上为减函数.]2.(2016·某某市一模)已知a =⎝ ⎛⎭⎪⎫35,b =⎝ ⎛⎭⎪⎫25,c =⎝ ⎛⎭⎪⎫25,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aD [∵y =⎝ ⎛⎭⎪⎫25x为减函数,35>25,∴b <c .又∵y =x 在(0,+∞)上为增函数,35>25,∴a >c ,∴b <c <a ,故选D.]3.已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2A [∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上, ∴x 1+x 2=0. 又∵f (x )=a x,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A.]4.函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]A [∵2x -x 2=-(x -1)2+1≤1,又y =⎝ ⎛⎭⎪⎫12t在R 上为减函数,∴y =⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12, 即值域为⎣⎢⎡⎭⎪⎫12,+∞.]5.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值X 围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C [当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值X 围是(-3,1).] 二、填空题 6.计算:=________. 【导学号:51062039】2 [原式==2.]7.已知函数f (x )=4+ax -1的图象恒过定点P ,则点P 的坐标是________.(1,5) [由f (1)=4+a 0=5知,点P 的坐标为(1,5).]8.已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f x ,x ≥0,f -x ,x <0,则函数g (x )的最小值是________. 【导学号:51062040】0 [当x ≥0时,g (x )=f (x )=2x-12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.] 三、解答题 9.求不等式a2x -7>a4x -1(a >0,且a ≠1)中x 的取值X 围.[解] 设y =a x(a >0且a ≠1), 若0<a <1,则y =a x为减函数, ∴a2x -7>a4x -1⇔2x -7<4x -1,解得x >-3;5分若a >1,则y =a x为增函数, ∴a2x -7>a4x -1⇔2x -7>4x -1,解得x <-3.10分综上,当0<a <1时,x 的取值X 围是(-3,+∞); 当a >1时,x 的取值X 围是(-∞,-3).15分 10.已知函数f (x )=12x -1+a 是奇函数.(1)求a 的值和函数f (x )的定义域; (2)解不等式f (-m 2+2m -1)+f (m 2+3)<0. [解] (1)因为函数f (x )=12x -1+a 是奇函数,所以f (-x )=-f (x ),即12-x -1+a =11-2x -a ,即1-a 2x +a 1-2x =a ·2x+1-a 1-2x,从而有1-a =a ,解得a =12.4分 又2x-1≠0,所以x ≠0,故函数f (x )的定义域为(-∞,0)∪(0,+∞).7分 (2)由f (-m 2+2m -1)+f (m 2+3)<0,得f (-m 2+2m -1)<-f (m 2+3),因为函数f (x )为奇函数,所以f (-m 2+2m -1)<f (-m 2-3).12分由(1)可知函数f (x )在(0,+∞)上是减函数,从而在(-∞,0)上是减函数,又-m 2+2m -1<0,-m 2-3<0,所以-m 2+2m -1>-m 2-3,解得m >-1,所以不等式的解集为(-1,+∞).15分B 组 能力提升 (建议用时:15分钟)1.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b =0.其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个B [函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x 的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得a <b <0或0<b <a 或a=b =0.故①②⑤可能成立,③④不可能成立.]2.(2017·某某十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e|x -2|},则f (x )的最小值为________. 【导学号:51062041】word 11 / 11 e [由于f (x )=max{e |x |,e |x -2|}=⎩⎪⎨⎪⎧ e x ,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )≥e,且当x =1时,取得最小值e ;当x <1时,f (x )>e.故f (x )的最小值为f (1)=e.]3.已知f (x )=⎝ ⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1). (1)讨论f (x )的奇偶性;(2)求a 的取值X 围,使f (x )>0在定义域上恒成立. 【导学号:51062042】[解] (1)由于a x -1≠0,则a x≠1,得x ≠0,∴函数f (x )的定义域为{x |x ≠0}.2分对于定义域内任意x ,有 f (-x )=⎝⎛⎭⎪⎫1a -x -1+12(-x )3 =⎝ ⎛⎭⎪⎫ax 1-a x +12(-x )3 =⎝ ⎛⎭⎪⎫-1-1a x -1+12(-x )3 =⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.8分(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况.当x >0时,要使f (x )>0,即⎝⎛⎭⎪⎫1a x -1+12x 3>0, 即1a x -1+12>0,即a x +12a x -1>0,12分 即a x -1>0,a x >1,a x >a 0.又∵x >0,∴a >1.因此a >1时,f (x )>0.15分。
第2讲 函数图象与性质函数及其表示 [核心提炼]1.函数的三要素定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题务必遵循“定义域优先”的原则.2.分段函数若函数在其定义域内,对于自变量的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[典型例题](1)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2B .4C .6D .8(2)设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)【解析】 (1)当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , 因为f (a )=f (a +1),所以a =2a , 解得a =14或a =0(舍去).所以f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a >1时,a +1>2,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , 所以2(a -1)=2a ,无解.当a =1时,a +1=2,f (1)=0,f (2)=2,不符合题意. 综上,f ⎝⎛⎭⎫1a =6.故选C.(2)因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的图象(如图所示),由于函数g (x )是二次函数,值域不会是选项A ,B ,易知,当g (x )的值域是[0,+∞)时,f (g (x ))的值域是[0,+∞).故选C.【答案】 (1)C (2)C(1)在求分段函数的函数值时,一定要注意自变量的值属于哪个区间,再代入相应的解析式求解.当自变量的值不确定时,要分类讨论.(2)对于分段函数,已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[对点训练]1.函数f (x )=ln (x +1)x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .[-1,2)∪(2,+∞)D .(-1,2)∪(2,+∞)解析:选D.要使f (x )=ln (x +1)x -2有意义,需使⎩⎪⎨⎪⎧x +1>0,x -2≠0,即⎩⎪⎨⎪⎧x >-1,x ≠2,所以函数f (x )的定义域为(-1,2)∪(2,+∞).故选D. 2.(2019·宁波市九校期末联考)已知下列各式: ①f (|x |+1)=x 2+1; ②f (1x 2+1)=x ;③f (x 2-2x )=|x |; ④f (|x |)=3x +3-x .其中存在函数f (x )对任意的x ∈R 都成立的是( ) A .①④ B .③④ C .①②D .①③解析:选A.①f (|x |+1)=x 2+1,由t =|x |+1(t ≥1),可得|x |=t -1,则f (t )=(t -1)2+1,即有f (x )=(x -1)2+1对x ∈R 均成立;②f (1x 2+1)=x ,令t =1x 2+1(0<t ≤1),x =±1t-1, 对0<t ≤1,y =f (t )不能构成函数,故不成立;③f (x 2-2x )=|x |,令t =x 2-2x ,若t <-1时,x ∈∅;t ≥-1,可得x =1±1+t (t ≥-1),y =f (t )不能构成函数;④f (|x |)=3x +3-x ,当x ≥0时,f (x )=3x +3-x ;当x <0时,f (-x )=3x +3-x ;将x 换为-x 可得f (x )=3x +3-x ;故恒成立.综上可得①④符合条件.函数的图象及应用[核心提炼]图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x ),y =-f (x ),y =-f (-x ),y =f (|x |),y =|f (x )|及y =af (x )+b 的相互关系.考向1 函数图象的变换与识别[典型例题](1)函数y =sin x 2的图象是( )(2)(2019·宁波九校模拟)已知函数f (x )=1x -ln x -1,则y =f (x )的图象大致为( )【解析】 (1)由于函数y =sin x 2是一个偶函数,选项A 、C 的图象都关于原点对称,所以不正确;选项B 与选项D 的图象都关于y 轴对称,在选项B 中,当x =±π2时,函数y =sin x 2<1,显然不正确,当x =±π2时,y =sin x 2=1,而π2<π2,故选D. (2)由于f (e)=1e -2>0,排除D.由于f (1e )=e >0,排除B.由于f (e 2)=1e 2-3<f (e),故函数在(1,+∞)为减函数,排除C ,所以选A.【答案】 (1)D (2)A 考向2 函数图象的应用[典型例题]已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值【解析】 由题意得,利用平移变换的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ), 故h (x )有最小值-1,无最大值. 【答案】 C(2)函数图象的应用 ①判断函数的性质.②判定方程根的个数及不等式的解.[对点训练]1.(2019·绍兴一中模拟)函数y =x 33x 4-1的图象大致是( )解析:选A.因为y =x 33x 4-1,所以函数y =x 33x 4-1是奇函数,图象关于原点对称,故排除C ;当x <-1时,恒有y <0,故排除D ;-1<x <0时,y >0,故可排除B ;故选A.2.(2019·鄞州高级中学月考)已知函数f (x )=⎩⎪⎨⎪⎧e |x -1|,x >0-x 2-2x +1,x ≤0,若关于f (x )的方程[f (x )]2-3f (x )+a =0(a ∈R )有8个不等的实数根,则a 的取值范围是( )A.⎝⎛⎭⎫0,14 B.⎝⎛⎭⎫13,3 C .(1,2)D.⎝⎛⎭⎫2,94 解析:选D.作出函数f (x )=⎩⎪⎨⎪⎧e |x -1|,x >0-x 2-2x +1,x ≤0的图象,如图所示:关于f (x )的方程[f (x )]2-3f (x )+a =0有8个不等的实数根,故Δ=9-4a >0,a <94,由函数f (x )图象可知f (x )∈(1,2),令t =f (x ),则方程[f (x )]2-3f (x )+a =0可化为a =-t 2+3t ,t ∈(1,2).a =-t 2+3t 表示开口向下,对称轴为直线t =32的抛物线,可知a 的最大值为-⎝⎛⎭⎫322+3×32=94, a 的最小值为2,故a ∈⎝⎛⎦⎤2,94.综上可知a ∈⎝⎛⎭⎫2,94.故选D.函数的性质及应用[核心提炼]1.函数的单调性单调性是函数的一个局部性质,一个函数在不同的区间上可以有不同的单调性.判断函数单调性常用定义法、图象法及导数法.2.函数的奇偶性函数的奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义区间上具有相同的单调性.判断函数奇偶性的常用方法有定义法、图象法及性质法.[典型例题](1)(2019·浙江吴越联盟)已知函数f (x )是R 上的奇函数,当x >0时为减函数,且f (2)=0,则集合{x |f (x -2)>0}=( )A .{x |0<x <2或x >4}B .{x |x <0或x >4}C .{x |0<x <2或x >2}D .{x |x <0或2<x <4}(2)设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.【解析】 (1)因为奇函数满足f (2)=0, 所以f (-2)=-f (2)=0.对于{x |f (x -2)>0},当x -2>0时,f (x -2)>0=f (2), 因为当x ∈(0,+∞)时,f (x )为减函数,所以0<x -2<2, 所以2<x <4;当x -2<0时,不等式可化为f (x -2)>0=f (-2), 因为当x ∈(0,+∞)时,f (x )为减函数, 所以函数f (x )在(-∞,0)上单调递减,所以x -2<-2,所以x <0.综上可得,不等式的解集为{x |x <0或2<x <4},故选D.(2)f (x )=1+2x +sin x x 2+1,令g (x )=2x +sin xx 2+1,则g (x )为奇函数,对于一个奇函数,其最大值与最小值之和为0,即g (x )max +g (x )min =0,而f (x )max =1+g (x )max ,f (x )min =1+g (x )min ,所以f (x )max +f (x )min =M +m =2.【答案】 (1)D (2)2(1)四招破解函数的单调性①对于选择、填空题,若能画出图象,一般用数形结合法;②对于由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数的单调性问题来解决;③对于解析式为分式、指数函数式、对数式等较复杂的函数常用导数法; ④对于抽象函数一般用定义法. (2)判断函数奇偶性的三个技巧①奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. ②确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. ③对于偶函数而言,有f (-x )=f (x )=f (|x |).[对点训练]1.(2019·宁波诺丁汉大学附中高三调研)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递减,若实数a 满足f (log 3a )+f (log 13a )≥2f (1),则a 的取值范围是( )A .(0,3]B .(0,13]C .[13,3]D .[1,3]解析:选C.由于函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),即有f (x )=f (|x |), 由实数a 满足f (log 3a )+f (log 13a )≥2f (1),则有f (log 3a )+f (-log 3a )≥2f (1), 即2f (log 3a )≥2f (1)即f (log 3a )≥f (1),即有f (|log 3a |)≥f (1),由于f (x )在区间[0,+∞)上单调递减, 则|log 3a |≤1,即有-1≤log 3a ≤1, 解得13≤a ≤3.2.(2019·绍兴、诸暨高考二模)已知f (x )是定义在R 上的单调递增函数,则下列四个命题:①若f (x 0)>x 0,则f [f (x 0)]>x 0;②若f [f (x 0)]>x 0,则f (x 0)>x 0;③若f (x )是奇函数,则f [f (x )]也是奇函数;④若f (x )是奇函数,则f (x 1)+f (x 2)=0⇔x 1+x 2=0,其中正确的有( )A .4个B .3个C .2个D .1个解析:选A.对于①,因为f (x )是定义在R 上的单调递增函数,若f (x 0)>x 0,则f [f (x 0)]>f (x 0)>x 0,故①正确;对于②,当f [f (x 0)]>x 0时,若f (x 0)≤x 0,由f (x )是定义在R 上的单调递增函数得f [f (x 0)]≤f (x 0)≤x 0与已知矛盾,故②正确;对于③,若f (x )是奇函数,则f [f (-x )]=f [-f (x )]=-f [f (x )],所以f [f (x )]也是奇函数,故③正确;对于④,当f (x )是奇函数,且是定义在R 上的单调递增函数时,若f (x 1)+f (x 2)=0,则f (x 1)=-f (x 2)⇒x 1=-x 2⇒x 1+x 2=0;若x 1+x 2=0⇒x 1=-x 2⇒f (x 1)=f (-x 2)=-f (x 2)⇒f (x 1)+f (x 2)=0,故④正确;故选A.专题强化训练1.(2019·金华十校调研)已知奇函数f (x )当x >0时,f (x )=x (1-x ),则当x <0时,f (x )的表达式是( )A .f (x )=-x (1+x )B .f (x )=-x (1-x )C .f (x )=x (1+x )D .f (x )=x (x -1)解析:选C.设x <0,则-x >0,又当x >0时,f (x )=x (1-x ),故f (-x )=-x (1+x ),又函数为奇函数,故f (-x )=-f (x )=-x (x +1),即f (x )=x (x +1),故选C.2.已知f (x )=x +1x -1,f (a )=2,则f (-a )=( )A .-4B .-2C .-1D .-3解析:选A.因为f (x )=x +1x -1,所以f (a )=a +1a -1=2,所以a +1a =3,所以f (-a )=-a-1a-1=-⎝⎛⎭⎫a +1a -1=-3-1=-4,故选A. 3.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选B.A 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.4.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D.14解析:选B.由题意得f (0)=0,所以a =2.因为g (1)=g (-1),所以ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b , 所以b =12,所以log a b =log 212=-1.5.(2019·台州市高考模拟)函数f (x )=x 2+a|x |(a ∈R )的图象不可能是( )解析:选A.直接利用排除法:①当a =0时,选项B 成立; ②当a =1时,f (x )=x 2+1|x |,函数的图象类似D ;③当a =-1时,f (x )=x 2-1|x |,函数的图象类似C.故选A.6.(2019·湖北八校联考(一))设函数f (x )=2xx -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M=( )A.23B.38C.32D.83解析:选D.易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83.7.(2018·高考全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:选B.法一:设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).故选B.法二:由题意知,对称轴上的点(1,0)既在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.8.(2019·浙江台州市书生中学高三月考)设奇函数f (x )在(0,+∞)上为单调递减函数,且f (2)=0,则不等式3f (-x )-2f (x )5x≤0的解集为( )A .(-∞,-2]∪(0,2]B .[-2,0)∪[2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,0)∪(0,2]解析:选D.因为函数f (x )是奇函数,所以3f (-x )-2f (x )5x ≤0⇔f (x )x ≥0.又因f (x )在(0,+∞)上为单调递减函数,且f (2)=0,所以得,函数f (x )在(-∞,0)上单调递减且f (-2)=0.因此,x ∈(-∞,-2)∪(0,2)时,f (x )>0;x ∈(-2,0)∪(2,+∞)时f (x )<0,故选D.9.(2019·温州市十校联考)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若任取∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-33,33解析:选B.因为当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x ≤a 2时,f (x )=12(a 2-x +2a 2-x -3a 2)=-x ;当a 2<x <2a 2时,f (x )=12(x -a 2+2a 2-x -3a 2)=-a 2;当x ≥2a 2时,f (x )=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f (x )=12(|x -a 2|+|x -2a 2|-3a 2)在x ≥0时的解析式等价于f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. 10.定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥118⎝⎛⎭⎫3t -t 恒成立,则实数t 的取值范围是( ) A .(-∞,-1]∪(0,3] B .(-∞,-3]∪(0,3] C .[-1,0)∪[3,+∞)D .[-3,0)∪[3,+∞)解析:选C.因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f (x )=x 2-2x ,所以f (x +4)=(x +4)2-2(x +4)=x 2+6x +8. 函数f (x )满足f (x +2)=3f (x ),所以f (x +4)=3f (x +2)=9f (x ). 故f (x )=19(x 2+6x +8),因为x ∈[-4,-2]时,f (x )≥118⎝⎛⎭⎫3t -t 恒成立,所以-19=f (x )min ≥118⎝⎛⎭⎫3t -t ,解得t ≥3或-1≤t <0.11.(2019·宁波镇海中学高三一模)已知函数f (x )=⎩⎪⎨⎪⎧(12)x -2,x ≤-1,(x -2)(|x |-1),x >-1.则f (f (-2))=________,若f (x )≥2,则x 的取值范围为____________.解析:由分段函数的表达式得f (-2)=(12)-2-2=4-2=2,f (2)=0,故f (f (-2))=0.若x ≤-1,由f (x )≥2得(12)x -2≥2得(12)x ≥4,则2-x ≥4,得-x ≥2,则x ≤-2,此时x ≤-2. 若x >-1,由f (x )≥2得(x -2)(|x |-1)≥2, 即x |x |-x -2|x |≥0,若x ≥0得x 2-3x ≥0,则x ≥3或x ≤0,此时x ≥3或x =0, 若x <0,得-x 2+x ≥0,得x 2-x ≤0,得0≤x ≤1,此时无解, 综上x ≥3或x =0. 答案:0 x ≥3或x =012.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解析:因为 f (-3)=lg[(-3)2+1]=lg 10=1, 所以f (f (-3))=f (1)=1+2-3=0. 当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立, 此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:0 22-313.(2019·浙江新高考冲刺卷)已知函数f (x )=ln(e 2x +1)-mx 为偶函数,其中e 为自然对数的底数,则m =________,若a 2+ab +4b 2≤m ,则ab 的取值范围是________.解析:由题意,f (-x )=ln(e -2x +1)+mx =ln(e 2x +1)-mx , 所以2mx =ln(e 2x +1)-ln(e -2x +1)=2x , 所以m =1,因为a 2+ab +4b 2≤m , 所以4|ab |+ab ≤1, 所以-13≤ab ≤15,故答案为1,[-13,15].答案:1 [-13,15]14.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6].故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6]15.已知函数h (x )(x ≠0)为偶函数,且当x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4,若h (t )>h (2),则实数t 的取值范围为________.解析:因为x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4.易知函数h (x )在(0,+∞)上单调递减, 因为函数h (x )(x ≠0)为偶函数,且h (t )>h (2), 所以h (|t |)>h (2), 所以0<|t |<2,所以⎩⎪⎨⎪⎧t ≠0,|t |<2,即⎩⎪⎨⎪⎧t ≠0,-2<t <2,解得-2<t <0或0<t <2.综上,所求实数t 的取值范围为(-2,0)∪(0,2). 答案:(-2,0)∪(0,2)16.若对任意的x ≥2,都有(x +a )|x +a |+(ax )|x |≤0,则a 的最大值为________. 解析:对任意的x ≥2,都有(x +a )|x +a |+(ax )|x |≤0,即x ≥2时,(x +a )|x +a |+(ax )x ≤0恒成立.①若x +a ≥0,即a ≥-2时,则有(x +a )2+ax 2≤0, 所以(a +1)x 2+2ax +a 2≤0.令f (x )=(a +1)x 2+2ax +a 2,则有a +1=0或⎩⎨⎧a +1<0-2a2(a +1)<2f (2)=4(a +1)+4a +a 2≤0,求得a =-1或-4-23≤a <-1, 综合可得-2≤a ≤-1;②若x +a <0,即a <-2时,则有-(x +a )2+ax 2≤0, 该不等式恒成立,即此时a 的范围为a <-2;③若x +a =0,即a =-x ≤-2时,则由题意可得ax 2≤0,满足条件. 综合①②③可得,a ≤-2或-2≤a ≤-1,故a 的最大值为-1. 答案:-117.(2019·台州模拟)定义min{x ,y }=⎩⎪⎨⎪⎧x (x <y )y (x ≥y ),则不等式min{x +4x ,4}≥8min{x ,1x }的解集是________.解析:①当x >0时,由基本不等式可知x +4x ≥2x +4x=4, min{x +4x ,4}=4,则不等式转化成:min{x ,1x }≤12,即:⎩⎨⎧x ≤121x ≥12或⎩⎨⎧x ≥121x ≤12,解得:x ≤12或x ≥2.②当x <0时,(ⅰ)当-1<x <0时,1x <x ,原不等式化为x +4x ≥8x ,即x -4x ≥0,解得-2≤x <0,所以-1<x <0;(ⅱ)当x ≤-1时,1x ≥x ,原不等式化为x +4x ≥8x ,即7x -4x≤0,解得:x ≤-47,即x ≤-1,所以x <0对于原不等式全成立.综上不等式的解集为(-∞,0)∪(0,12]∪[2,+∞).答案:(-∞,0)∪(0,12]∪[2,+∞)18.(2019·台州市教学质量调研)已知函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称.(1)求f (x )的解析式;(2)若m <3,求函数f (x )在区间[m ,3]上的值域.解:(1)因为函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称,所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0, 所以f (x )=x 2-2x .(2)当1≤m <3时,f (x )min =f (m )=m 2-2m , f (x )max =f (3)=9-6=3, 所以f (x )的值域为[m 2-2m ,3];当-1≤m <1时,f (x )min =f (1)=1-2=-1, f (x )max =f (-1)=1+2=3, 所以f (x )的值域为[-1,3].当m <-1时,f (x )min =f (1)=1-2=-1, f (x )max =f (m )=m 2-2m ,所以f (x )的值域为[-1,m 2-2m ].19.(2019·浙江新高考联盟第三次联考)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +a 2+1,x ≤0,x 2+2x -a ,x >0.(1)若对于任意的x ∈R ,都有f (x )≥f (0)成立,求实数a 的取值范围; (2)记函数f (x )的最小值为M (a ),解关于实数a 的不等式M (a -2)<M (a ). 解:(1)当x ≤0时,f (x )=(x -a )2+1,因为f (x )≥f (0),所以f (x )在(-∞,0]上单调递减,所以a ≥0,当x >0时,f ′(x )=2x -2x 2,令2x -2x 2=0得x =1,所以当0<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以f min (x )=f (1)=3-a , 因为f (x )≥f (0)=a 2+1,所以3-a ≥a 2+1,解得-2≤a ≤1. 又a ≥0,所以a 的取值范围是[0,1].(2)由(1)可知当a ≥0时,f (x )在(-∞,0]上的最小值为f (0)=a 2+1, 当a <0时,f (x )在(-∞,0]上的最小值为f (a )=1, f (x )在(0,+∞)上的最小值为f (1)=3-a ,解不等式组⎩⎨⎧a 2+1≤3-aa ≥0得0≤a ≤1,解不等式组⎩⎪⎨⎪⎧1≤3-aa <0得a <0,所以M (a )=⎩⎪⎨⎪⎧a 2+1,0≤a ≤11,a <03-a ,a ≥1.所以M (a )在(-∞,0)上为常数函数,在(0,1)上是增函数,在(1,+∞)上是减函数, 作出M (a )的函数图象如图所示:令3-a=1得a=2,因为M(a-2)<M(a),所以0<a<2.。
第1讲 高考客观题的解法1.在“限时”的高考考试中,解答选择题不但要“准”,更要“快”,只有“快”,才能为后面的解答题留下充足的时间.而要做到“快”,必然要追求“巧”,“巧”即“不择手段、多快好省”.由于数学选择题是四选一的形式,因而在解答时应突出一个“选”字,要充分利用题干和选项两方面提供的信息,尽量减少书写解题过程,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速解答.一般来说,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法的,就不必采用直接法;对于明显可以否定的选项应及早排除,以缩小选择的范围;初选后要认真检验,确保准确.2.数学填空题只要求写出结果,不要求写出计算和推理过程,其结果必须是数值准确、形式规范、表达式(数)最简.解题时,要有合理地分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整.合情推理、优化思路、少算多思是快速、准确地解答填空题的基本要求.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.求解填空题的基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊化法、数形结合法、等价转化法等.技法一 直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论.涉及概念、性质的辨析或运算较简单的题目常用直接法.[典型例题](1)(2019·杭州市学军中学高考模拟)⎝⎛⎭⎫x +1x n展开式中所有奇数项的系数之和为 1024,则展开式中各项系数的最大值是( )A .790B .680C .462D .330(2)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________. 【解析】 (1)由题意可得2n -1=1 024,即得n =11,则展开式中各项系数的最大值是C 511或C 611,则C 511=11×10×9×8×75×4×3×2×1=462,故选C.(2)由于2cos 2x +sin 2x =1+cos 2x +sin 2x =2sin(2x +π4)+1,所以A =2,b =1.【答案】 (1)C (2)2 1直接法是解决选择题,填空题最基本的方法,直接法适用范围较广.在计算过程中,要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解问题的关键.[对点训练]1.(2018·高考浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A .1+iB .1-iC .-1+iD .-1-i 解析:选B.因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i的共轭复数为1-i.故选B.2.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3;b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2,所以a 2b 2=1.答案:1技法二 特例法当已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.[典型例题](1)若函数f (x )=x 2+ ax +b 在区间[0, 1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(2)已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D.13【解析】 (1)因为最值在f (0)=b ,f (1)=1+a +b ,f (-a 2)=b -a 24中取,所以最值之差一定与b 无关,故选B.(2)由于直线PQ 是过点E 的一条“动”直线,所以结果必然是一个定值.故可利用特殊直线确定所求值.法一:如图1,令PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时,m =n =23,故1m +1n=3.故选A.法二:如图2,直线BE 与直线PQ 重合,此时,AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n=3.故选A.【答案】 (1)B (2)A特例法具有简化运算和推理的优点,比较适用于题目中含有字母或具有一般性结论的选择题或填空题,但用特例法解题时,要注意以下几点:第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解;第三,对于开放性的问题或者有多种答案的填空题,不能使用该种方法求解.[对点训练]如图,点P 为椭圆x 225+y 29=1上第一象限内的任意一点,过椭圆的右项点A 、上顶点B 分别作y 轴、x 轴的平行线,它们相交于点C ,过点P 引BC ,AC 的平行线交AC 于点N ,交BC 于点M ,交AB 于D 、E 两点,记矩形PMCN 的面积为S 1,三角形PDE 的面积为S 2,则S 1∶S 2=( )A .1B .2 C.12 D.13解析:选A.不妨取点P ⎝⎛⎭⎫4,95, 则可计算S 1=⎝⎛⎭⎫3-95×(5-4)=65, 由题易得PD =2,PE =65,所以S 2=12×2×65=65,所以S 1∶S 2=1. 技法三 图解法对于一些含有几何背景的问题,若能“数中思形”“以形助数”,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果.V enn 图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.[典型例题](1)如图,已知正四面体D -ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CRRA =2.分别记二面角D -PR -Q ,D PQ R ,D QR P 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α(2)(2019·宁波高考模拟)定义max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b b ,a <b,已知函数f (x )=max{|2x -1|,ax 2+b },其中a <0,b ∈R ,若f (0)=b ,则实数b 的范围为________,若f (x )的最小值为1,则a +b =________.【解析】 (1)如图1,设O 是点D 在底面ABC 内的射影,过O 作OE ⊥PR ,OF ⊥PQ ,OG ⊥RQ ,垂足分别为E ,F ,G ,连接ED ,FD ,GD ,易得ED ⊥PR ,所以∠OED 就是二面角D -PR -Q 的平面角,所以α=∠OED ,tan α=OD OE ,同理tan β=OD OF ,tan γ=ODOG.底面的平面图如图2所示,以P 为原点建立平面直角坐标系,不妨设AB =2,则A (-1,0),B (1,0),C (0,3),O ⎝⎛⎭⎫0,33,因为AP =PB ,BQ QC =CR RA =2,所以Q ⎝⎛⎭⎫13,233,R ⎝⎛⎭⎫-23,33,则直线RP 的方程为y =-32x ,直线PQ 的方程为y =23x ,直线RQ 的方程为y =33x +539,根据点到直线的距离公式,知OE =22121,OF =3939,OG =13,所以OE >OG >OF ,所以tan α<tan γ<tan β,又α,β,γ为锐角,所以α<γ<β,故选B.(2)因为f(0)=max{1,b}=b,所以b≥1;作出y=|2x-1|与y=ax2+b的函数图象,如图所示:因为f(x)的最小值为1,所以y=ax2+b恰好经过点(1,1),所以a+b=1.【答案】(1)B(2)[1,+∞) 1图解法实质上就是数形结合的思想方法在解题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.[对点训练]a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b 都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)解析:由题意知,a,b,AC三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC=1,AB=2,斜边AB以直线AC为旋转轴旋转,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆.以C 为坐标原点,以CD →的方向为x 轴正方向,CB →的方向为y 轴正方向,CA →的方向为z 轴正方向建立空间直角坐标系.则D (1,0,0),A (0,0,1),直线a 的单位方向向量a =(0,1,0),|a |=1. B 点起始坐标为(0,1,0),直线b 的单位方向向量b =(1,0,0),|b |=1. 设B 点在运动过程中的坐标B ′(cos θ,sin θ,0), 其中θ为CB ′→与CD →的夹角,θ∈[0,2π).那么AB ′在运动过程中的向量AB ′→=(cos θ,sin θ,-1),|AB ′→|= 2.设直线AB ′与a 所成的夹角为α∈⎣⎢⎡⎦⎥⎤0,π2,cos α=|(cos θ,sin θ,-1)·(0,1,0)||a ||AB ′→|=22|sin θ|∈⎣⎡⎦⎤0,22.故α∈⎣⎢⎡⎦⎥⎤π4,π2,所以③正确,④错误.设直线AB ′与b 所成的夹角为β,则β∈⎣⎢⎡⎦⎥⎤0,π2,cos β=|AB ′→·b ||b ||AB ′→|=|(cos θ,sin θ,-1)·(1,0,0)||b ||AB ′→|=22|cos θ|.当AB ′与a 成60°角时,α=π3,|sin θ|=2cos α=2cos π3=2×12=22.因为cos 2θ+sin 2θ=1, 所以|cos θ|=22. 所以cos β=22|cos θ|=12. 因为β∈⎣⎡⎦⎤0,π2,所以β=π3,此时AB ′与b 成60°角.所以②正确,①错误. 答案:②③ 技法四 构造法用构造法解题的关键是由条件和结论的特殊性构造出数学模型,从而简化推导与运算过程.构造法是建立在观察联想、分析综合的基础之上的,首先应观察题目,观察已知(例如代数式)形式上的特点,然后积极调动思维,联想、类比已学过的知识及各种数学结构、数学模型,深刻地了解问题及问题的背景(几何背景、代数背景),从而构造几何、函数、向量等具体的数学模型,达到快速解题的目的.[典型例题](1)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图所示,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A.12 B .-12C.32D .-32(2)已知m ,n ∈(2,e),且1n 2-1m 2<ln mn ,则( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定【解析】 (1)由题意,可补成正方体,如图,异面直线AC 与BD 所成角就是ED 与BD 所成角,而△BDE 为等边三角形,所以ED 与BD 所成角为π3,cos π3=12.故选A. (2)由不等式可得1n 2-1m 2<ln m -ln n ,即1n 2+ln n <1m 2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增.因为f (n )<f (m ),所以n <m .故选A.【答案】 (1)A (2)A构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向.一般通过构造新的函数、不等式或数列等新的模型将问题转化为自己熟悉的问题.在立体几何中,补形构造是最为常用的解题技巧.通过补形能将一般几何体的有关问题在特殊的几何体中求解,如将三棱锥补成特殊的长方体等.[对点训练]1.设函数f (x )的导函数为f ′(x ),且对任意x ∈R 都有f ′(x )>f (x )成立,则( ) A .3f (ln 2)>2f (ln 3) B .3f (ln 2)=2f (ln 3) C .3f (ln 2)<2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小关系不确定解析:选C.令g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x e 2x =f ′(x )-f (x )e x.因为对任意x ∈R 都有f ′(x )>f (x )成立,所以g ′(x )>0,即g (x )在R 上单调递增.又ln 2<ln 3,所以g (ln 2)<g (ln 3),即f (ln 2)e ln 2<f (ln 3)e ln 3,即f (ln 2)2<f (ln 3)3,所以3f (ln 2)<2f (ln 3).故选C.2.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:因为a n +1=2S n +1,所以S n +1-S n =2S n +1, 所以S n +1=3S n +1,所以S n +1+12=3⎝⎛⎭⎫S n +12, 所以数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,所以S 2+12S 1+12=3.又S 2=4,所以S 1=1,所以a 1=1,所以S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432, 所以S 5=121. 答案:1 121 技法五 排除法排除法也叫筛选法、淘汰法,此法适用于选择题,它是充分利用选择题的特征,即有且只有一个正确的选项,通过分析、推理、计算、判断,排除不符合要求的选择支,从而得出正确结论的一种方法.[典型例题](2018·高考浙江卷)函数y =2|x |sin 2x 的图象可能是( )【解析】 设f (x )=2|x |sin 2x ,其定义域关于坐标原点对称,又f (-x )=2|-x |·sin(-2x )=-f (x ),所以y =f (x )是奇函数,故排除选项A ,B ;令f (x )=0,所以sin 2x =0,所以2x =k π(k ∈Z ),所以x =k π2(k ∈Z ),故排除选项C.故选D.【答案】 D排除法适用于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,在近几年高考选择题中占有很大的比重.[对点训练]1.若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1b C .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b2a解析:选B.根据题意,令a =2,b =12进行验证,易知a +1b =4,b 2a =18,log 2(a +b )=log 252>1,因此a +1b >log 2(a +b )>b2a .2.(2019·汕头一模)已知关于x 的不等式kx 2-6kx +k +8≥0对任意的x ∈R 恒成立,则实数k 的取值范围是( )A .[0,1]B .(0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)解析:选A.k =0时,8≥0,满足条件,排除B 、C ,当k =2时,不等式变为x 2-6x +5≥0,即x ≥5或x ≤1不满足条件,排除D.技法六 估值法估值法就是不需要计算出代数式的准确数值,通过估计其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要详细的过程,因此可以猜测、合情推理、估算而获得,从而减少运算量.[典型例题]如图,在多面体ABCDEF 中,已知四边形ABCD 是边长为3的正方形,EF ∥AB ,EF =32,EF 与平面AC 的距离为2,则该多面体的体积为( )A.92 B .5 C .6D.152【解析】 该多面体体积直接求比较困难,可连接BE 、CE ,原体积转化为四棱锥E -ABCD 和三棱锥E -BCF 的体积之和,而V E ABCD =6,故由局部估算出整体,原多面体体积大于6,只有D 符合.故选D.【答案】 D对于选项是数值的选择题,可以通过估计所要计算值的范围来确定唯一的正确选项. 有些问题,属于比较大小或者确定位置的问题,我们只要对数值进行估算,或者对位置进行估计,就可以避免因为精确计算或严格推演而浪费时间.[对点训练]某班设计了一个八边形的班徽(如图所示),它由四个腰长为1,顶角为α的等腰三角形和一个正方形组成,则该八边形的面积为( )A .2sin α-2cos α+2B .sin α-3cos α+3C .3sin α-3cos α+1D .2sin α-cos α+1解析:选A.当顶角α→π时,八边形几乎是边长为2的正方形,面积接近于4,四个选项中,只有A 符合,故选A.专题强化训练 [基础达标]1.(2019·宁波高考模拟)已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =( )A .{2,4,6}B .{1,3,5}C .{0,2,4,6}D .{x ∈Z |0≤x ≤6}解析:选C.因为全集U =A ∪B ={x ∈Z |0≤x ≤6}={0,1,2,3,4,5,6},A ∩(∁U B )={1,3,5},所以B ={0,2,4,6},故选C.2.复数z 满足(1+i)z =|3-i|,则z =( ) A .1+i B .1-i C .-1-iD .-1+i解析:选A.由题意知:(1+i)z =2,设z =a +b i , 则(1+i)z =(1+i)(a +b i)=(a -b )+(a +b )i ,所以⎩⎪⎨⎪⎧a +b =0,a -b =2,解得a =1,b =-1,故z =1+i ,故选A.3.(2019·温州市高考数学模拟)已知数列{a n }是递增数列,且满足a n +1=f (a n ),a 1∈(0,1),则f (x )不可能是( )A .f (x )=x B .f (x )=2x -1 C .f (x )=2x -x 2D .f (x )=log 2(x +1)解析:选B.对于A :因为a 1∈(0,1),所以a n +1=a n >a n ,可得数列{a n }是递增数列;对于B :因为a 1∈(0,1),不妨取a 1=12,则a 2=212-1=2-1<12,因此数列{a n }不是递增数列;对于C :f (x )=2x -x 2,令2x -x 2≥0,解得0≤x ≤2.由f (x )=2x -x 2=1-(x -1)2,可知:当0≤x ≤1时,函数f (x )单调递增;当1≤x ≤2时,函数f (x )单调递减.因为a 1∈(0,1),所以数列{a n }是递增数列;对于D :画出图象y =log 2(x +1),y =x ,可知:在x ∈(0,1)时,log 2(x +1)>x ,所以a n +1=log 2(a n +1)>a n ,因此数列{a n }是递增数列.故选B.4.已知点x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0x -2y +4≥0,x -2≤0则z =3x +y 的最大值与最小值之差为 ( )A .5B .6C .7D .8解析:选C.作出约束条件⎩⎪⎨⎪⎧x +y -2≥0x -2y +4≥0x -2≤0对应的平面区域如图中阴影部分所示,作出直线y =-3x 并平移知,当直线经过点A 时,z 取得最大值,当直线经过点B 时,z 取得最小值,由⎩⎪⎨⎪⎧x =2x -2y +4=0,得⎩⎪⎨⎪⎧x =2y =3,即A (2,3),故z max =9.由⎩⎪⎨⎪⎧x -2y +4=0x +y -2=0,得⎩⎪⎨⎪⎧x =0y =2,即B (0,2),故z min =2,故z 的最大值与最小值之差为7,选C.5.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( )A .n (3n -1) B.n (n +3)2C .n (n +1)D.n (3n +1)2解析:选C.依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1).6.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2D .3解析:选C.由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2. 7.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:选B.函数的定义域为(-∞,0)∪(0,+∞), 且f ⎝⎛⎭⎫12=cos 12log 2⎪⎪⎪⎪12=-cos 12, f ⎝⎛⎭⎫-12=cos ⎝⎛⎭⎫-12·log 2⎪⎪⎪⎪-12=-cos 12, 所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫12,排除A 、D , 又f ⎝⎛⎭⎫12=-cos 12<0,故排除C.综上,选B. 8.(2019·嘉兴市高三期末)已知圆C 1:x 2+y 2-2ax +a 2-1=0和圆C 2:x 2+y 2-2by +b 2-4=0恰有三条公共切线,则(a -3)2+(b -4)2的最小值为( )A .1+ 2B .2C .3- 2D .4解析:选B.圆C 1的圆心为C 1(a ,0),半径为r 1=1, 圆C 2的圆心为C 2(0,b ),半径为r 2=2,因为两圆有三条公共切线,所以两圆外切. 所以a 2+b 2=3,所以点(a ,b )在半径为3的圆x 2+y 2=9上. 而(a -3)2+(b -4)2表示点(a ,b )到点(3,4)的距离. 所以(a -3)2+(b -4)2的最小值为32+42-3=2.故选B.9.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:选C.由三视图可知该几何体是由如图所示的直三棱柱ABC A 1B 1C 1截掉一个三棱锥D A 1B 1C 1得到的,其中AC =4,BC =3,AA 1=5,AD =2, BC ⊥AC ,S △A 1B 1C 1=12×4×3=6,所以该几何体的体积V =S △A 1B 1C 1·AA 1- 13S △A 1B 1C 1·DA 1=6×5-13×6×3=24. 10.(2019·台州模拟)在平面直角坐标系xOy 中,已知直线l :x +y +a =0与点A (0,2),若直线l 上存在点M 满足|MA |2+|MO |2=10(O 为坐标原点),则实数a 的取值范围是( )A .(-5-1,5-1)B .[-5-1,5-1]C .(-22-1,22-1)D .[-22-1,22-1]解析:选D.设M (x ,y ),因为|MA |2+|MO |2=10,所以x 2+(y -2)2+x 2+y 2=10,即x 2+(y -1)2=4,由于点M 在直线l 上,所以直线x +y +a =0与圆x 2+(y -1)2=4相交或相切时满足题意,即|1+a |2≤2,解得-22-1≤a ≤22-1.11.设函数f (x )=2sin ⎝⎛⎭⎫2x +π4,则函数f (x )的最小正周期为________,单调递增区间为________.解析:函数f (x )的最小正周期为2π2=π,由2x +π4∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2kπ得x ∈⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π,k ∈Z ,即f (x )的增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π,k ∈Z .答案:π ⎣⎡⎦⎤-3π8+k π,π8+k π,k ∈Z12.(2019·金丽衢十二校高三联考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是________cm 3,表面积为________cm 2.解析:根据三视图可知,该几何体为如图所示三棱锥P -ABC ,所以其体积V =13Sh =13×12×4×3×1=233,表面积S =12×4×3+12×4×1+12×2×2+12×23×2=4+23+ 6.答案:2334+23+ 613.(2019·河南八市重点高中质检)已知直线l 1与直线l 2:4x -3y +1=0垂直且与圆C :x 2+y 2=-2y +3相切,则直线l 1的方程是________.解析:由题可得,圆C 的标准方程为x 2+(y +1)2=4,其圆心为(0,-1),半径r =2.设直线l 1的方程为3x +4y +c =0,则|3×0+4×(-1)+c |32+42=2,解得c =14或c =-6.故直线l 1的方程为3x +4y +14=0或3x +4y -6=0.答案:3x +4y +14=0或3x +4y -6=014.对于任意两个正实数a ,b ,定义a *b =λ×a b .其中常数λ∈⎝⎛⎭⎫1,62,若8*3=3,则λ=________;若a ≥b >0,a *b 与b *a 都是集合{x |x =n2,n ∈Z }中的元素,则a *b =________.解析:由8*3=3得λ×83=3⇒λ=98;λ×a b =m 2,λ×b a =n 2(m ,n ∈Z ,m >n )⇒λ2=mn 4∈⎝⎛⎭⎫1,32⇒mn =5⇒m =5,n =1, 所以a *b =52.答案:98 5215.已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是__________.解析:函数f (x )的大致图象如图所示,根据题意知只要m >4m -m 2即可,又m >0,解得m >3,故实数m 的取值范围是(3,+∞).答案:(3,+∞)16.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是________.解析:若在[-1,1]内不存在c 满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0,即⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32.解得p ≤-3或p ≥32,取补集得-3<p <32,即满足题意的实数p 的取值范围是⎝⎛⎭⎫-3,32. 答案:⎝⎛⎭⎫-3,32 17.小明和爸爸妈妈、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与小明相邻,则不同的坐法种数为________.解析:根据题意,分3种情况讨论:①若小明的父母中只有1人与小明相邻且父母不相邻时, 先在其父母中选一人与小明相邻,有C 12=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A 22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A 22×A 23=12种安排方法,此时有2×2×12=48种不同坐法;②若小明的父母中只有1人与小明相邻且父母相邻时, 将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A 33=6种情况, 此时有2×2×6=24种不同坐法;③小明的父母都与小明相邻,即小明在中间,父母在两边, 将3人看成一个整体,考虑父母的顺序,有A 22=2种情况, 将这个整体与爷爷奶奶进行全排列,有A 33=6种情况, 此时,共有2×6=12种不同坐法; 则一共有48+24+12=84种不同坐法. 答案:84[能力提升]1.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1b B .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |解析:选C.取a =1,b =-1,排除A ,B ;取c =0,排除D ,故选C.2.(2019·金华市东阳二中高三调研)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞)D .(-∞,-1)解析:选A.由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝⎛⎭⎫-235,+∞. 3.(2019·杭州市学军中学模拟)已知q 是等比数列{a n }的公比,则“q <1”是“数列{a n }是递减数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选D.数列-8,-4,-2,…,该数列是公比q =-4-8=12<1的等比数列,但该数列是递增数列,所以,由等比数列{a n }的公比q <1,不能得出数列{a n }是递减数列;而数列-1,-2,-4,-8,…,是递减数列,但其公比q =-2-1>1,所以,由数列{a n }是递减数列,不能得出其公比q <1.所以,“q <1”是“等比数列{a n }是递减数列”的既不充分也不必要条件.故选D. 4.当a >0时,函数f (x )=(x 2+2ax )e x 的图象大致是( )解析:选B.由f (x )=0,得x 2+2ax =0,解得x =0或x =-2a ,因为a >0,所以x =-2a <0,故排除A ,C ;当x 趋向于-∞时,e x 趋向于0,故f (x )趋向于0,排除D.5.已知正实数a ,b 满足a 2-b +4≤0,则u =2a +3b a +b ( )A .有最大值为145B .有最小值为145C .没有最小值D .有最大值为3解析:选B.因为a 2-b +4≤0,所以b ≥a 2+4,a ,b >0.所以a +b ≥a 2+a +4, 所以a a +b ≤a a 2+a +4,所以-a a +b ≥-a a 2+a +4, 所以u =2a +3b a +b =3-a a +b ≥3-a a 2+a +4=3-1a +4a +1≥3-12a ·4a+1=145,当且仅当a =2,b =8时取等号.故选B.6.(2019·瑞安四校联考)已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA→|OA →|,b =OB →|OB →|,OP →=a +2b ,则P A →·PB →的最大值为( ) A .1 B .2 C .3D .4解析:选A.以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,建立直角坐标系. 设A (m ,0),B (0,n ),则a =(1,0), b =(0,1),OP →=a +2b =(1,2), P A →=(m -1,-2),PB →=(-1,n -2),Rt △AOB 的面积为1,即有mn =2,则P A →·PB →=1-m -2(n -2)=5-(m +2n )≤5-22mn =5-2×2=1,当且仅当m =2n =2时,取得最大值1.7.(2019·绍兴一中高三期中)到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为( )A .相交直线B .双曲线C .抛物线D .椭圆弧解析:选C.如图所示,建立坐标系,不妨设两条互相垂直的异面直线为OA ,BC ,设OB =a ,P (x ,y ,z )到直线OA ,BC 的距离相等,所以x 2+z 2=(x -a )2+y 2,所以2ax -y 2+z 2-a 2=0,若被平面xOy 所截,则z =0,y 2=2ax -a 2;若被平面xOz 所截,则y =0,z 2=-2ax +a 2,故选C.8.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同分配方案的种数为( )A .50B .80C .120D .140解析:选B.根据题意,分2种情况讨论:①甲组有2人,首先选2个放到甲组,共有C 25=10种结果,再把剩下的3个人放到乙和丙两个位置,每组至少一人,共有C 23A 22=6种结果,所以根据分步乘法计数原理知共有10×6=60种结果,②当甲中有三个人时,有C 35A 22=20种结果,所以共有60+20=80种结果,故选B. 9.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞) C.⎣⎡⎭⎫-94,+∞ D.⎣⎡⎦⎤-94,0∪(2,+∞) 解析:选D.由x <g (x )得x <x 2-2, 所以x <-1或x >2; 由x ≥g (x )得x ≥x 2-2, 所以-1≤x ≤2.所以f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.即f (x )=⎩⎨⎧⎝⎛⎭⎫x +122+74,x <-1或x >2,⎝⎛⎭⎫x -122-94,-1≤x ≤2.当x <-1时,f (x )>2;当x >2时,f (x )>8.所以当x ∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞).当-1≤x ≤2时,-94≤f (x )≤0.所以当x ∈[-1,2]时,函数的值域为⎣⎡⎦⎤-94,0. 综上可得f (x )的值域是⎣⎡⎦⎤-94,0∪(2,+∞). 10.已知定义在(0,+∞)上的函数f (x )的导函数f ′(x )满足xf ′(x )+f (x )=ln x x ,且f (e)=1e ,其中e 为自然对数的底数,则不等式f (x )+e>x +1e的解集是( )A.⎝⎛⎭⎫0,1e B .(0,e) C.⎝⎛⎭⎫1e ,eD.⎝⎛⎭⎫1e ,+∞ 解析:选B.根据题意,令g (x )=xf (x ), 则有g ′(x )=[xf (x )]′=xf ′(x )+f (x )=ln x x ,则g (x )=12(ln x )2+C ,即xf (x )=12(ln x )2+C ,则有f (x )=12x (ln x )2+Cx,又由f (e)=1e ,即f (e)=12e +C e =1e ,解可得C =12,故f (x )=12x (ln x )2+12x ,令h (x )=f (x )-x ,则h ′(x )=f ′(x )-1=-(ln x +1)22x 2-1<0,故函数h (x )=f (x )-x 在(0,+∞)上递减, 不等式f (x )+e>x +1e ,即f (x )-x >1e -e =f (e)-e ,则有0<x <e ,即不等式f (x )+e>x +1e的解集为(0,e).故选B.11.比较lg 2,(lg 2)2,lg(lg 2)的大小,其中最大的是________,最小的是________. 解析:因为lg 2∈(0,1),0<(lg 2)2<lg 2,lg(lg 2)<0,所以最大的是lg 2,最小的是lg(lg 2). 答案:lg 2 lg(lg 2)12.商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.则顾客抽奖1次能获奖的概率是________;若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,则EX =________.解析:抽奖1次,不中奖的概率为610×510=310,所以抽奖1次能获奖的概率为1-310=710;抽奖1次获一等奖的概率为410×510=15, 所以随机变量X 服从二项分布,即X ~B ⎝⎛⎭⎫3,15, 所以EX =3×15=35.答案:710 3513.在△ABC 中,D 是AC 边的中点,A =π3,cos ∠BDC =-27,△ABC 的面积为33,则sin ∠ABD =________,AC =________.解析:过B 作BH ⊥AC 于H ,则cos ∠BDH =DH BD =27,设DH =2k (k >0),则BD =7k , 所以BH =BD 2-DH 2=3k ,在Rt △ABH 中,∠A =π3,所以AH =BH3=k ,所以AD =3k ,AC =6k ,又S △ABC =12×AC ×BH =12×6k ×3k =33k 2=33,解得k =1,所以AC =6, 在△ABD 中,BD sin A =ADsin ∠ABD,所以732=3sin ∠ABD 解得sin ∠ABD =32114.答案:32114614.(2019·杭州市七校高三联考)抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1·x 2=-12,则m 等于________.解析:由条件得A (x 1,y 1)、B (x 2,y 2)两点连线的斜率k =y 2-y 1x 2-x 1=-1,而y 2-y 1=2(x 22-x 21),得x 1+x 2=-12,且(x 1+x 22,y 1+y 22)在直线y =x +m 上,即y 1+y 22=x 1+x 22+m ,即y 1+y 2=x 1+x 2+2m .又因为A (x 1,y 1)、B (x 2,y 2)两点在抛物线y =2x 2上,所以有2(x 21+x 22)=x 1+x 2+2m ,即2[(x 1+x 2)2-2x 1x 2]=x 1+x 2+2m , 可得2m =3,解得m =32.答案:3215.用1,2,3,4,5这五个数字组成各位上数字不同的四位数,其中千位上是奇数,且相邻两位上的数之差的绝对值都不小于2(比如1 524)的概率=________.解析:用1,2,3,4,5这五个数字组成各位上数字不同的四位数,基本事件总数n =A 45=120,其中千位上是奇数,且相邻两位上的数之差的绝对值都不小于2包含的基本事件有:1 352,1 425,1 524,3 142,3 524,3 514,3 152,5 241,5 314,5 142,共10个,所以千位上是奇数,且相邻两位上的数之差的绝对值都不小于2(比如1 524)的概率:p =10120=112.答案:11216.已知a =(3,2),b =(2,-1),若向量λa +b 与a +λb 夹角为锐角,则实数λ的取值范围是________.解析:因为a =(3,2),b =(2,-1),所以λa +b =(3λ+2,2λ-1),a +λb =(3+2λ,2-λ), 因为向量λa +b 与a +λb 夹角为锐角,所以(λa +b )·(a +λb )=(3λ+2)×(3+2λ)+(2λ-1)×(2-λ)>0. 且(3λ+2)(2-λ)-(2λ-1)(3+2λ)≠0, 整理可得,4λ2+18λ+4>0且λ≠±1.解不等式可得,λ>-9+654或λ<-9-654且λ≠1.答案:λ>-9+654或λ<-9-654且λ≠117.(2019·广州市综合测试(一))设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________.解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n +2,故{a n }是等差数列,所以a n =2n ,S n =2×(1+n )n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=(n +1)2-(n +1)+60n +1=n +1+60n +1-1.当n +1=8时,f (7)=8+608-1=292;当n +1=7时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292。
第5讲 导数的简单应用导数运算及其几何意义[核心提炼]1.导数公式 (1)(sin x )′=cos x ; (2)(cos x )′=-sin x ; (3)(a x )′=a x ln a (a >0); (4)(log a x )′=1x ln a(a >0,且a ≠1). 2.导数的几何意义函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[典型例题](1)(2019·绍兴市柯桥区高三模拟)已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .-3B .2C .-3或2 D.12(2)已知f (x )=ln xx 2+1,g (x )=(1+sin x )2,若F (x )=f (x )+g (x ),则F (x )的导函数为________.【解析】 (1)设切点为(m ,n )(m >0),y =14x 2-3ln x 的导数为y ′=12x -3x ,可得切线的斜率为12m -3m =-12,解方程可得,m =2. 故选B.(2)因为f ′(x )=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2g ′(x )=2(1+sin x )(1+sin x )′=2cos x +sin 2x ,所以F ′(x )=f ′(x )+g ′(x )=x 2+1-2x 2ln xx (x 2+1)2+2cos x +sin 2x .【答案】 (1)B (2)x 2+1-2x 2ln xx (x 2+1)2+2cos x +sin 2x利用导数几何意义解题的思路(1)利用导数的几何意义解题主要是利用导数、切点坐标、切线斜率之间的关系来转化. (2)以平行、垂直直线斜率间的关系为载体求参数的值,则根据平行、垂直与斜率之间的关系和导数联系起来求解.[对点训练]1.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x ,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x-1),令x =0,得y =1.故填1.答案:12.(2019·浙江省十校联合体期末检测)已知函数f (x )=a e x +x 2,g (x )=cos πx +bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)),则a +b =________,直线l 的方程为________.解析:f ′(x )=a e x +2x ,g ′(x )=-πsin πx +b , f (0)=a ,g (1)=cos π+b =b -1, f ′(0)=a ,g ′(1)=b ,由题意可得f ′(0)=g ′(1),则a =b , 又f ′(0)=b -1-a 1-0=a ,即a =b =-1, 则a +b =-2;所以直线l 的方程为x +y +1=0. 答案:-2 x +y +1=03.(2019·湖州期末)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3), 由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 答案:0利用导数研究函数的单调性[核心提炼]1.若求函数的单调区间(或证明单调性),只要在其定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可.2.若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.[典型例题](1)设函数f (x )=x e 2-x +e x ,求f (x )的单调区间.(2)设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.71 828…)若函数f (x )在区间⎣⎡⎦⎤1e ,e 上单调递减,求a 的取值范围.【解】 (1)因为f (x )=x e 2-x +e x . 由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知, f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞).(2)由题意可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x -a ≤0在⎣⎡⎦⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎡⎦⎤1e ,e 上恒成立.令g (x )=ln x +1x . 因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1.x ⎝⎛⎭⎫1e ,1(1,e) g ′(x ) -+ g (x )g ⎝⎛⎭⎫1e =ln 1e +e =e -1,g (e)=1+1e ,因为e -1>1+1e , 所以g (x )max =g ⎝⎛⎭⎫1e =e -1. 故a ≥e -1.求解或讨论函数单调性问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论. [注意] 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.[对点训练]1.(2019·浙江新高考冲刺卷)已知定义在R 上的偶函数f (x ),其导函数f ′(x );当x ≥0时,恒有x2f ′(x )+f (-x )≤0,若g (x )=x 2f (x ),则不等式g (x )<g (1-2x )的解集为( )A .(13,1)B .(-∞,13)∪(1,+∞)C .(13,+∞)D .(-∞,13)解析:选A.因为定义在R 上的偶函数f (x ), 所以f (-x )=f (x ).因为x ≥0时,恒有x2f ′(x )+f (-x )≤0,所以x 2f ′(x )+2xf (x )≤0, 因为g (x )=x 2f (x ),所以g ′(x )=2xf (x )+x 2f ′(x )≤0, 所以g (x )在[0,+∞)为减函数, 因为f (x )为偶函数,所以g (x )为偶函数, 所以g (x )在(-∞,0)上为增函数, 因为g (x )<g (1-2x ),所以|x |>|1-2x |, 即(x -1)(3x -1)<0, 解得13<x <1,选A.2.(2019·湖州市高三期末)已知函数f (x )=x -1e x .(1)求函数f (x )的单调区间和极值;(2)若函数y =g (x )对任意x 满足g (x )=f (4-x ),求证:当x >2时,f (x )>g (x ); (3)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>4. 解:(1)因为f (x )=x -1e x ,所以f ′(x )=2-xe x .令f ′(x )=0,解得x =2.f ′(x ) + 0 - f (x )极大值1e2所以f (x )在(-∞,2)内是增函数,在(2,+∞)内是减函数. 所以当x =2时,f (x )取得极大值f (2)=1e 2.(2)证明:g (x )=f (4-x )=3-xe 4-x ,令F (x )=f (x )-g (x )=x -1e x -3-xe 4-x ,所以F ′(x )=2-x e x -2-x e 4-x =(2-x )(e 4-e 2x )e x +4.当x >2时,2-x <0,2x >4,从而e 4-e 2x <0, 所以F ′(x )>0,F (x )在(2,+∞)是增函数.所以F (x )>F (2)=1e 2-1e 2=0,故当x >2时,f (x )>g (x )成立.(3)证明:因为f (x )在(-∞,2)内是增函数,在(2,+∞)内是减函数. 所以若x 1≠x 2,且f (x 1)=f (x 2),x 1、x 2不可能在同一单调区间内. 不妨设x 1<2<x 2,由(2)可知f (x 2)>g (x 2), 又g (x 2)=f (4-x 2),所以f (x 2)>f (4-x 2). 因为f (x 1)=f (x 2),所以f (x 1)>f (4-x 2).因为x 2>2,4-x 2<2,x 1<2,且f (x )在区间(-∞,2)内为增函数, 所以x 1>4-x 2,即x 1+x 2>4.利用导数研究函数的极值(最值)问题[核心提炼]1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.[典型例题](1)已知函数f (x )=(x -2x -1)e -x (x ≥12).①求f (x )的导函数;②求f (x )在区间⎣⎡⎭⎫12,+∞上的取值范围.(2)(2019·浙江名校协作体高三联考)已知a ∈R ,函数f (x )=2x +a ln x .①若函数f (x )在(0,2)上递减,求实数a 的取值范围; ②当a >0时,求f (x )的最小值g (a )的最大值;③设h (x )=f (x )+|(a -2)x |,x ∈[1,+∞),求证:h (x )≥2. 【解】 (1)①因为(x -2x -1)′=1-12x -1, (e -x )′=-e -x ,所以f ′(x )=⎝⎛⎭⎪⎫1-12x -1e -x-(x -2x -1)e -x =(1-x )(2x -1-2)e -x 2x -1⎝⎛⎭⎫x >12. ②由f ′(x )=(1-x )(2x -1-2)e -x2x -1=0,解得x =1或x =52.因为 x 12 (12,1) 1 (1,52)52 (52,+∞) f ′(x ) -0 + 0 -f (x )12e -1212e -52又f (x )=12(2x -1-1)2e -x ≥0,所以f (x )在区间⎣⎡⎭⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12. (2)①函数f (x )在(0,2)上递减⇔任取x ∈(0,2),恒有f ′(x )≤0成立,而f ′(x )=ax -2x 2≤0⇒任取x ∈(0,2),恒有a ≤2x 成立,而2x>1,则a ≤1满足条件. ②当a >0时,f ′(x )=ax -2x 2=0⇒x =2a .x (0,2a )2a (2a,+∞) f ′(x ) -0 + f (x )极小值f (x )的最小值g (a )=f (2a )=a +a ln 2a ,g ′(a )=ln 2-ln a =0⇒a =2.a (0,2) 2 (2,+∞)g ′(a ) +0 - g (x )极大值g (a )的最大值为g (2)=2.③证明:当a ≥2时,h (x )=f (x )+(a -2)x =2x +a ln x +(a -2)x ,h ′(x )=ax -2x2+a -2≥0,所以h (x )在[1,+∞)上是增函数,故h (x )≥h (1)=a ≥2. 当a <2时,h (x )=f (x )-(a -2)x =2x +a ln x -(a -2)x ,h ′(x )=ax -2x 2-a +2=((2-a )x +2)(x -1)x 2=0,解得x =-22-a <0或x =1,h (x )≥h (1)=4-a >2,综上所述:h (x )≥2.利用导数研究函数极值、最值的方法(1)若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. (2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.[对点训练](2019·嵊州模拟)已知函数f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线l 与函数f (x ),g (x )的图象都相切于点(1,0).(1)求直线l 的方程及g (x )的解析式;(2)若h (x )=f (x )-g ′(x )(其中g ′(x )是g (x )的导函数),求函数h (x )的极大值.解:(1)直线l 是函数f (x )=ln x 在点(1,0)处的切线,故其斜率k =f ′(1)=1,所以直线l 的方程为y =x -1.又因为直线l 与g (x )的图象相切,且切于点(1,0),所以g (x )=13x 3+12x 2+mx+n 在点(1,0)处的导数值为1,所以⎩⎪⎨⎪⎧g (1)=0,g ′(1)=1⇒⎩⎪⎨⎪⎧13+12+m +n =0,1+1+m =1⇒⎩⎪⎨⎪⎧m =-1,n =16,所以g (x )=13x 3+12x 2-x +16.(2)由(1)得h (x )=f (x )-g ′(x )=ln x -x 2-x +1(x >0), 所以h ′(x )=1x -2x -1=1-2x 2-x x =-(2x -1)(x +1)x .令h ′(x )=0,得x =12或x =-1(舍).当0<x <12时,h ′(x )>0,即h (x )在⎝⎛⎭⎫0,12上单调递增; 当x >12时,h ′(x )<0,即h (x )在⎝⎛⎭⎫12,+∞上单调递减. 因此,当x =12时,h (x )取得极大值,所以h (x )极大值=h ⎝⎛⎭⎫12=ln 12+14=14-ln 2. 专题强化训练1.函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:选A.因为f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.所以f (x )在x =1处取得最小值,且f (1)=12-ln 1=12.2.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫-43,0 B.⎝⎛⎭⎫0,43 C.⎝⎛⎭⎫-∞,-43,(0,+∞) D.⎝⎛⎭⎫-∞,-43∪(0,+∞) 解析:选C.因为f ′(x )=3x 2-2mx ,所以f ′(-1)=3+2m =-1,解得m =-2.所以f ′(x )=3x 2+4x .由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即f (x )的单调递增区间为⎝⎛⎭⎫-∞,-43,(0,+∞),故选C. 3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C.由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或a ≥-4⇔a≥-2 6.4.(2019·台州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C.因为f ′(x )=2x +b ,所以F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,所以⎩⎪⎨⎪⎧F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,所以f (x )=(x +2)2≥0,f (x )min =0.5.(2019·温州瑞安七校模拟)已知函数f (x )=(x -x 1)·(x -x 2)(x -x 3)(其中x 1<x 2<x 3),g (x )=e x -e -x ,且函数f (x )的两个极值点为α,β(α<β).设λ=x 1+x 22,μ=x 2+x 32,则( )A .g (α)<g (λ)<g (β)<g (μ)B .g (λ)<g (α)<g (β)<g (μ)C .g (λ)<g (α)<g (μ)<g (β)D .g (α)<g (λ)<g (μ)<g (β)解析:选D.由题意,f ′(x )=(x -x 1)(x -x 2)+(x -x 2)(x -x 3)+(x -x 1)(x -x 3), 因为f ′(x 1+x 22)=-(x 2-x 1)24<0,f ′(x 2+x 32)=-(x 2-x 3)24<0,因为f (x )在(-∞,α),(β,+∞)上递增,(α,β)上递减, 所以α<λ<μ<β,因为g (x )=e x -e -x 单调递增, 所以g (α)<g (λ)<g (μ)<g (β). 故选D.6.(2019·宁波诺丁汉大学附中高三期中考试)已知函数f (x )=x +2b x +a ,x ∈[a ,+∞),其中a >0,b ∈R ,记m (a ,b )为f (x )的最小值,则当m (a ,b )=2时,b 的取值范围为( )A .b >13B .b <13C .b >12D .b <12解析:选D.函数f (x )=x +2bx +a ,x ∈[a ,+∞),导数f ′(x )=1-2bx2,当b ≤0时,f ′(x )>0,f (x )在x ∈[a ,+∞)递增,可得f (a )取得最小值, 且为2a +2b a ,由题意可得2a +2ba=2,a >0,b ≤0方程有解;当b >0时,由f ′(x )=1-2bx 2=0,可得x =2b (负的舍去),当a ≥2b 时,f ′(x )>0,f (x )在[a ,+∞)递增,可得f (a )为最小值, 且有2a +2ba=2,a >0,b >0,方程有解;当a <2b 时,f (x )在[a ,2b ]递减,在(2b ,+∞)递增, 可得f (2b )为最小值,且有a +22b =2,即a =2-22b >0, 解得0<b <12.综上可得b 的取值范围是(-∞,12).故选D.7.(2019·浙江“七彩阳光”联盟模拟)函数f (x )=2x 2+3x2e x的大致图象是( )解析:选B.由f (x )的解析式知有两个零点x =-32与x =0,排除A ,又f ′(x )=-2x 2+x +32e x ,由f ′(x )=0知函数有两个极值点,排除C ,D ,故选B.8.(2019·成都市第一次诊断性检测)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝⎛⎭⎫4t ,2处的切线与曲线C 2:y =e x +1+1也相切,则t 的值为( )A .4e 2B .4e C.e 24 D.e4解析:选A.由y =tx ,得y ′=t 2tx ,则切线斜率为k =t 4,所以切线方程为y -2=t4⎝⎛⎭⎫x -4t ,即y =t4x +1.设切线与曲线y =e x +1+1 的切点为(x 0,y 0).由y =e x +1+1,得y ′=e x +1,则由e x 0+1=t 4,得切点坐标为⎝⎛⎭⎫ln t 4-1,t 4+1,故切线方程又可表示为y -t 4-1=t4⎝⎛⎭⎫x -ln t 4+1,即y =t 4x -t 4ln t 4+t 2+1,所以由题意,得-t 4ln t 4+t 2+1=1,即ln t4=2,解得t =4e 2,故选A. 9.(2019·金华十校高考模拟)已知函数f (x )=23x 3-x 2+ax -1,若曲线存在两条斜率为3的切线,且切点的横坐标都大于0,则实数a 的取值范围为____________.解析:由题意知,f (x )=23x 3-x 2+ax -1的导数f ′(x )=2x 2-2x +a .2x 2-2x +a =3有两个不等正根,则⎩⎪⎨⎪⎧Δ=4-8(a -3)>012(a -3)>0,得3<a <72.答案:⎝⎛⎭⎫3,72 10.(2019·湖州市高三期末)定义在R 上的函数f (x )满足:f (1)=1,且对于任意的x ∈R ,都有f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.解析:设g (x )=f (x )-12x ,因为f ′(x )<12,所以g ′(x )=f ′(x )-12<0,所以g (x )为减函数,又f (1)=1, 所以f (log 2x )>log 2x +12=12log 2x +12,即g (log 2x )=f (log 2x )-12log 2x >12=g (1)=f (1)-12=g (log 22),所以log 2x <log 22,又y =log 2x 为底数是2的增函数, 所以0<x <2,则不等式f (log 2x )>log 2x +12的解集为(0,2).答案:(0,2)11.(2019·绍兴、诸暨高考二模)已知函数f (x )=x 3-3x ,函数f (x )的图象在x =0处的切线方程是________;函数f (x )在区间[0,2]内的值域是________.解析:函数f (x )=x 3-3x ,切点坐标(0,0),导数为y ′=3x 2-3,切线的斜率为-3, 所以切线方程为y =-3x ;3x 2-3=0,可得x =±1,x ∈(-1,1),y ′<0,函数是减函数,x ∈(1,+∞),y ′>0函数是增函数,f (0)=0,f (1)=-2,f (2)=8-6=2,函数f (x )在区间[0,2]内的值域是[-2,2]. 答案:y =-3x [-2,2]12.(2019·台州市高三期末考试)已知函数f (x )=x 2-3x +ln x ,则f (x )在区间[12,2]上的最小值为________;当f (x )取到最小值时,x =________.解析:f ′(x )=2x -3+1x =2x 2-3x +1x(x >0),令f ′(x )=0,得x =12,1,当x ∈(12,1)时,f ′(x )<0,x ∈(1,2)时,f ′(x )>0,所以f (x )在区间[12,1]上单调递减,在区间[1,2]上单调递增,所以当x =1时,f (x )在区间[12,2]上的最小值为f (1)=-2.答案:-2 113.(2019·唐山二模)已知函数f (x )=ln x -nx (n >0)的最大值为g (n ),则使g (n )-n +2>0成立的n 的取值范围为________.解析:易知f (x )的定义域为(0,+∞). 因为f ′(x )=1x -n (x >0,n >0),当x ∈⎝⎛⎭⎫0,1n 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1n ,+∞时,f ′(x )<0, 所以f (x )在⎝⎛⎭⎫0,1n 上单调递增,在⎝⎛⎭⎫1n ,+∞上单调递减, 所以f (x )的最大值g (n )=f ⎝⎛⎭⎫1n =-ln n -1.设h (n )=g (n )-n +2=-ln n -n +1. 因为h ′(n )=-1n-1<0,所以h (n )在(0,+∞)上单调递减.又h (1)=0,所以当0<n <1时,h (n )>h (1)=0,故使g (n )-n +2>0成立的n 的取值范围为(0,1).答案:(0,1)14.(2019·浙江东阳中学期中检测)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是________.解析:设g (x )=e x (2x -1),y =ax -a ,由题意存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,g (x )min =-2e -12,当x =0时,g (0)=-1,g (1)=e>0,直线y =ax -a恒过(1,0),斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e ≤a <1.答案:32e≤a <115.设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max=-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).16.(2019·浙江金华十校第二学期调研)设函数f (x )=e x -x ,h (x )=-kx 3+kx 2-x +1. (1)求f (x )的最小值;(2)设h (x )≤f (x )对任意x ∈[0,1]恒成立时k 的最大值为λ,证明:4<λ<6. 解:(1)因为f (x )=e x -x ,所以f ′(x )=e x -1, 当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减, 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增, 所以f (x )min =f (0)=1.(2)证明:由h (x )≤f (x ),化简可得k (x 2-x 3)≤e x -1, 当x =0,1时,k ∈R , 当x ∈(0,1)时,k ≤e x -1x 2-x3,要证:4<λ<6,则需证以下两个问题; ①e x -1x 2-x 3>4对任意x ∈(0,1)恒成立; ②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立.先证:①e x -1x 2-x 3>4,即证e x -1>4(x 2-x 3),由(1)可知,e x -x ≥1恒成立,所以e x -1≥x ,又x ≠0,所以e x -1>x , 即证x ≥4(x 2-x 3)⇔1≥4(x -x 2)⇔(2x -1)2≥0, (2x -1)2≥0,显然成立,所以e x -1x 2-x 3>4对任意x ∈(0,1)恒成立;再证②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立. 取x 0=12,e -114-18=8(e -1),因为e <74,所以8(e -1)<8×34=6,所以存在x 0∈(0,1),使得e x 0-1x 20-x 30<6,由①②可知,4<λ<6.17.(2019·宁波市高考模拟)已知f (x )=x +a 2x ,g (x )=x +ln x ,其中a >0.若对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)成立,求实数a 的取值范围.解:对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)⇔当x ∈[1,e]有f (x )min ≥g (x )max , 当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在x ∈[1,e]上单调递增, 所以g (x )max =g (e)=e +1.当x ∈[1,e]时,f ′(x )=1-a 2x 2=x 2-a2x2,因为a >0,所以令f ′(x )=0得x =a .①当0<a <1时,f ′(x )>0,所以f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=a 2+1.令a 2+1≥e +1得a ≥e ,这与0<a <1矛盾. ②当1≤a ≤e 时,若1≤x <a ,则f ′(x )<0, 若a <x ≤e ,则f ′(x )>0,所以f (x )在[1,a ]上单调递减,在[a ,e]上单调递增,所以f (x )min =f (a )=2a ,令2a ≥e +1得a ≥e +12,又1≤a ≤e , 所以e +12≤a ≤e.③当a >e 时,f ′(x )<0,所以f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=e +a 2e.令e +a 2e ≥e +1得a ≥e ,又a >e ,所以a >e.综合①②③得,所求实数a 的取值范围是⎣⎢⎡⎭⎪⎫e +12,+∞. 18.(2019·宁波九校联考)已知函数f (x )=e -x -11+x .(1)证明:当x ∈[0,3]时,e -x ≥11+9x; (2)证明:当x ∈[2,3]时,-27<f (x )<0.证明:(1)要证e -x ≥11+9x ,也即证e x ≤1+9x .令F (x )=e x -9x -1,则F ′(x )=e x -9.令F ′(x )>0,则x >2ln 3.因此,当0≤x <2ln 3时,有F ′(x )<0,故F (x )在[0,2ln 3)上单调递减;当2ln 3<x ≤3时,有F ′(x )>0,故F (x )在[2ln 3,3]上单调递增.所以,F (x )在[0,3]上的最大值为max{F (0),F (3)}. 又F (0)=0,F (3)=e 3-28<0.故F (x )≤0,x ∈[0,3]成立, 即e x ≤1+9x ,x ∈[0,3]成立.原命题得证.(2)由(1)得:当x ∈[2,3]时,f (x )=e -x -11+x ≥11+9x -11+x .令t (x )=11+9x -11+x,则t ′(x )=-(1+9x )-2·9+(1+x )-2=1(1+x )2-9(1+9x )2=(1+9x )2-9(1+x )2(1+9x )2(1+x )2=72x 2-8(1+9x )2(1+x )2≥0,x ∈[2,3].所以,t (x )在[2,3]上单调递增,即t (x )≥t (2)=-1657>-1656=-27,x ∈[2,3],所以f (x )>-27得证.下证f (x )<0. 即证e x >x +1令h (x )=e x -(x +1)则h ′(x )=e x -1>0, 所以h (x )在[2,3]上单调递增,所以,h (x )=e x -(x +1)≥e 2-3>0,得证.另证:要证11+9x -11+x>-27,即证9x 2-18x +1>0,令m (x )=9x 2-18x +1=9(x -1)2-8在[2,3]上递增,所以m (x )≥m (2)=1>0得证.。