2018年高考数学江苏专版三维二轮专题复习训练:3个附加题综合仿真练(四) Word版含解析
- 格式:doc
- 大小:104.50 KB
- 文档页数:5
3个附加题综合仿真练(一)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,A ,B ,C 是圆O 上不共线的三点,OD ⊥AB 于D ,BC 和AC 分别交DO 的延长线于P 和Q ,求证:∠OBP =∠CQP .证明:连结OA ,因为OD ⊥AB ,OA =OB , 所以∠BOD =∠AOD =12∠AOB ,又∠ACB =12∠AOB ,所以∠ACB =∠DOB ,又因为∠BOP =180°-∠DOB ,∠QCP =180°-∠ACB , 所以∠BOP =∠QCP , 所以B ,O ,C ,Q 四点共圆, 所以∠OBP =∠CQP . B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤211 3,B =⎣⎢⎡⎦⎥⎤1 10 -1.求矩阵C ,使得AC =B . 解:因为⎪⎪⎪⎪⎪⎪2113=2×3-1×1=5,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤35 -15-15 25, 又AC =B ,所以C =A-1B =⎣⎢⎢⎡⎦⎥⎥⎤ 35 -15-15 25⎣⎢⎡⎦⎥⎤1 10 -1=⎣⎢⎢⎡⎦⎥⎥⎤3545-15-35. C .[选修4-4:坐标系与参数方程]在极坐标系中,已知圆C 的圆心在极轴上,且过极点和点⎝⎛⎭⎪⎫32,π4,求圆C 的极坐标方程. 解:法一:因为圆心C 在极轴上且过极点, 所以设圆C 的极坐标方程为ρ=a cos θ,又因为点⎝⎛⎭⎪⎫32,π4在圆C 上, 所以32=a cos π4,解得a =6.所以圆C 的极坐标方程为ρ=6cos θ.法二:点⎝⎛⎭⎪⎫32,π4的直角坐标为(3,3), 因为圆C 过点(0,0),(3,3), 所以圆心C 在直线为x +y -3=0上. 又圆心C 在极轴上,所以圆C 的直角坐标方程为(x -3)2+y 2=9. 所以圆C 的极坐标方程为ρ=6cos θ. D .[选修4-5:不等式选讲]已知x ,y ,z 为不全相等的正数.求证:x yz +y zx +z xy >1x +1y +1z.证明:因为x ,y ,z 都是正数, 所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z. 同理可得y zx +z xy ≥2x ,z xy +x yz ≥2y,将上述三个不等式两边分别相加,并除以2, 得x yz +y zx +z xy ≥1x +1y +1z. 由于x ,y ,z 不全相等,因此上述三个不等式中等号至少有一个取不到, 所以x yz +y zx +z xy >1x +1y +1z. 2.口袋中装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,两张标有数字3.第一次从口袋中任意抽取一张,放回口袋后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为ξ.(1)ξ为何值时,其发生的概率最大?说明理由; (2)求随机变量ξ的数学期望E (ξ).解:(1)依题意,随机变量ξ的取值是2,3,4,5,6. 因为P (ξ=2)=3×382=964; P (ξ=3)=2×3×382=932; P (ξ=4)=3×3+2×3×282=2164;P (ξ=5)=2×3×282=316; P (ξ=6)=2×28=116. 所以当ξ=4时,其发生的概率最大,最大值为P (ξ=4)=2164.(2)由(1)知E (ξ)=2×964+3×932+4×2164+5×316+6×116=154,所以随机变量ξ的数学期望E (ξ)=154. 3.在平面直角坐标系xOy 中,直线l :x =-1,点T (3,0).动点P 满足PS ⊥l ,垂足为S ,且OP ―→·ST ―→=0.设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设Q 是曲线C 上异于点P 的另一点,且直线PQ 过点(1,0),线段PQ 的中点为M ,直线l 与x 轴的交点为N .求证:向量SM ―→与NQ ―→共线.解:(1)设P (x ,y )为曲线C 上任意一点 .因为PS ⊥l ,垂足为S ,又直线l :x =-1,所以S (-1,y ). 因为T (3,0),所以OP ―→=(x ,y ),ST ―→=(4,-y ). 因为OP ―→·ST ―→=0,所以4x -y 2=0,即y 2=4x . 所以曲线C 的方程为y 2=4x . (2)证明:因为直线PQ 过点(1,0),故设直线PQ 的方程为x =my +1,P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0.所以y 1+y 2=4m ,y 1y 2=-4.因为M 为线段PQ 的中点,所以M 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即M (2m 2+1,2m ).又因为S (-1,y 1),N (-1,0),所以SM ―→=(2m 2+2,2m -y 1),NQ ―→=(x 2+1,y 2)=(my 2+2,y 2).因为(2m 2+2)y 2-(2m -y 1)(my 2+2)=(2m 2+2)y 2-2m 2y 2+my 1y 2-4m +2y 1=2(y 1+y 2)+my 1y 2-4m =8m -4m -4m =0.所以向量SM ―→与NQ ―→共线.3个附加题综合仿真练(二)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,四边形ABCD 是圆的内接四边形,BC =BD ,BA 的延长线交CD 的延长线于点E .求证:AE 是四边形ABCD 的外角∠DAF 的平分线. 证明:因为四边形ABCD 是圆的内接四边形, 所以∠DAE =∠BCD ,∠FAE =∠BAC =∠BDC . 因为BC =BD ,所以∠BCD =∠BDC , 所以∠DAE =∠FAE ,所以AE 是四边形ABCD 的外角∠DAF 的平分线. B .[选修4-2:矩阵与变换]已知变换T 将平面上的点⎝ ⎛⎭⎪⎫1,12,(0,1)分别变换为点⎝ ⎛⎭⎪⎫94,-2,⎝ ⎛⎭⎪⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值. 解:(1)设M =⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤112=⎣⎢⎢⎡⎦⎥⎥⎤94-2,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324, 即⎩⎪⎨⎪⎧a +12b =94,c +12d =-2,b =-32,d =4,解得⎩⎪⎨⎪⎧a =3,b =-32,c =-4,d =4,则M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-44. (2)设矩阵M 的特征多项式为f (λ),可得f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 324 λ-4=(λ-3)(λ-4)-6=λ2-7λ+6, 令f (λ)=0,可得λ=1或λ=6. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).当圆心C 到直线l 的距离为2时,求m 的值. 解:由2ρsin ⎝⎛⎭⎪⎫θ-π4=m , 得2ρsin θcos π4-2ρcos θsin π4=m ,即x -y +m =0,即直线l 的直角坐标方程为x -y +m =0, 圆C 的普通方程为(x -1)2+(y +2)2=9, 圆心C 到直线l 的距离d =|1--+m |2=2,解得m =-1或m =-5. D .[选修4-5:不等式选讲]已知x ,y ,z 都是正数且xyz =8,求证:(2+x )(2+y )·(2+z )≥64. 证明:因为x 为正数,所以2+x ≥22x . 同理2+y ≥22y ,2+z ≥22z .所以(2+x )( 2+y )( 2+z )≥22x ·22y ·22z =88xyz . 因为xyz =8,所以(2+x )( 2+y )( 2+z )≥64.2.在平面直角坐标系xOy 中,点F (1,0),直线x =-1与动直线y =n 的交点为M ,线段MF 的中垂线与动直线y =n 的交点为P .(1)求动点P 的轨迹E 的方程;(2)过动点M 作曲线E 的两条切线,切点分别为A ,B ,求证:∠AMB 的大小为定值.解:(1)因为直线y =n 与x =-1垂直,所以MP 为点P 到直线x =-1的距离. 连结PF (图略),因为P 为线段MF 的中垂线与直线y =n 的交点,所以MP =PF . 所以点P 的轨迹是抛物线. 焦点为F (1,0),准线为x =-1. 所以曲线E 的方程为y 2=4x .(2)证明:由题意,过点M (-1,n )的切线斜率存在,设切线方程为y -n =k (x +1), 联立方程⎩⎪⎨⎪⎧y =kx +k +n ,y 2=4x ,得ky 2-4y +4k +4n =0,所以Δ1=16-4k (4k +4n )=0,即k 2+kn -1=0 (*),因为Δ2=n 2+4>0,所以方程(*)存在两个不等实根,设为k 1,k 2, 因为k 1·k 2=-1,所以∠AMB =90°,为定值.3.对于给定的大于1的正整数n ,设x =a 0+a 1n +a 2n 2+…+a n n n,其中a i ∈{0,1,2,…,n -1},i =0,1,2,…,n -1,n ,且a n ≠0,记满足条件的所有x 的和为A n .(1)求A 2; (2)设A n =n n n -f n2,求f (n ).解:(1)当n =2时,x =a 0+2a 1+4a 2,a 0∈{0,1},a 1∈{0,1},a 2=1, 故满足条件的x 共有4个,分别为x =0+0+4,x =0+2+4,x =1+0+4,x =1+2+4,它们的和是22,所以A 2=22. (2)由题意得,a 0,a 1,a 2,…,a n -1各有n 种取法;a n 有n -1种取法,由分步计数原理可得a 0,a 1,a 2…,a n -1,a n 的不同取法共有n ·n ·…·n ·(n -1)=n n(n -1), 即满足条件的x 共有n n(n -1)个,当a 0分别取0,1,2,…,n -1时,a 1,a 2,…,a n -1各有n 种取法,a n 有n -1种取法, 故A n 中所有含a 0项的和为(0+1+2+…+n -1)·nn -1(n -1)=n n n -22;同理,A n 中所有含a 1项的和为(0+1+2+…+n -1)nn -1(n -1)·n =n n n -22·n ; A n 中所有含a 2项的和为(0+1+2+…+n -1)·n n -1(n -1)·n 2=n n n -22·n 2;A n 中所有含a n -1项的和为(0+1+2+…+n -1)·n n -1(n -1)·n n -1=n n n -22·nn -1;当a n 分别取i =1,2,…,n -1时,a 0,a 1,a 2,…,a n -1各有n 种取法, 故A n 中所有含a n 项的和为(1+2+…+n -1)n n·n n=n n +1n -2·n n.所以A n =n n n -22(1+n +n 2+…+nn -1)+n n +1n -2·n n=n n n -22·n n -1n -1+n n +1n -2·n n=n n n -2(nn +1+n n-1),故f (n )=nn +1+n n-1.3个附加题综合仿真练(三)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE .证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB, 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE .B .[选修4-2:矩阵与变换]设a ,b ∈R.若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x+y -91=0.求实数a ,b 的值.解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ),由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤ 3 b -a -1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧7b -91=0,27+b -a -1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13.法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′),则⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by ,由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0, ∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7, 解得a =2,b =13.∴实数a ,b 的值分别为2,13. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝ ⎛⎭⎪⎫θ+π6=a (a ∈R)和ρ=4sin θ.若直线l 与圆C 有且只有一个公共点,求a 的值.解:由ρcos ⎝⎛⎭⎪⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a , 故化为直角坐标方程为3x -y -2a =0,由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3. D .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a>a b. 证明:∵b a>0,a b>0,∴要证b a>a b, 只要证a ln b >b ln a, 只要证ln b b >ln a a,构造函数f (x )=ln xx,x ∈(e ,+∞).则f ′(x )=1-ln xx 2,x ∈(e ,+∞),f ′(x )<0在区间(e ,+∞)上恒成立,所以函数f (x )在x ∈(e ,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln a a,故b a >a b得证.2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率;(2)求X 的概率分布及数学期望. 解:(1)记“X 是奇数”为事件A , 能组成的三位数的个数是4×4×3=48.X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712.故X 是奇数的概率为712.(2)X 的可能取值为3,4,5,6,7,8,9.当X =3时,组成的三位数是由0,1,2三个数字组成, 所以P (X =3)=448=112; 当X =4时,组成的三位数是由0,1,3三个数字组成, 所以P (X =4)=448=112; 当X =5时,组成的三位数是由0,1,4或0,2,3组成, 所以P (X =5)=848=16; 当X =6时,组成的三位数是由0,2,4或1,2,3组成, 所以P (X =6)=1048=524;当X =7时,组成的三位数是由0,3,4或1,2,4组成, 所以P (X =7)=1048=524;当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=648=18; 当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=648=18. 所以X 的概率分布为:故E (X )=3×112+4×12+5×6+6×24+7×24+8×8+9×8=4.3.设P (n ,m )=∑k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.解:(1)当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明:P (n ,m )=∑k =0n(-1)k C knm m +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)m m +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1m m +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1m m +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ) 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !n +m !P (0,m )=1C n n +m,又Q (n ,m )=C nn +m ,所以P (n ,m )·Q (n ,m )=1.3个附加题综合仿真练(四)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O于点D ,过D 作圆O 的切线交AC 于点E .求证:DE ⊥AC . 解:如图,连结OD .因为AB =AC ,所以∠B =∠C . 由圆O 知OB =OD , 所以∠B =∠BDO .从而∠BDO =∠C ,所以OD ∥AC . 又DE 为圆O 的切线,所以DE ⊥OD , 所以DE ⊥AC .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2x y2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R. (1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1.解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦⎥⎤x -22-y .因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎪⎨⎪⎧x -2=1,2-y =2,解得x =3,y =0.(2)由(1)知A =⎣⎢⎡⎦⎥⎤2302 ,又B =⎣⎢⎡⎦⎥⎤1 -102 , 所以AB =⎣⎢⎡⎦⎥⎤2 30 2⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦⎥⎤2 40 4 .设(AB )-1= ⎣⎢⎡⎦⎥⎤a b cd ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦⎥⎤1 001.所以⎩⎪⎨⎪⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1= ⎣⎢⎢⎡⎦⎥⎥⎤12 -12 0 14 .C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),以坐标原点O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x .将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t , 即t 2+82t =0,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2. D .[选修4-5:不等式选讲] 设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集; (2)若∀x ∈R ,f (x )≥t 2-112t 恒成立,求实数t 的取值范围. 解:(1)不等式f (x )>2可化为⎩⎪⎨⎪⎧x >2,2x +1-x +2>2或⎩⎪⎨⎪⎧-12≤x ≤2,2x +1+x -2>2或⎩⎪⎨⎪⎧x <-12,-2x -1+x -2>2,解得x <-5或x >1,所以所求不等式的解集为{x |x <-5或x >1}.(2)由f (x )=|2x +1|-|x -2|=⎩⎪⎨⎪⎧x +3,x >2,3x -1,-12≤x ≤2,-x -3,x <-12,可得f (x )≥-52,若∀x ∈R ,f (x )≥t 2-112t 恒成立,则t 2-112t ≤-52,即2t 2-11t +5≤0,解得12≤t ≤5. 故实数t 的取值范围为⎣⎢⎡⎦⎥⎤12,5. 2.如图,在直三棱柱ABC A 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3.D 是线段BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1A 1D C 1的余弦值.解:因为在直三棱柱ABC A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC,AA1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3), 因为D 是BC 的中点,所以D (1,2,0), (1)因为A 1C 1――→=(0,4,0),A 1D ―→=(1,2,-3), 设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1――→=0,n 1·A 1D ―→=0,即⎩⎪⎨⎪⎧4y 1=0,x 1+2y 1-3z 1=0,取⎩⎪⎨⎪⎧x 1=3,y 1=0,z 1=1,所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→=(1,-2,3),设直线DB 1与平面A 1C 1D 所成角为θ,所以sin θ=|cos 〈n 1,DB 1―→〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535,所以直线DB 1与平面A 1C 1D 所成角的正弦值为33535.(2) A 1B 1――→=(2,0,0),DB 1―→=(1,-2,3), 设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·A 1B 1――→=0,n 2·DB 1―→=0,即⎩⎪⎨⎪⎧2x 2=0,x 2-2y 2+3z 2=0,取⎩⎪⎨⎪⎧x 2=0,y 2=3,z 2=2,所以平面B 1A 1D 的法向量n 2=(0,3,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13=13065,故结合图象知二面角B 1A 1D C 1的余弦值13065. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6.所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+k +-12+k +-13,结论成立;c .若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+k +-23,结论成立;d .若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+k +-12+k +13,结论成立;e .若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2 =(k +1)+2+k +12+k +-13,结论成立;f .若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+k +-12+k +-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤ab c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.②由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1.C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x .将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2. 法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎪⎨⎪⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝ ⎛⎭⎪⎫92-122+-2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值. 解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝ ⎛⎭⎪⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝ ⎛⎭⎪⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝ ⎛⎭⎪⎫0,22,-2,OD ―→=⎝ ⎛⎭⎪⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n) ,B n =⎝ ⎛⎭⎪⎫a +b 2n . (1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0. (2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1; 当n ≥3时,A n =1n +1·a n +1-b n +1a -b,B n =⎝⎛⎭⎪⎫a +b 2n ,令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝ ⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y=12n +1n +y[(x +y )n +1-(x -y )n +1],B n =⎝ ⎛⎭⎪⎫x 2n,因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x ny +2C 3n +1·xn -2y 3+…)≥2C 1n +1x ny ,所以A n ≥12n +1n +y·2C 1n +1x ny =x n 2n =⎝ ⎛⎭⎪⎫x 2n=B n .3个附加题综合仿真练(六)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足.求证:(1)∠PAC =∠CAB ; (2)AC 2=AP ·AB .证明:(1)因为PC 切半圆O 于点C ,所以∠PCA =∠CBA . 因为AB 为半圆O 的直径,所以∠ACB =90°. 因为AP ⊥PC ,所以∠APC =90°. 因此∠PAC =∠CAB .(2)由(1)知,△APC ∽△ACB ,故AP AC =AC AB, 即AC 2=AP ·AB .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤110,B =⎣⎢⎡⎦⎥⎤1 002.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解:(1)因为A =⎣⎢⎡⎦⎥⎤11 0,B =⎣⎢⎡⎦⎥⎤1 002,所以AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210.(2)设Q (x 0,y 0)为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P (x ,y ),则⎣⎢⎡⎦⎥⎤0 21 0⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2.因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切, 所以d =|2|1+k2=1,得到k =±3,故直线l 的极坐标方程θ=π3或θ=2π3. D .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64,因此ac +bd ≤8.2.已知正六棱锥S ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ). 解:(1)从7个顶点中随机选取3个点构成三角形, 共有C 37=35种取法.其中X =3的三角形如△ABF , 这类三角形共有6个. 因此P (X =3)=635.(2)由题意,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935,P (X =6)=635,P (X =23)=1235,P (X =33)=235.所以随机变量X 的概率分布为:所求数学期望E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835.3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎪⎫1+1n 2+n a n +12n . (1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝ ⎛⎭⎪⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立.21 ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝ ⎛⎭⎪⎫1+1k k +a k +12>2. 所以,当n =k +1时,不等式也成立.根据①②可知,对所有n ≥2,a n ≥2成立. (2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎪⎫1+1n 2+n a n +12n ≤⎝ ⎛⎭⎪⎫1+1n 2+n +12n +1a n (n ≥2). 两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln ⎝ ⎛⎭⎪⎫1+1n 2+n +12n +1+ln a n <ln a n +1n 2+n +12n +1, 故ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1n -n +123+124+…+12n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2), 而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。
3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD ,又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎢⎡⎦⎥⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.② 由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x .将直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2.法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x,将直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧ y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧ x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝⎛⎭⎫92-122+(6-2)2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立,等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x )=3x +6+14-x=3×x +2+1×14-x ,由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值.解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝⎛⎭⎫-22,22,-1, 则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝⎛⎭⎫0,22,-2,OD ―→=⎝⎛⎭⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n =⎝⎛⎭⎫a +b 2n.(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0. (2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1;当n ≥3时,A n =1n +1·a n +1-b n +1a -b,B n =⎝ ⎛⎭⎪⎫a +b 2n ,令a +b =x ,a -b =y ,且x >0,y >0,于是A n =1n +1·⎝⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y=12n +1(n +1)y[(x +y )n +1-(x -y )n +1],B n =⎝⎛⎭⎫x 2n , 因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x n y +2C 3n +1·x n -2y 3+…)≥2C 1n +1x ny , 所以A n ≥12n +1(n +1)y·2C 1n +1x ny =x n 2n =⎝⎛⎭⎫x 2n =B n .。
3个附加题综合仿真练(六)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P为垂足.求证:(1)∠PAC =∠CAB ; (2)AC 2=AP ·AB .证明:(1)因为PC 切半圆O 于点C ,所以∠PCA =∠CBA . 因为AB 为半圆O 的直径,所以∠ACB =90°. 因为AP ⊥PC ,所以∠APC =90°. 因此∠PAC =∠CAB .(2)由(1)知,△APC ∽△ACB ,故AP AC =AC AB , 即AC 2=AP ·AB .B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤1 002.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解:(1)因为A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤100 2,所以AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210. (2)设Q (x 0,y 0)为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P (x ,y ),则⎣⎢⎡⎦⎥⎤0 210⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2. 因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切, 所以d =|2|1+k 2=1,得到k =±3, 故直线l 的极坐标方程θ=π3或θ=2π3.D .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.2.已知正六棱锥S -ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ). 解:(1)从7个顶点中随机选取3个点构成三角形, 共有C 37=35种取法.其中X =3的三角形如△ABF , 这类三角形共有6个. 因此P (X =3)=635. (2)由题意,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935, P (X =6)=635,P (X =23)=1235,P (X =33)=235. 所以随机变量X 的概率分布为:所求数学期望 E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835. 3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝⎛⎭⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立. ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k (k +1)a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n ≤⎝⎛⎭⎫1+1n 2+n +12n +1a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln ⎝⎛⎭⎫1+1n 2+n +12n 1+ln a n <ln a n +1n 2+n +12n +1,故ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1(n -1)n +123+124+…+12n =⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34.由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2),而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。
14个填空题综合仿真练(四)1.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中的元素的个数为________. 解析:集合A ={1,2,3},B ={2,4,5},则A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.答案:5 2.复数z =21-i(其中i 是虚数单位),则复数z 的共轭复数为________. 解析:z =21-i =2(1+i )(1-i )(1+i )=1+i ,则复数z 的共轭复数为1-i.答案:1-i3.如图是一个算法的流程图,则输出的k 的值为________.解析:阅读流程图,当k =2,3,4,5时,k 2-7k +10≤0,一直进行循环,当k =6时,k 2-7k +10>0,此时终止循环,输出k =6.答案:64.在数字1,2,3,4中随机选两个,则选中的数字中至少有一个是偶数的概率为________. 解析:在数字1,2,3,4中随机选两个,基本事件总数n =6,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,所以选中的数字中至少有一个是偶数的概率为P =1-16=56.答案:565.双曲线x 25-y 24=1的右焦点与左准线之间的距离是____________.解析:由已知得,双曲线的右焦点为(3,0),左准线方程为x =-53,所以右焦点与左准线之间的距离是3-⎝⎛⎭⎫-53=143. 答案:1436.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________.解析:由题意,得840=n 40+10+40+60,所以n =30.答案:307.若实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,则z =2x +3y 的最大值为________.解析:由约束条件⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,作出可行域如图,化目标函数z =2x +3y 为y =-23x +13z ,由图可知,当直线y =-23x +13z 过点A 时,直线在y 轴上的截距最大,联立⎩⎪⎨⎪⎧x =1,y -x -1=0,解得A (1,2),故z max =8.答案:88.底面边长为2,侧棱长为3的正四棱锥的体积为________. 解析:取点O 为底面ABCD 的中心,则SO ⊥平面ABCD ,取BC的中点E ,连结OE ,SE ,则OE =BE =1,在Rt △SBE 中,SE =SB 2-BE 2=2,在Rt △SOE 中,SO =SE 2-OE 2=1,从而该正四棱锥的体积V =13S 四边形ABCD ·SO =13×2×2×1=43.答案:439.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为________.解析:法一:由题意知,当A 在原点时,PQ 最小,此时,sin ∠PAC=23,cos ∠PAC =73,cos ∠PAQ =59, 故cos ∠PCQ =-59,∴PQ =PC 2+QC 2-2×PC ×QC ×cos ∠PCQ =2+2-2×2×2×⎝⎛⎭⎫-59=2143, 当A 点离原点无限远时,PQ 接近于22,∴PQ 的取值范围为⎣⎡⎭⎫2143,22.法二:设CA =x ,x ∈[3,+∞),则PA =x 2-2,sin ∠ACP =PACA =x 2-2x =1-2x2, 所以PQ =2CP ·sin ∠ACP =22·1-2x2.因为x ∈[3,+∞),所以y =1-2x 2在[3,+∞)上为增函数,所以2143≤PQ <2 2. 答案:⎣⎡⎭⎫2143,2210.若函数f (x )=⎩⎪⎨⎪⎧x +2x ,x ≤0,ax -ln x ,x >0,在其定义域上恰有两个零点,则正实数a 的值为________.解析:易知函数f (x )在(-∞,0]上有一个零点,所以由题意得方程ax -ln x =0在(0,+∞)上恰有一解,即a =ln x x 在(0,+∞)上恰有一解. 令g (x )=ln xx ,由g ′(x )=1-ln x x 2=0,得x =e ,当x ∈(0,e)时,g (x )单调递增,当x ∈(e ,+∞)时,g (x )单调递减,所以g (x )在x =e 处取得极大值也为最大值,作出y =g (x )与y =a 的图象(图略),知当正实数a =g (x )max 时两函数有一个交点,所以a =g (e)=1e.答案:1e11.设直线l 是曲线y =4x 3+3ln x 的切线,则直线l 的斜率的最小值为________. 解析:y ′=12x 2+3x(x >0),令g (x )=12x 2+3x ,则g ′(x )=24x -3x2,令g ′(x )=0,得x =12,故当x ∈⎝⎛⎭⎫0,12时,g ′(x )<0,当x ∈⎝⎛⎭⎫12,+∞时,g ′(x )>0,所以当x =12时,g (x )取得最小值g ⎝⎛⎭⎫12=9,故y ′=12x 2+3x 的最小值为9,即直线l 的斜率的最小值为9.答案:912.扇形AOB 中,弦AB =1,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则OP ―→·BP―→的最小值是________.解析:设弦AB 的中点为M ,则OP ―→·BP ―→=(OM ―→+MP ―→)·BP ―→=MP ―→·BP ―→, 若MP ―→,BP ―→同向,则OP ―→·BP ―→>0; 若MP ―→,BP ―→反向,则OP ―→·BP ―→<0,故OP ―→·BP ―→的最小值在MP ―→,BP ―→反向时取得,此时|MP ―→|+|BP ―→|=12,OP ―→·BP ―→=-|MP ―→|·|BP ―→|≥-⎝ ⎛⎭⎪⎫|MP ―→|+|BP ―→|22=-116, 当且仅当|MP ―→|=|BP ―→|=14时取等号,即OP ―→·BP ―→的最小值是-116.答案:-11613.在平面直角坐标系xOy 中,已知A (cos α,sin α),B (cos β,sin β)是直线y =3x +2上的两点,则tan(α+β)的值为________.解析:由题意,α,β是方程3cos x -sin x +2=0的两根.设f (x )=3cos x -sin x +2, 则f ′(x )=-3sin x -cos x .令f ′(x )=0,得tan x 0=-33, 所以α+β=2x 0,所以tan(α+β)=- 3. 答案:- 314.已知函数f (x )=|x -a |-3x +a -2有且仅有三个零点,且它们成等差数列,则实数a 的取值集合为________.解析:f (x )=⎩⎨⎧x -3x-2,x ≥a ,-x -3x +2a -2,x <a ,当x ≥a 时,由x -3x -2=0,得x 1=-1,x 2=3,结合图形知,①当a <-1时,x 3,-1,3成等差数列,则x 3=-5,代入-x -3x +2a -2=0得,a =-95; ②当-1≤a ≤3时,方程-x -3x +2a -2=0,即x 2+2(1-a )x +3=0,设方程的两根为x 3,x 4,且x 3<x 4,则x 3x 4=3,且x 3+3=2x 4,解得x 4=3±334, 又x 3+x 4=2(a -1),所以a =5+3338.③当a >3时,显然不符合.所以a 的取值集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-95,5+3338. 答案:⎩⎨⎧⎭⎬⎫-95,5+3338。
江苏新高考数列在江苏高考中地位十分突出,考分比例远远大于课时比例,常在压轴题位置考查代数论证能力.江苏卷数列解答题始终与特殊数列密切联系,源于课本,高于课本,不搞“递推式”“数列不等式”之类的超教学范围的知识考查,导向非常好.但由于能力考查要求较高,多年来造成区分度很差的困惑.2013年的数列解答题降低了难度,但2014年又回升了.到2015年不仅是超纲了,而且难度也加大了,2016年把数列、集合结合命题,难度较大,2017年考查数列的新定义问题和论证等差数列,难度也不低.数列题的常规类型可分两类:一类是判断、证明某个数列是等差、等比数列;另一类是已知等差、等比数列求基本量.这个基本量涵义很广泛,有项、项数、公差、公比、通项、和式以及它们的组合式,甚至还包括相关参数.但江苏考题真正的难度在等差、等比数列的性质灵活运用上.第1课时数列中的基本量计算(基础课)[常考题型突破][必备知识]1.通项公式等差数列:a n=a1+(n-1)d;等比数列:a n=a1·q n-1.2.求和公式 等差数列:S n =n (a 1+a n )2=na 1+n (n -1)2d ; 等比数列:S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).[题组练透]1.(2017·镇江期末)已知数列{a n }为等比数列,且a 1+1,a 3+4,a 5+7成等差数列,则公差d =________.解析:设等比数列{a n }的公比为q , 则a 3=a 1q 2,a 5=a 1q 4,由a 1+1,a 3+4,a 5+7成等差数列, 得2(a 1q 2+4)=a 1+1+a 1q 4+7, 即q 2=1.所以d =a 1q 2+4-a 1-1=3. 答案:32.(2017·镇江调研)S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________. 解析:因为S n S 2n =n +14n +2,所以令n =1可得,S 1S 2=26=13,即a 12a 1+d =13,化简可得d =a 1,所以a 3a 5=a 1+2d a 1+4d =3a 15a 1=35.答案:353.(2017·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.解析:因为S 2=2a 2+3,S 3=2a 3+3,所以a 3=2a 3-2a 2,所以a 3-2a 2=a 1q 2-2aq =0,所以q 2-2q =0,q ≠0,则公比q =2.答案:24.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.解析:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.答案:325.(2017·苏锡常镇一模)设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.解析:因为等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4, 所以⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4, 解得a 1q =8,q 3=-12,所以a 8= a 1q 7=(a 1q )(q 3)2=8×14=2.答案:2 [方法归纳][必备知识][题组练透]1.(2017·苏州考前模拟)已知等比数列{a n }满足a n >0,n ∈N *,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=________.解析:由a 5·a 2n -5=22n (n ≥3),得a 2n =22n ,则a n =2n ,故log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2.答案:n 22.已知数列{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6.答案:63.(2017·南通二调)已知{a n }是公差不为0的等差数列,S n 是其前n 项和.若a 2a 3=a 4a 5,S 9=27,则a 1的值是________.解析:因为等差数列{a n }满足S 9=27,所以S 9=9a 5=27,所以a 5=3,因为a 2a 3=a 4a 5,所以(a 5-3d )(a 5-2d )=(a 5-d )a 5,4a 5d =6d 2,又因为等差数列{a n }的公差不为0,所以d =2,所以a 1=a 5-4d =3-4×2=-5.答案:-54.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时,n 的值为________.解析:法一:∵S n =n +n (n -1)2d ,∴S n =d2n 2+⎝⎛⎭⎫1-d 2n . ∵函数y =d 2x 2+⎝⎛⎭⎫1-d 2x 的图象的对称轴方程为x =-1d +12,且开口向下,又-217<d <-19,∴9<-1d +12<192.∴S n 取最大值时,n 的值为9.法二:由a n =a 1+(n -1)d =1+(n -1)d >0,得n -1<1-d. ∵19<-d <217,∴172<1-d<9. 又n ∈N *,∴n -1≤8,即n ≤9.故S 9最大. 答案:9 [方法归纳](1)等差、等比数列性质的应用的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m +a n =a p +a q ”这一性质与求和公式S n =n (a 1+a n )2的综合应用. [课时达标训练] [A 组——抓牢中档小题]1.(2017·南通三模)设等差数列{a n }的前n 项和为S n .若公差d =2,a 5=10,则S 10的值是________.解析:法一:因为等差数列{a n }中a 5=a 1+4d =10,d =2,所以a 1=2,所以S 10=10×2+10(10-1)2×2=110.法二:在等差数列{a n }中,a 6=a 5+d =12,所以S 10=10(a 1+a 10)2=5(a 5+a 6)=5×(10+12)=110.答案:1102.(2017·全国卷Ⅲ改编)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.解析:设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以数列{a n }前6项的和S 6=6×1+6×52×(-2)=-24. 答案:-243.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3; b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2, 所以a 2b 2=1.答案:14.已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________.解析:由题意S 5S 3=5a 1+10d3a 1+3d =3,化简得d =4a 1,则a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 答案:1795.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k =________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,因此∑k =1n1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +16.(2017·盐城期中)在数列{a n }中,a 1=-2101,且当2≤n ≤100时,a n +2a 102-n =3×2n恒成立,则数列{a n }的前100项和S 100=________.解析:因为当2≤n ≤100时,a n +2a 102-n =3×2n 恒成立,所以a 2+2a 100=3×22,a 3+2a 99=3×23,…,a 100+2a 2=3×2100,以上99个等式相加, 得3(a 2+a 3+…+a 100)=3(22+23+…+2100)=3(2101-4),所以a 2+a 3+…+a 100=2101-4,又因为a 1=-2101,所以S 100=a 1+(a 2+a 3+…+a 100)=-4. 答案:-47.(2017·常州前黄中学国际分校月考)在数列{a n }中,a n +1=a n1+3a n,a 1=2,则a 20=________.解析:由a n +1=a n1+3a n ,a 1=2,可得1a n +1=1a n +3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列.即1a n =12+3(n -1),可得a n =26n -5,所以a 20=2115. 答案:21158.(2017·苏州期中)已知数列{a n }满足:a n +1=a n (1-a n +1),a 1=1,数列{b n }满足:b n =a n ·a n +1,则数列{b n }的前10项的和S 10=________.解析:因为a n +1=a n (1-a n +1),a 1=1,所以1a n +1-1a n=1,1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =n ,所以b n =1n (n +1)=1n -1n +1,所以数列{b n }的前10项的和S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011. 答案:10119.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析:由a 11a 10<-1,得a 11+a 10a 10<0,且它的前n 项和S n 有最大值,则a 10>0,a 11<0,a 11+a 10<0,则S 19>0,S 20<0,那么当S n 取得最小正值时,n =19.答案:1910.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:20011.(2017·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.解析:令a 1+a 2=t (t >0),则a 4+a 3-2a 2-2a 1=6可化为tq 2-2t =6(其中q 为公比),所以a 5+a 6=tq 4=6q 2-2q 4=6⎣⎡⎦⎤4q 2-2+(q 2-2)+4≥6⎣⎢⎡⎦⎥⎤24q 2-2×(q 2-2)+4=48(当且仅当q =2时等号成立). 答案:4812.设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=2S n +2n ,则数列{a n }的通项公式a n =________.解析:当n ≥2时,a n +1-a n =2(S n -S n -1)+2n -2n -1=2a n +2n -1,从而a n +1+2n =3(a n+2n -1).又a 2=2a 1+2=4,a 2+2=6,故数列{a n +1+2n }是以6为首项,3为公比的等比数列,从而a n +1+2n =6×3n -1,即a n +1=2×3n -2n ,又a 1=1=2×31-1-21-1,故a n =2×3n -1-2n -1.答案:2×3n -1-2n -113.数列{a n }中,若对∀n ∈N *,a n +a n +1+a n +2=k (k 为常数),且a 7=2,a 9=3,a 98=4,则该数列的前100项的和等于________.解析:由a n +a n +1+a n +2=k ,a n +1+a n +2+a n +3=k ,得a n +3=a n . 从而a 7=a 1=2,a 9=a 3=3,a 98=a 2=4. 因此a 1+a 2+a 3=9.所以S 100=33(a 1+a 2+a 3)+a 1=33×9+2=299. 答案:29914.(2017·南京考前模拟)数列{a n }中,a n =2n -1,现将{a n }中的项依原顺序按第k 组有2k 项的要求进行分组:(1,3),(5,7,9,11),(13,15,17,19,21,23),…,则第n 组中各数的和为________.解析:设数列{a n }的前n 项和为S n ,则S n =n 2,因为2+4+…+2n =n ( n +1)=n 2+n,2+4+…+2( n -1)=n ( n -1)=n 2-n .所以第n 组中各数的和为S n 2+n -S n 2-n =( n 2+n )2-(n 2-n )2=4n 3.答案:4n 3[B 组——力争难度小题]1.在等差数列{a n }中,若任意两个不等的正整数k ,p 都有a k =2p +1,a p =2k +1,数列{a n }的前n 项和记为S n .若k +p =m ,则S m =________.(用m 表示)解析:设数列{a n }的公差为d , 由题意,a 1+(k -1)d =2p +1,① a 1+(p -1)d =2k +1,② 两式相减,得(p -k )d =2(k -p ). 又k -p ≠0,所以d =-2.则a 1=2p +2k -1=2m -1. 因此S m =ma 1+m (m -1)2d =m (2m -1)-m (m -1)=m 2. 答案:m 22.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.∵a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12n n(-1)2=n nn n n 2273++22222=2--.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:643.(2017·南京考前模拟)已知函数f (x )=(x -2)3,数列{a n }是公差不为0的等差数列,若∑11i =1f (a i )=0,则数列{a n }的前11项和S 11为________.解析:f (x )=(x -2)3为增函数,且关于点(2,0)中心对称,则f (2+x )+f (2-x )=0.设数列{a n }的公差为d ,若a 6>2,则f (a 6)>0,f (a 5)+f (a 7)=f (a 6-d )+f (a 6+d )>f (2-d )+f (2+d )=0,即f (a 5)+f (a 7)>0,同理,f (a 4)+f (a 8)>0,…,f (a 1)+f (a 11)>0,则∑11i =1f (a i )>0;同理,若a 6<2,则∑11i =1f (a i )<0,所以a 6=2.所以S 11=11a 6=22. 答案:224.(2017·全国卷Ⅰ改编)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是________.解析:设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (n +1)2.由题意可知,N >100,令n (n +1)2>100, 得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n -1,前n 组的所有项的和为2(1-2n )1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t -1应与-2-k 互为相反数,即2t -1=k +2, ∴2t =k +3, ∴t =log 2(k +3), ∴当t =4,k =13时,N =13×(13+1)2+4=95<100,不满足题意; 当t =5,k =29时,N =29×(29+1)2+5=440;当t >5时,N >440. 答案:440第2课时等差、等比数列的综合问题(能力课) [常考题型突破][例1] n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ;(2)若对任意n ∈N *,S n =a 2n +n2恒成立,求数列{a n }的通项公式;(3)若S 2n =3(2n -1),数列{a n a n +1}为等比数列,求数列{a n }的通项公式. [解] (1)由题意,b 1=a 1+a 2=1+2=3,则S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3n +1-32.(2)当n ≥2时,由2S n =a 2n +n , 得2S n -1=a 2n -1+n -1,两式相减得2a n =a 2n +n -(a 2n -1+n -1)=a 2n -a 2n -1+1,整理得(a n -1)2-a 2n -1=0, 即(a n -a n -1-1)(a n +a n -1-1)=0, 故a n -a n -1=1或a n +a n -1=1.(*)下面证明a n +a n -1=1对任意的n ∈N *恒不成立. 事实上,因为a 1+a 2=3, 所以a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立,所以a n -a n -1=1对任意的n ∈N *恒成立.因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n . (3)设等比数列{a n a n +1}的公比为q ,则当n ≥2时,a n a n +1a n -1a n =a n +1a n -1=q .即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列; 故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1).综上所述,a n=⎩⎨⎧2n -12,当n 为奇数,2n2,当n 为偶数.[方法归纳]已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和. (1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.解:(1)因为a n =23×⎝⎛⎭⎫-13n -1=-2⎝⎛⎭⎫-13n , S n =23⎣⎡⎦⎤1-⎝⎛⎭⎫-13n 1-⎝⎛⎭⎫-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n ,所以b n =2S na n +2=1-⎝⎛⎭⎫-13n -2⎝⎛⎭⎫-13n +2=12. (2)若b n =n ,则2S n =na n +2n ,① 所以2S n +1=(n +1)a n +1+2(n +1),② 由②-①得2a n +1=(n +1)a n +1-na n +2, 即na n =(n -1)a n +1+2,③当n ≥2时,(n -1)a n -1=(n -2)a n +2,④ 由④-③得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n ,由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列,故数列{a n }的通项公式是a n =n +1.(3)证明:由(2)得c n =n +1n ,对于给定的n ∈N *,若存在k ≠n ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t ,只需n +1n =k +1k ·t +1t , 即1+1n =⎝⎛⎭⎫1+1k ·⎝⎛⎭⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n (n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n 2+2n =n 2+2n +1n 2+2n ,使得c n =c n +1·c n 2+2n .[例2] n n a 2n -na 2n +1=0,设数列{b n }满足b n =a 2ntn .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列; (2)若数列{b n }是等差数列,求实数t 的值;(3)若数列{b n }是等差数列,前n 项和为S n ,对任意的n ∈N *,均存在m ∈N *,使得8a 21S n -a 41n 2=16b m 成立,求满足条件的所有整数a 1的值.[解] (1)证明:由题意得4(n +1)a 2n =na 2n +1,因为数列{a n }各项均为正, 得a 2n +1n +1=4·a 2n n ,所以a n +1n +1=2·a n n , 因此a n +1n +1a n n =2,所以⎩⎨⎧⎭⎬⎫a n n 是以a 1为首项,公比为2的等比数列.(2)由(1)得a n n=a 1·2n -1,即a n =a 1·2n -1·n , 所以b n =a 2nt n =a 21·4n -1·n tn, 如果数列{b n }是等差数列,则2b 2=b 1+b 3, 即2·a 21·2·42-1t 2=a 21·40t +a 21·3·43-1t 3,整理得16t 2=1t +48t 3,则t 2-16t +48=0, 解得t =4或t =12. 当t =4时,b n =a 21·n 4,因为b n +1-b n =a 21(n +1)4-a 21n 4=a 214,所以数列{b n }是等差数列,符合题意; 当t =12时,b n =a 21n4·3n ,因为b 2+b 4=2a 214·32+4a 214·34=22a 214·34=11162a 21,2b 3=2·a 21·34·33=a 2118,b 2+b 4≠2b 3,所以数列{b n }不是等差数列,t =12不符合题意, 综上,如果数列{b n }是等差数列,则t =4.(3)由(2)得b n =a 21n 4,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m , 则8·a 414·n (n +1)2-a 41n 2=16a 21m 4,所以m =na 214.当a 1=2k ,k ∈N *时,m =4k 2n4=k 2n ,对任意的n ∈N *,m ∈N *,符合题意; 当a 1=2k -1,k ∈N *,当n =1时,m =4k 2-4k +14=k 2-k +14∉N *,故不合题意.综上,当a 1=2k ,k ∈N *,对任意的n ∈N *,均存在m ∈N *,使8a 21S n -a 41n 2=16b m .[方法归纳]已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足(n +1)b n =a n +1-S nn ,(n +2)c n =a n +1+a n +22-S nn ,其中n ∈N *. (1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N *,有b n ≤λ≤c n ,求证:数列{a n }是等差数列. 解:(1)因为数列{a n }是公差为2的等差数列, 所以a n =a 1+2(n -1),S nn =a 1+n -1. 因为(n +2)c n =a 1+2n +a 1+2(n +1)2-(a 1+n -1)=n +2,所以c n =1.(2)证明:由(n +1)b n =a n +1-S nn,得n (n +1)b n =na n +1-S n ,(n +1)(n +2)b n +1=(n +1)a n +2-S n +1,两式相减,并化简得a n +2-a n +1=(n +2)b n +1-nb n .从而(n +2)c n =a n +1+a n +22-S n n =a n +1+a n +22-[a n +1-(n +1)b n ]=a n +2-a n +12+(n +1)b n =(n +2)b n +1-nb n 2+(n +1)b n =n +22(b n +b n +1),因此c n =12(b n +b n +1).因为对一切n ∈N *,有b n ≤λ≤c n ,所以λ≤c n =12(b n +b n +1)≤λ,故b n =λ,c n =λ.所以(n +1)λ=a n +1-S nn ,①(n +2)λ=12(a n +1+a n +2)-S n n ,②②-①得12(a n +2-a n +1)=λ,即a n +2-a n +1=2λ,故a n +1-a n =2λ(n ≥2).又2λ=a 2-S 11=a 2-a 1,则a n +1-a n =2λ(n ≥1).所以数列{a n }是等差数列.[例3] (2017·n a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n ,对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. [证明] (1)因为{a n }是等差数列,设其公差为d , 则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d =2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n , 因此等差数列{a n }是“P (3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[方法归纳]设数列{a n}的前n项的和为S n.定义:若∀n∈N*,∃m∈N*,S n=a m,则称数列{a n}为H数列.(1)求证:数列{(n-2)d}(n∈N*,d为常数)是H数列;(2)求证:数列{(n-3)d}(n∈N*,d为常数,d≠0)不是H数列.证明:(1)∵a n=(n-2)d,∴S n=n(-1+n-2)2d=n(n-3)2d.令n(n-3)2d=(m-2)d.(*)当d=0时,存在正整数m满足(*).当d≠0时,m=2+n(n-3)2,∵∀n∈N*,n(n-3)2∈Z,∴m∈Z,且n(n-3)2≥-1,∴m≥1,m∈N*,故存在m∈N*满足(*).所以数列{(n-2)d}是H数列.(2)数列{(n-3)d}的前n项之和为S n=n(-2+n-3)2d=n(n-5)2d.令n(n-5)2d=(m-3)d.因为d ≠0,所以m =3+n (n -5)2,当n =2时,m =0,故{(n -3)d }不是H 数列. [课时达标训练]1.(2017·苏州期中)已知等比数列{a n }的公比q >1,满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解:(1)∵a 3+2是a 2,a 4的等差中项, ∴2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12,∵q >1,∴⎩⎪⎨⎪⎧a 1=2,q =2,∴数列{a n }的通项公式为a n =2n .(2)∵b n =a n log 12a n =2n log 122n =-n ·2n ,∴S n =-(1×2+2×22+…+n ·2n ),①2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1),② ②-①得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1.∵S n +n ·2n +1>62,∴2n +1-2>62, ∴n +1>6,n >5,∴使S n +n ·2n +1>62成立的正整数n 的最小值为6.2.已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *).(1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列. 解:(1)由a 1=1,b n =n2,知a 2=4,a 3=6,a 4=8.(2)证明:法一:显然公比q ≠1,因为a n +1b n =S n +1,所以a 1q nb n =a 1(1-q n )1-q+1,所以q nb n =11-q +1a 1-q n 1-q,即b n =⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n -11-q , 所以存在实数λ=11-q, 使得b n +λ=⎝⎛⎭⎫11-q +1a 1⎝⎛⎭⎫1q n ,又b n +λ≠0(否则{b n }为常数数列,与题意不符), 所以当n ≥2时,b n +λb n -1+λ=1q ,此时{b n +λ}为等比数列,所以存在实数λ=11-q,使得{b n +λ}为等比数列. 法二:因为a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,② ①-②得,a n +1b n -a n b n -1=a n ,③ 由③得,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q ,所以b n +11-q =1q ⎝⎛⎭⎫b n -1+11-q .又b n +11-q≠0(否则{b n }为常数数列,与题意不符), 所以存在实数λ=11-q,使得{b n +λ}为等比数列. 3.设数列{H n }的各项均为不相等的正整数,其前n 项和为Q n ,称满足条件“对任意的m ,n ∈N *,均有(n -m )·Q n +m =(n +m )(Q n -Q m )”的数列{H n }为“好”数列.(1)试分别判断数列{a n },{b n }是否为“好”数列,其中a n =2n -1,b n =2n -1,n ∈N *,并给出证明;(2)已知数列{c n }为“好”数列,其前n 项和为T n . ①若c 2 016=2 017,求数列{c n }的通项公式;②若c 1=p ,且对任意给定的正整数p ,s (s >1),有c 1,c s ,c t 成等比数列,求证:t ≥s 2. 解:(1)若a n =2n -1,则S n =n 2, 所以(n -m )S n +m =(n -m )(n +m )2,而(n +m )(S n -S m )=(n +m )(n 2-m 2)=(n +m )2(n -m ), 所以(n -m )S n +m =(n +m )(S n -S m )对任意的m ,n ∈N *均成立, 即数列{a n }是“好”数列.若b n =2n -1,则S n =2n -1,取n =2,m =1, 则(n -m )S n +m =S 3=7,(n +m )(S n -S m )=3b 2=6, 此时(n -m )S n +m ≠(n +m )(S n -S m ), 即数列{b n }不是“好”数列.(2)因为数列{c n }为“好”数列,取m =1, 则(n -1)T n +1=(n +1)(T n -T 1), 即2T n =(n -1)c n +1+(n +1)c 1恒成立. 当n ≥2时,有2T n -1=(n -2)c n +nc 1,两式相减,得2c n =(n -1)c n +1-(n -2)c n +c 1(n ≥2), 即nc n =(n -1)c n +1+c 1(n ≥2), 所以(n -1)c n -1=(n -2)c n +c 1(n ≥3),所以nc n -(n -1)c n -1=(n -1)c n +1-(n -2)c n (n ≥3), 即(2n -2)c n =(n -1)c n -1+(n -1)c n +1(n ≥3), 即2c n =c n -1+c n +1(n ≥3),当n =2时,有2T 2=c 3+3c 1,即2c 2=c 3+c 1, 所以2c n =c n -1+c n +1对任意的n ≥2,n ∈N *恒成立, 所以数列{c n }是等差数列. 设数列{c n }的公差为d ,①若c 2 016=2 017,则c 1+2 015d =2 017, 即d =2 017-c 12 015,因为数列{c n }的各项均为不相等的正整数, 所以d ∈N *,所以d =1,c 1=2,所以c n =n +1. ②证明:若c 1=p ,则c n =dn +p -d , 由c 1,c s ,c t 成等比数列,得c 2s =c 1c t , 所以(ds +p -d )2=p (dt +p -d ),即(p -d )(2ds +p -d -p )+d (ds 2-pt )=0, 化简得,p (t +1-2s )=d (s -1)2, 即d =t +1-2s (s -1)2p .因为p 是任意给定的正整数,要使d ∈N *,必须t +1-2s(s -1)2∈N *,不妨设k =t +1-2s(s -1)2,由于s 是任意给定的正整数,所以t =k (s -1)2+2s -1≥(s -1)2+2s -1=s 2. 故不等式得证.4.(2017·常州前黄中学国际分校月考)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1. ①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去). 所以a n =2n -1.(2)①∵b 1=a 1,b n +1-b n =1a n a n +1, ∴b 1=a 1=1,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,即b 2-b 1=12⎝⎛⎭⎫1-13,b 3-b 2=12⎝⎛⎭⎫13-15,…,b n -b n -1=12⎝⎛⎭⎫12n -3-12n -1(n ≥2),累加得:b n -b 1=12⎝⎛⎭⎫1-12n -1=n -12n -1, ∴b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.b 1=1也符合上式. 故b n =3n -22n -1,n ∈N *. ②假设存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,∴43+⎝⎛⎭⎫32-14n -2=2⎝⎛⎭⎫32-14m -2, 即12m -1=16+14n -2,化简得:2m =7n -2n +1=7-9n +1. 当n +1=3,即n =2时,m =2,不合题意,舍去; 当n +1=9,即n =8时,m =3,符合题意.∴存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.5.(2017·镇江丹阳高级中学期初考试)已知数列{a n }满足a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n ∈N *).(1)求使a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围; (2)求数列{b n }的前n 项和S n ;(3)试证明:当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项. 解:(1)依题意得q n -1+q n >q n +1, ∵q >0,∴q 2-q -1<0, ∴0<q <5+12. (2)∵b n +1b n =a 2n +1+a 2n +2a 2n -1+a 2n =a 2n a 2n +1a 2n +a 2n +1a 2n +2a 2n +1a 2n -1+a 2n =a 2n -1a 2n a 2n q +a 2n a 2n +1a 2n +1q a 2n -1+a 2n =q (q >0),且b 1=a 1+a 2=1+r >0,∴ 数列{b n }是以1+r 为首项,q 为公比的等比数列, ∴S n =⎩⎪⎨⎪⎧n (1+r ),q =1,(1+r )(1-q n )1-q ,q ≠1.(3)证明:当q ≥2时,S n =(1+r )(1-q n )1-q,∵S n -a n +1=(1+r )(1-q n )1-q -(1+r )q n =1+r 1-q [(1-q n )-q n (1-q )]=1+r1-q [1+q n (q -2)]<0,∴S n <a n +1,又S n =a 1+a 2+…+a n ,a n >0,n ∈N *,∴S n >a n ,故当q ≥2时,对任意正整数n ≥2,S n 不可能是数列{b n }中的某一项.6.(2017·南通二调)设数列{a n }的前n 项和为S n (n ∈N *),且满足:①|a 1|≠|a 2|;②r (n -p )S n +1=()n 2+n a n +(n 2-n -2)a 1,其中r ,p ∈R ,且r ≠0.(1)求p 的值;(2)数列{a n }能否是等比数列?请说明理由; (3)求证:当r =2时,数列{a n }是等差数列. 解:(1)n =1时,r (1-p )S 2=2a 1-2a 1=0,因为|a 1|≠|a 2|,所以S 2≠0, 又r ≠0,所以p =1.(2)数列{a n }不是等比数列.理由如下: 假设{a n }是等比数列,公比为q ,当n =2时,rS 3=6a 2,即ra 1(1+q +q 2)=6a 1q , 所以r (1+q +q 2)=6q ,①当n =3时,2rS 4=12a 3+4a 1,即2ra 1(1+q +q 2+q 3)=12a 1q 2+4a 1, 所以r (1+q +q 2+q 3)=6q 2+2,②由①②得q =1,与|a 1|≠|a 2|矛盾,所以假设不成立. 故{a n }不是等比数列.(3)证明:当r =2时,易知a 3+a 1=2a 2. 由2(n -1)S n +1=(n 2+n )a n +(n 2-n -2)a 1,得 n ≥2时,2S n +1=n (n +1)a n n -1+(n +1)(n -2)a 1n -1,①2S n +2=(n +1)(n +2)a n +1n +(n -1)(n +2)a 1n,② ②-①得,2a n +2=(n +1)(n +2)a n +1n -n (n +1)a n n -1+(n 2-n +2)a 1n (n -1), 即2(a n +2-a 1)=(n +1)(n +2)(a n +1-a 1)n -n (n +1)(a n -a 1)n -1,两边同除(n +1)得,2(a n +2-a 1)n +1=(n +2)(a n +1-a 1)n -n (a n -a 1)n -1, 即a n +2-a 1n +1-a n +1-a 1n =n 2⎝ ⎛⎭⎪⎫a n +1-a 1n -a n -a 1n -1 =n (n -1)2×2⎝ ⎛⎭⎪⎫a n -a 1n -1-a n -1-a 1n -2=…… =n (n -1)×…×3×22×2×…×2⎝ ⎛⎭⎪⎫a 3-a 13-1-a 2-a 12-1=0, 所以a n -a 1n -1=a n -1-a 1n -2=…=a 2-a 11,令a 2-a 1=d ,则a n -a 1n -1=d (n ≥2). 所以a n =a 1+(n -1)d (n ≥2). 又n =1时,也适合上式, 所以a n =a 1+(n -1)d (n ∈N *).所以a n+1-a n=d(n∈N*).所以当r=2时,数列{a n}是等差数列.第3课时数列的综合应用(能力课)[常考题型突破][例1](2017·南京考前模拟)若各项均为正数的数列{a n}的前n项和为S n,且2S n=a n +1 (n∈N*).(1)求数列{a n}的通项公式;(2)若正项等比数列{b n},满足b2=2,2b7+b8=b9,求T n=a1b1+a2b2+…+a n b n;(3)对于(2)中的T n,若对任意的n∈N*,不等式λ(-1)n<12n+1(T n+21)恒成立,求实数λ的取值范围.[解](1)因为2S n=a n+1,所以4S n=(a n+1)2,且a n>0,则4a1=(a1+1)2,解得a1=1,又4S n+1=(a n+1+1)2,所以4a n+1=4S n+1-4S n=(a n+1+1)2-(a n+1)2,即(a n+1+a n)(a n+1-a n)-2(a n+1+a n)=0,因为a n>0,所以a n+1+a n≠0,所以a n+1-a n=2,所以{a n}是公差为2的等差数列,又a1=1,所以a n =2n -1.(2) 设数列{b n }的公比为q ,因为2b 7+b 8=b 9,所以2+q =q 2,解得q =-1(舍去)或q =2,由b 2=2,得b 1=1,即b n =2n -1.记A =a 1b 1+a 2b 2+…+a n b n =1×1+3×2+5×22+…+(2n -1)×2n -1, 则2A =1×2+3×22+5×23+…+(2n -1)×2n , 两式相减得-A =1+2(2+22+…+2n -1)-(2n -1)×2n ,故A =(2n -1)×2n -1-2(2+22+…+2n -1)=(2n -1)×2n -1-2(2n -2)=(2n -3)×2n+3所以T n =a 1b 1+a 2b 2+…+a n b n =(2n -3)·2n +3.(3)不等式λ(-1)n <12n +1(T n +21)可化为(-1)n λ<n -32+62n -1.当n 为偶数时,λ<n -32+62n -1,记g (n )=n -32+62n -1.即λ<g (n )min . g (n +2)-g (n )=2+62n +1-62n -1=2-92n ,当n =2时,g (n +2)<g (n ),n ≥4时,g (n +2)>g (n ), 即g (4)<g (2),当n ≥4时,g (n )单调递增,g (n )min =g (4)=134,即λ<134. 当n 为奇数时,λ>32-n -62n -1,记h (n )=32-n -62n -1,所以λ>h (n )max .h (n +2)-h (n )=-2-62n +1+62n -1=-2+92n ,当n =1时,h (n +2)>h (n ),n ≥3时,h (n +1)<h (n ),即h (3)>h (1),n ≥3时,h (n )单调递减,h (n )max =h (3)=-3,所以λ>-3. 综上所述,实数λ的取值范围为⎝⎛⎭⎫-3,134. [方法归纳]已知数列{a n }满足a 1=6,a 2=20,且a n -1·a n +1=a 2n -8a n +12(n ∈N *,n ≥2).(1)证明:数列{a n +1-a n }为等差数列; (2)令c n =(n +1)a n na n +1+na n +1(n +1)a n,数列{c n }的前n 项和为T n ,求证:2n <T n <2n +23.证明:(1)当n =2时,a 1·a 3=a 22-8a 2+12, 所以a 3=42.当n ≥2时,由a n -1·a n +1=a 2n -8a n +12, 得a n ·a n +2=a 2n +1-8a n +1+12,两式相减得a 2n +1-a 2n -8a n +1+8a n =a n a n +2-a n -1a n +1, 所以a 2n +a n a n +2-8a n =a 2n +1+a n -1a n +1-8a n +1,即a n (a n +a n +2-8)=a n +1(a n +1+a n -1-8),所以a n +a n +2-8a n +1=a n +1+a n -1-8a n =…=a 3+a 1-8a 2=2.所以a n +2+a n -8=2a n +1, 即a n +2-2a n +1+a n =8, 即(a n +2-a n +1)-(a n +1-a n )=8, 当n =1时,也满足此式. 又a 2-a 1=14,所以数列{a n +1-a n }是以14为首项,8为公差的等差数列. (2)由(1)知a n +1-a n =14+8(n -1)=8n +6.由a 2-a 1=8×1+6,a 3-a 2=8×2+6,…,a n -a n -1=8×(n -1)+6,累加得a n -a 1=8×[1+2+3+…+(n -1)]+6(n -1)=8×(n -1)(1+n -1)2+6(n -1)=4n 2+2n -6,所以a n =4n 2+2n .所以c n =(n +1)a n na n +1+na n +1(n +1)a n =2n +12n +3+2n +32n +1=⎝⎛⎭⎫1-22n +3+⎝⎛⎭⎫1+22n +1=2+2⎝⎛⎭⎫12n +1-12n +3,所以T n =2n +2⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=2n +2⎝⎛⎭⎫13-12n +3,又13>13-12n +3=2n +3-33(2n +3)=2n 3(2n +3)>0, 所以2n <T n <2n +23.[例2] n n S n ,T n ,满足对一切n ∈N *,都有S n +3=T n .(1)若a 1≠b 1,试分别写出一个符合条件的数列{a n }和{b n };(2)若a 1+b 1=1,数列{c n }满足:c n =4a n +λ(-1)n -1·2b n ,求最大的实数λ,使得当n ∈N *,恒有c n +1≥c n 成立.[解] (1)设数列{a n },{b n }的公差分别是d 1,d 2. 则S n +3=(n +3)a 1+(n +3)(n +2)2d 1, T n =nb 1+n (n -1)2d 2.∵对一切n ∈N *,有S n +3=T n ,∴(n +3)a 1+(n +3)(n +2)2d 1=nb 1+n (n -1)2d 2,即d 12n 2+⎝⎛⎭⎫a 1+52d 1n +3a 1+3d 1=d 22n 2+⎝⎛⎭⎫b 1-12d 2n . ∴⎩⎪⎨⎪⎧d 12=d 22,a 1+52d 1=b 1-12d 2,3a 1+3d 1=0.即⎩⎪⎨⎪⎧d 2=d 1,a 1=-d 1,b 1=2d 1.故答案不唯一.例如取d 1=d 2=2,a 1=-2,b 1=4, 得a n =2n -4(n ∈N *),b n =2n +2(n ∈N *). (2)∵a 1+b 1=1,又由(1),可得d 1=d 2=1,a 1=-1,b 1=2. ∴a n =n -2,b n =n +1. ∴c n =4n -2+λ(-1)n -12n +1.∴c n +1-c n =4n -1+λ(-1)n 2n +2-4n -2-λ(-1)n -12n +1=3·4n -2+λ(-1)n (2n +2+2n +1)=316·22n +6λ(-1)n ·2n . ∵当n ∈N *时,c n +1≥c n 恒成立, 即当n ∈N *时,316·22n +6λ(-1)n ·2n ≥0恒成立. ∴当n 为正奇数时,λ≤132·2n 恒成立, 而132·2n ≥116.∴λ≤116; 当n 为正偶数时,λ≥-132·2n恒成立, 而-132·2n ≤-18,∴λ≥-18. ∴-18≤λ≤116,∴λ的最大值是116.[方法归纳][变式训练](2017·南京三模)已知常数p >0,数列{a n }满足a n +1=|p -a n |+2a n +p ,n ∈N *. (1)若a 1=-1,p =1, ①求a 4的值;②求数列{a n }的前n 项和S n .(2)若数列{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,求a 1p 的取值范围.解:(1)因为p =1,所以a n +1=|1-a n |+2a n +1. ①因为a 1=-1,所以a 2=|1-a 1|+2a 1+1=1, a 3=|1-a 2|+2a 2+1=3, a 4=|1-a 3|+2a 3+1=9.②因为a 2=1,a n +1=|1-a n |+2a n +1, 所以当n ≥2时,a n ≥1,从而a n +1=|1-a n |+2a n +1=a n -1+2a n +1=3a n , 于是有a n =3n -2(n ≥2) .故当n ≥2时,S n =-1+a 2+a 3+…+a n =-1+1-3n -11-3=3n -1-32 ,当n =1时,S 1=-1,符合上式,故S n =3n -1-32,n ∈N *.(2)因为a n +1-a n =|p -a n |+a n +p ≥p -a n +a n +p =2p >0, 所以a n +1>a n ,即数列{a n }单调递增. (ⅰ)当a 1p≥1时,有a 1≥p ,于是a n ≥a 1≥p ,所以a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n ,所以a n =3n -1a 1.若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,则有2a s =a r +a t , 即2×3s -1=3r -1+3t -1. (*)因为s ≤t -1,所以2×3s -1=23×3s <3t -1<3r -1+3t -1,即(*)不成立.故此时数列{a n }中不存在三项依次成等差数列. (ⅱ)当-1<a 1p<1时,有-p <a 1<p .此时a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p >p , 于是当n ≥2时,a n ≥a 2>p ,从而a n +1=|p -a n |+2a n +p =a n -p +2a n +p =3a n . 所以a n =3n -2a 2=3n -2(a 1+2p ) (n ≥2).若{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列, 由(ⅰ)可知,r =1,于是有2×3s -2(a 1+2p )=a 1+3t -2(a 1+2p ).因为2≤s ≤t -1, 所以a 1 a 1+2p=2×3s -2-3t -2=29×3s -13×3t -1<0.因为2×3s -2-3t-2是整数,所以a 1a 1+2p≤-1,于是a 1≤-a 1-2p ,即a 1≤-p ,与-p <a 1<p 相矛盾. 故此时数列{a n }中不存在三项依次成等差数列. (ⅲ)当a 1p ≤-1时,则有a 1≤-p <p ,a 1+p ≤0, 于是a 2=|p -a 1|+2a 1+p =p -a 1+2a 1+p =a 1+2p ,a 3=|p -a 2|+2a 2+p =|p +a 1|+2a 1+5p =-p -a 1+2a 1+5p =a 1+4p , 此时2a 2=a 1+a 3,则a 1,a 2,a 3成等差数列. 综上可知,a 1p ≤-1.故a 1p 的取值范围为(-∞,-1].[例3] n ∈N *),其中m ,a ,b 均为实常数.(1)若m =0,且a 4,3a 3,a 5成等差数列. ①求ba的值;②若a =2,令b n =⎩⎪⎨⎪⎧a n ,n 为奇数,2log 2a n -1,n 为偶数,求数列{b n }的前n 项和S n ;(2)是否存在常数λ,使得a n +a n +2=λa n +1对任意的n ∈N *都成立?若存在,求出实数λ的值(用m ,a ,b 表示);若不存在,请说明理由.[解] (1)①因为m =0, 所以a 2n +1=a n a n +2,所以正项数列{a n }是等比数列,不妨设其公比为q . 又a 4,3a 3,a 5成等差数列, 所以q 2+q =6,解得q =2或q =-3(舍去),。
3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3), 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.② 由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1.C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x .将直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2.法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x,将直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧ y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧ x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6. 所以AB 的长为⎝⎛⎭⎫92-122+(6-2)2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值. 解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝⎛⎭⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝⎛⎭⎫0,22,-2,OD ―→=⎝⎛⎭⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n =⎝⎛⎭⎫a +b 2n.(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝⎛⎭⎫a +b 22=112(a -b )2>0.(2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1;当n ≥3时,A n =1n +1·a n +1-bn +1a -b,B n =⎝⎛⎭⎫a +b 2n , 令a +b =x ,a -b =y ,且x >0,y >0,于是A n=1n+1·⎝⎛⎭⎫x+y2n+1-⎝⎛⎭⎫x-y2n+1y=12n+1(n+1)y[(x+y)n+1-(x-y)n+1],B n=⎝⎛⎭⎫x2n,因为[(x+y)n+1-(x-y)n+1]=(2C1n+1x n y+2C3n+1·x n-2y3+…)≥2C1n+1x n y,所以A n≥12n+1(n+1)y·2C1n+1x n y=x n2n=⎝⎛⎭⎫x2n=Bn.。
3个附加题综合仿真练(六)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P为垂足.求证:(1)∠PAC =∠CAB ; (2)AC 2=AP ·AB .证明:(1)因为PC 切半圆O 于点C ,所以∠PCA =∠CBA . 因为AB 为半圆O 的直径,所以∠ACB =90°. 因为AP ⊥PC ,所以∠APC =90°. 因此∠PAC =∠CAB .(2)由(1)知,△APC ∽△ACB ,故AP AC =AC AB , 即AC 2=AP ·AB .B .[选修4-2:矩阵与变换] 已知矩阵A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤1 00 2.(1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解:(1)因为A =⎣⎢⎡⎦⎥⎤0 11 0,B =⎣⎢⎡⎦⎥⎤100 2,所以AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 210. (2)设Q (x 0,y 0)为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P (x ,y ), 则⎣⎢⎡⎦⎥⎤0 210⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2. 因为点Q (x 0,y 0)在曲线C 1上,则x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α-2(α为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=β,若圆C 与直线l 相切,求直线l 的极坐标方程.解:圆的直角坐标方程为x 2+(y -2)2=1, 设直线l 对应的直角坐标方程为y =kx , 因为圆C 与直线l 相切, 所以d =|2|1+k 2=1,得到k =±3, 故直线l 的极坐标方程θ=π3或θ=2π3.D .[选修4-5:不等式选讲]已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8. 证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.2.已知正六棱锥S -ABCDEF 的底面边长为2,高为1.现从该棱锥的7个顶点中随机选取3个点构成三角形,设随机变量X 表示所得三角形的面积.(1)求概率P (X =3)的值;(2)求X 的概率分布,并求其数学期望E (X ). 解:(1)从7个顶点中随机选取3个点构成三角形, 共有C 37=35种取法.其中X =3的三角形如△ABF , 这类三角形共有6个. 因此P (X =3)=635. (2)由题意,X 的可能取值为3,2,6,23,3 3. 其中X =3的三角形如△ABF ,这类三角形共有6个;其中X =2的三角形有两类,如△SAD (3个),△SAB (6个),共有9个; 其中X =6的三角形如△SBD ,这类三角形共有6个; 其中X =23的三角形如△CDF ,这类三角形共有12个; 其中X =33的三角形如△BDF ,这类三角形共有2个. 因此P (X =3)=635,P (X =2)=935, P (X =6)=635,P (X =23)=1235,P (X =33)=235. 所以随机变量X 的概率分布为:所求数学期望 E (X )=3×635+2×935+6×635+23×1235+33×235=363+66+1835. 3.已知数列{a n }满足:a 1=1,对任意的n ∈N *,都有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n .(1)求证:当n ≥2时,a n ≥2;(2)利用“∀x >0,ln(1+x )<x ”,证明:a n <2e 34(其中e 是自然对数的底数).证明:(1)①由题意,a 2=⎝⎛⎭⎫1+12×1+12=2,故当n =2时,a 2=2,不等式成立. ②假设当n =k (k ≥2,k ∈N *)时不等式成立,即a k ≥2,则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k (k +1)a k +12k >2.所以,当n =k +1时,不等式也成立. 根据①②可知,对所有n ≥2,a n ≥2成立.(2)当n ≥2时,由递推公式及(1)的结论有a n +1=⎝⎛⎭⎫1+1n 2+n a n +12n ≤⎝⎛⎭⎫1+1n 2+n +12n +1a n (n ≥2).两边取对数,并利用已知不等式ln(1+x )<x ,得 ln a n +1≤ln ⎝⎛⎭⎫1+1n 2+n +12n +1+ln a n <ln a n +1n 2+n +12n +1, 故ln a n +1-ln a n <1n 2+n +12n +1(n ≥2), 求和可得ln a n -ln a 2<12×3+1 3×4+…+1(n -1)n +123+124+…+12n =⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n +123·1-12n -21-12=12-1n +122-12n <34. 由(1)知,a 2=2,故有ln a n 2<34,即a n <2e 34(n ≥2),而a 1=1<2e 34,所以对任意正整数n ,有a n <2e 34.。
3 个附带题 综合仿真练 (二 )1. 此题包含 A 、 B 、 C 、 D 四个小题,请任选二个作答A . [选修 4- 1:几何证明选讲 ]如图,四边形 ABCD 是圆的内接四边形, BC = BD , BA 的延伸线交 CD 的延伸线于点 E .求证: AE 是四边形 ABCD 的外角∠ DAF 的均分线 .证明: 由于四边形 ABCD 是圆的内接四边形,因此∠ DAE =∠ BCD ,∠ FAE =∠ BAC =∠ BDC .由于 BC = BD ,因此∠ BCD =∠ BDC ,因此∠ DAE =∠ FAE ,因此 AE 是四边形 ABCD 的外角∠ DAF 的均分线.B . [选修 4- 2:矩阵与变换 ]193已知变换 T 将平面上的点1, 2 , (0,1)分别变换为点4,- 2 , - 2,4 .设变换 T 对应的矩阵为 M .(1) 求矩阵 M ;(2) 求矩阵 M 的特点值.ab,解: (1)设 M =cdab 19 ab0 - 3= 4则1 ,= 2 ,cd2 - 2 cd1419= ,a +2b = 4,a313 则M =33 即c + 2d =- 2,解得b =- 2,-2 .3=- 4 ,- 4 4b =- ,c2d = 4,d = 4,(2) 设矩阵 M 的特点多项式为 f(λ),3λ- 32可得 f(λ)=2 = (λ-3)( λ- 4)- 6= λ- 7λ+ 6, 4λ- 4令 f( λ)= 0,可得 λ= 1 或 λ= 6.C . [选修 4- 4:坐标系与参数方程 ]在平面直角坐标系 xOy 中,以 O 为极点, x 轴的正半轴为极轴成立极坐标系.x =1+ 3cos t ,(t 为参数 ).直线 l : 2ρsin θ-π= m(m ∈R) ,圆 C 的参数方程为4y =- 2+ 3sin t当圆心 C 到直线 l 的距离为2时,求 m 的值.π解: 由 2ρsin θ-4 = m ,ππ得 2ρsin θcos 4- 2ρcos θsin 4 = m ,即 x - y + m = 0, 即直线 l 的直角坐标方程为x - y + m = 0,圆 C 的一般方程为 (x - 1) 2+ (y + 2)2= 9,圆心 C 到直线 l 的距离 d = |1- - 2 + m|= 2,2解得 m =- 1 或 m =- 5.D . [选修 4- 5:不等式选讲 ]已知 x , y , z 都是正数且 xyz = 8,求证: (2+x)(2 + y) ·(2+ z)≥ 64.证明: 由于 x 为正数,因此2+ x ≥ 2 2x.同理 2+ y ≥ 2 2y , 2+ z ≥ 2 2z.因此 (2+ x)( 2+ y)( 2+ z)≥ 2 2x ·2 2y ·2 2z = 8 8xyz.由于 xyz = 8,因此 (2+ x)( 2+ y)( 2+ z)≥ 64.2.在平面直角坐标系 xOy 中,点 F (1,0),直线 x =- 1 与动直线 y =n 的交点为 M ,线段 MF 的中垂线与动直线 y = n 的交点为 P.(1) 求动点 P 的轨迹 E 的方程;(2) 过动点 M 作曲线 E 的两条切线, 切点分别为 A ,B ,求证: ∠ AMB的大小为定值.解: (1)由于直线 y = n 与 x =- 1 垂直,因此 MP 为点 P 到直线 x =- 1 的距离. 连接PF (图略 ),由于P 为线段MF的中垂线与直线y =n 的交点,因此MP =PF .因此点P 的轨迹是抛物线.焦点为F(1,0),准线为x =- 1.因此曲线E 的方程为 y 2= 4x.(2) 证明:由题意,过点 M (- 1, n)的切线斜率存在,设切线方程为y - n = k(x +1),y = kx + k + n , 联立方程得 ky 2- 4y + 4k + 4n = 0,y 2= 4x ,因此 1= 16- 4k(4k + 4n)= 0,即 k 2+ kn - 1= 0(*) ,由于2= n 2+ 4>0,因此方程 (*) 存在两个不等实根,设为k 1, k 2,由于 k 1·k 2=- 1,因此∠ AMB = 90° ,为定值.3.关于给定的大于 1 的正整数 2n, ,n ,设 x =a 0+ a 1 n + a 2n + + a n n ,此中 a i ∈ {0,1,2 n - 1}, i = 0,1, 2, , n - 1,n ,且 a n ≠ 0,记知足条件的全部x 的和为 A n .(1) 求 A 2;(2) 设 A n =n nn - 1 f n,求 f (n).2解: (1)当 n = 2 时, x = a 0+ 2a 1+ 4a 2, a 0∈ {0,1}, a 1∈ {0,1}, a 2= 1,故知足条件的 x 共有 4 个,分别为 x = 0+ 0+ 4,x = 0+ 2+ 4,x = 1+ 0+ 4,x = 1+2+ 4,它们的和是22,因此 A 2= 22.(2) 由题意得, a 0, a 1, a 2, , a n - 1 各有 n 种取法; a n 有 n - 1 种取法,由分步计数原理可得a 0, a 1, a 2 , a n -1, a n 的不一样取法共有n ·n · ·n ·(n - 1)= n n (n -1),即知足条件的 x 共有 n n(n - 1)个,当 a 0 分别取 0,1,2, , n - 1 时, a 1, a 2, , a n - 1 各有 n 种取法, a n 有 n - 1 种取法,- 1 n nn - 1 2故 A n 中全部含 a 0 项的和为 (0+ 1+ 2+ + n - n; 1) ·n ( n - 1)= 2n2同理, A n 中全部含 a 1 项的和为 (0+ 1+ 2+ + n - 1)n n -1(n - 1) ·n =n n -1·n ;2A n 中全部含 n -1 2 n n n - 1 2 2; a 2 项的和为 (0+ 1+ 2+ +n - 1) ·n (n - 1) ·n = 2 ·nn - 1-n n n - 12 -A n 中全部含 a n - 1 项的和为 (n - n 1·n n 1(0+ 1+ 2+ + n - 1) ·n 1) ·n=2;当 a n 分别取 i = 1,2, , n - 1 时, a 0, a 1, a 2, , a n - 1 各有 n 种取法,n +1n - 1故 A n 中全部含 a n 项的和为 (1+ 2+ + n - 1)n nn nn·n = 2·n .因此 n n n - 1 2 2n -1)+n n +1 n - 1 n A n =2 (1+ n +n + + n2 ·nn n n - 1 2 n n - 1 n n +1 n - 1n n n - 1+=2· +2·n n=2(nn 1+ n n- 1),n - 1故 f( n)= n n +1+ n n - 1.。
2018年高考数学江苏专版二轮专题复习附加题高分练1.矩阵与变换1.(2017²常州期末)已知矩阵A =⎣⎡⎦⎤2 13 2,列向量X =⎣⎡⎦⎤x y ,B =⎣⎡⎦⎤47,若AX =B ,直接写出A -1,并求出X . 解 由A =⎣⎡⎦⎤2 13 2,得到A -1=⎣⎡⎦⎤ 2 -1-3 2.由AX =B ,得到X =A -1B =⎣⎡⎦⎤ 2 -1-3 2⎣⎡⎦⎤47=⎣⎡⎦⎤12.也可由AX =B 得到⎣⎡⎦⎤2 13 2⎣⎡⎦⎤x y =⎣⎡⎦⎤47,即⎩⎪⎨⎪⎧2x +y =4,3x +2y =7,解得⎩⎪⎨⎪⎧x =1,y =2,所以X =⎣⎡⎦⎤12.2.(2017²江苏淮阴中学调研)已知矩阵A =⎣⎡⎦⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎡⎦⎤11,属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2.求矩阵A ,并写出A 的逆矩阵.解 由矩阵A 属于特征值6的一个特征向量α1=⎣⎡⎦⎤11可得,⎣⎡⎦⎤33cd ⎣⎡⎦⎤11=6⎣⎡⎦⎤11,即c +d =6;由矩阵A 属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2,可得⎣⎡⎦⎤3 3c d ⎣⎡⎦⎤ 3-2=⎣⎡⎦⎤3-2,即3c -2d =-2,解得⎩⎪⎨⎪⎧c =2,d =4.即A =⎣⎡⎦⎤3 32 4,A 的逆矩阵是⎣⎢⎡⎦⎥⎤23 -12-13 123.(2017²江苏建湖中学月考)曲线x 2+4xy +2y 2=1在二阶矩阵M =⎣⎡⎦⎤1 a b 1的作用下变换为曲线x 2-2y 2=1. (1)求实数a ,b 的值; (2)求M 的逆矩阵M -1.解 (1)设P(x ,y)为曲线x 2-2y 2=1上任意一点,P ′(x ′,y ′)为曲线x 2+4xy +2y 2=1上与P 对应的点,则⎣⎡⎦⎤1 a b 1⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤x y ,即⎩⎪⎨⎪⎧x =x ′+ay ′,y =bx ′+y ′,代入x 2-2y 2=1得(x ′+ay ′)2-2(bx ′+y ′)2=1得(1-2b 2)x ′2+(2a -4b)x ′y ′+(a 2-2)y ′2=1,及方程x 2+4xy +2y 2=1,从而⎩⎪⎨⎪⎧1-2b 2=1,2a -4b =4,a 2-2=2,解得a =2,b =0. (2)因为M =⎪⎪⎪⎪1 20 1=1≠0,故M-1=⎣⎢⎡⎦⎥⎤11 -210111=⎣⎡⎦⎤1 -20 1. 4.已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P(x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P(x ,y),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x.又点P(x ′,y ′)在曲线C :y 2=12x 上,∴⎝ ⎛⎭⎪⎫-12x 2=12y ,即x 2=2y. 2.坐标系与参数方程1.(2017²南通一模)在极坐标系中,求直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长.解 方法一 在ρ=4sin θ中,令θ=π4,得ρ=4sin π4=22,即弦长为2 2.方法二 以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线θ=π4(ρ∈R )的直角坐标方程为y =x ,①曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y =0.②由①②得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,所以直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长为(2-0)2+(2-0)2=2 2.2.(2017²江苏六市联考)平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22l ,y =22l (l 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解 直线的普通方程为2x -2y +3=0,曲线的普通方程为y 2=8x.解方程组⎩⎪⎨⎪⎧2x -2y +3=0,y 2=8x ,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.取A ⎝ ⎛⎭⎪⎫12,2,B ⎝ ⎛⎭⎪⎫92,6,得AB =4 2.3.(2017²江苏滨海中学质检)已知直线的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=22,圆M 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =-2+2sin θ,(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值. 解 (1)极点为直角坐标原点O ,ρsin ⎝ ⎛⎭⎪⎫θ+π4=ρ⎝⎛⎭⎪⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,其直角坐标方程为x +y -1=0.(2)将圆的参数方程化为普通方程为x 2+(y +2)2=4,圆心为M(0,-2), ∴点M 到直线的距离为d =|0-2-1|2=32=322,∴圆上的点到直线距离的最小值为32-42.4.(2017²常州期末)在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.已知圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6被射线θ=θ0⎝ ⎛⎭⎪⎫ρ≥0,θ0为常数,且θ0∈⎝⎛⎭⎪⎫0,π2所截得的弦长为23,求θ0的值.解 圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6的直角坐标方程为(x -1)2+(y -3)2=4,射线θ=θ0的直角坐标方程可以设为y =kx(x ≥0,k >0).圆心(1,3)到直线y =kx 的距离d =|k -3|1+k 2. 根据题意,得24-(k -3)21+k 2=23,解得k =33. 即tan θ0=33,又θ0∈⎝⎛⎭⎪⎫0,π2,所以θ0=π6.3.曲线与方程、抛物线1.(2017²江苏南通天星湖中学质检)已知点A(1,2)在抛物线F :y 2=2px 上.(1)若△ABC 的三个顶点都在抛物线F 上,记三边AB ,BC ,CA 所在直线的斜率分别为k 1,k 2,k 3, 求1k 1-1k 2+1k 3的值;(2)若四边形ABCD 的四个顶点都在抛物线F 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为k 1,k 2,k 3,k 4,求1k 1-1k 2+1k 3-1k 4的值.解 (1)由点A(1,2)在抛物线F 上,得p =2,∴抛物线F :y 2=4x ,设B ⎝ ⎛⎭⎪⎫y 214,y 1,C ⎝ ⎛⎭⎪⎫y 224,y 2,∴1k 1-1k 2+1k 3=y 214-1y 1-2-y 224-y 214y 2-y 1+1-y 2242-y 2=y 1+24-y 2+y 14+2+y 24=1. (2)另设D ⎝ ⎛⎭⎪⎫y 234,y 3,则1k 1-1k 2+1k 3-1k 4=y 1+24-y 2+y 14+y 3+y 24-2+y 34=0.2.(2017²江苏赣榆中学月考)抛物线关于x 轴对称,它的顶点在坐标原点,点P(1,2),A(x 1,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px. ∵点P(1,2)在抛物线上, ∴22=2p ³1,得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1).∵PA 与PB 的斜率存在且倾斜角互补, ∴k PA =-k PB ,由A(x 1,y 1),B(x 2,y 2)在抛物线上,得 y 21=4x 1,① y 22=4x 2,② ∴y 1-214y 21-1=-y 2-214y 22-1, ∴y 1+2=-(y 2+2), ∴y 1+y 2=-4,由①-②得直线AB 的斜率k AB =y 2-y 1x 2-x 1=4y 1+y 2=-44=-1(x 1≠x 2).3.(2017²江苏常州中学质检)已知点A(-1,0),F(1,0),动点P 满足AP →²AF →=2||FP →. (1)求动点P 的轨迹C 的方程;(2)在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M ,N.问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由. 解 (1)设P(x ,y),则AP →=(x +1,y),FP →=(x -1,y),AF →=(2,0), 由AP →²AF →=2|FP →|,得2(x +1)=2(x -1)2+y 2,化简得y 2=4x. 故动点P 的轨迹C 的方程为y 2=4x.(2)直线l 方程为y =2(x +1),设Q(x 0,y 0),M(x 1,y 1),N(x 2,y 2).设过点M 的切线方程为x -x 1=m(y -y 1),代入y 2=4x ,得y 2-4my +4my 1-y 21=0, 由Δ=16m 2-16my 1+4y 21=0,得m =y 12,所以过点M 的切线方程为y 1y =2(x +x 1),同理过点N 的切线方程为y 2y =2(x +x 2).所以直线MN 的方程为y 0y =2(x 0+x), 又MN ∥l ,所以2y 0=2,得y 0=1,而y 0=2(x 0+1),故点Q 的坐标为⎝ ⎛⎭⎪⎫-12,1. 4.(2017²江苏宝应中学质检)如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A(x 1,y 1)(y 1>0),B(x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA →²TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解 (1)因为抛物线y 2=4x 焦点为F(1,0),T(-1,0).当l ⊥x 轴时,A(1,2),B(1,-2),此时TA →²TB →=0,与TA →²TB →=1矛盾, 所以设直线l 的方程为y =k(x -1),代入y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 2=2k 2+4k2,x 1x 2=1,①所以y 21y 22=16x 1x 2=16,所以y 1y 2=-4,② 因为TA →²TB →=1,所以(x 1+1)(x 2+1)+y 1y 2=1, 将①②代入并整理得,k 2=4,所以k =±2.(2)因为y 1>0,所以tan ∠ATF =y 1x 1+1=y 1y 214+1=1y 14+1y 1≤1,当且仅当y 14=1y 1,即y 1=2时,取等号,所以∠ATF ≤π4,所以∠ATF 的最大值为π4.4.空间向量与立体几何1.(2017²苏锡常镇调研)如图,已知正四棱锥P -ABCD 中,PA =AB =2,点M ,N 分别在PA ,BD 上,且PM PA =BN BD =13.(1)求异面直线MN 与PC 所成角的大小; (2)求二面角N -PC -B 的余弦值.解 (1)设AC ,BD 交于点O ,在正四棱锥P -ABCD 中,OP ⊥平面ABCD ,又PA =AB =2,所以OP = 2.以O 为坐标原点,DA →,AB →,OP →方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -xyz ,如图.则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,0,2),AP →=(-1,1,2).故OM →=OA →+AM →=OA →+23AP →=⎝ ⎛⎭⎪⎫13,-13,223,ON →=13OB →=⎝ ⎛⎭⎪⎫13,13,0,所以MN →=⎝ ⎛⎭⎪⎫0,23,-223,PC →=(-1,1,-2),所以cos 〈MN →,PC →〉=MN →²PC →|MN →||PC →|=32,所以异面直线MN 与PC 所成角的大小为π6.(2)由(1)知PC →=(-1,1,-2),CB →=(2,0,0),NC →=⎝ ⎛⎭⎪⎫-43,23,0.设m =(x ,y ,z)是平面PCB 的法向量,则m ²PC →=0,m ²CB →=0,可得⎩⎨⎧-x +y -2z =0,x =0,令y =2,则z =1,即m =(0,2,1).设n =(x 1,y 1,z 1)是平面PCN 的法向量,则n ²PC →=0,n ²CN →=0,可得⎩⎨⎧-x 1+y 1-2z 1=0,-2x 1+y 1=0,令x 1=2,则y 1=4,z 1=2,即n =(2,4,2),所以cos 〈m ,n 〉=m²n |m||n|=523³22=53333,则二面角N -PC -B 的余弦值为53333.2.(2017²常州期末)如图,以正四棱锥V -ABCD 的底面中心O 为坐标原点建立空间直角坐标系O -xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点.正四棱锥的底面边长为2a ,高为h ,且有cos 〈BE →,DE →〉=-1549.(1)求ha的值;(2)求二面角B -VC -D 的余弦值.解 (1)根据条件,可得B(a ,a,0),C(-a ,a,0),D(-a ,-a,0),V(0,0,h),E ⎝ ⎛⎭⎪⎫-a 2,a 2,h 2,所以BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,h 2,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,h 2,故cos 〈BE →,DE →〉=h 2-6a 2h 2+10a2.又cos 〈BE →,DE →〉=-1549,则h 2-6a 2h 2+10a 2=-1549, 解得h a =32.(2)由h a =32,得BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,34a ,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,34a ,且容易得到,CB →=(2a,0,0),DC →=(0,2a,0). 设平面BVC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1²BE →=0,n 1²CB →=0.即⎩⎪⎨⎪⎧-32ax 1-a 2y 1+34az 1=0,2ax 1=0,则⎩⎪⎨⎪⎧x 1=0,2y 1=3z 1,取y 1=3,z 1=2,则n 1=(0,3,2).同理可得平面DVC 的一个法向量为n 2=(-3,0,2). cos 〈n 1,n 2〉=n 1²n 2|n 1||n 2|=0³(-3)+3³0+2³213³13=413,结合图形,可以知道二面角B -VC -D 的余弦值为-413.3.(2017²南京学情调研)如图,在底面为正方形的四棱锥P -ABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,E 是线段PC 的中点.(1)求异面直线AP 与BE 所成角的大小;(2)若点F 在线段PB 上,且使得二面角F -DE -B 的正弦值为33,求PFPB的值.解 (1)在四棱锥P -ABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,所以DA ,DC ,DP 两两垂直,故以{DA →,DC →,DP →}为正交基底,建立空间直角坐标系D -xyz.因为PD =DC ,所以DA =DC =DP , 不妨设DA =DC =DP =2,则D(0,0,0),A(2,0,0),C(0,2,0),P(0,0,2),B(2,2,0). 因为E 是PC 的中点,所以E(0,1,1), 所以AP →=(-2,0,2),BE →=(-2,-1,1), 所以cos 〈AP →,BE →〉=AP →²BE →|AP →||BE →|=32,从而〈AP →,BE →〉=π6.因此异面直线AP 与BE 所成角的大小为π6.(2)由(1)可知,DE →=(0,1,1),DB →=(2,2,0),PB →=(2,2,-2). 设PF →=λPB →,则PF →=(2λ,2λ,-2λ), 从而DF →=DP →+PF →=(2λ,2λ,2-2λ). 设m =(x 1,y 1,z 1)为平面DEF 的法向量, 则⎩⎪⎨⎪⎧m ²DF →=0,m ²DE →=0,即⎩⎪⎨⎪⎧λx 1+λy 1+(1-λ)z 1=0,y 1+z 1=0,取z 1=λ,则y 1=-λ,x 1=2λ-1.故m =(2λ-1,-λ,λ)为平面DEF 的一个法向量, 设n =(x 2,y 2,z 2)为平面DEB 的法向量.则⎩⎪⎨⎪⎧n ²DB →=0,n ²DE →=0,即⎩⎪⎨⎪⎧2x 2+2y 2=0,y 2+z 2=0,取x 2=1,则y 2=-1,z 2=1.所以n =(1,-1,1)为平面BDE 的一个法向量. 因为二面角F -DE -B 的余弦值的绝对值为63, 即|cos 〈m ,n 〉|=|m²n ||m||n|=|4λ-1|3²(2λ-1)2+2λ2=63, 化简得4λ2=1.因为点F 在线段PB 上,所以0≤λ≤1, 所以λ=12,即PF PB =12.4.(2017²苏北四市一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值;(2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为45,求λ的值.解 (1)因为PA ⊥平面ABCD ,且AB ,AD ⊂平面ABCD ,所以PA ⊥AB ,PA ⊥AD. 又因为∠BAD =90°,所以PA ,AB ,AD 两两互相垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则由AD =2AB =2BC =4,PA =4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4). 又因为M 为PC 的中点,所以M(1,1,2). 所以BM →=(-1,1,2),AP →=(0,0,4), 所以cos 〈AP →,BM →〉=AP →²BM →|AP →||BM →|=0³(-1)+0³1+4³24³6=63,所以异面直线AP ,BM 所成角的余弦值为63. (2)因为AN =λ,所以N(0,λ,0)(0≤λ≤4),则MN →=(-1,λ-1,-2),BC →=(0,2,0),PB →=(2,0,-4).设平面PBC 的法向量为m =(x ,y ,z), 则⎩⎪⎨⎪⎧m ²BC →=0,m ²PB →=0,即⎩⎪⎨⎪⎧2y =0,2x -4z =0.令x =2,解得y =0,z =1,所以m =(2,0,1)是平面PBC 的一个法向量.因为直线MN 与平面PBC 所成角的正弦值为45,所以|cos 〈MN →,m 〉|=|MN →²m ||MN →||m |=|-2-2|5+(λ-1)2²5=45,解得λ=1∈[0,4],所以λ的值为1.5.离散型随机变量的概率分布1.(2017²南京、盐城一模)某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E(X). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33³3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13,P(X =k)=C k 5⎝ ⎛⎭⎪⎫13k²⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5.所以X 的概率分布为所以X 的数学期望为E(X)=5³13=53.2.一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望. 解 (1)该网民恰好购买2种商品的概率为P(AB C )+P(A B C)+P(A BC)=34³23³12+34³13³12+14³23³12=1124;该网民恰好购买3种商品的概率为P(ABC)=34³23³12=14,所以P =1124+14=1724.故该网民至少购买2种商品的概率为1724.(2)随机变量η的可能取值为0,1,2,3,由(1)知,P(η=2)=1124,P(η=3)=14,而P(η=0)=P(A B C )=14³13³12=124,所以P(η=1)=1-P(η=0)-P(η=2)-P(η=3)=14.随机变量η的概率分布为所以随机变量η的数学期望E(η)=0³124+1³14+2³1124+3³14=2312.3.(2017²南京学情调研)甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X 的概率分布与数学期望.解 (1)设甲第i 次投中获胜的事件为A 1(i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的事件为A 1+A 2+A 3.P(A 1)=25,P(A 2)=35³13³25=225,P(A 3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³25=2125.所以P(A 1+A 2+A 3)=P(A 1)+P(A 2)+P(A 3)=25+225+2125=62125.(2)X 的所有可能取值为1,2,3. 则P(X =1)=25+35³23=45,P(X =2)=225+35³13³35³23=425,P(X =3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³1=125.即X 的概率分布为所以数学期望E(X)=1³45+2³425+3³125=3125.4.为了提高学生学习数学的兴趣,某校决定在每周的同一时间开设《数学史》、《生活中的数学》、《数学与哲学》、《数学建模》四门校本选修课程,甲、乙、丙三位同学每人均在四门校本课程中随机选一门进行学习,假设三人选择课程时互不影响,且每人选择每一课程都是等可能的.(1)求甲、乙、丙三人选择的课程互不相同的概率;(2)设X 为甲、乙、丙三人中选修《数学史》的人数,求X 的概率分布和数学期望E(X). 解 (1)甲、乙、丙三人从四门课程中各任选一门,共有43=64种不同的选法,记“甲、乙、丙三人选择的课程互不相同”为事件M ,事件M 共包含A 34=24个基本事件,则P(M)=2464=38,所以甲、乙、丙三人选择的课程互不相同的概率为38.(2)方法一 X 可能的取值为0,1,2,3. P(X =0)=3343=2764,P(X =1)=C 13³3243=2764,P(X =2)=C 23³343=964,P(X =3)=C 3343=164.所以X 的概率分布为所以E(X)=0³2764+1³2764+2³964+3³164=34.方法二 甲、乙、丙三人从四门课程中任选一门,可以看成三次独立重复试验,X 为甲、乙、丙三人中选修《数学史》的人数,则X ~B ⎝ ⎛⎭⎪⎫3,14,所以P(X =k)=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3,所以X 的概率分布为所以X 的数学期望E(X)=3³14=34.6.计数原理、二项式定理和数学归纳法1.已知等式(1+x)2n -1=(1+x)n -1(1+x)n.(1)求(1+x)2n -1的展开式中含x n的项的系数,并化简:C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1. (1)解 (1+x)2n -1的展开式中含x n 的项的系数为C n2n -1,由(1+x)n -1(1+x)n=(C 0n -1+C 1n -1x +…+C n -1n -1xn -1)(C 0n +C 1n x +…+C n n x n )可知,(1+x)n -1(1+x)n的展开式中含x n的项的系数为C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1. (2)证明 当k ∈N *时,kC kn =k²n !k !(n -k )!=n !(k -1)!(n -k )!=n²(n -1)!(k -1)!(n -k )!=nC k -1n -1,所以(C 1n)2+2(C 2n)2+…+n(C n n)2=∑k =1n[k(C k n )2]=k =1n (kC k n C kn )=k =1n (nC k -1n -1C kn )=n k =1n (C k -1n -1C kn )=n k =1n (C n -k n -1C kn ).由(1)知C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1,即k =1n (C n -k n -1C k n )=C n2n -1,所以(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1.2.(2017²江苏泰州中学调研)在平面直角坐标系xOy 中,点P(x 0,y 0)在曲线y =x 2(x >0)上.已知点A(0,-1),P n (x n0,y n0),n ∈N *.记直线AP n 的斜率为k n . (1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. (1)解 因为k 1=2,所以y 0+1x 0=x 20+1x 0=2,解得x 0=1,y 0=1,所以P 1的坐标为(1,1).(2)证明 方法一 设k 1=2p(p ∈N *),即y 0+1x 0=x 20+1x 0=2p.所以x 20-2px 0+1=0,所以x 0=p±p 2-1. 因为y 0=x 2,所以k n =y n0+1x n 0=x 2n0+1x n 0=x n 0+1x n 0,所以当x 0=p +p 2-1时,k n =(p +p 2-1)n+⎝ ⎛⎭⎪⎫1p +p 2-1n =(p +p 2-1)n +(p -p 2-1)n. 同理,当x 0=p -p 2-1时,k n =(p +p 2-1)n +(p -p 2-1)n.①当n =2m(m ∈N *)时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.②当n =2m +1(m ∈N )时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.综上,k n 为偶数.方法二 因为⎝ ⎛⎭⎪⎫x 0+1x 0⎝ ⎛⎭⎪⎫x n +10+1x n +10=x n +20+1x n +20+x n0+1x n 0,所以k n +2=k 1k n +1-k n .k 2=x 20+1x 20=⎝ ⎛⎭⎪⎫x 0+1x 02-2=k 21-2.设命题p(n):k n ,k n +1均为偶数.以下用数学归纳法证明“命题p(n)是真命题”.①因为k 1是偶数,所以k 2=k 21-2也是偶数.当n =1时,p(n)是真命题;②假设当n =m(m ∈N *)时,p(n)是真命题,即k m ,k m +1均为偶数,则k m +2=k 1k m +1-k m 也是偶数,即当n =m +1时,p(n)也是真命题.由①②可知,对n ∈N *,p(n)均是真命题,从而k n 是偶数.3.(2017²江苏扬州中学模拟)在数列{a n }中,a n =cos π3³2(n ∈N *)(1)试将a n +1表示为a n 的函数关系式; (2)若数列{b n }满足b n =1-2n²n!(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论. 解 (1)a n =cos π3³2n -2=cos 2π3³2n -1=2⎝⎛⎭⎪⎫cosπ3³2n -12-1, ∴a n =2a 2n +1-1, ∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0, ∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1,当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2, 当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3, 猜想:当n ≥3时,a n <b n ,下面用数学归纳法证明. ①当n =3时,由上知,a 3<b 3,结论成立. ②假设当n =k ,k ≥3,n ∈N *时,a k <b k 成立, 即a k <1-2k²k!,则当n =k +1时,a k +1=a k +12<2-2k²k!2=1-1k²k!, b k +1=1-2(k +1)²(k +1)!,要证a k +1<b k +1,即证明⎝ ⎛⎭⎪⎫1-1k²k!2<⎝ ⎛⎭⎪⎫1-2(k +1)²(k +1)!2,即证明1-1k²k!<1-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2,即证明1k²k!-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,即证明(k -1)2k (k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,显然成立.∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1>b 1;当n =2时,a 2=b 2, 当n ≥3,n ∈N *时,a n <b n .4.已知f n (x)=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k)n +…+(-1)n C n n (x -n)n,其中x ∈R ,n ∈N *,k ∈N ,k ≤n.(1)试求f 1(x),f 2(x),f 3(x)的值;(2)试猜测f n (x)关于n 的表达式,并证明你的结论. 解 (1)f 1(x)=C 01x -C 11(x -1)=1,f 2(x)=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x)=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测f n (x)=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x)=1,等式成立. ②假设当n =m 时,等式成立,即 f m (x)=k =0m (-1)k C k m (x -k)m=m !.当n =m +1时,则f m +1(x)=k =0m +1(-1)k C k m +1²(x-k)m +1.因为C k m +1=C k m +C k -1m ,kC k m +1=(m +1)²C k -1m ,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C mm ,所以f m +1(x)=k =0m +1(-1)k C k m +1(x -k)m +1=x k =0m +1(-1)k C k m +1(x -k)m -k =0m +1(-1)k kC km +1(x -k)m=x k =0m (-1)k C k m(x -k)m+x ∑k =1m +1²(-1)k Ck -1m(x -k)m-(m +1)∑k =1m +1²(-1)k C k -1m (x -k)m=x²m!+(-x +m +1)k =0m (-1)k C km ²[(x-1)-k]m=x²m!+(-x +m +1)²m!=(m+1)²m!=(m+1)!.即n=m+1时,等式也成立.由①②可知,对n∈N*,均有f n(x)=n!.。
3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3), 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.② 由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1.C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x .将直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2.法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x,将直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧ y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧ x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6. 所以AB 的长为⎝⎛⎭⎫92-122+(6-2)2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值. 解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝⎛⎭⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝⎛⎭⎫0,22,-2,OD ―→=⎝⎛⎭⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n =⎝⎛⎭⎫a +b 2n.(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝⎛⎭⎫a +b 22=112(a -b )2>0.(2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1;当n ≥3时,A n =1n +1·a n +1-bn +1a -b,B n =⎝⎛⎭⎫a +b 2n , 令a +b =x ,a -b =y ,且x >0,y >0,于是A n=1n+1·⎝⎛⎭⎫x+y2n+1-⎝⎛⎭⎫x-y2n+1y=12n+1(n+1)y[(x+y)n+1-(x-y)n+1],B n=⎝⎛⎭⎫x2n,因为[(x+y)n+1-(x-y)n+1]=(2C1n+1x n y+2C3n+1·x n-2y3+…)≥2C1n+1x n y,所以A n≥12n+1(n+1)y·2C1n+1x n y=x n2n=⎝⎛⎭⎫x2n=Bn.。
6个解答题专项强化练(四) 数 列1.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1, 得a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8. 故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.2.已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R.(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围. 解:(1)∵q =0,a n +1-a n =p ·3n -1, ∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝⎛⎭⎫12+p 2=12⎝⎛⎭⎫12+4p ,解得p =0或p =1. 当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1, ∴a n +1a n =3.符合题意.∴p 的值为0或1.(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n-1)]q =12[3n -1-n (n -1)q ].∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立. 当n =1时,有-26≥-12q ,∴q ≥136;当n =2时,有-24≥-10q ,∴q ≥125;当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =2(n 2-2n -12)3n -1+54n(n 2-16)(n 2-9)>0,即数列{c n }为递增数列,∴q ≤c 5=274.综上所述,q 的取值范围为⎣⎡⎦⎤3,274. 法二:∵p =1,∴a n +1-a n =3n -1-nq , 又a 4为数列{a n }的最小项,∴⎩⎪⎨⎪⎧ a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274.此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4.当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0,∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<….综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项,即q 的取值范围为⎣⎡⎦⎤3,274. 3.数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝⎛⎭⎫n 3+r (r ∈R ,n ∈N *). (1)求r 的值及数列{a n }的通项公式; (2)设b n =na n(n ∈N *),记{b n }的前n 项和为T n .①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立.解:(1)当n =1时,S 1=a 1⎝⎛⎭⎫13+r ,∴r =23, ∴S n =a n ⎝⎛⎭⎫n 3+23.当n ≥2时,S n -1=a n -1⎝⎛⎭⎫n 3+13. 两式相减,得a n =n +23a n -n +13a n -1, ∴a n a n -1=n +1n -1(n ≥2). ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×nn -2×n +1n -1, 即a n a 1=n (n +1)2. ∴a n =n (n +1)(n ≥2), 又a 1=2适合上式. ∴a n =n (n +1). (2)①∵a n =n (n +1), ∴b n =1n +1,T n =12+13+…+1n +1.∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1. 令B n =T 2n -T n =1n +2+1n +3+…+12n +1. 则B n +1=1n +3+1n +4+…+12n +3.∴B n +1-B n =12n +2+12n +3-1n +2=3n +4(2n +2)(2n +3)(n +2)>0.∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13.∴实数λ的取值范围为⎝⎛⎭⎫-∞,13. ②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1.∴当n ≥2时,∑i =1n -1(T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n-1]=(n +1)T n -2T 1=(n +1)T n -1.∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立.4.已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p .(1)证明:数列{a n }是等比数列; (2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n 2n +1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n +λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由.解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n ,从而a n +1a n=a 1=12,∴数列{a n }是首项和公比都为12的等比数列.(2)由(1)可知,a n =12n .由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n +1得, a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n·b n -12n -1+1(n ≥2), 故a n -a n -1=(-1)n +1b n2n +1(n ≥2),故b n =(-1)n ⎝⎛⎭⎫12n +1(n ≥2). 当n =1时,a 1=b 12+1,解得b 1=32,不符合上式.∴b n=⎩⎨⎧32,n =1,(-1)n⎝⎛⎭⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n +λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝⎛⎭⎫12n +1λ, 当n ≥3时,c n -1=2n -1+(-1)n -1⎝ ⎛⎭⎪⎫12n -1+1λ, 根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)n λ·⎝⎛⎭⎫2+32n>0,即(-1)n λ>-2n -132n+2. ①当n 为大于等于4的偶数时,有λ>-2n -132n+2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝⎛⎭⎫-12835,+∞. ②当n 为大于等于3的奇数时,有λ<2n -132n+2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219. 故λ的取值范围为⎝⎛⎭⎫-∞,3219; ③当n =2时,由c 2-c 1=⎝⎛⎭⎫22+54λ-⎝⎛⎭⎫2+32λ>0,得λ<8. 综上可得,实数λ的取值范围为⎝⎛⎭⎫-12835,3219. 5.已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R.(1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n+1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值. 解:(1)当n =1时,a 1=pa 1a 2,a 2=1p ;当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p .由a 22=a 1a 3,得1p 2=1+1p ,即p 2+p -1=0, 解得p =-1±52.(2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1.当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2.故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列,其通项公式a n =1+⎝ ⎛⎭⎪⎫n +12-1×2=n ,同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列, 其通项公式是a n =2+⎝⎛⎭⎫n 2-1×2=n ,所以数列{a n }的通项公式是a n =n .②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n+1=nq n +1n, 即q n =⎝ ⎛⎭⎪⎫n +1n 1n +1, 所以(q n )(n +1)(n +a )≤e ,即⎝ ⎛⎭⎪⎫n +1n n +a ≤e ,两边取对数得(n +a )ln ⎝ ⎛⎭⎪⎫n +1n ≤1,分离参数得a ≤1ln ⎝ ⎛⎭⎪⎫n +1n -n 恒成立 .令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2],令f (x )=1ln x -1x -1,x ∈(1,2], 则f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2,下证ln x ≤x -1x,x ∈(1,2],令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=(x -1)2x 2>0,所以g (x )>g (1)=0,即2ln x <x -1x ,用x 替代x 可得ln x <x -1x,x ∈(1,2],所以f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2<0,所以f (x )在(1,2]上递减, 所以a ≤f (2)=1ln 2-1.所以实数a 的最大值为1ln 2-1.6.设三个各项均为正整数的无穷数列{a n },{b n },{c n }.记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列.(1)若a n =4n ,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列;(2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列.解:(1)证明:由a n =4n =4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1.则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列,故S n =4n-1,T n =4n-13.所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n . 所以数列{a n }为可拆分数列.(2)设数列{b n },{c n }的公差分别为d 1,d 2. 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立.所以⎩⎪⎨⎪⎧ d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5,①由S n >T n ,得nb 1+n (n -1)2d 1>nc 1+n (n -1)2d 2,则⎝⎛⎭⎫d 12-d 22n 2+⎝⎛⎭⎫b 1-c 1-d 12+d 22n >0. 由n ≥1,得⎝⎛⎭⎫d 12-d 22n +⎝⎛⎭⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立. 则d 12-d 22≥0且⎝⎛⎭⎫d 12-d 22+⎝⎛⎭⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1. ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2. ③联立①②③,可得⎩⎪⎨⎪⎧ d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2或⎩⎪⎨⎪⎧ d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n 或⎩⎪⎨⎪⎧ b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1或⎩⎪⎨⎪⎧b n =3n ,c n =2n .(3)证明:设a n =a 1q n -1,a 1∈N *,q >0,q ≠1,则q ≥2. 当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾. 故q 为有理数,设q =ba (a ,b 为正整数,且a ,b 互质). 此时a n =a 1·b n -1a n -1.则对任意的n ∈N *,a n -1均为a 1的约数,则a n -1=1,即a =1, 故q =ba =b ∈N *,所以q ∈N *,q ≥2. 所以a n =a 1q n -1=(a 1-1)q n -1+q n -1, 令b n =(a 1-1)·q n -1,c n =q n -1.则{b n },{c n }各项均为正整数.因为a 1≥3, 所以a 1-1≥2>1,则S n >T n , 所以数列{a n }为可拆分数列.。
3个附加题专项强化练(三) 二项式定理、数学归纳法(理科)1.已知函数f 0(x )=x (sin x +cos x ),设f n (x )为f n -1(x )的导数,n ∈N *. (1)求f 1(x ),f 2(x )的表达式;(2)写出f n (x )的表达式,并用数学归纳法证明. 解:(1)因为f n (x )为f n -1(x )的导数, 所以f 1(x )=f 0′(x )=(sin x +cos x )+x (cos x -sin x ) =(x +1)cos x +(x -1)(-sin x ), 同理,f 2(x )=-(x +2)sin x -(x -2)cos x .(2)由(1)得f 3(x )=f 2′(x )=-(x +3)cos x +(x -3)sin x , 把f 1(x ),f 2(x ),f 3(x )分别改写为f 1(x )=(x +1)sin ⎝⎛⎭⎫x +π2+(x -1)cos ⎝⎛⎭⎫x +π2, f 2(x )=(x +2)sin ⎝⎛⎭⎫x +2π2+(x -2)cos ⎝⎛⎭⎫x +2π2, f 3(x )=(x +3)sin ⎝⎛⎭⎫x +3π2+(x -3)cos ⎝⎛⎭⎫x +3π2, 猜测f n (x )=(x +n )sin ⎝⎛⎭⎫x +n π2+(x -n )cos ⎝⎛⎭⎫x +n π2.(*) 下面用数学归纳法证明上述等式. (ⅰ)当n =1时,由(1)知,等式(*)成立. (ⅱ)假设当n =k (k ∈N *,k ≥1)时,等式(*)成立, 即f k (x )=(x +k )sin ⎝⎛⎭⎫x +k π2+(x -k )cos ⎝⎛⎭⎫x +k π2. 则当n =k +1时, f k +1(x )=f k ′(x )=sin ⎝⎛⎭⎫x +k π2+(x +k )cos ⎝⎛⎭⎫x +k π2+cos ⎝⎛⎭⎫x +k π2+(x -k )⎣⎡⎦⎤-sin ⎝⎛⎭⎫x +k π2 =(x +k +1)cos ⎝⎛⎭⎫x +k π2+[x -(k +1)]·⎣⎡⎦⎤-sin ⎝⎛⎭⎫x +k π2 =[x +(k +1)]sin ⎝⎛⎭⎫x +k +12π+[x -(k +1)]·cos ⎝⎛⎭⎫x +k +12π,即当n =k +1时,等式(*)成立.综上所述,当n ∈N *时,f n (x )=(x +n )·sin ⎝⎛⎭⎫x +n π2+(x -n )cos ⎝⎛⎭⎫x +n π2成立. 2.设1,2,3,…,n 的一个排列是a 1,a 2,…,a n ,若a i =i 称i 为不动点(1≤i ≤n ). (1)求1,2,3,4,5的排列中恰有两个不动点的排列个数;(2)记1,2,3,…,n 的排列中恰有k 个不动点的排列个数为P n (k ),①求∑k =0n P n (k );②∑k =1nkP n (k ).解:(1)1,2,3,4,5的排列中恰有两个数不动,即为有两个a i =i ,另三个a i ≠i ,而三个数没有不动点的排列有2个, 故1,2,3,4,5的排列中恰有两个不动点的排列个数为2C 25=20.(2)①在1,2,3,…,n 的排列中分成这样n +1类,有0个不动点,1个不动点,2个不动点,…,n 个不动点,故∑k =0nP n (k )=n !.②由题设可知P n (k )=C k n P n -k (0)及组合恒等式k C k n =n C k -1n -1得∑k =1nkP n (k )=∑k =1nk C k n P n -k (0)=∑k =1nn C k -1n -1P n -k (0)=n ∑k =1n C k -1n -1P n -k (0)=n ∑k =0n -1C k n -1P (n -1)-k (0)=n !.3.已知(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n (n ∈N *),令T n =∑i =12nia i .(1)求a 0和T n 关于n 的表达式;(2)试比较2T nn 与(n -1)a 0+2n 2的大小,并证明你的结论.解:(1)在(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n 中,令x =-1,可得a 0=3n .对(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n ,两边同时求导得,n (2x +2)(x 2+2x +4)n -1=a 1+2a 2(x +1)+3a 3(x +1)2+…+2na 2n (x +1)2n -1,令x =0,则∑i =12nia i =2n ×4n -1,所以T n =2n ×4n -1.(2)要比较2T nn与(n -1)a 0+2n 2的大小,即比较4n 与(n -1)3n +2n 2的大小. 当n =1时,4n =4>(n -1)3n +2n 2=2; 当n =2或3或4时,4n <(n -1)3n +2n 2; 当n =5时,4n >(n -1)3n +2n 2. 猜想:当n ≥5时,4n >(n -1)3n +2n 2. 下面用数学归纳法证明.①由上述过程可知,当n =5时,结论成立.②假设当n =k (k ≥5,k ∈N *)时结论成立,即4k >(k -1)3k +2k 2,两边同乘以4,得4k +1>4[(k -1)3k +2k 2]=k ·3k +1+2(k +1)2+[(k -4)3k +6k 2-4k -2],而(k -4)3k +6k 2-4k -2=(k -4)3k +6(k 2-k -2)+2k +10=(k -4)3k +6(k -2)(k +1)+2k +10>0,所以4k +1>[(k +1)-1]3k +1+2(k +1)2,即n =k +1时结论也成立.由①②可知,当n ≥5时,4n >(n -1)3n +2n 2成立.综上所述,当n =1时,2T n n >(n -1)a 0+2n 2;当n =2或3或4时,2T nn <(n -1)a 0+2n 2;当n ≥5时,2T nn >(n -1)a 0+2n 2.4.在集合A ={1,2,3,4,…,2n }中,任取m (m ≤2n ,m ,n ∈N *)个元素构成集合A m .若A m 的所有元素之和为偶数,则称A m 为A 的偶子集,其个数记为f (m );若A m 的所有元素之和为奇数,则称A m 为A 的奇子集,其个数记为g (m ).令F (m )=f (m )-g (m ).(1)当n =2时,求F (1),F (2),F (3)的值; (2)求F (m ).解:(1)当n =2时,集合A ={1,2,3,4},当m =1时,偶子集有{2},{4},奇子集有{1},{3}, f (1)=2,g (1)=2,F (1)=0;当m =2时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,3},{3,4}, f (2)=2,g (2)=4,F (2)=-2;当m =3时,偶子集有{1,2,3},{1,3,4},奇子集有{1,2,4},{2,3,4},f (3)=2,g (3)=2,F (3)=0.(2)当m 为奇数时,偶子集的个数f (m )=C 0n C m n +C 2n C m -2n +C 4n C m -4n +…+C m -1nC 1n , 奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m n C 0n ,所以f (m )=g (m ),F (m )=f (m )-g (m )=0. 当m 为偶数时,偶子集的个数f (m )=C 0n C m n +C 2n C m -2n +C 4n C m -4n +…+C m n C 0n ,奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m -1nC 1n , 所以F (m )=f (m )-g (m )=C 0n C m n -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1n C 1n +C m n C 0n .一方面,(1+x )n (1-x )n =(C 0n +C 1n x +C 2n x 2+…+C n n x n )·[C 0n -C 1n x +C 2n x 2-…+(-1)n C n nx n ],所以(1+x )n (1-x )n 中x m 的系数为C 0n C m n -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1nC 1n +C m n C 0n ;另一方面,(1+x )n (1-x )n =(1-x 2)n ,(1-x 2)n 中x m 的系数为(-1)m 2C m2n ,故F (m )=(-1)m 2C m 2n .综上,F (m )=⎩⎪⎨⎪⎧(-1)m 2C m 2n ,m 为偶数,0,m 为奇数.5.设可导函数y =f (x )经过n (n ∈N)次求导后所得结果为y =f (n )(x ).如函数g (x )=x 3经过1次求导后所得结果为g (1)(x )=3x 2,经过2次求导后所得结果为g (2)(x )=6x ,….(1)若f (x )=ln(2x +1),求f (2)(x );(2)已知f (x )=p (x )·q (x ),其中p (x ),q (x )为R 上的可导函数. 求证:f (n )(x )=∑i =0nC i n p (n -i )(x )·q (i )(x ).解:(1)依题意,f (1)(x )=12x +1×2=2(2x +1)-1, f (2)(x )=-2(2x +1)-2×2=-4(2x +1)-2.(2)证明:①当n =1时,f (1)(x )=p (1)(x )·q (x )+p (x )·q (1)(x )=∑i =01C i n p (n -i )(x )·q (i )(x );②假设n =k 时,f (k )(x )=∑i =0kC i k p (k -i )(x )·q (i )(x )成立, 则n =k +1时,f(k +1)(x )=(f (k )(x ))′=∑i =0kC i k [p (k-i +1)(x )·q (i )(x )+p (k -i )(x )·q (i+1)(x )]=C 0k p (k +1)(x )·q (x )+C 1k p (k )(x )·q (1)(x )+C 2k p(k-1)(x )·q (2)(x )+…+C k k p (1)(x )·q (k )(x )+C 0kp (k )(x )·q (1)(x )+C 1k p(k-1)(x )·q (2)(x )+…+C k -1k p (1)(x )·q (k )(x )+C k k p (x )·q (k +1)(x )=C 0k p(k+1)(x )·q (x )+(C 0k +C 1k )p (k )(x )·q (1)(x )+()C 1k +C 2k p (k -1)(x )·q (2)(x )+…+(C k -1k +C k k )·p (1)(x )·q (k )(x )+C kk p (x )·q (k +1)(x )=C 0k +1p (k+1)(x )·q (x )+C 1k +1p (k )(x )·q (1)(x )+C 2k +1p (k-1)(x )·q (2)(x )+…+C k k +1p (1)(x )·q (k )(x )+C k +1k +1p (x )·q (k +1)(x )=∑i =0k +1C i k +1p (k+1-i )(x )·q (i )(x ),所以,结论对n =k +1也成立. 由①②得,f (n )(x )=∑i =0nC i n p (n -i )(x )·q (i )(x ).6.设整数n ≥9,在集合{1,2,3,…,n }中任取三个不同元素a ,b ,c (a >b >c ),记f (n )为满足a +b +c 能被3整除的取法种数.(1)直接写出f (9)的值; (2)求f (n )表达式.解:(1)f (9)=12.(2)①当n =3k (k ≥3,k ∈N *)时,记k =n3,集合为{1,2,3,…,3k -1,3k }.将其分成三个集合:A ={1,4,…,3k -2},B ={2,5,…,3k -1},C ={3,6,…,3k }. 要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从A 中取一个,从B 中取一个(此数与A 中取的那个数之和能被3整除).故有3C 3k +C 1k C 1k C 1k=k (k -1)(k -2)2+k 3=n 3-3n 2+6n18种取法;②当n =3k +1(k ≥3,k ∈N *)时,记k =n -13,集合为{1,2,3…,3k,3k +1}. 将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1},C ={3,6,…,3k }.要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有2C 3k +C 3k +1+C 1k C 1k C 1k +1=k (k -1)(k -2)3+(k +1)k (k -1)6+k 2(k +1)=k (k -1)22+k 2(k +1)=n 3-3n 2+6n -418种取法;③当n =3k +2(k ≥3,k ∈N *)时,记k =n -23,集合为{1,2,3,…,3k +1,3k +2}. 将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1,3k +2},C ={3,6,…,3k }.要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有C 3k +2C 3k +1+C 1k C 1k +1C 1k +1=k (k -1)(k -2)6+(k +1)k (k -1)3+k (k +1)2=k 2(k -1)2+k (k +1)2=n 3-3n 2+6n -818种取法.综上所述,f (n )=⎩⎪⎨⎪⎧n 3-3n 2+6n18,n =3k (k ≥3,k ∈N *),n 3-3n 2+6n -418,n =3k +1(k ≥3,k ∈N *),n 3-3n 2+6n -818,n =3k +2(k ≥3,k ∈N *).。
3个附加题综合仿真练(三)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE . 证明:因为CA 为圆O 的切线, 所以CA 2=CE ·CD ,又CA =CB , 所以CB 2=CE ·CD , 即CB CE =CD CB, 又∠BCD =∠BCD , 所以△BCE ∽△DCB , 所以∠CBE =∠BDE .B .[选修4-2:矩阵与变换]设a ,b ∈R.若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤3 0-1 b 对应的变换作用下,得到的直线为l ′:9x +y -91=0.求实数a ,b 的值.解:法一:在直线l :ax +y -7=0上取点M (0,7),N (1,7-a ), 由⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤ 07b ,⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤3 b 7-a -1,可知点M (0,7),N (1,7-a )在矩阵A 对应的变换作用下分别得到点M ′(0,7b ),N ′(3,b (7-a )-1),由题意可知:M ′,N ′在直线9x +y -91=0上,∴⎩⎪⎨⎪⎧7b -91=0,27+b 7-a -1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13,∴实数a ,b 的值分别为2,13.法二:设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到Q (x ′,y ′), 则⎣⎢⎡⎦⎥⎤3 0-1 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,∴⎩⎪⎨⎪⎧x ′=3x ,y ′=-x +by ,由Q (x ′,y ′)在直线l ′:9x +y -91=0上, ∴27x +(-x +by )-91=0, 即26x +by -91=0,∵点P 在ax +y -7=0上, ∴26a =b 1=-91-7, 解得a =2,b =13.∴实数a ,b 的值分别为2,13. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 和圆C 的极坐标方程分别为ρcos ⎝⎛⎭⎪⎫θ+π6=a (a ∈R)和ρ=4sin θ.若直线l 与圆C 有且只有一个公共点,求a 的值.解:由ρcos ⎝ ⎛⎭⎪⎫θ+π6=a ,得32ρcos θ-12ρsin θ=a ,故化为直角坐标方程为3x -y -2a =0,由圆C 的极坐标方程ρ=4sin θ,得ρ2=4ρsin θ, 化为直角坐标方程为x 2+(y -2)2=4,若直线l 与圆C 只有一个公共点,则圆心C 到直线l 的距离等于半径,故d =|-2-2a |2=2,解得a =1或a =-3. D .[选修4-5:不等式选讲]已知a ,b ∈R ,a >b >e(其中e 是自然对数的底数),求证:b a>a b. 证明:∵b a>0,a b>0,∴要证b a>a b, 只要证a ln b >b ln a, 只要证ln b b >ln a a,构造函数f (x )=ln x x,x ∈(e ,+∞).则f ′(x )=1-ln x x2,x ∈(e ,+∞),f ′(x )<0在区间(e ,+∞)上恒成立, 所以函数f (x )在x ∈(e ,+∞)上是单调递减的, 所以当a >b >e 时,有f (b )>f (a ), 即ln b b >ln a a,故b a >a b得证.2.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成三位数的各位数字之和.(1)求X 是奇数的概率; (2)求X 的概率分布及数学期望.解:(1)记“X 是奇数”为事件A , 能组成的三位数的个数是4×4×3=48.X 是奇数的个数是C 12C 23A 33-C 12C 12A 22=28,所以P (A )=2848=712.故X 是奇数的概率为712.(2)X 的可能取值为3,4,5,6,7,8,9.当X =3时,组成的三位数是由0,1,2三个数字组成, 所以P (X =3)=448=112;当X =4时,组成的三位数是由0,1,3三个数字组成, 所以P (X =4)=448=112;当X =5时,组成的三位数是由0,1,4或0,2,3组成, 所以P (X =5)=848=16;当X =6时,组成的三位数是由0,2,4或1,2,3组成, 所以P (X =6)=1048=524;当X =7时,组成的三位数是由0,3,4或1,2,4组成, 所以P (X =7)=1048=524;当X =8时,组成的三位数是由1,3,4三个数字组成, 所以P (X =8)=648=18;当X =9时,组成的三位数是由2,3,4三个数字组成, 所以P (X =9)=648=18.所以X 的概率分布为:故E (X )=3×12+4×12+5×6+6×24+7×24+8×8+9×8=4.3.设P (n ,m )= k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.解:(1)当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k =1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C 1n +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明:P (n ,m )=∑k =0n(-1)k C knmm +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)mm +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1mm +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ) 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !n +m !P (0,m )=1C n n +m,又Q (n ,m )=C nn +m , 所以P (n ,m )·Q (n ,m )=1.。
3个附加题专项强化练(一) 选修4系列(理科)A 组1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,已知圆O 的直径AB =4,C 为AO 的中点,弦DE 过点C 且满足CE =2CD ,求△OCE 的面积.解:设CD =x ,则CE =2x . 因为CA =1,CB =3,由相交弦定理,得CA ·CB =CD ·CE , 所以1×3=2x 2,解得x =62. 取DE 的中点H ,连结OH , 则OH ⊥DE .因为EH =32CD =364,所以OH 2=OE 2-EH 2=22-⎝ ⎛⎭⎪⎫3642=58,所以OH =104.又因为CE =2x =6,所以△OCE 的面积S =12OH ·CE =12×104×6=154.B .[选修4-2:矩阵与变换]已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2所对应的变换T 把点(2,3)变成点(3,4).(1)求a ,b 的值;(2)若矩阵A 的逆矩阵为B ,求B 2.解:(1)由题意,得⎣⎢⎡⎦⎥⎤3 a b -2⎣⎢⎡⎦⎥⎤23=⎣⎢⎡⎦⎥⎤34,即⎩⎪⎨⎪⎧6+3a =3,2b -6=4.解得⎩⎪⎨⎪⎧a =-1,b =5.(2)由(1),得A =⎣⎢⎡⎦⎥⎤3 -15 -2.由矩阵的逆矩阵公式得B =⎣⎢⎢⎡⎦⎥⎥⎤-2-11-1-5-1 3-1=⎣⎢⎡⎦⎥⎤2 -15 -3.所以B 2=⎣⎢⎡⎦⎥⎤2 -15 -3⎣⎢⎡⎦⎥⎤2 -15 -3=⎣⎢⎡⎦⎥⎤-11-54.C .[选修4-4:坐标系与参数方程]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ2=x 2+y 2,且⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得圆O 1的直角坐标方程为x 2+y 2=4,由ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,得ρ2-2ρ(cos θ+sin θ)=2,x 2+y 2-2(x +y )=2,故圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0.(2)联立方程⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-2x -2y -2=0,两式相减,得经过两圆交点的直线方程为x +y -1=0,该直线的极坐标方程为ρcos θ+ρsin θ-1=0. D .[选修4-5:不等式选讲] 解不等式:|x -2|+x |x +2|>2.解:当x ≤-2时,不等式化为(2-x )+x (-x -2)>2,即-x 2-3x >0,解得-3<x ≤-2; 当-2<x <2时,不等式化为(2-x )+x (x +2)>2, 即x 2+x >0,解得-2<x <-1或0<x <2;当x ≥2时,不等式化为(x -2)+x (x +2)>2,即x 2+3x -4>0,解得x ≥2. 所以原不等式的解集为{x |-3<x <-1或x >0}. 2.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,圆O 是△ABC 的外接圆,点D 是劣弧BC 的中点,连结AD 并延长,与以C 为切点的切线交于点P ,求证:PC PA =BDAC.证明:连结CD ,因为CP 为圆O 的切线, 所以∠PCD =∠PAC ,又∠P 是公共角, 所以△PCD ∽△PAC , 所以PC PA =CDAC,因为点D 是劣弧BC 的中点, 所以CD =BD ,即PC PA =BD AC. B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤a 32 d ,若A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤84,求矩阵A 的特征值.解:因为A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a 32 d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ a +62+2d =⎣⎢⎡⎦⎥⎤84,所以⎩⎪⎨⎪⎧a +6=8,2+2d =4,解得⎩⎪⎨⎪⎧a =2,d =1.所以A =⎣⎢⎡⎦⎥⎤2321.所以矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4,令f (λ)=0,解得矩阵A 的特征值为λ1=-1,λ2=4. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l :⎩⎪⎨⎪⎧x =t +1y =7-2t (t 为参数)与椭圆C :⎩⎪⎨⎪⎧x =a cos θy =3sin θ(θ为参数,a >0)的一条准线的交点位于y 轴上,求实数a 的值.解:由题意,直线l 的普通方程为2x +y =9,椭圆C 的普通方程为y 29+x 2a2=1(0<a <3),椭圆C 的准线方程为y =±99-a2,故99-a2=9,解得a =22(负值舍去).D .[选修4-5:不等式选讲]求函数y =3sin x +22+2cos 2x 的最大值. 解:y =3sin x +22+2cos 2x =3sin x +4cos 2x , 由柯西不等式得y 2=(3sin x +4cos 2x )2≤(32+42)(sin 2x +cos 2x )=25,当且仅当4sin x =3|cos x |,即sin x =35,|cos x |=45时等号成立,所以y max =5.所以函数y =3sin x +22+2cos 2x 的最大值为5. 3.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,△ABC 的顶点A ,C 在圆O 上,B 在圆外,线段AB 与圆O 交于点M .(1)若BC 是圆O 的切线,且AB =8,BC =4,求线段AM 的长度; (2)若线段BC 与圆O 交于另一点N ,且AB =2AC ,求证:BN =2MN . 解:(1)设AM =t ,则BM =8-t (0<t <8), 由切割线定理可得BC 2=BM ·BA .∴16=8(8-t ),解得t =6,即线段AM 的长度为6. (2)证明:由题意,∠A =∠MNB ,∠B =∠B , ∴△BMN ∽△BCA ,∴BN BA =MN CA, ∵AB =2AC ,∴BN =2MN . B .[选修4-2:矩阵与变换]已知变换T 把平面上的点(3,-4),(5,0)分别变换成(2,-1),(-1,2),试求变换T 对应的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤ab c d ,由题意得,⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤3 5-4 0=⎣⎢⎡⎦⎥⎤ 2 -1-1 2, ∴⎩⎪⎨⎪⎧3a -4b =2,5a =-1,3c -4d =-1,5c =2,解得⎩⎪⎪⎨⎪⎪⎧a =-15,b =-1320,c =25,d =1120,即M =⎣⎢⎢⎡⎦⎥⎥⎤-15 -132025 1120. C .[选修4-4:坐标系与参数方程] 在极坐标系中,求直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截得的弦长. 解:法一:在ρ=4sin θ中,令θ=π4,得ρ=4sin π4=22,即所求弦长为2 2.法二:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线θ=π4(ρ∈R)的直角坐标方程为y =x ,①曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y =0,②由①②得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,故直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截弦长的端点坐标分别为(0,0),(2,2),所以直线θ=π4(ρ∈R)被曲线ρ=4sin θ所截得的弦长为22+22=2 2.D .[选修4-5:不等式选讲]已知a ≠b ,求证:a 4+6a 2b 2+b 4>4ab (a 2+b 2). 证明:a 4+6a 2b 2+b 4-4ab (a 2+b 2) =a 4+6a 2b 2+b 4-4a 3b -4b 3a =a 4-4a 3b +6a 2b 2-4b 3a +b 4=(a -b )4,∵a ≠b ,∴a 4+6a 2b 2+b 4-4ab (a 2+b 2)>0, ∴a 4+6a 2b 2+b 4>4ab (a 2+b 2).4.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,弦CA ,BD 的延长线相交于点E ,EF 垂直BA 的延长线于点F ,连结FD .求证:∠DEA =∠DFA .证明:连结AD ,∵AB 是圆O 的直径,∴∠ADB =90°, ∴∠ADE =90°, 又EF ⊥FB , ∴∠AFE =90°, ∴A ,F ,E ,D 四点共圆, ∴∠DEA =∠DFA .B .[选修4-2:矩阵与变换]已知矩阵M =⎣⎢⎡⎦⎥⎤1 a 3 b 的一个特征值λ=-1及对应的特征向量e =⎣⎢⎡⎦⎥⎤1-1,求矩阵M 的逆矩阵.解:由题知,⎣⎢⎡⎦⎥⎤1a 3b ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤1-a 3-b =-1·⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1 1,即⎩⎪⎨⎪⎧1-a =-1,3-b =1,解得⎩⎪⎨⎪⎧a =2,b =2,M =⎣⎢⎡⎦⎥⎤1232.∴det(M )=⎪⎪⎪⎪⎪⎪1232=1×2-2×3=-4, ∴M-1=⎣⎢⎢⎡⎦⎥⎥⎤-12 1234 -14. C .[选修4-4:坐标系与参数方程]已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t 2y =t(t 为参数),曲线C 的极坐标方程为ρ=3cos θ,试判断直线l 与曲线C 的位置关系.解:由题意知,直线l 的普通方程为2x -y -2=0, 由ρ2=x 2+y 2,且⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得曲线C 的直角坐标方程为⎝ ⎛⎭⎪⎫x -322+y 2=94,它表示圆.由圆心⎝ ⎛⎭⎪⎫32,0到直线l 的距离d =15=55<32,得直线l 与曲线C 相交.D .[选修4-5:不等式选讲]设x ,y ,z 均为正实数,且xyz =1,求证:1x 3y +1y 3z +1z 3x≥xy +yz +zx .证明:∵x ,y ,z 均为正实数,且xyz =1, ∴1x 3y +1y 3z +1z 3x =z x2+x y 2+y z2,∴由柯西不等式可得⎝ ⎛⎭⎪⎫z x 2+x y 2+y z 2(xy +yz +zx )≥⎝ ⎛⎭⎪⎫xyz x+xyz y +xyz z 2=⎝ ⎛⎭⎪⎫xyz x +xyz y +xyz z 2=(xy+yz +zx )2.∴1x 3y +1y 3z +1z 3x≥xy +yz +zx .B 组1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,已知△ABC 内接于⊙O ,连结AO 并延长交⊙O 于点D ,∠ACB =∠ADC .求证:AD ·BC =2AC ·CD.证明:∵∠ACB =∠ADC ,AD 是⊙O 的直径, ∴AD 垂直平分BC ,设垂足为E ,∵∠ACB =∠EDC ,∠ACD =∠CED , ∴△ACD ∽△CED , ∴AD CD =AC CE, ∴AD ·12BC =AC ·CD ,∴AD ·BC =2AC ·CD . B .[选修4-2:矩阵与变换]在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-10 01对应的变换作用下得到点A ′,将点B (3,4)绕点A ′逆时针旋转90°得到点B ′,求点B ′的坐标.解:设B ′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A ′(1,2).则A ′B ――→=(2,2),A ′B ′――→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0,则⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-2 2=⎣⎢⎡⎦⎥⎤x -1y -2, 得⎩⎪⎨⎪⎧x =-1,y =4.所以点B ′的坐标为(-1,4). C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+-2=s -22+45.当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.D .[选修4-5:不等式选讲]已知a ,b ,c ∈R,4a 2+b 2+2c 2=4,求2a +b +c 的最大值.解:由柯西不等式,得[(2a )2+b 2+(2c )2]·⎣⎢⎡⎦⎥⎤12+12+⎝ ⎛⎭⎪⎫122≥(2a +b +c )2.因为4a 2+b 2+2c 2=4,所以(2a +b +c )2≤10. 所以-10≤2a +b +c ≤10,所以2a +b +c 的最大值为10,当且仅当a =105,b =2105,c =105时等号成立. 2.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,过E 作BA 的延长线的垂线,垂足为F .求证:AB 2=BE ·BD -AE ·AC .证明:如图,连结AD ,因为AB 为圆O 的直径,所以AD ⊥BD .又EF ⊥AB ,则A ,D ,E ,F 四点共圆, 所以BD ·BE =BA ·BF .连结BC ,则∠AFE =∠ACB ,∠BAC =∠EAF , 得△ABC ∽△AEF , 所以AB AE =ACAF, 即AB ·AF =AE ·AC ,所以BE ·BD -AE ·AC =BA ·BF -AB ·AF =AB ·(BF -AF )=AB 2. B .[选修4-2:矩阵与变换]已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4).(1)求矩阵M ;(2)求矩阵M 的另一个特征值. 解:(1)设M =⎣⎢⎡⎦⎥⎤a b c d , 由题意,M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =8⎣⎢⎡⎦⎥⎤11,M ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-a +2b -c +2d =⎣⎢⎡⎦⎥⎤-24,∴⎩⎪⎨⎪⎧ a +b =8,c +d =8,-a +2b =-2,-c +2d =4,解得⎩⎪⎨⎪⎧a =6,b =2,c =4,d =4,即M =⎣⎢⎡⎦⎥⎤6244.(2)令特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)·(λ-4)-8=0,解得λ1=8,λ2=2.矩阵M 的另一个特征值为2. C .[选修4-4:坐标系与参数方程]在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2sin α,y =1-cos 2α(α为参数).求直线l 与曲线C 的交点P 的直角坐标.解:由题意得,直线l 的直角坐标方程为y =3x ,① 曲线C 的普通方程为y =12x 2(x ∈[-2,2]),②联立①②解方程组得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =23,y =6(舍去).故P 点的直角坐标为(0,0). D .[选修4-5:不等式选讲]已知a ,b ,c 为正实数,求证:b 2a +c 2b +a 2c≥a +b +c .证明:法一:(基本不等式)∵a +b 2a ≥2b ,b +c 2b ≥2c ,c +a 2c ≥2a ,∴a +b 2a +b +c 2b +c +a 2c ≥2a +2b +2c ,∴b 2a +c 2b +a 2c≥a +b +c . 法二:(柯西不等式)由柯西不等式得(a +b +c )⎝ ⎛⎭⎪⎫b 2a +c 2b +a 2c ≥(b +c +a )2,∴b 2a +c 2b +a 2c ≥a +b +c .3.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,已知AB 为圆O 的一条弦,点P 为弧AB 的中点,过点P 任作两条弦PC,PD 分别交AB 于点E ,F .求证:PE ·PC =PF ·PD . 证明:连结PA ,PB ,CD ,BC . 因为点P 为弧AB 的中点, 所以∠PAB =∠PBA . 又因为∠PAB =∠PCB ,所以∠PCB =∠PBA . 又∠DCB =∠DPB ,所以∠PFE =∠PBA +∠DPB =∠PCB +∠DCB =∠PCD , 所以E ,F ,D ,C 四点共圆. 所以PE ·PC =PF ·PD . B .[选修4-2:矩阵与变换]已知曲线C :x 2+2xy +2y 2=1,矩阵A =⎣⎢⎡⎦⎥⎤1 21 0所对应的变换T 把曲线C 变换成曲线C 1,求曲线C 1的方程.解:设曲线C 上的任意一点P (x ,y ),点P 在矩阵A =⎣⎢⎡⎦⎥⎤1 21 0所对应的变换T 作用下得到点Q (x ′,y ′).则⎣⎢⎡⎦⎥⎤1 21 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎪⎨⎪⎧x +2y =x ′,x =y ′,所以⎩⎪⎨⎪⎧x =y ′,y =x ′-y ′2,代入x 2+2xy +2y 2=1,得y ′2+2y ′·x ′-y ′2+2⎝⎛⎭⎪⎫x ′-y ′22=1,即x ′2+y ′2=2,所以曲线C 1的方程为x 2+y 2=2. C .[选修4-4:坐标系与参数方程] 在极坐标系中,已知点A ⎝⎛⎭⎪⎫2,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ<2π)上.当线段AB 最短时,求点B 的极坐标.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系, 则点A ⎝⎛⎭⎪⎫2,π2的直角坐标为(0,2),直线l 的直角坐标方程为x +y =0. AB 最短时,点B 为直线x -y +2=0与直线l 的交点,解⎩⎪⎨⎪⎧x -y +2=0,x +y =0,得⎩⎪⎨⎪⎧x =-1,y =1.所以点B 的直角坐标为(-1,1).所以点B 的极坐标为⎝⎛⎭⎪⎫2,3π4.D .[选修4-5:不等式选讲]求函数f (x )=5x +8-2x 的最大值.解:易知函数f (x )的定义域为[0,4],且f (x )≥0.由柯西不等式得[52+(2)2][(x )2+(4-x )2]≥(5·x +2·4-x )2, 即27×4≥(5·x +2·4-x )2, 所以5x +8-2x ≤6 3. 当且仅当2×x =54-x ,即x =10027时取等号. 所以函数f (x )=5x +8-2x 的最大值为6 3. 4.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .证明:因为B ,C 是圆O 上的两点, 所以OB =OC . 故∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D .因此∠OCB =∠D . B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤2 -20 1,设曲线C :(x -y )2+y 2=1在矩阵A 对应的变换下得到曲线C ′,求C ′的方程.解:设P (x 0,y 0)为曲线C 上任意一点,点P 在矩阵A 对应的变换下得到点Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2 -20 1⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =2x 0-2y 0,y =y 0,解得⎩⎪⎨⎪⎧x 0=x 2+y ,y 0=y ,又(x 0-y 0)2+y 20=1,∴⎝ ⎛⎭⎪⎫x 2+y -y 2+y 2=1,即x 24+y 2=1,∴曲线C ′的方程为x 24+y 2=1. C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.设P 为直线l 上一动点,当P到圆心C 的距离最小时,求点P 的直角坐标.解:由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y , 所以x 2+(y -3)2=3.设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则PC =⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12, 故当t =0时,PC 取得最小值,此时点P 的直角坐标为(3,0). D .[选修4-5:不等式选讲]已知a ,b ,c ,d 是正实数,且abcd =1,求证:a 5+b 5+c 5+d 5≥a +b +c +d . 证明:因为a ,b ,c ,d 是正实数,且abcd =1, 所以a 5+b +c +d ≥44a 5bcd =4a .① 同理b 5+c +d +a ≥4b ,②c 5+d +a +b ≥4c ,③ d 5+a +b +c ≥4d ,④将①②③④式相加并整理, 得a 5+b 5+c 5+d 5≥a +b +c +d .当且仅当“a =b =c =d =1”时等号成立.3个附加题专项强化练(二) 随机变量、空间向量、抛物线(理科)1.如图,在直三棱柱ABC A1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4. (1)设AD ―→=λAB ―→,异面直线AC 1与CD 所成角的余弦值为91050,求λ的值;(2)若点D 是AB 的中点,求二面角D CB 1B 的余弦值.解:(1)由AC =3,BC =4,AB =5,得∠ACB =90°,故直线CA ,CB ,CC1两两垂直.以CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),设D (x ,y ,z ),则由AD ―→=λAB ―→,得CD ―→=(3-3λ,4λ,0),而AC ―→1=(-3,0,4),根据题意知91050=⎪⎪⎪⎪⎪⎪-9+9λ525λ2-18λ+9,解得λ=15或λ=-13. (2)由(1)知CD ―→=⎝ ⎛⎭⎪⎫32,2,0,CB ―→1=(0,4,4),设平面CDB 1的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CD ―→=0,n 1·CB ―→1=0,即⎩⎪⎨⎪⎧32x 1+2y 1=0,4y 1+4z 1=0,取x 1=4,则y 1=-3,z 1=3,故n 1=(4,-3,3)为平面CDB 1的一个法向量,而平面CBB 1的一个法向量为n 2=(1,0,0),并且〈n 1,n 2〉与二面角D CB 1B 相等, 所以二面角D CB 1B 的余弦值为cos 〈n 1,n 2〉=434=23417.故二面角D CB 1B 的余弦值为23417. 2.甲、乙、丙分别从A ,B ,C ,D 四道题中独立地选做两道题,其中甲必选B 题. (1)求甲选做D 题,且乙、丙都不选做D 题的概率;(2)设随机变量X 表示D 题被甲、乙、丙选做的次数,求X 的概率分布和数学期望E (X ). 解:(1)设“甲选做D 题,且乙、丙都不选做D 题”为事件E . 甲选做D 题的概率为C 11C 13=13,乙,丙不选做D 题的概率都是C 23C 24=12.则P (E )=13×12×12=112.故甲选做D 题,且乙、丙都不选做D 题的概率为112.(2)X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-13×12×12=16,P (X =1)=13×⎝ ⎛⎭⎪⎫122+⎝⎛⎭⎪⎫1-13×C 12×⎝⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫12=512, P (X =2)=13×C 12×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫12+⎝ ⎛⎭⎪⎫1-13×C 22×⎝⎛⎭⎪⎫1-122=13,P (X =3)=13×C 22×⎝⎛⎭⎪⎫1-122=112. 所以X 的概率分布为故X 的数学期望E (X )=0×16+1×12+2×3+3×12=3.3.如图,以正四棱锥V ABCD 的底面中心O 为坐标原点建立空间直角坐标系O xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥的底面边长为2a ,高为h ,且有cos 〈BE ―→,DE ―→〉=-1549.(1)求h a的值;(2)求二面角B VC D 的余弦值.解:(1)由题意,可得B (a ,a,0),C (-a ,a,0),D (-a ,-a,0),V (0,0,h ),E ⎝ ⎛⎭⎪⎫-a 2,a 2,h2, ∴BE ―→=⎝ ⎛⎭⎪⎫-3a 2,-a 2,h 2,DE ―→=⎝ ⎛⎭⎪⎫a 2,3a 2,h 2.故cos 〈BE ―→,DE ―→〉=h 2-6a 2h 2+10a2,又cos 〈BE ―→,DE ―→〉=-1549,∴h 2-6a 2 h 2+10a 2=-1549,解得h a =32. (2)由h a =32,得BE ―→=⎝ ⎛⎭⎪⎫-3a 2,-a 2,3a 4,DE ―→=⎝ ⎛⎭⎪⎫a 2,3a 2,3a 4.且CB ―→=(2a,0,0),DC ―→=(0,2a,0). 设平面BVC 的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·BE ―→=0,n 1·CB ―→=0,即⎩⎪⎨⎪⎧-3a 2x 1-a 2y 1+3a 4z 1=0,2ax 1=0,取y 1=3,得n 1=(0,3,2),设平面VCD 的一个法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·DE ―→=0,n 2·DC ―→=0,即⎩⎪⎨⎪⎧a 2x 2+3a 2y 2+3a 4z 2=0,2ay 2=0,取x 2=-3,得n 2=(-3,0,2),∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=413.由图象知二面角B VC D 的平面角为钝角. ∴二面角B VC D 的余弦值为-413.4.在平面直角坐标系xOy 中,已知两点M (1,-3),N (5,1),若点C 的坐标满足OC ―→=t OM ―→+(1-t )ON ―→ (t ∈R),且点C 的轨迹与抛物线y 2=4x 交于A ,B 两点.(1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P (m,0),使得过点P 任作一条抛物线的弦,并以该弦为直径的圆都过原点.若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.解:(1)证明:由OC ―→=t OM ―→+(1-t )ON ―→(t ∈R),可知点C 的轨迹是M ,N 两点所在的直线, 所以点C 的轨迹方程为y +3=1--5-1(x -1),即y =x -4.联立⎩⎪⎨⎪⎧y =x -4,y 2=4x ,化简得x 2-12x +16=0,设C 的轨迹方程与抛物线y 2=4x 的交点坐标为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=16,y 1y 2=(x 1-4)(x 2-4)=x 1x 2-4(x 1+x 2)+16=-16,因为OA ―→·OB ―→=x 1x 2+y 1y 2=16-16=0, 所以OA ⊥OB .(2)假设存在这样的P 点,并设AB 是过抛物线的弦,且A (x 1,y 1),B (x 2,y 2),其方程为x =ny +m , 代入y 2=4x 得y 2-4ny -4m =0, 此时y 1+y 2=4n ,y 1y 2=-4m , 所以k OA k OB =y 1x 1·y 2x 2=y 1y 214·y 2y 224=16y 1y 2=-4m=-1,所以m =4(定值),故存在这样的点P (4,0)满足题意. 设AB 的中点为T (x ,y ),则y =12(y 1+y 2)=2n ,x =12(x 1+x 2)=12(ny 1+4+ny 2+4)=n 2(y 1+y 2)+4=2n 2+4,消去n 得y 2=2x-8.5.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲、乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时.设甲、乙两人停车时间(小时)与取车概率如下表所示.停车时间取车概率停车人员(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的概率分布和数学期望E (ξ). 解:(1)由题意得12+3x =1,解得x =16,由16+13+y =1,解得y =12. 记甲、乙两人所付车费相同的事件为A , 则P (A )=12×16+16×13+16×12=29,故甲、乙两人所付车费相同的概率为29.(2)设甲、乙两人所付停车费之和为随机变量ξ,ξ的所有取值为0,1,2,3,4,5.P (ξ=0)=12×16=112, P (ξ=1)=12×13+16×16=736, P (ξ=2)=16×16+16×13+12×12=13,P (ξ=3)=16×16+16×13+16×12=16, P (ξ=4)=16×12+16×13=536,P (ξ=5)=16×12=112.所以ξ的概率分布为:∴ξ的数学期望E (ξ)=0×12+1×36+2×3+3×6+4×36+5×12=3. 6.在平面直角坐标系xOy 中,已知抛物线x 2=2py (p >0)上的点M (m,1)到焦点F 的距离为2.(1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直线PF 与抛物线相交于A ,B 两点,求△EAB 面积的最小值.解:(1)抛物线x 2=2py (p >0)的准线方程为y =-p2,因为M (m,1)到焦点F 的距离为2,由抛物线定义,知MF =1+p2=2,即p =2,所以抛物线的方程为x 2=4y .(2)因为y =14x 2,所以y ′=12x .设点E ⎝ ⎛⎭⎪⎫t ,t 24,t ≠0,则抛物线在点E 处的切线方程为y -t 24=12t (x -t ).令y =0,则x =t2,即点P ⎝ ⎛⎭⎪⎫t2,0.因为P ⎝ ⎛⎭⎪⎫t 2,0,F (0,1),所以直线PF 的方程为y =-2t ⎝ ⎛⎭⎪⎫x -t 2,即2x +ty -t =0.则点E ⎝ ⎛⎭⎪⎫t ,t 24到直线PF 的距离为d =⎪⎪⎪⎪⎪⎪2t +t 34-t 4+t2=|t |4+t 24.联立方程⎩⎪⎨⎪⎧y =x 24,2x +ty -t =0,消去x ,得t 2y 2-(2t 2+16)y +t 2=0.设A (x 1,y 1),B (x 2,y 2),因为Δ=(2t 2+16)2-4t 4=64(t 2+4)>0,y 1+y 2=2t 2+16t2, 所以AB =y 1+1+y 2+1=y 1+y 2+2=2t 2+16t 2+2=t 2+t 2.所以△EAB 的面积为S =12×t 2+t 2×|t |4+t 24=12×t 2+32|t |.不妨设g (x )=x 2+32x (x >0), 则g ′(x )=x 2+12x 2(2x 2-4).因为x ∈(0,2)时,g ′(x )<0,所以g (x )在(0,2)上单调递减;x ∈(2,+∞)上,g ′(x )>0,所以g (x )在(2,+∞)上单调递增.所以当x =2时,g (x )min =+322=6 3.所以△EAB 的面积S min =12×63=3 3.所以△EAB 的面积的最小值为3 3.3个附加题专项强化练(三) 二项式定理、数学归纳法(理科)1.已知函数f 0(x )=x (sin x +cos x ),设f n (x )为f n -1(x )的导数,n ∈N *. (1)求f 1(x ),f 2(x )的表达式;(2)写出f n (x )的表达式,并用数学归纳法证明. 解:(1)因为f n (x )为f n -1(x )的导数, 所以f 1(x )=f 0′(x )=(sin x +cos x )+x (cos x -sin x ) =(x +1)cos x +(x -1)(-sin x ), 同理,f 2(x )=-(x +2)sin x -(x -2)cos x .(2)由(1)得f 3(x )=f 2′(x )=-(x +3)cos x +(x -3)sin x , 把f 1(x ),f 2(x ),f 3(x )分别改写为f 1(x )=(x +1)sin ⎝ ⎛⎭⎪⎫x +π2+(x -1)cos ⎝ ⎛⎭⎪⎫x +π2,f 2(x )=(x +2)sin ⎝ ⎛⎭⎪⎫x +2π2+(x -2)cos ⎝ ⎛⎭⎪⎫x +2π2,f 3(x )=(x +3)sin ⎝⎛⎭⎪⎫x +3π2+(x -3)cos ⎝⎛⎭⎪⎫x +3π2, 猜测f n (x )=(x +n )sin ⎝⎛⎭⎪⎫x +n π2+(x -n )cos ⎝⎛⎭⎪⎫x +n π2.(*) 下面用数学归纳法证明上述等式. (ⅰ)当n =1时,由(1)知,等式(*)成立. (ⅱ)假设当n =k (k ∈N *,k ≥1)时,等式(*)成立, 即f k (x )=(x +k )sin ⎝⎛⎭⎪⎫x +k π2+(x -k )cos ⎝⎛⎭⎪⎫x +k π2. 则当n =k +1时,f k +1(x )=f k ′(x )=sin ⎝⎛⎭⎪⎫x +k π2+(x +k )cos ⎝⎛⎭⎪⎫x +k π2+cos ⎝⎛⎭⎪⎫x +k π2+(x -k )⎣⎢⎡⎦⎥⎤-sin ⎝⎛⎭⎪⎫x +k π2=(x +k +1)cos ⎝⎛⎭⎪⎫x +k π2+[x -(k +1)]·⎣⎢⎡⎦⎥⎤-sin ⎝⎛⎭⎪⎫x +k π2 =[x +(k +1)]sin ⎝⎛⎭⎪⎫x +k +12π+[x -(k +1)]·cos ⎝ ⎛⎭⎪⎫x +k +12π, 即当n =k +1时,等式(*)成立.综上所述,当n ∈N *时,f n (x )=(x +n )·sin ⎝⎛⎭⎪⎫x +n π2+(x -n )cos ⎝⎛⎭⎪⎫x +n π2成立. 2.设1,2,3,…,n 的一个排列是a 1,a 2,…,a n ,若a i =i 称i 为不动点(1≤i ≤n ). (1)求1,2,3,4,5的排列中恰有两个不动点的排列个数;(2)记1,2,3,…,n 的排列中恰有k 个不动点的排列个数为P n (k ),①求∑k =0nP n (k );②∑k =1nkP n (k ).解:(1)1,2,3,4,5的排列中恰有两个数不动,即为有两个a i =i ,另三个a i ≠i ,而三个数没有不动点的排列有2个, 故1,2,3,4,5的排列中恰有两个不动点的排列个数为2C 25=20.(2)①在1,2,3,…,n 的排列中分成这样n +1类,有0个不动点,1个不动点,2个不动点,…,n 个不动点,故∑k =0nP n (k )=n !.②由题设可知P n (k )=C k n P n -k (0)及组合恒等式k C k n =n C k -1n -1得∑k =1nkP n (k )=∑k =1nk C kn Pn -k(0)=∑k =1nn Ck -1n -1P n -k(0)=n ∑k =1nC k -1n -1P n -k(0)=n ∑k =0n -1C kn -1P (n -1)-k (0)=n !.3.已知(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n (n ∈N *),令T n =∑i =12nia i .(1)求a 0和T n 关于n 的表达式;(2)试比较2T n n与(n -1)a 0+2n 2的大小,并证明你的结论.解:(1)在(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n 中,令x =-1,可得a 0=3n. 对(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n, 两边同时求导得,n (2x +2)(x 2+2x +4)n -1=a 1+2a 2(x +1)+3a 3(x +1)2+…+2na 2n (x +1)2n -1,令x =0,则∑i =12nia i =2n ×4n -1,所以T n =2n ×4n -1.(2)要比较2T n n与(n -1)a 0+2n 2的大小,即比较4n 与(n -1)3n +2n 2的大小.当n =1时,4n =4>(n -1)3n +2n 2=2; 当n =2或3或4时,4n <(n -1)3n +2n 2; 当n =5时,4n >(n -1)3n +2n 2. 猜想:当n ≥5时,4n>(n -1)3n+2n 2. 下面用数学归纳法证明.①由上述过程可知,当n =5时,结论成立.②假设当n =k (k ≥5,k ∈N *)时结论成立,即4k >(k -1)3k +2k 2, 两边同乘以4,得4k +1>4[(k -1)3k +2k 2]=k ·3k +1+2(k +1)2+[(k -4)3k +6k 2-4k -2],而(k -4)3k+6k 2-4k -2=(k -4)3k+6(k 2-k -2)+2k +10=(k -4)3k+6(k -2)(k +1)+2k +10>0,所以4k +1>[(k +1)-1]3k +1+2(k +1)2,即n =k +1时结论也成立.由①②可知,当n ≥5时,4n>(n -1)3n+2n 2成立.综上所述,当n =1时,2T n n >(n -1)a 0+2n 2;当n =2或3或4时,2T n n<(n -1)a 0+2n 2;当n ≥5时,2T n n>(n -1)a 0+2n 2.4.在集合A ={1,2,3,4,…,2n }中,任取m (m ≤2n ,m ,n ∈N *)个元素构成集合A m .若A m 的所有元素之和为偶数,则称A m 为A 的偶子集,其个数记为f (m );若A m 的所有元素之和为奇数,则称A m 为A 的奇子集,其个数记为g (m ).令F (m )=f (m )-g (m ).(1)当n =2时,求F (1),F (2),F (3)的值; (2)求F (m ).解:(1)当n =2时,集合A ={1,2,3,4},当m =1时,偶子集有{2},{4},奇子集有{1},{3},f (1)=2,g (1)=2,F (1)=0;当m =2时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,3},{3,4},f (2)=2,g (2)=4,F (2)=-2;当m =3时,偶子集有{1,2,3},{1,3,4},奇子集有{1,2,4},{2,3,4},f (3)=2,g (3)=2,F (3)=0.(2)当m 为奇数时,偶子集的个数f (m )=C 0n C mn +C 2n C m -2n +C 4n C m -4n +…+C m -1n C 1n , 奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m n C 0n , 所以f (m )=g (m ),F (m )=f (m )-g (m )=0. 当m 为偶数时,偶子集的个数f (m )=C 0n C mn +C 2n C m -2n +C 4n C m -4n +…+C m n C 0n , 奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m -1n C 1n ,所以F (m )=f (m )-g (m )=C 0n C mn -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1n C 1n +C m n C 0n .一方面,(1+x )n (1-x )n =(C 0n +C 1n x +C 2n x 2+…+C n n x n )·[C 0n -C 1n x +C 2n x 2-…+(-1)n C n n x n], 所以(1+x )n (1-x )n 中x m 的系数为C 0n C m n -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1n C 1n +C m n C 0n ;另一方面,(1+x )n(1-x )n=(1-x 2)n,(1-x 2)n中x m的系数为(-1)m 2C m 2n ,故F (m )=(-1)m 2C m2n .综上,F (m )=⎩⎪⎨⎪⎧-m 2C m 2n ,m 为偶数,0,m 为奇数.5.设可导函数y =f (x )经过n (n ∈N)次求导后所得结果为y =f (n )(x ).如函数g (x )=x 3经过1次求导后所得结果为g (1)(x )=3x 2,经过2次求导后所得结果为g (2)(x )=6x ,….(1)若f (x )=ln(2x +1),求f (2)(x );(2)已知f (x )=p (x )·q (x ),其中p (x ),q (x )为R 上的可导函数.求证:f (n )(x )=∑i =0nC i n p(n -i )(x )·q (i )(x ).解:(1)依题意,f (1)(x )=12x +1×2=2(2x +1)-1, f (2)(x )=-2(2x +1)-2×2=-4(2x +1)-2.(2)证明:①当n =1时,f (1)(x )=p (1)(x )·q (x )+p (x )·q (1)(x )=∑i =01C i n p(n -i )(x )·q (i )(x );②假设n =k 时,f (k )(x )=∑i =0kC i k p(k -i )(x )·q (i )(x )成立, 则n =k +1时,f(k +1)(x )=(f (k )(x ))′=∑i =0kC i k [p(k -i +1)(x )·q (i )(x )+p(k -i )(x )·q(i +1)(x )]=C 0k p(k +1)(x )·q (x )+C 1k p (k )(x )·q (1)(x )+C 2k p(k -1)(x )·q (2)(x )+…+C kk p (1)(x )·q (k )(x )+C 0kp (k )(x )·q (1)(x )+C 1k p(k -1)(x )·q (2)(x )+…+C k -1k p (1)(x )·q (k )(x )+C k k p (x )·q (k +1)(x ) =C 0k p(k +1)(x )·q (x )+(C 0k +C 1k )p (k )(x )·q (1)(x )+()C 1k +C 2k p(k -1)(x )·q (2)(x )+…+(C k -1k+C kk )·p (1)(x )·q (k )(x )+C k k p (x )·q(k +1)(x )=C 0k +1p(k +1)(x )·q (x )+C 1k +1p (k )(x )·q (1)(x )+C 2k +1p(k -1)(x )·q (2)(x )+…+C k k +1p (1)(x )·q (k )(x )+C k +1k +1p (x )·q (k +1)(x )=∑i =0k +1C i k +1p(k +1-i )(x )·q (i )(x ),所以,结论对n =k +1也成立.由①②得,f (n )(x )=∑i =0nC i n p(n -i )(x )·q (i )(x ).6.设整数n ≥9,在集合{1,2,3,…,n }中任取三个不同元素a ,b ,c (a >b >c ),记f (n )为满足a +b +c 能被3整除的取法种数.(1)直接写出f (9)的值;(2)求f (n )表达式. 解:(1)f (9)=12.(2)①当n =3k (k ≥3,k ∈N *)时,记k =n3,集合为{1,2,3,…,3k -1,3k }.将其分成三个集合:A ={1,4,…,3k -2},B ={2,5,…,3k -1},C ={3,6,…,3k }. 要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从A 中取一个,从B 中取一个(此数与A 中取的那个数之和能被3整除).故有3C 3k +C 1k C 1k C 1k =k k -k -2+k 3=n 3-3n 2+6n18种取法;②当n =3k +1(k ≥3,k ∈N *)时,记k =n -13,集合为{1,2,3…,3k,3k +1}.将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1},C ={3,6,…,3k }. 要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有2C 3k +C 3k +1+C 1k C 1k C 1k +1=k k -k -3+k +k k -6+k 2(k +1)=k k -22+k 2(k +1)=n 3-3n 2+6n -418种取法;③当n =3k +2(k ≥3,k ∈N *)时,记k =n -23,集合为{1,2,3,…,3k +1,3k +2}.将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1,3k +2},C ={3,6,…,3k }.要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有C 3k +2C 3k +1+C 1k C 1k +1C 1k +1=k k -k -6+k +k k -3+k (k +1)2=k 2k -2+k (k +1)2=n 3-3n 2+6n -818种取法.综上所述,f (n )= ⎩⎪⎨⎪⎧n 3-3n 2+6n18,n =3kk ≥3,k ∈N *,n 3-3n 2+6n -418,n =3k +k ≥3,k ∈N *,n 3-3n 2+6n -818,n =3k +k ≥3,k ∈N*。
6个解答题综合仿真练(四)1、如图,四棱锥P -ABCD 中, 底面ABCD 为菱形,且PA ⊥底面ABCD ,PA =AC ,E 是PA 的中点,F 是PC 的中点、(1)求证:PC ∥平面BDE ;(2)求证:AF ⊥平面BDE 、证明:(1)连结OE ,因为O 为菱形ABCD 对角线的交点,所以O 为AC 的中点、又因为E 为PA 的中点,所以OE ∥PC 、又因为OE ⊂平面BDE ,PC ⊄平面BDE ,所以PC ∥平面BDE 、(2)因为PA =AC ,△PAC 是等腰三角形,又F 是PC 的中点,所以AF ⊥PC 、又OE ∥PC ,所以AF ⊥OE 、又因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD 、又因为AC ,BD 是菱形ABCD 的对角线,所以AC ⊥BD 、因为PA ∩AC =A ,所以BD ⊥平面PAC ,因为AF ⊂平面PAC ,所以AF ⊥BD 、因为OE ∩BD =O ,所以AF ⊥平面BDE 、2、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2+2ac =b 2,sin A =1010、 (1)求sin C 的值;(2)若a =2,求△ABC 的面积、解:(1)由a 2+c 2+2ac =b 2,得cos B =a 2+c 2-b 22ac =-22, 又B ∈(0,π),所以B =3π4、 因为sin A =1010,且B 为钝角,所以cos A =31010, 所以sin C =sin ⎝⎛⎭⎫A +3π4=1010×⎝⎛⎭⎫-22+31010×22=55、 (2)由正弦定理得a sin A =c sin C,所以c =a sin C sin A =2×551010=22, 所以△ABC 的面积S △ABC =12ac sin B =12×2×22×22=2、 3、已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,一个焦点为F (-1,0),点F 到相应准线的距离为3、经过点F 的直线l 与椭圆M 交于C ,D 两点、(1)求椭圆M 的方程;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值、解:(1)由焦点F (-1,0)知c =1,又a 2c-c =3, 所以a 2=4,从而b 2=a 2-c 2=3、所以椭圆M 的方程为x 24+y 23=1、 (2)若直线l 的斜率不存在,则直线l 的方程为x =-1,此时S 1=S 2,|S 1-S 2|=0;若直线l 的斜率存在,可设直线l 的方程为y =k (x +1),k ≠0,C (x 1,y 1),D (x 2,y 2)、联立⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2、 此时|S 1-S 2|=12·AB ·||y 1|-|y 2||=2|y 1+y 2| =2|k (x 1+1)+k (x 2+1)|=2|k ||(x 1+x 2)+2|=2|k |⎪⎪⎪⎪⎪⎪-8k 23+4k 2+2=2|k |⎪⎪⎪⎪63+4k 2=12|k |3+4k 2、 因为k ≠0,所以|S 1-S 2|=123|k |+4|k |≤1223|k |·4|k |=1243=3, 当且仅当3|k |=4|k |,即k =±32时取等号、 所以|S 1-S 2|的最大值为3、4、如图,矩形ABCD 是一个历史文物展览厅的俯视图,点E 在AB 上,在梯形BCDE 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观、在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M ,N 在线段DE (含端点)上,且点M 在点N 的右下方、经测量得知:AD =6米,AE =6米,AP =2米,∠MPN =π4、记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米、(1)求S 关于θ的函数关系式,并写出θ的取值范围;⎝⎛⎭⎫参考数据:tan 54≈3 (2)求S 的最小值、解:(1)法一:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ, 由正弦定理得PM sin ∠PEM =PE sin ∠PME, 所以PM =PE ·sin ∠PEM sin ∠PME =22sin ⎝⎛⎭⎫3π4-θ=4sin θ+cos θ, 在△PNE 中,由正弦定理得PN sin ∠PEN =PE sin ∠PNE, 所以PN =PE ·sin ∠PEN sin ∠PNE =22sin ⎝⎛⎭⎫π2-θ=22cos θ, 所以△PMN 的面积S =12PM ·PN ·sin ∠MPN =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝⎛⎭⎫2θ+π4+1, 当M 与E 重合时,θ=0; 当N 与D 重合时,tan ∠APD =3, 即∠APD =54,θ=3π4-54,所以0≤θ≤3π4-54、 综上可得,S =82sin ⎝⎛⎭⎫2θ+π4+1,θ∈⎣⎡⎦⎤0,3π4-54、 法二:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ, 由正弦定理得ME sin θ=PE sin ∠PME, 所以ME =PE ·sin θsin ∠PME =4sin θsin ⎝⎛⎭⎫3π4-θ=42sin θsin θ+cos θ, 在△PNE 中,由正弦定理得NE sin ∠EPN =PE sin ∠PNE,所以NE =PE ·sin ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫π2-θ=4sin ⎝⎛⎭⎫θ+π4cos θ =22(sin θ+cos θ)cos θ, 所以MN =NE -ME =22cos 2θ+sin θcos θ, 又点P 到DE 的距离为d =4sin π4=22, 所以△PMN 的面积S =12MN ·d =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝⎛⎭⎫2θ+π4+1, 当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =54,θ=3π4-54, 所以0≤θ≤3π4-54、 综上可得,S =82sin ⎝⎛⎭⎫2θ+π4+1,θ∈⎣⎡⎦⎤0,3π4-54、 (2)当2θ+π4=π2,即θ=π8∈⎣⎡⎦⎤0,3π4-54时,S 取得最小值为82+1=8(2-1)、 所以可视区域△PMN 面积的最小值为8(2-1)平方米、5、设a >0且a ≠1,函数f (x )=a x +x 2-x ln a -a 、(1)当a =e 时,求函数f (x )的单调区间;(2)求函数f (x )的最小值;(3)指出函数f (x )的零点个数,并说明理由、解:(1)当a =e 时,f (x )=e x +x 2-x -e,f ′(x )=e x +2x -1、设g (x )=e x +2x -1,则g (0)=0,且g ′(x )=e x +2>0、所以g (x )在(-∞,+∞)上单调递增,当x >0时,g (x )>g (0)=0;当x <0时,g (x )<g (0)=0、即当x >0时,f ′(x )>0;当x <0时,f ′(x )<0、综上,函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0)、(2)f′(x)=a x ln a+2x-ln a=(a x-1)ln a+2x,①当a>1时,若x>0,则a x>1,ln a>0,所以f′(x)>0,若x<0,则a x<1,ln a>0,所以f′(x)<0、②当0<a<1时,若x>0,则a x<1,ln a<0,所以f′(x)>0,若x<0,则a x>1,ln a<0,所以f′(x)<0,所以f(x)在(-∞,0)上单调递减,(0,+∞)上单调递增、所以f(x)min=f(0)=1-a、(3)由(2)得,a>0,a≠1,f(x)min=1-a、①若1-a>0,即0<a<1时,f(x)min=1-a>0,函数f(x)不存在零点、②若1-a<0,即a>1时,f(x)min=1-a<0、f(x)的图象在定义域内是不间断的曲线,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增、f(a)=a a+a2-a ln a-a>a2-a ln a-a=a(a-ln a-1)、令t(a)=a-ln a-1(a>1),t′(a)=1-1a>0,所以t(a)在(1,+∞)上单调递增;所以t(a)>t(1)=0、所以f(a)>0、故f(x)在(0,a)上有一个零点、又f(-a)=a-a+a2+a ln a-a>a2-a=a(a-1)>0,故f(x)在(-a,0)上有一个零点、所以f(x)在(-∞,0)上和(0,+∞)上各有一个零点,即f(x)有2个零点、综上,当0<a<1时,函数f(x)不存在零点;当a>1时,函数f(x)有2个零点、6、已知数列{a n}的通项公式a n=2n-(-1)n,n∈N*、设an1,an2,…,an i(其中n1<n2<…<n i,i ∈N*)成等差数列、(1)若i=3、①当n1,n2,n3为连续正整数时,求n1的值;②当n1=1时,求证:n3-n2为定值;(2)求i的最大值、解:(1)①依题意,an1,an1+1,an1+2成等差数列,即2an1+1=an1+an1+2,从而2[2n1+1-(-1)n1+1]=2n1-(-1)n1+2n1+2-(-1)n1+2,当n1为奇数时,解得2n1=-4,不存在这样的正整数n1;当n1为偶数时,解得2n1=4,所以n1=2、②证明:依题意,a1,an2,an3成等差数列,即2an2=a1+an3,从而2[2n2-(-1)n2]=3+2n3-(-1)n3,当n2,n3均为奇数时,2n2-2n3-1=1,左边为偶数,故矛盾;当n2,n3均为偶数时,2n2-1-2n3-2=1,左边为偶数,故矛盾;当n2为偶数,n3奇数时,2n2-2n3-1=3,左边为偶数,故矛盾;当n2为奇数,n3偶数时,2n2+1-2n3=0,即n3-n2=1、(2)设a s,a r,a t(s<r<t)成等差数列,则2a r=a s+a t,即2[2r-(-1)r]=2s-(-1)s+2t-(-1)t,整理得,2s+2t-2r+1=(-1)s+(-1)t-2(-1)r,若t=r+1,则2s=(-1)s-3(-1)r,因为2s≥2,所以(-1)s-3(-1)r只能为2或4,所以s只能为1或2;若t≥r+2,则2s+2t-2r+1≥2s+2r+2-2r+1≥2+24-23=10,(-1)s+(-1)t-2(-1)r≤4,故矛盾,综上,只能a1,a r,a r+1成等差数列或a2,a r,a r+1成等差数列,其中r为奇数,从而i的最大值为3、。
3个附加题综合仿真练(五)1、本题包括A 、B 、C 、D 四个小题,请任选二个作答A 、[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD ,又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点,所以∠DAC =∠ABD ,所以∠ADE =∠DAC .所以AM =DM .B 、[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量、在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎢⎡⎦⎥⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =1.① 因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),所以⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.② 由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1. C 、[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧ x =-32+22n ,y =22n(n 为参数)与曲线⎩⎪⎨⎪⎧ x =18t 2,y =t (t 为参数)相交于A ,B 两点,求线段AB 的长、解:法一:将曲线⎩⎪⎨⎪⎧ x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x . 将直线⎩⎨⎧ x =-32+22n ,y =22n(n 为参数)代入y 2=8x 得, n 2-82n +24=0,解得n 1=22,n 2=6 2.则|n 1-n 2|=42,所以线段AB 的长为4 2.法二:将曲线⎩⎪⎨⎪⎧ x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x, 将直线⎩⎨⎧ x =-32+22n ,y =22n (n 为参数)化为普通方程为x -y +32=0, 由⎩⎪⎨⎪⎧ y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧ x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6. 所以AB 的长为 ⎝⎛⎭⎫92-122+(6-2)2=4 2. D 、[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围、解:存在实数x 使f (x )+g (x )>a 成立,等价于f (x )+g (x )的最大值大于a ,因为f (x )+g (x ) =3x +6+14-x =3×x +2+1×14-x , 由柯西不等式得, (3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8)、2.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点、(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值、解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0, O (0,0,2),M (0,0,1)、(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝⎛⎭⎫-22,22,-1, 则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12, 故AB 与MD 所成角为60°.(2)OP ―→=⎝⎛⎭⎫0,22,-2,OD ―→=⎝⎛⎭⎫-22,22,-2, 设平面OCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·OP ―→=0,n ·OD ―→=0,即⎩⎨⎧ 22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223, 故平面OAB 与平面OCD 所成锐二面角的余弦值为223. 3、设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n =⎝⎛⎭⎫a +b 2n .(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明、 解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝ ⎛⎭⎪⎫a +b 22=112(a -b )2>0. (2)A n ≥B n ,证明如下:当n =1时,A 1=B 1;当n ≥3时,A n =1n +1·a n +1-b n +1a -b,B n =⎝ ⎛⎭⎪⎫a +b 2n , 令a +b =x ,a -b =y ,且x >0,y >0, 于是A n =1n +1·⎝ ⎛⎭⎪⎫x +y 2n +1-⎝ ⎛⎭⎪⎫x -y 2n +1y =12n +1(n +1)y[(x +y )n +1-(x -y )n +1],B n =⎝⎛⎭⎫x 2n , 因为[(x +y )n +1-(x -y )n +1]=(2C 1n +1x n y +2C 3n +1·x n -2y 3+…)≥2C 1n +1x n y , 所以A n ≥12n +1(n +1)y·2C 1n +1x n y =x n 2n =⎝⎛⎭⎫x 2n =B n .。
3个附加题综合仿真练(二)1、本题包括A 、B 、C 、D 四个小题,请任选二个作答 A 、[选修4-1:几何证明选讲]如图,四边形ABCD 是圆的内接四边形,BC =BD ,BA 的延长线交CD 的延长线于点E 、求证:AE 是四边形ABCD 的外角∠DAF 的平分线、 证明:因为四边形ABCD 是圆的内接四边形, 所以∠DAE =∠BCD ,∠FAE =∠BAC =∠BDC 、 因为BC =BD ,所以∠BCD =∠BDC , 所以∠DAE =∠FAE ,所以AE 是四边形ABCD 的外角∠DAF 的平分线、 B 、[选修4-2:矩阵与变换]已知变换T 将平面上的点⎝⎛⎭⎫1,12,(0,1)分别变换为点⎝⎛⎭⎫94,-2,⎝⎛⎭⎫-32,4、设变换T 对应的矩阵为M 、(1)求矩阵M ;(2)求矩阵M 的特征值、解:(1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 112=⎣⎢⎢⎡⎦⎥⎥⎤94-2,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324,即⎩⎪⎨⎪⎧ a +12b =94,c +12d =-2,b =-32,d =4,解得⎩⎪⎨⎪⎧a =3,b =-32,c =-4,d =4,则M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-44、 (2)设矩阵M 的特征多项式为f (λ),可得f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 324 λ-4=(λ-3)(λ-4)-6=λ2-7λ+6,令f (λ)=0,可得λ=1或λ=6、 C 、[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系、直线l :2ρsin ⎝⎛⎭⎫θ-π4=m (m ∈R),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数)、 当圆心C 到直线l 的距离为2时,求m 的值、 解:由2ρsin ⎝⎛⎭⎫θ-π4=m , 得2ρsin θcos π4-2ρcos θsin π4=m ,即x -y +m =0,即直线l 的直角坐标方程为x -y +m =0, 圆C 的普通方程为(x -1)2+(y +2)2=9, 圆心C 到直线l 的距离d =|1-(-2)+m |2=2,解得m =-1或m =-5、 D 、[选修4-5:不等式选讲]已知x ,y ,z 都是正数且xyz =8,求证:(2+x )(2+y )·(2+z )≥64、 证明:因为x 为正数,所以2+x ≥22x 、 同理2+y ≥22y ,2+z ≥22z 、所以(2+x )( 2+y )( 2+z )≥22x ·22y ·22z =88xyz 、 因为xyz =8,所以(2+x )( 2+y )( 2+z )≥64、2、在平面直角坐标系xOy 中,点F (1,0),直线x =-1与动直线y =n 的交点为M ,线段MF 的中垂线与动直线y =n 的交点为P 、(1)求动点P 的轨迹E 的方程;(2)过动点M 作曲线E 的两条切线,切点分别为A ,B ,求证:∠AMB 的大小为定值、解:(1)因为直线y =n 与x =-1垂直,所以MP 为点P 到直线x =-1的距离、 连结PF (图略),因为P 为线段MF 的中垂线与直线y =n 的交点,所以MP =PF 、 所以点P 的轨迹是抛物线、 焦点为F (1,0),准线为x =-1、所以曲线E 的方程为y 2=4x 、(2)证明:由题意,过点M (-1,n )的切线斜率存在,设切线方程为y -n =k (x +1),联立方程⎩⎪⎨⎪⎧y =kx +k +n ,y 2=4x ,得ky 2-4y +4k +4n =0,所以Δ1=16-4k (4k +4n )=0,即k 2+kn -1=0 (*), 因为Δ2=n 2+4>0,所以方程(*)存在两个不等实根,设为k 1,k 2, 因为k 1·k 2=-1,所以∠AMB =90°,为定值、3、对于给定的大于1的正整数n ,设x =a 0+a 1n +a 2n 2+…+a n n n ,其中a i ∈{0,1,2,…,n -1},i =0,1,2,…,n -1,n ,且a n ≠0,记满足条件的所有x 的和为A n 、(1)求A 2;(2)设A n =n n (n -1)f (n )2,求f (n )、解:(1)当n =2时,x =a 0+2a 1+4a 2,a 0∈{0,1},a 1∈{0,1},a 2=1, 故满足条件的x 共有4个,分别为x =0+0+4,x =0+2+4,x =1+0+4,x =1+2+4,它们的和是22,所以A 2=22、 (2)由题意得,a 0,a 1,a 2,…,a n -1各有n 种取法;a n 有n -1种取法,由分步计数原理可得a 0,a 1,a 2…,a n -1,a n 的不同取法共有n ·n ·…·n ·(n -1)=n n (n -1), 即满足条件的x 共有n n (n -1)个,当a 0分别取0,1,2,…,n -1时,a 1,a 2,…,a n -1各有n 种取法,a n 有n -1种取法, 故A n 中所有含a 0项的和为(0+1+2+…+n -1)·n n -1(n -1)=n n (n -1)22; 同理,A n 中所有含a 1项的和为(0+1+2+…+n -1)n n -1(n -1)·n =n n (n -1)22·n ; A n 中所有含a 2项的和为(0+1+2+…+n -1)·n n -1(n -1)·n 2=n n (n -1)22·n 2; A n 中所有含a n -1项的和为(0+1+2+…+n -1)·n n -1(n -1)·n n -1=n n (n -1)22·n n -1; 当a n 分别取i =1,2,…,n -1时,a 0,a 1,a 2,…,a n -1各有n 种取法, 故A n 中所有含a n 项的和为(1+2+…+n -1)n n·n n=n n +1(n -1)2·n n、所以A n =n n (n -1)22(1+n +n 2+…+n n -1)+n n +1(n -1)2·n n=n n (n -1)22·n n -1n -1+n n +1(n -1)2·n n =n n (n -1)2(n n +1+n n -1),故f (n )=n n +1+n n -1、。
3个附加题综合仿真练(五)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是半圆的直径,C 是半圆上一点,D 是弧AC 的中点,DE ⊥AB 于E ,AC 与DE 交于点M ,求证:AM =DM .证明:连结AD ,因为AB 为直径,所以AD ⊥BD , 又DE ⊥AB ,所以∠ABD =∠ADE .因为D 是弧AC 的中点, 所以∠DAC =∠ABD , 所以∠ADE =∠DAC . 所以AM =DM .B .[选修4-2:矩阵与变换]已知向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量.在平面直角坐标系xOy 中,点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3),求矩阵A .解:设A =⎣⎢⎡⎦⎥⎤a b c d ,因为向量⎣⎢⎡⎦⎥⎤1-1是矩阵A 的属于特征值-1的一个特征向量, 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤a -b c -d =(-1)⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-11. 所以⎩⎪⎨⎪⎧a -b =-1,c -d =1.①因为点P (1,1)在矩阵A 对应的变换作用下变为P ′(3,3), 所以⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤33.所以⎩⎪⎨⎪⎧a +b =3,c +d =3.② 由①②解得a =1,b =2,c =2,d =1,所以A =⎣⎢⎡⎦⎥⎤1 22 1.C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解:法一:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化为普通方程为y 2=8x .将直线⎩⎨⎧x =-32+22n ,y =22n (n 为参数)代入y 2=8x 得,n 2-82n +24=0,解得n 1=22,n 2=6 2. 则|n 1-n 2|=42, 所以线段AB 的长为4 2.法二:将曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)化为普通方程为y 2=8x,将直线⎩⎨⎧x =-32+22n ,y =22n(n 为参数)化为普通方程为x -y +32=0,由⎩⎪⎨⎪⎧ y 2=8x ,x -y +32=0,得⎩⎪⎨⎪⎧ x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6. 所以AB 的长为⎝⎛⎭⎫92-122+(6-2)2=4 2.D .[选修4-5:不等式选讲]已知函数f (x )=3x +6,g (x )=14-x ,若存在实数x 使f (x )+g (x )>a 成立,求实数a 的取值范围.解:存在实数x 使f (x )+g (x )>a 成立, 等价于f (x )+g (x )的最大值大于a , 因为f (x )+g (x ) =3x +6+14-x=3×x +2+1×14-x , 由柯西不等式得,(3×x +2+1×14-x )2≤(3+1)(x +2+14-x )=64,所以f (x )+g (x )=3x +6+14-x ≤8,当且仅当x =10时取“=”,故实数a 的取值范围是(-∞,8).2.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值. 解:作AP ⊥CD 于点P ,分别以AB ,AP ,AO 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0, O (0,0,2),M (0,0,1).(1)设直线AB 与MD 所成角为θ,由AB ―→=(1,0,0),BD ―→=⎝⎛⎭⎫-22,22,-1,则cos θ=|cos 〈AB ―→,BD ―→〉|=222=12,故AB 与MD 所成角为60°.(2)OP ―→=⎝⎛⎭⎫0,22,-2,OD ―→=⎝⎛⎭⎫-22,22,-2,设平面OCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·OP ―→=0,n ·OD ―→=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0,取z =2,则n =(0,4,2).易得平面OAB 的一个法向量为m =(0,1,0),cos 〈n ,m 〉=432×1=223,故平面OAB 与平面OCD 所成锐二面角的余弦值为223.3.设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n ) ,B n =⎝⎛⎭⎫a +b 2n.(1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N *)的大小,并给出证明.解:(1)证明:A 2-B 2=13(a 2+ab +b 2)-⎝⎛⎭⎫a +b 22=112(a -b )2>0.(2)A n ≥B n ,证明如下: 当n =1时,A 1=B 1;当n ≥3时,A n =1n +1·a n +1-bn +1a -b,B n =⎝⎛⎭⎫a +b 2n , 令a +b =x ,a -b =y ,且x >0,y >0,于是A n=1n+1·⎝⎛⎭⎫x+y2n+1-⎝⎛⎭⎫x-y2n+1y=12n+1(n+1)y[(x+y)n+1-(x-y)n+1],B n=⎝⎛⎭⎫x2n,因为[(x+y)n+1-(x-y)n+1]=(2C1n+1x n y+2C3n+1·x n-2y3+…)≥2C1n+1x n y,所以A n≥12n+1(n+1)y·2C1n+1x n y=x n2n=⎝⎛⎭⎫x2n=Bn.。
3个附加题综合仿真练(四)1.本题包括A 、B 、C 、D 四个小题,请任选二个作答 A .[选修4-1:几何证明选讲]如图,AB 是圆O 的直径,C 为圆O 外一点,且AB =AC ,BC 交圆O 于点D ,过D 作圆O 的切线交AC 于点E .求证:DE ⊥AC . 解:如图,连结OD .因为AB =AC ,所以∠B =∠C . 由圆O 知OB =OD , 所以∠B =∠BDO .从而∠BDO =∠C ,所以OD ∥AC . 又DE 为圆O 的切线,所以DE ⊥OD , 所以DE ⊥AC .B .[选修4-2:矩阵与变换] 已知矩阵A =⎣⎢⎡⎦⎥⎤2 x y2,X =⎣⎢⎡⎦⎥⎤-1 1,且AX =⎣⎢⎡⎦⎥⎤12 ,其中x ,y ∈R.(1)求x ,y 的值;(2)若B =⎣⎢⎡⎦⎥⎤1 -10 2,求(AB )-1.解:(1)AX =⎣⎢⎡⎦⎥⎤2 x y 2 ⎣⎢⎡⎦⎥⎤-1 1 = ⎣⎢⎡⎦⎥⎤x -22-y . 因为AX =⎣⎢⎡⎦⎥⎤12,所以⎩⎪⎨⎪⎧x -2=1,2-y =2,解得x =3,y =0. (2)由(1)知A =⎣⎢⎡⎦⎥⎤230 2 ,又B =⎣⎢⎡⎦⎥⎤1 -102 , 所以AB =⎣⎢⎡⎦⎥⎤2302⎣⎢⎡⎦⎥⎤1 -10 2=⎣⎢⎡⎦⎥⎤2 404 .设(AB )-1= ⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤2 40 4⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤100 1,即⎣⎢⎡⎦⎥⎤2a +4c 2b +4d 4c 4d =⎣⎢⎡⎦⎥⎤1 001.所以⎩⎪⎨⎪⎧2a +4c =1,4c =0,2b +4d =0,4d =1,解得a =12,b =-12,c =0,d =14,即 (AB )-1= ⎣⎢⎡⎦⎥⎤12 -12 0 14 .C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x .将直线l的参数方程⎩⎨⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t , 即t 2+82t =0,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2. D .[选修4-5:不等式选讲] 设函数f (x )=|2x +1|-|x -2|. (1)求不等式f (x )>2的解集;(2)若∀x ∈R ,f (x )≥t 2-112t 恒成立,求实数t 的取值范围.解:(1)不等式f (x )>2可化为⎩⎪⎨⎪⎧x >2,2x +1-x +2>2或⎩⎪⎨⎪⎧-12≤x ≤2,2x +1+x -2>2或⎩⎪⎨⎪⎧x <-12,-2x -1+x -2>2,解得x <-5或x >1,所以所求不等式的解集为{x |x <-5或x >1}.(2)由f (x )=|2x +1|-|x -2|=⎩⎪⎨⎪⎧x +3,x >2,3x -1,-12≤x ≤2,-x -3,x <-12,可得f (x )≥-52,若∀x ∈R ,f (x )≥t 2-112t 恒成立,则t 2-112t ≤-52,即2t 2-11t +5≤0,解得12≤t ≤5.故实数t 的取值范围为⎣⎡⎦⎤12,5.2.如图,在直三棱柱ABC -A 1B 1C 1中,已知AB ⊥AC ,AB =2,AC =4,AA 1=3.D 是线段BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的余弦值.解:因为在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,所以分别以AB ,AC ,AA 1所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,4,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3), 因为D 是BC 的中点,所以D (1,2,0), (1)因为A 1C 1――→=(0,4,0),A 1D ―→=(1,2,-3), 设平面A 1C 1D 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1――→=0,n 1·A 1D ―→=0,即⎩⎪⎨⎪⎧4y 1=0,x 1+2y 1-3z 1=0,取⎩⎪⎨⎪⎧x 1=3,y 1=0,z 1=1,所以平面A 1C 1D 的法向量n 1=(3,0,1),而DB 1―→=(1,-2,3),设直线DB 1与平面A 1C 1D 所成角为θ,所以sin θ=|cos 〈n 1,DB 1―→〉|=|n 1·DB 1―→||n 1|·|DB 1―→|=|3+3|10×14=33535, 所以直线DB 1与平面A 1C 1D 所成角的正弦值为33535.(2) A 1B 1――→=(2,0,0),DB 1―→=(1,-2,3), 设平面B 1A 1D 的法向量n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·A 1B 1――→=0,n 2·DB 1―→=0,即⎩⎪⎨⎪⎧2x 2=0,x 2-2y 2+3z 2=0,取⎩⎪⎨⎪⎧x 2=0,y 2=3,z 2=2,所以平面B 1A 1D 的法向量n 2=(0,3,2),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=210×13=13065,故结合图象知二面角B 1-A 1D -C 1的余弦值13065. 3.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解:(1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6. 所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有 f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立; b .若k +1=6t +1,则k =6t ,此时有 f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立; c .若k +1=6t +2,则k =6t +1,此时有 f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+(k +1)-23,结论成立; d .若k +1=6t +3,则k =6t +2,此时有 f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立; e .若k +1=6t +4,则k =6t +3,此时有 f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立; f .若k +1=6t +5,则k =6t +4,此时有 f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.。