全国卷高考数学模拟题含答案 (2)
- 格式:docx
- 大小:1.21 MB
- 文档页数:4
全国卷高考数学模拟卷(含答案)全国卷-数学本试题卷共6页,23题(含选考题),全卷满分150分,考试用时120分钟。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将答题卡上交。
一、选择题:1.已知集合A={x|x-1>0}。
B={-2.2-1.1},则A∩B=?A。
{-2.-1} B。
{-2} C。
{-1.1} D。
{0.1}2.设复数z=-1+ i(i是虚数单位),z的共轭复数为z,则(1+z)/(1-z)=?A。
-12/55+i/55 B。
-12/55-i/55 C。
12-i/55 D。
-12+i/553.若sin(α-π/4)=4/32,α∈(0,π/2),则cosα的值为?A。
4-2√7/27 B。
4-√7/3 C。
4+√7/3 D。
4+2√7/274.已知双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0)的一个焦点为F(0,-2),一条渐近线的斜率为3,ab,则该双曲线的方程为?A。
(y-2)^2/9 - x^2/4 = 1 B。
x^2/9 - (y-2)^2/4 = 1 C。
-x^2/9 + (y-2)^2/4 = 1 D。
(y+2)^2/9 - x^2/4 = 15.某空间几何体的三视图如图所示,则该几何体的体积为?A。
56-8π/3 B。
64-8π/3 C。
64-4π/3 D。
2024年普通高等学校招生全国统一考试模拟试题数学(二)本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号码、考场号、座位号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点()06,P y 在焦点为F 的抛物线2:2(0)C y px p =>上,若152PF =,则p =( )A.3B.6C.9D.122.电影《孤注一郑》的上映引发了电信诈骗问题的热议,也加大了各个社区反电信诈骗的宣传力度.已知某社区共有居民480人,其中老年人200人,中年人200人,青少年80人,若按年龄进行分层随机抽样,共抽取36人作为代表,则中年人比青少年多( )A.6人B.9人C.12人D.18人3.已知0a b c >>>,则下列说法一定正确的是( )A.a b c >+ B.2a bc <C.2ac b >D.2ab bc b ac+>+4.已知向量()()2,3,1,2a b =-=- ,则a b + 在a b - 方向上的投影向量为( )A.816,1717⎛⎫-⎪⎝⎭ B.1220,1717⎛⎫- ⎪⎝⎭ C.1220,1717⎛⎫- ⎪⎝⎭ D.2020,1717⎛⎫- ⎪⎝⎭5.已知某正六棱柱的体积为()A.18+B.18+C.24+D.24+6.已知甲、乙两地之间的路线图如图所示,其可大致认为是()()cos 03πf x x x =……的图像.某日小明和小红分别从甲、乙两地同时出发沿着路线相向而行,当小明到达乙地时,小红也停止前行.若将小明行走轨迹的点记为(),a b ,小红行走轨迹的点记为(),c d ,且满足3π2ac +=,函数()2g a bd =-,则()g a 的一个单调递减区间为()A.4π0,3⎛⎫ ⎪⎝⎭ B.π5π,33⎛⎫ ⎪⎝⎭ C.4π8π,33⎛⎫⎪⎝⎭D.()2π,3π7.已知椭圆22:1(09,)9x y C m m m+=<<∈Z 的左、右焦点分别为12,F F ,点P 在C 上但不在坐标轴上,且12PF F 是等腰三角形,其中一个内角的余弦值为78,则m =( )A.4B.5C.6D.88.已知函数()()e eln e 1xmf x m x x=++-的定义域为()0,∞+,若()f x 存在零点,则m 的取值范围为()A.1,e∞⎡⎫+⎪⎢⎣⎭B.(]0,eC.10,e⎛⎤ ⎥⎝⎦D.[)e,∞+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1232i,4i z z =+=-,则( )A.12z z +的虚部为-1B.1243z z -是纯虚数C.12z z 在复平面内所对应的点位于第一象限D.214iz z =+10.已知()7270127(43)13(13)(13)x a a x a x a x -=+-+-++- ,则( )A.4945a =B.77141ii a==-∑C.136024622a a a a +++=+D.613135722a a a a +++=-11.设()M x 是定义在*N 上的奇因函数,是指x 的最大奇因数,比如:()()33,63M M ==,()81M =,则( )A.对()()*,212k M k M k ∈-N …B.()()2M k M k =C.()()()1263931M M M +++= D.()126363M +++= 三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}2450,{}A xx x B x x m =-->=>∣∣,若0m =,则()A B ⋂=R ð__________;若A B ⋃=R ,则m 的取值范围为__________.13.某校拟开设“生活中的数学”“音乐中的数学”“逻辑推理论”“彩票中的数学”和“数学建模”5门研究性学习课程,要求每位同学选择其中2门进行研修,记事件A 为甲、乙两人至多有1门相同,且甲必须选择“音乐中的数学”,则()P A =__________.14.定义:对于函数()f x 和数列{}n x ,若()()()10n n n n x x f x f x +-+=',则称数列{}n x 具有“()f x 函数性质”.已知二次函数()f x 图像的最低点为()0,4-,且()()121f x f x x +=++,若数列{}n x 具有“()f x 函数性质”,且首项为1的数列{}n a 满足()()ln 2ln 2n n n a x x =+--,记{}n a 的前n 项和为n S ,则数列52n n S ⎧⎫⎛⎫⋅-⎨⎬⎪⎝⎭⎩⎭的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)公众号《全元高考》,且()2tan tan tan b B a B A B =-+.已知函数()在 ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,其中c =(1)求C ;(2)求a 2+b 2的取值范围.16.(15分)ln x f x x a x ⎛⎫=-⎪⎝⎭.(1)讨论()f x 的最值;(2)若1a =,且()e x k xf x x-…,求k 的取值范围.17.(15分)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ⊥平面ACDE ,过点E 作EF ∥AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ⊥平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD,求AB 的值.18.(17分)某汽车销售公司为了提升公司的业绩,现将最近300个工作日每日的汽车销售情况进行统计,如图所示.(1)求a 的值以及该公司这300个工作日每日汽车销售量的平均数(同一组中的数据用该组区间的中点值作代表);(2)以频率估计概率,若在所有工作日中随机选择4天,记汽车销售量在区间[200,250)内的天数为X ,求X 的分布列及数学期望;公众号《全元高考》公众号《全元高考》(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:抽奖区有,A B 两个盒子,其中A 盒中放有9张金卡、1张银卡,B 盒中放有2张金卡、8张银卡,顾客在不知情的情况下随机选择其中一个盒子进行抽奖,直到抽到金卡则抽奖结束(每次抽出一张卡,然后放回原来的盒中,再进行下次抽奖,中途可更换盒子),卡片结果的排列对应相应的礼品.已知顾客小明每次抽奖选择两个盒子的概率相同,求小明在首次抽奖抽出银卡的条件下,第二次从另外一个盒子中抽奖抽出金卡的概率.19.(17分)已知双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为A ,直线1:2l y x =-与C 的一条渐近线平行,且与C 交于点B ,直线AB 的斜率为13.(1)求C 的方程;(2)已知直线()2:28l y x m m =+≠与C 交于,P Q 两点,问:是否存在满足EA EP EP EQ EA EQ ⋅=⋅=⋅ 的点()00,E x y ?若存在,求2200x y -的值;若不存在,请说明理由.数学(二)一、选择题1.A 【解析】由抛物线的定义可知15622p PF =+=,解得3p =.故选A 项.2.B 【解析】设中年人抽取x 人,青少年抽取y 人,由分层随机抽样可知20080,48036480x ==36y,解得15,6x y ==,故中年人比青少年多9人.故选B 项.3.D 【解析】当3,2,1a b c ===时,a b c =+,且2ac b <,故A ,C 项错误;因为0a b >>,0a c >>,所以2a bc >,故B 项错误;()()()20ab bc b ac b c a b +-+=-->,故D 项正确.故选D项.4.C 【解析】由题意得()()1,1,3,5a b a b +=--=- ,则a b + 在a b - 方向上的投影向量为2()()1220(),1717||a b a b a b a b +⋅-⎛⎫-=- ⎪-⎝⎭,故选C 项.5.D 【解析】设该正六棱柱的底面边长为a ,高为h ,其外接球的半径为R,易知34ππ3R =,则R ==①26h ⋅⋅=②,联立①②,因为h ∈Z ,解得1,4a h ==,所以正六棱柱的表面积212624S ah =⋅+=.故选D 项.6.A 【解析】依题意得cos ,cos cos 3πcos 22a a b a d c ⎛⎫===-=- ⎪⎝⎭,且03π,03π3π,2a a⎧⎪⎨-⎪⎩…………解得03πa ……,则()2cos 2cos2cos 2cos 1222a a a g a a =+=+-,令cos 2at =,则[]1,1t ∈-,因为2221y t t =+-在区间11,2⎛⎫-- ⎪⎝⎭内单调递减,在区间1,12⎛⎫- ⎪⎝⎭内单调递增,所以()g a 在区间4π8π0,,2π,33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭内单调递减.故选A 项.7.B 【解析】依题意得126PF PF +=,设12F F n =,不妨设点P 在第一象限,则112PF F F n ==,则26(06)PF n n =-<<,故222122(6)7cos 28n n n PF F n ∠+--==或()22221(6)7cos 268n n n PF F n n ∠+--==-,解得4n =或2411n =,又2,2n m m ⎛⎫∈+= ⎪⎝⎭Z 9,所以4,5n m ==.故选B 项.8.C 【解析】由题意得0m >,令()0f x =,则()ln ln ee ln e eln x mx x m x +++=+.令()e e x g x x =+,易知()g x 单调递增,所以()()ln ln g x m g x +=,即ln ln x m x +=,即ln ln m x x =-.令()ln h x x x =-,则()1xh x x'-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∞∈+时,()()0,h x h x '<单调递减,又()11h =-,当0x →时,()h x ∞→-,所以ln 1m -…,解得10em <….故选C 项.二、多选题9.BC 【解析】127i z z +=+的虚部为1,故A 项错误;124311i z z -=为纯虚数,故B 项正确;()()1232i 4i 145i z z =+-=+,其在复平面内所对应的点()14,5位于第一象限,故C项正确;24i 14i i iz -==--=,144z +=+,故D 项错误.故选BC 项.10.AC 【解析】依题意得()77(43)[313]x x -=+-,所以4347C 33527a =⨯=⨯=945,故A 项正确;令13x =,得03a =,令0x =,得7704i i a ==∑,所以777143i i a ==-∑,故B 项错误;令23x =,得7012345672a a a a a a a a =-+-+-+-①,又7012345674a a a a a a a a =+++++++②,由①+②可得77135024642222a a a a ++++==+,故C 项正确;同理,由②-①得136135722a a a a +++=-,故D 项错误.故选AC 项.11.ABD 【解析】由题意得()()2M k M k =,故B 项正确;()()()2,2121M k M k k M k k k =-=-……,故A 项正确;516312363632632+++++=⨯=⨯ ,所以()()123636363M M ++++== ,故D 项正确;()()()()1263[1M M M M +++=+ ()()][()()36324M M M M ++++++ ()][()6213631M M =+++++()()()1023121M M M ⎤⎡++=++⎦⎣ ()()][()()33124M M M M ++++++ ()108642030]222222M ==+++++=614136514-=-,故C 项错误.故选ABD 项.三、填空题12.()50,14x x ∞⎧⎫<--⎨⎬⎩⎭… 【解析】集合{1A xx =<-∣或54x ⎫>⎬⎭,所以R A =ð504B x x ⎧⎫=<⎨⎬⎩⎭….若A B ⋃=R ,结合数轴可知1m <-,故m 的取值范围为(,1)∞--.13.925【解析】若甲、乙两人的选课都不相同则共有1243C C 4312=⨯=种;若甲、乙两人的选课有1门相同,则共有2114432C C C 24+=种.故()225512249C C 25P A +==.14.-5112【解析】由题意知()24(0)f x ax a =->,又()()()12121f x f x a x x +-=+=+,所以1a =,则()24f x x =-.由题意得()()2ln 2ln 2ln2n n n n n x a x x x +=+--=-,由()()()10n n n n x x f x f x +-+=',得()()1n n n n f x x x f x +='-,即2214422n n n n n nx x x x x x +-+=-=,又()()2211222,222n n n n nnx x x x x x +++-+=-=,所以()()21212222n n n n x x x x ++++=--,则1122ln 2ln 22n n n nx x x x ++++=--,即12n n a a +=,故{}n a 是以1为首项,2为公比的等比数列,所以12,21n n n n a S -==-.令n n c S =.()552122n n n ⎛⎫⎛⎫-=-⋅- ⎪ ⎪⎝⎭⎝⎭,则()111822n n nc c n -+-=-⋅-,故当8n …时,1n n c c +<,当9n …时,1n n c c +>,故()9min 5112n c c ==-.四、解答题15.解:(1)因为()()tan tan πtan A B C C +=-=-,所以2tan tan tan b B a B C=+,由正弦定理得sin 2tan sin tan tan B BA B C==+()2sin cos 2sin cos sin cos cos sin sin B C B CB C B C B C ==++2sin cos sin B C A因为sin 0,sin 0A B ≠≠,所以2cos 1C =,则1cos 2C =,又()0,πC ∈,所以π3C =.(2)由余弦定理得223a b ab =+-,因为222a b ab +…,所以22222222,22a b a b a b ab a b +++-+-=…即226a b +….当且仅当a b ==.又223a b ab +=+,且0ab >,所以223a b +>.综上,22a b +的取值范围为(]3,6.16.解:(1)由题意得()f x 的定义域为()0,∞+,()11,ax f x a x x-=-='当()0,0,a x ∞∈+…时,()0f x '<,所以()f x 在区间()0,∞+内单调递减,无最值;当0a >时,令()0f x '=,得1x a=,当10,x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减,当1,x a ∞⎛⎫∈+⎪⎝⎭时,()()0,f x f x '>单调递增.故当1x a =时,()f x 取得最小值,且最小值为11ln f a a ⎛⎫=+ ⎪⎝⎭,无最大值.综上,当0a …时,()f x 无最值;当0a >时,()f x 的最小值为1ln a +,无最大值.(2)当1a =时,由()e x k xf x x -…,得e ln x k xx x x--…,整理得2e ln x k x x x x +-…,即2ln e x x x x xk +-….令()2ln e x x x x xh x +-=,则()h x '()()()2221ln 1e ln e e x xx x x x x x x +---+-=()()ln 1e x x x x --=,由(1)知,当1a =时,()ln f x x x =-的最小值为()110f =>,即ln 0x x ->恒成立,所以当()0,1x ∈时,()()0,h x h x '>单调递增;当()1,x ∞∈+时,()()0,h x h x '<单调递减.故当1x =时,()h x 取得最大值()21e h =,即2e k …,故k 的取值范围为2,e ∞⎡⎫+⎪⎢⎣⎭.17.(1)证明:连接CE 交AD 于点O ,连接GO .在菱形ACDE 中,CE AD ⊥,因为AB ⊥平面,ACDE CE ⊂平面ACDE ,所以CE AB ⊥,又,,AB AD A AB AD ⋂=⊂平面ABD ,所以CE ⊥平面ABD .因为,G O 分别为,BD AD 的中点,所以1,2GO AB GO =∥AB ,又1,2EF AB EF =∥AB ,所以GO EF ∥,所以四边形GOEF 为平行四边形,所以FG ∥EO ,所以FG ⊥平面ABD .(2)解:在菱形ACDE 中,因为AC AD =,所以ACD 和ADE 都是正三角形,取ED 的中点H ,连接AH ,则AH AC ⊥,又AB ⊥平面ACDE ,所以,AB AC AB AH ⊥⊥,即,,AB AC AH 两两垂直.以A 为坐标原点,,,AB AC AH 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设2(0)AB a a =>,则1(0,2,0),(2,0,0),(,,2C B a D F a G a ⎛- ⎝则()2,2,0,(0,1BC a CD =-=-,30,,2FG ⎛= ⎝ .设平面BCD 的法向量为(),,m x y z =,则220,0,m BC ax y m CD y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ 取1z =,则m ⎫=⎪⎪⎭.记直线FG 与平面BCD 所成角为θ,则||sin |cos ,|||||FG m FG m FG m θ⋅=〈〉===解得1a =,即AB 的值为2.18.解:(1)依题意得(0.0010.0020.00320.006)50 1.a ++++⨯=解得0.004a =.所求平均数为250.1750.15125⨯+⨯+⨯0.21750.32250.22750.05150+⨯+⨯+⨯=.(2)依题意得14,5X B ⎛⎫~ ⎪⎝⎭,则()4425605625P X ⎛⎫=== ⎪⎝⎭,()314142561C 55625P X ⎛⎫==⨯⨯= ⎪⎝⎭()222414962C ,55625P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()33414163C 55625P X ⎛⎫==⨯= ⎪⎝⎭()41145625P X ⎛⎫=== ⎪⎝⎭X 01234P 25662525662596625166251625故()14455E X =⨯=.(3)设“选到A 盒”为事件1A ,“选到B 盒”为事件2A ,,摸到金卡”为事件1B ,,摸到银卡”为事件2B ,因为12,B B 是对立事件,所以()119121*********P B =⨯+⨯=.()()2191.20P B P B =-=由题意得()()1212P A P A ==,所以()()()12122P A B P A B P B ==∣()()()2112111102,9920P B A P A P B ⨯==∣则()()2212819P A B P A B =-=∣∣.故所求的概率89123791091045P =⨯+⨯=.19.解:(1)易知C 的一条渐近线方程为y x =,则a b =.设(),2B t t -,又(),0,0A a a ->,直线AB 的斜率为13,所以213t t a -=+,解得62a t +=,则62,22a a B ++⎛⎫ ⎪⎝⎭,代入222x y a -=中,解得4a =.故C 的方程为2211616x y -=.(2)因为EA EP EP EQ ⋅=⋅ ,所以()0EP EA EQ ⋅-= ,即0EP QA ⋅=,所以PE AQ ⊥,同理可得,AE PQ EQ AP ⊥⊥.设()()1122,,,P x y Q x y ,联立221,16162.x y y x m ⎧-=⎪⎨⎪=+⎩整理得2234160x mx m +++=,由题意知()22Δ1612160m m =-+>,且8m ≠,解得m <-m >8m ≠,所以21212416,33m m x x x x ++=-=.过点A 与2l 垂直的直线的方程为122y x =--,设该直线与C 的右支交于另一点H ,联立221,161612,2x y y x ⎧-=⎪⎪⎨⎪=--⎪⎩整理得238800x x --=,解得203x =或4x =-(舍去).所以2016,33H ⎛⎫- ⎪⎝⎭.因为(1122016,33PH AQ x y x ⎛⎫⋅=---⋅+ ⎪⎝⎭)22121220801644333y x x x x y ⋅=+----(122121220801642333y y x x x x x =+---+()()1212)225(1m x m x m x x -++=--+()()()22128016164802)54233333m m x x m m m m +⎛⎫++--=-⨯-+⋅-+- ⎪⎝⎭222216580168801603333333m m m m m m m -=--+++--=所以PH AQ ⊥,同理可证QH AP ⊥.又AH PQ ⊥,所以H 与E 重合.因为H 在C 上,所以220016x y -=.故存在点E 满足EA EP EP EQ EA EQ ⋅=⋅=⋅ ,且220ij x y -的值为16.。
2023~2024学年普通高等学校招生模拟考试数学试卷本试卷共6页,共19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效,4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ).A. 复数z 实数B. 2024i i =C. 复数z 为纯虚数D. 6i z =-2. 已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A. 2A -∈ B. 2023A ∉ C. 231k A +∉D. 35A -∉3. 已知正三棱台的高为1,上、下底面边长分别为积为( ) A. 100πB. 128πC. 144πD. 192π4. 若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( ) A. 4 B. 8C.D.5. 神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次为飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ).A.39200B.129200C.12950D.39506. 椭圆()2222:10x y E a b a b+=>>左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A.18B.C.78D.147. 若直线π4x =是πsin()4y x ω=-(0)>ω的一条对称轴,且在区间π[0,12上不单调,则ω的最小值为( ) A. 9B. 7C. 11D. 38. 设函数()f x 在R 上满足()()22f x f x -=+,()()77f x f x -=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023-,上根的个数为( ). A. 806B. 810C. 807D. 811二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A. B.C. D.10. 已知直线2:0l mx ny r +-=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ).的A. 若点P 在圆C 外,则直线l 与圆C 相离B. 若点P 在圆C 内,则直线l 与圆C 相交C. 若点P 在圆C 上,则直线l 与圆C 相切D. 若点P 在直线l 上,则直线l 与圆C 相切11. 中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅ ,a ≡b (mod 10),则b 的值可以是( ). A. 2019B. 2023C. 2029D. 2033三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量a 与b相互垂直,且3a = ,2b = ,则()()a b a b +⋅-= _____.13. 已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx →=;②10lim(1)e x x x →+=,则依据两个公式,类比求0sin cos limx x xx→=_____;1sin cos 0lim(1sin 2)x x x x →+= ________. 14. 已知函数()2e e e xxxg x x x =--,若方程()g x k =有三个不同实根,则实数k 的取值范围是_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示. 月份 5 6 7 8 9 时间代号t 1 2 3 4 5 家乡特产收入y 32.42.221.8(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.的附:相关系数公式:nnt y nt yr ==.(若0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),nnx y ,其回归直线方程y bx a =+$$$的斜率和截距的最小二乘估计公式分别为1221ni ii ni i x y nx yb x nx==-=-∑∑ , a y bx=- .③参考数据:2.91≈.16. 已知数列{}n a 是公差为d 的等差数列,2n na b n-=. (1)证明:数列{}n b 也等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥.17. 如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18. 已知1(2,0)F -,2(2,0)F ,点P 满足122PF PF -=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交为于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 值;(2)在(1)的条件下,求MPQ 面积的最小值. 19. 已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πxf x =,()sin g x x =,()h x x =. (1)证明:()()()f x g x h x <<;(2)已知()()()0f x g x h x --<,证明:()π()2πh x g x -(π可近似于3.14). 参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ).A. 复数z 为实数B. 2024i i =C. 复数z 为纯虚数D. 6i z =-【答案】A 【解析】【分析】借助复数的运算法则计算即可得. 【详解】()()1012101220242i i 11==-=,故6z =,故A 正确,B 、C 、D 错误. 故选:A.2. 已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A. 2A -∈ B. 2023A ∉ C. 231k A +∉ D. 35A -∉【答案】A 【解析】【分析】令31k +分别为选项中不同值,求出k 的值进行判定.的【详解】当1k =-时,2x =-,所以2A -∈,故A 正确;当674k =时,367412023x =⨯+=,所以2023A ∈,故B 错误; 当1k =或0k =时,23131k k +=+,所以231k A +∈,故C 错误; 当12k =-时,123135x =-⨯+=-,所以35A -∈,故D 错误. 故选:A3. 已知正三棱台的高为1,上、下底面边长分别为积为( ) A. 100π B. 128πC. 144πD. 192π【答案】A 【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以1222r r ==123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =,2d =121d d -=或121d d +=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .4. 若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( )A. 4B. 8C. D.【答案】A 【解析】【分析】将1ab =代入,利用基本不等式直接求解即可得出结论. 【详解】若a ,b 都是正数,且1ab =∴11888422222b a a b a b a b a b a b +++=++=+=+++≥, 当且仅当4a b +=时等号成立, 故选:A.5. 神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ).A.39200B.129200C.12950D.3950【答案】D 【解析】【分析】分别求出答对4道题,答对3道题的概率,再求和事件的概率即可.【详解】若u 和v 两位同学答对4道题,则其概率为224395425⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭;若u 和v 两位同学答对3道题,则其概率为22143134212255444550⎛⎫⎛⎫⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;故u 和v 两位同学至少答对3道题的概率为92139255050+=. 故选:D.6. 椭圆()2222:10x y E a b a b+=>>的左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A.18B.C.78D.14【答案】C 【解析】【分析】根据题意得到,,M A B 的坐标,进而利用两点距离公式与点在椭圆上得到关于,a b 的齐次方程,从而得解.【详解】由题可得(),0M a -,设()()0000,,,A x y B x y -. 则20002200018AM BMy y y k k x a a x a x ⋅=⋅==+--, 又222222000022222118x y y a x b a b b a a -+=⇒=⇒=, 则22222287a b c a b b ==-=,.则222227788c b e a b===. 故选:C 7. 若直线π4x =是πsin()4y x ω=-(0)>ω的一条对称轴,且在区间π[0,12上不单调,则ω的最小值为( ) A. 9 B. 7C. 11D. 3【答案】C 【解析】【分析】根据给定条件求出ω的关系式,再求出函数πsin()4y x ω=-含0的单调区间即可判断作答.【详解】因直线π4x =是πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则ππππ,Z 442k k ω-=+∈,即43,Z k k ω=+∈,由πππ242x ω-≤-≤,得π3π44x ωω-≤≤,则πsin()4y x ω=-在π3π[,44ωω-上单调递增, 而πsin(4y x ω=-在区间π[0,12上不单调,则3ππ412ω<,解得9ω>, 综上,ω的最小值为11. 故选:C8. 设函数()f x 在R 上满足()()22f x f x -=+,()()77f x f x -=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023-,上根的个数为( ). A. 806 B. 810C. 807D. 811【答案】B 【解析】【分析】先根据条件确定函数周期,然后确定一个周期内的根的个数,进而得到在闭区间[]20232023-,上根的个数.【详解】因为()()22f x f x -=+,所以()()4f x f x -=+, 又()()77f x f x -=+,所以()()14f x f x -=+, 所以()()414f x f x +=+,即()()10f x f x =+, 所以函数()f x 的周期为10,在区间[]07,上只有()()130f f ==, 所以()0f x =在(]4,7上无解, 则()70f x -=在(]0,3上无解, 又()()77f x f x -=+,所以()70f x +=在(]0,3上无解,,即()0f x =在(]7,10上无解, 即一个周期[]0,10内,方程的根只有1,3,闭区间[]20202020-,上含有404个周期,此时有4042808⨯=个根, 在区间(]20202023,内,()()()()202110,202330,f f f f ==== 对于区间[)2023,2020--,根据周期等价于区间[)7,10,该区间上无解,故方程()0f x =在闭区间[]20232023-,上根的个数为810. 故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A. B.C. D.【答案】CD 【解析】【分析】建立适当空间直角坐标系,利用空间向量分析判断即可. 【详解】设正方体的棱长为2,对A :建立如图所示空间直角坐标系,则(2,2,2),(0,2,0),(0,0,1),(1,1,0)M N P O ,可得(2,0,2),(1,1,1)MN OP =--=-- ,则2020MN OP ⋅=+-=,所以MN OP ⊥,即MN OP ⊥,故A 错误;对B :建立如图所示空间直角坐标系,则(0,0,2),(2,0,0),(2,0,1),(1,1,0)M N P O ,可得(2,0,2),(1,1,1)MN OP =-=- ,则2020MN OP ⋅=+-=,所以MN OP ⊥,即MN OP ⊥,故B 错误;对C :建立如图所示空间直角坐标系,则(0,2,0),(0,0,2),(2,1,2),(1,1,0)M N P O ,可得(0,2,2),(1,0,2)MN OP =-= ,则0040MN OP ⋅=++≠,所以MN 与OP不垂直,即MN 与OP 不垂直,故C 正确;对D :建立如图所示空间直角坐标系,则(2,0,2),(0,2,2),(0,2,1),(1,1,0)M N P O ,可得(2,2,0),(1,1,1)MN OP =-=- ,则2200MN OP ⋅=++≠,所以MN 与OP不垂直,即MN 与OP 不垂直,故D 正确.故选:CD.10. 已知直线2:0l mx ny r +-=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ). A. 若点P 在圆C 外,则直线l 与圆C 相离 B. 若点P 在圆C 内,则直线l 与圆C 相交 C. 若点P 在圆C 上,则直线l 与圆C 相切 D. 若点P 在直线l 上,则直线l 与圆C 相切【答案】AB【解析】【分析】根据直线和圆相切、相交、相离的等价条件进行求解即可. 【详解】对于A ,因为点(),P m n 在圆C 外,所以222m n r +>, 则圆心()0,0C 到直线l的距离为d r <,所以直线l 与圆C 相交,故命题A 是假命题;对于B ,因为点(),P m n 在圆C 内,所以222m n r +<, 则圆心()0,0C 到直线l的距离为d r >,所以直线l 与圆C 相离,故命题B 是假命题;对于C ,因为点(),P m n 在圆C 上,所以222m n r +=, 则圆心()0,0C 到直线l的距离为d r =,所以直线l 与圆C 相切,故命题C 是真命题;对于D ,因为点(),P m n 在直线l 上,所以2220m n r +=-,即222m n r +=, 则圆心()0,0C 到直线l的距离为d r =,所以直线l 与圆C 相切,故命题D 是真命题; 故选:AB.11. 中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅ ,a ≡b (mod 10),则b 的值可以是( ). A. 2019 B. 2023 C. 2029 D. 2033【答案】AC 【解析】【分析】先利用二项式定理化简得223a =;再利用二项式定理将()11221139101==-展开可得到a 除以10所得的余数是9,进而可求解.【详解】因为()22012222222222222222C C 2C 2C 2123a =+⋅+⋅++⋅=+=()()112211011110101101019101111111111111139101C 10C 10C 10C 10C 10C 10C 19==-=⨯-⨯++⨯-=⨯-⨯++-+所以a 除以10所得的余数是9. 又因为a ≡b (mod 10) 所以b 除以10所得的余数是9.而2019201109=⨯+,2023202103=⨯+,2029202109=⨯+,2033203103=⨯+ 故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量a 与b相互垂直,且3a = ,2b = ,则()()a b a b +⋅-= _____.【答案】5 【解析】【分析】根据向量的数量积运算法则即可求解.【详解】()()2222325a b a b a a b b a b +⋅-=⋅-⋅=-=-= ,故答案为:513. 已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx →=;②10lim(1)e x x x →+=,则依据两个公式,类比求0sin cos lim x x x x→=_____;1sin cos 0lim(1sin 2)x x x x →+= ________. 【答案】 ①. 1②. 2e【解析】【分析】根据题意,结合极限的运算法则,准确计算,即可求解.【详解】由极限的定义知:①0sin lim1x xx→=;②10lim(1)e x x x →+=, 因为sin cos sin 22x x x x x =,sin 2t x =,可得sin 2sin 2x tx t =, 则00sin cos sin limlim 1x t x x tx t→→==; 又因为12sin cos sin 2(1sin 2)(1sin 2)x x x x x +=+,令sin 2t x =,可得22sin 2(1sin 2)(1)x t x t +=+, 所以12122sin cos 0lim(1sin 2)lim(1)lim (1e [)]x xt t x t t x t t →→→+=+=+=.故答案为:1;2e .14. 已知函数()2e e e xxxg x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是_________. 【答案】()20,5e -【解析】【分析】通过求导得出函数的单调性和极值,即可得出有三个实根时实数k 的取值范围. 【详解】由题意,()2e e e xxxg x x x =--中,()()2e2xg x xx '=+-,当()0g x '=时,解得2x =-或1,当()0g x '<即2<<1x -时,()g x 单调递减, 当()0g x '>即<2x -,1x >时,()g x 单调递增,∵()()()2222222e 2e e 5e g -----=----=,()1111e e e e g =--=-,当()()22,1e0xx g x x x -=--,方程()g x k =有三个不同的实根, ∴()02k g <<-即205e k -<<, 故答案为:()20,5e-.【点睛】易错点点点睛:本题考查函数求导,两函数的交点问题,在研究函数的图象时很容易忽略()()22,1e 0x x g x x x -=--这个条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示. 月份 5 6 7 8 9 时间代号t 1 2 3 4 5 家乡特产收入y32.42.221.8在(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.附:相关系数公式:nnt y nt yr ==.(若0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),nnx y ,其回归直线方程y bx a =+$$$的斜率和截距的最小二乘估计公式分别为1221ni ii ni i x y nx yb x nx==-=-∑∑ , a y bx=- .③参考数据:2.91≈.【答案】(1)0.962r ≈-,y 与t 具有很强的线性相关关系(2) 0.28 3.12y t =-+,10月收入从预测看不能突破1.5万元,理由见解析 【解析】【分析】(1)直接套公式求出y 与t 之间的线性相关系数,即可判断; (2)套公式求出系数b 、a ,即可得到回归方程,并求出10月份的收入.小问1详解】(1)由5月至9月的数据可知1234535t ++++==,3 2.4 2.22 1.82.285y ++++==,51132 2.43 2.2425 1.831.4i i i t y ==⨯+⨯+⨯+⨯+⨯=∑,()5214101410i i t t=-=++++=∑,()522222210.720.120.080.280.480.848ii y y =-=++++=∑,所以所求线性相关系数【为550.962t yr ===≈-.因为相关系数的绝对值0.9620.9620.75r =-=>, 所以认为y 与t 具有很强的线性相关关系. 【小问2详解】 由题得522222211234555ii t==++++=∑,51522215 3.1453 2.28 2.80.285553105i ii i i t y t ybt t==--⨯⨯-====--⨯-∑∑ , 所以 ()2.280.283 3.12a y bt=-=--⨯= , 所以y 关于t 的回归直线方程为 0.28 3.12y t =-+. 当6t =时, 0.286 3.12 1.44y =-⨯+=,因为144 15<..,所以10月收入从预测看不能突破1.5万元. 16. 已知数列{}n a 是公差为d 的等差数列,2n na b n-=. (1)证明:数列{}n b 也为等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥. 【答案】(1)证明见解析;(2)证明见解析. 【解析】【分析】(1)通过计算1n n b b +-为定值可证明等差数列;(2)先求出数列的通项公式,然后利用错位相减法求n T ,根据n T 的结构即可证明不等式. 【小问1详解】∵2n na b n-=, ∴2n n b a n =-,∴()()1112122n n n n n n b b a n a n a a +++⎡⎤-=-+--=--⎣⎦, 又∵数列{}n a 是公差为d 的等差数列, ∴1n n a a d +-=, ∴12n n b b d +-=-,∴数列{}n b 是以2d -为公差的等差数列; 【小问2详解】 ∵13a d ==,∴112321b a =-=-=,2321d -=-=, ∴数列{}n b 是以1为首项,1为公差的等差数列. ∴1(1)1n b n n =+-⨯=,∴数列{}n c 是以1为首项,2为公比的等比数列, ∴11122n n n c --=⨯=,∴1·2n n n b c n -=,∴1121112222n n T n ---=⨯+⨯++⨯ ①,∴2n T =()21112122n n n n --⨯+++⨯⨯- ②,∴②-①得,11222n n n T n n -=----⨯+⨯()11222n n n n -=-+++⨯+⨯12212n n n -=-+⋅-122n n n =-+⋅()121n n =-+,∵1n ≥且n 为正整数, ∴10n -≥,20n >,∴()1211nn T n =-+≥(当1n =时取等).17. 如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】(1)见解析 (2)见解析【解析】【分析】(1)取AB 的中点为K ,连接,MK NK ,可证平面//MKN 平面11BCC B ,从而可证//MN 平面11BCC B .(2)选①②均可证明1BB ⊥平面ABC ,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值. 【小问1详解】取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形, 而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B , 而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B , 而,,NK MK K NK MK =⊂ 平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B , 【小问2详解】因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A , 平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A , 因为//NK BC ,故NK ⊥平面11ABB A , 因AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N = , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则0n BN n BM ⎧⋅=⎨⋅=⎩ ,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =-- ,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯ .若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面11ABB A , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =, 而12B B MK ==,MB MN =,故1BB M MKN ≅ , 所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,为而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎪⎨⋅=⎪⎩,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =-- , 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n BA θ===⨯ .18. 已知1(2,0)F -,2(2,0)F ,点P 满足122PF PF -=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 的值;(2)在(1)的条件下,求MPQ 面积的最小值. 【答案】18. 1m =-19. 9 【解析】【分析】(1)由双曲线定义即可得点P 的轨迹方程,设出直线l 方程,联立双曲线方程可得与x 有关韦达定理,借助向量垂直数量积为0可计算出M 点坐标;(2)借助弦长公式与点到直线的距离公式可表示出面积,再借助换元法计算即可得解.【小问1详解】由12122PF PF F F -=<知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线的右支,设轨迹E 的方程为22221(1)x y x a b-=≥,0a >,0b >,2c = ,22a =,23b ∴=,故轨迹E 的方程为221(1)3y x x -=≥,当直线l 的斜率存在时,设直线方程为(2)y k x =-,()11,P x y ,()22,Q x y ,与双曲线方程联立2213(2)y x y k x ⎧-=⎪⎨⎪=-⎩,可得()222234430k x k x k --++=, 有()()24222122212230Δ16434304034303k k k k k x x k k x x k ⎧-≠⎪=--+>⎪⎪⎪⎨+=>⎪-⎪+⎪⋅=>⎪-⎩,解得23k >, ()()()12121MP MQ x m x m y y x m ⋅=--+=-.()()()221222x m k x x -+--()()()22221212124k x x k m x x m k =+-++++()()()222222214342433k k k k m m k k k +++=-++--2223(45)3m k m k -+=+- ()()222245313m m k m k --+-=-MP MQ ⊥ ,0MP MQ ∴⋅=, 故得()()22231450mk mm -+--=对任意的23k >恒成立,2210,450,m m m ⎧-=∴⎨--=⎩解得1m =-, ∴当1m =-时,MP MQ ⊥.当直线l 斜率不存在时,可得(2,3)P ,则(2,3)Q -,此时有()()3312121-⋅=-----,即此时结论也成立,综上,当1m =-时,MP MQ ⊥;【小问2详解】由(1)知(1,0)M -,当直线l的斜率存在时,()222613k PQ x k +=-=-,点M 到直线PQ 的距离为d,则d =,1||2MPQS PQ d ∴====令23(0)k t t-=>,则MPQ S = 10t> ,9MPQ S ∴=> , 当直线l 的斜率不存在时,13692MPQ S =⨯⨯= , 综上可知,MPQ S 的最小值为9.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.19. 已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πx f x =,()sin g x x=,()h x x =. 的(1)证明:()()()f x g x h x <<;(2)已知()()()0f x g x h x --<,证明:()π()2πh x g x -(π可近似于3.14). 【答案】(1)证明见解析;(2)证明见解析. 【解析】【分析】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=-=-∈ ⎪⎝⎭,,求导得到函数单调性,得到sin x x >,要证()()f x g x <,只需证2sin πx x <,构造πsin 2()x G x x =-,π(0)2x ∈,,二次求导得到单调性,得到π()02G x G ⎛⎫= ⎪⎝⎭>,证明出()(),(0)π2f x g x x ∈<,,证明出不等式;(2)变形得到0ππ(2)sin x x --<,两边同时除以(2)s πin 0x -<得到:πsin 2πx x ->,证明出不等式. 【小问1详解】令π()()()sin ,02F x h x g x x x x ⎛⎫=-=-∈ ⎪⎝⎭,,∴()1cos 0F x x =->'在π02x ⎛⎫∈ ⎪⎝⎭,上恒成立,∴()F x 在π02x ⎛⎫∈ ⎪⎝⎭,上单调递增, ∴()(0)0F x F =>, ∴sin x x >,∴π()(),(0)2g x h x x ∈<,, 要证()()f x g x <,只需证2sin πxx <, ∵π02x ⎛⎫∈ ⎪⎝⎭,,∴只需证2sin πx x <, 令πsin 2()x G x x =-,π(02x ∈,,∴2cos sin ()x x xG x x -'=,∴22cos tan cos cos ()(tan )x x x x xG x x x x x-'==-, 令()tan M x x x =-,π(02x ∈,,∴2221cos 1()1cos cos x M x x x-'=-=, 又∵当π(02x ∈,时,20cos 1x <<, ∴当π(0)2x ∈,时,()0M x '<, ∴()M x 在(0)π2,上单调递减, ∴()(0)0M x M =<, ∴当π(0)2x ∈,时,()0G x '<, ∴()G x 在(0π2,上单调递减∴π()02G x G ⎛⎫= ⎪⎝⎭>,∴2sin πx x<, ∴()(),(0)π2f x g x x ∈<,, ∴综上所述,当π(02x ∈,时,()()()f x g x h x <<,证毕.【小问2详解】∵当π(0)2x ∈,时,()()()0f x g x h x --<,∴2sin 0πxx x --<, ∴2sin 0πππx x x--<, ∴0ππ2)i π(s n x x--<,① 将①式两边同时乘以π得到:0ππ(2)sin x x --<,② ∵20π-<,但当π(02x ∈,时,sin 0x >,∴(2)s πin 0x -<,将②式两边同时除以(2)s πin 0x -<得到:(2)sin 0(2)n ππsi πx xx-->-,∴0πsin 2πx x ->-, ∴πsin 2πx x -, ∴当π(0)2x ∈,时,()π()2πh x g x ->,证毕. 【点睛】方法点睛:证明不等式或比较两函数大小,需构造函数,并根据导函数得到函数单调性,结合特殊点函数值得到结论.。
2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。
2023届全国卷新高考数学模拟试题二(含答案)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|}A x x k =≥,3{|1}1B x x =<+,若A B ⊆,则实数k 的取值范围为( ) A .(1,)+∞ B .(,1)-∞-C .(2,)+∞D .[2,)+∞2.若复数63ai i+-(其中a R ∈,i 为虚数单位)的实部与虚部相等,则a =( ) A .3 B .6 C .9 D .123.在等差数列{}n a 中,若21a =,8642a a a =+,则5a 的值是( )A .-5B .12-C .12D . 524.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为52y x =-,则它的离心率为( )A .32B .23C . 35D 55.已知ABC ∆的三个顶点坐标为()()()0,1,1,0,0,2,A B C O -为坐标原点,动点M 满足1CM =,则OA OB OM ++的最大值是A. 21B. 71C. 21 716.若不等式||1x t -<成立的必要条件是14x <≤,则实数t 的取值范围是( )A .[2,3]B .(2,3]C .[2,3)D .(2,3)7.在区间[1,1]-内随机取两个实数,x y ,则满足21y x ≥-的概率为( )A .29B .79C .16D .56 8.如图所示,一个几何体的三视图中四边形均为边长为4的正方形,则这个几何体的体积为( )A .32643π-B .6416π-C . 16643π-D .8643π-9.如图,(,)M M M x y ,(,)N N N x y 分别是函数()sin()(0,0)f x A x A ωϕω=+>>的一段图象与两条直线1:l y m =,2:(0)l y m A m =-≥≥的两个交点,记||N M S x x =-,则()S m 图象大致是( )A .B .C .D .10.过抛物线y 2=8x 的焦点作一条直线与抛物线相交于A,B 两点,它们到直线x=-3的距离之和等于10,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在11.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,,F F O 为坐标原点,点P 是双曲线在第一象限内的点,直线2,PO PF 分别交双曲线C 的左、右支于另一点M,N ,若122PF PF =,且2120MF N ∠=,则双曲线的离心率为 A. 22 B. 7 C. 3 212.设函数()f x 在R 上存在导数'()f x ,x R ∀∈,有2()()f x f x x -+=,在(0,)+∞上'()f x x <,若(4)()84f m f m m --≥-,则实数m 的取值范围为( )A .[2,)+∞B .[2,2]-C .[0,)+∞D .(,2][2,)-∞-+∞∪二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a 与b 的夹角为23π,||2a =,则a 在b 方向上的投影为 . 14.在正方体1111ABCD A B C D -中,点P 在线段'AD 上运动,则异面直线CP 与'BA 所成的角θ的取值范围是 .15.点A、B、C、D在同一个球的球面上,AB=BC=2,,若四面体ABCD体积的最大值为43,则该球的表面积为.16.已知实数,x y满足条件2420xx yx y m≥⎧⎪+≤⎨⎪-++≥⎩,若目标函数2z x y=+的最小值为3,则其最大值为.2023届全国卷新高考数学模拟试题二参考答案一、选择题1-5:CABAD 6-10:ADCCA 11、B 12:A二、填空题13.-14.03πθ<≤15.9π16.7。
2023年全国新高考仿真模拟卷(二)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}2|log 1A x x =<,{}2|20B x x x =--<,则B A =ð()A .(﹣∞,2)B .(﹣1,0]C .(﹣1,2)D .(﹣1,0)2.已知复数11i z =+,22i z a =+,若12z z ⋅为纯虚数,则实数a 的值为()A .1-B .1C .2-D .23.函数()f x 为R 上的奇函数,当0x >时,()lg f x x x =-,则()100f -=()A .98B .98-C .90D .90-4.小陈和小李是某公司的两名员工,在每个工作日小陈和小李加班的概率分别为13和14,且两人同时加班的概率为16,则某个工作日,在小李加班的条件下,小陈也加班的概率为()A .112B .12C .23D .345.若22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .B C .2D .2+6.如图所示,在ABC 中,2B A =,点D 在线段AB 上,且满足23AD BD =,ACD BCD ∠=∠,则cos A 等于()A .23B .34C .35D .457.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,398S =,且2n a S a ≤≤+,则实数a 的取值范围是()A .1,02⎡⎤-⎢⎥⎣⎦B .13,24⎡⎤-⎢⎥⎣⎦C .33,42⎡⎤⎢⎥⎣⎦D .30,2⎡⎤⎢⎥⎣⎦8.已知x ∈R ,符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x a x x=-≠有且仅有2个零点,则实数a 的取值范围是()A .23,34⎛⎤ ⎥⎝⎦B .3,22⎡⎫⎪⎢⎣⎭C .2,23⎛⎫ ⎪⎝⎭D .233,2342⎛⎤⎡⎫ ⎪⎢⎝⎦⎣⎭二、多选题9.体育王老师记录了16名小学生某周课外体育运动的时长(单位:h ),记录如下表.运动时长456789运动人数122452则这16名小学生该周课外体育运动时长的()A .众数为8B .中位数为6.5C .平均数为7D .标准差为210.已知,αβ是空间两个不同的平面,,m n 是空间两条不同的直线,则给出的下列说法中正确的是()A .//m α,//n β,且//m n ,则//αβB .//m α,//n β,且m n ⊥,则αβ⊥C .m α⊥,n β⊥,且//m n ,则//αβD .m α⊥,n β⊥,且m n ⊥,则αβ⊥11.设1F ,2F 分别为椭圆221259x y+=的左、右焦点,P 为椭圆上第一象限内任意一点,1PF k ,2PF k 表示直线1PF ,2PF 的斜率,则下列说法正确的是()A .存在点P ,使得17PF =成立B .存在点P ,使得1290F PF ∠=︒成立C .存在点P ,使得217PF PF k k =成立D .存在点P ,使得127PF PF ⋅=成立12.设函数()sin 2sin cos xf x x x=+,则()A .()f x 的一个周期为πB .()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增C .()f x 在π3π,44⎛⎫- ⎪⎝⎭D .()f x 图象的一条对称轴为直线π4x =三、填空题13.在平行四边形OACB 中,E 是AC 的中点,F 是BC 边上的点,且3BC BF =,若OC mOE nOF =+,其中m ,n ∈R ,则m n +的值为______.14.请写出与曲线()sin f x x =在()0,0处具有相同切线的另一个函数:______.15.Rt ABC △中,其边长分别为3,4,5,分别以它的边所在直线为旋转轴,旋转一周所形成的几何体的体积之和为______.16.已知1F ,2F 分别为双曲线22221x ya b-=(0a >,0b >)的左、右焦点,P 为双曲线右支上任意一点,若212PF PF 的最小值为2c,c ,则该双曲线的离心率是______.四、解答题17.设数列{}n a 的首项为1,前n 项和为n S ,且对*n ∀∈N ,kn n a S b n c +=⋅+恒成立,其中b ,k ,c 均为常数.(1)当0b =时,求数列{}n a 的通项公式;(2)当1k =时,若数列{}n a 为等差数列,求b ,c 的值.18.已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.19.某校团委针对“学生性别和喜欢课外阅读”是否有关做了一次不记名调查,其中被调查的全体学生中,女生人数占总人数的13.调查结果显示,男生中有16的人喜欢课外阅读,女生中有23的人喜欢课外阅读.(1)以频率视为概率,若从该校全体学生中随机抽取2名男生和2名女生,求其中恰有2人喜欢课外阅读的概率;(2)若有95%的把握认为喜欢课外阅读和性别有关,求被调查的男生至少有多少人?附:()20P k χ≥0.0500.0100k 3.8416.635()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.20.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB 的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.21.已知点M 是抛物线()2:20C x py p =>的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足2PM =.(1)求抛物线C 的方程;(2)过()1,1A -作斜率为2的直线与抛物线C 相交于点B ,点()0,T t ()0t >,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t k λ=?若存在,求出λ值;若不存在,请说明理由.22.已知函数()()22ln xf x x a a x=--∈R .(1)求函数()f x 的极值;(2)当11a <时,若函数()f x 有两个零点()1212,x x x x >.①证明:12ln ln x x -<②证明:1201x x <<.参考答案:1.B【分析】解对数不等式化简集合A ,解一元二次不等式化简集合B ,根据补集运算可得结果.【详解】∵集合{}{}2|log 1|02A x x x x =<=<<,{}{}2|20|12B x x x x x =--<=-<<,∴{}|10B A x x =-<≤ð,故选:B.【点睛】本题主要考查了对数与二次不等式的求解以及集合的补集运算.属于基础题.2.D【分析】求出12z z ⋅的代数形式,然后根据其实部为零,虚部不为零列式计算即可.【详解】 复数11i z =+,22i z a =+,∴()()()121i 2i 22i z z a a a ⋅=++=-++,12z z ⋅为纯虚数,20a ∴-=且20a +≠,2a ∴=.故选:D.3.A【分析】直接利用函数奇偶性及0x >时的解析式计算即可.【详解】因为函数()f x 为R 上的奇函数,所以()()100100f f -=-,又当0x >时,()lg f x x x =-,所以()()()100100lg10010098f f -=-=--=.故选:A.4.C【分析】根据题意结合条件概率公式运算求解.【详解】记“小李加班”为事件A ,“小陈加班”为事件B ,则()()()111,,436P A P B P AB ===,故在小李加班的条件下,小陈也加班的概率为()()()2|3P AB P B A P A ==.故选:C.5.D【分析】先利用倍角公式降次,再利用两角和的公式展开后转化为用tan 2α表示的等式,然后解方程即可.【详解】22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭ 1cos 21sin 23παα⎛⎫∴+-=+ ⎪⎝⎭,1cos 22sin 222ααα∴+=,又cos 20α≠,则12tan 22αα=,解得tan 22α=.故选:D.6.B【分析】根据三角形的边角关系,结合角平分线定理、二倍角公式、正弦定理即可求得cos A 的值.【详解】在ABC 中,角,,A B C 对应的边分别为,,a b c ,又点D 在线段AB 上,且满足23AD BD =,所以332,555AD AB c BD c ===,又ACD BCD ∠=∠,由角平分线定理可得AC BC AD BD =,所以3255b ac c =,则32b a =,又2B A =,所以sin sin 22sin cos B A A A ==,则sin cos 2sin BA A=,由正弦定理得3sin 32cos 2sin 224aB b A A a a ====.故选:B.7.B【分析】设等比数列{}n a 的公比为q ,由1220a a +=,398S =,列方程求出1,a q ,进而可求出n S ,结合指数函数的性质求出n S 的最大、小值,列不等式组即可求出a 的取值范围【详解】解:设等比数列{}n a 的公比为q ,因为1220a a +=,398S =,所以121(12)09(1)8a q a q q +=⎧⎪⎨++=⎪⎩,解得131,22a q ==-,所以31111,2221112111,22nnn n nn S n ⎡⎤⎧⎛⎫⎛⎫--⎢⎥+ ⎪⎪ ⎪⎝⎭⎢⎥⎪⎝⎭⎛⎫⎣⎦==--=⎨ ⎪⎛⎫⎝⎭⎛⎫⎪-- ⎪- ⎪⎪⎝⎭⎝⎭⎩为奇数为偶数,当x 为正整数且奇数时,函数1()12xy =+单调递减,当x 为正整数且偶数时,函数1()12xy =-+单调递增,所以1n =时,n S 取得最大值32,当2n =时,n S 取得最小值34,所以34322a a ⎧≤⎪⎪⎨⎪+≥⎪⎩,解得1324a -≤≤.故选:B.8.D【分析】设()[]x g x x=,根据已知作出()g x 的草图,分析已知函数()[]()0x fx ax x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,即可得出答案.【详解】函数()[]()0x f x a x x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,设()[],1,00,01nx n x n n g x xxx ⎧≤<+≠⎪==⎨⎪≤<⎩,根据符号[]x 作出()g x的草图如下:则2334a <≤或322a ≤<,故选:D.9.AC【分析】根据表格数据计算得到众数,中位数,平均数和标准差即可判断结果【详解】由题意,这组运动时长数据中8出现了5次,其余数出现次数小于5次,故众数为8,A 正确;将16小学生的运动时长从小到大排列为:4,5,5,6,6,7,7,7,7,8,8,8,8,8,9,9,则中位数为7772+=,故B 错误;计算平均数为142526475829716⨯+⨯+⨯+⨯+⨯+⨯=,故C 正确;方差为()()()()()()2222222147257267477587297216s ⎡⎤=-+⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,所以标准差为s ==D 错误.故选:AC 10.CD【分析】利用空间线面、面面平行、垂直的性质定理和判定定理分别分析四个命题,即可得到正确答案.【详解】A 选项,若//m α,//n β,且//m n ,则,αβ可能相交或平行,故A 错误;B 选项,若//m α,//n β,且m n ⊥,则,αβ可能相交,也可能平行,故B 错误;C 选项,若m α⊥,//m n ,则n α⊥,又n β⊥,则//αβ;即C 正确;D 选项,若m α⊥,m n ⊥,则//n α或n ⊂α;又n β⊥,根据面面垂直的判定定理可得:αβ⊥,即D 正确.故选:CD.11.ABD【分析】根据椭圆的性质逐项进行分析即可判断.【详解】由椭圆方程221259x y +=可得:5,3a b ==,4c ==,对于A ,由椭圆的性质可得:129a c PF a c =-≤≤+=,又因为点P 在第一象限内,所以159a PF a c =<<+=,所以存在点P ,使得17PF =成立,故选项A 正确;对于B ,设点00(,)P x y ,因为12(4,0),(4,0)F F -,所以100(4,)PF x y =--- ,200(4,)PF x y =--,则2222212000009161616972525PF PF x y x x x ⋅=-+=-+-=- ,因为005x <<,所以20025x ≤≤,所以2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得120PF PF ⋅=,则1290F PF ∠=︒成立,故选项B 正确;对于C ,因为1004PF y k x =+,2004PF y k x =-,若217PF PF k k =,则00(316)0x y +=,因为点00(,)P x y 在第一象限内,所以000,0y x >>,则00(316)0x y +=可化为:03160x +=,解得:01603x =-<不成立,所以不存在点P ,使得217PF PF k k =成立,故选项C 错误;对于D ,由选项B 的分析可知:2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得127PF PF ⋅=成立,故选项D 正确,故选:ABD.12.BD【分析】利用诱导公式化简可得()()πf x f x +=-,可判断选项A ;利用换元法和函数的单调性,可判断选项B 和C ;利用诱导公式化简可得()π2f x f x ⎛⎫-= ⎪⎝⎭,可判断选项D .【详解】对A :()()()()()()sin 2πsin 22πsin 2πsin πcos πsin cos sin cos x x xf x f x x x x xx x+++===-=-+++--+,故π不是()f x 的周期,A 错误;对B :令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则2sin 22sin cos 1x x x t ==-,则211t y t t t-==-,∵ππ,44x ⎛⎫∈- ⎪⎝⎭,则()πππ0,,sin 0,1424x x ⎛⎫⎛⎫+∈+∈ ⎪ ⎪⎝⎭⎝⎭,∴π4t x ⎛⎫=+ ⎪⎝⎭在π0,2⎛⎫ ⎪⎝⎭上单调递增,且(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y t t =-在()0,∞+上单调递增,故()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增,B 正确;对C :∵π3π,44⎛⎫- ⎪⎝⎭,则()π0,π4x +∈,∴(]πsin 0,14x ⎛⎫+∈ ⎪⎝⎭,则(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y tt =-在(上单调递增,且|2x y ,∴1y t t =-在(上最大值为2,即()f x 在π3π,44⎛⎫- ⎝⎭,C 错误;对D :()()πsin 2sin π2πsin 22ππ2cos sin sin cos sin cos 22x x x f x f x x x x xx x ⎛⎫- ⎪-⎛⎫⎝⎭-=== ⎪++⎛⎫⎛⎫⎝⎭-+- ⎪ ⎪⎝⎭⎝⎭,故()f x 图象的一条对称轴为直线π4x =,D 正确.故选:BD.【点睛】结论点睛:若()()f m x f n x +=-,则()f x 关于直线2m nx +=对称,特别地()()2f x f a x =-,则()f x 关于直线x a =对称;若()()2f m x f n x b ++-=,则()f x 关于点,2m n b +⎛⎫⎪⎝⎭对称,特别地()()20f x f a x +-=,则()f x 关于点(),0a 对称.13.75##1.4【分析】先以{},OA OB 为基底向量求,OE OF uu u r uuu r,联立求解可得6362,5555OA OE OB OF OE =-=-uu r uu u r uuu r uu u r uuu r uu u r ,再结合OC OA OB =+,代入运算即可得答案.【详解】由题意可得:11,23OE OA AE OA OB OF OB BF OB OA =+=+=+=+uu u r uu r uu u r uu r uu u r uuu r uu u r uu u r uu u r uu r,联立1213OE OA OB OF OB OA ⎧=+⎪⎪⎨⎪=+⎪⎩,解得63556255OA OE OB OF OE ⎧=-⎪⎪⎨⎪=-⎪⎩ ,∵636243555555OC OA OB OE OF OF OE OE OF ⎛⎫⎛⎫=+=-+-=+ ⎪ ⎪⎝⎭⎝⎭uuu r uu r uu u r uu u r uuu r uuu r uu u r uu u r uuu r ,则43,55m n ==,故75m n +=.故答案为:75.14.3y x x =+(答案不唯一)【分析】利用导数的几何意义可求得在()0,0处的切线斜率,由此可得切线方程;若两曲线在原点处具有相同切线,只需满足过点()0,0且在0x =处的导数值1y '=即可,由此可得曲线方程.【详解】sin y x = 的导函数为cos y x '=,又sin y x =过原点,sin y x ∴=在原点()0,0处的切线斜率cos 01k ==,sin y x ∴=在原点()0,0处的切线方程为y x =;所求曲线只需满足过点()0,0且在0x =处的导数值1y '=即可,如3y x x =+,231y x '=+ ,又3y x x =+过原点,3y x x ∴=+在原点处的切线斜率1k =,3y x x ∴=+在原点()0,0处的切线方程为y x =.故答案为:3y x x =+(答案不唯一).15.188π5【分析】分类讨论旋转轴所在的直线,结合锥体的体积公式运算求解.【详解】由题意不妨设:3,4,5AB AC BC ===,边BC 上的高为h ,则1122AB AC BC h ⨯=⨯,可得125AB AC h BC ⨯==,若以边AB 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径14r =,高为3AB =,故此时圆锥的体积为2113π416π3V =⨯⨯⨯=;若以边AC 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径23r =,高为4AC =,故此时圆锥的体积为2214π312π3V =⨯⨯⨯=;若以边BC 所在直线为旋转轴,则所形成的几何体为两个共底面的圆锥,其底面半径3125r h ==,高为12,h h ,且125h h BC +==,故所得几何体的体积为()22223132312311111248πππ5ππ333355V h r h r h h r ⎛⎫=⨯⨯+⨯⨯=+⨯⨯=⨯⨯⨯= ⎪⎝⎭;故体积之和为4818816π12πππ55++=.故答案为:188π5.16.22+【分析】设2PF m =,则m c a ≥-,根据双曲线的定义12PF m a =+,故221244PF a m a PF m=++,分2a c a ≥-与2a c a <-讨论,结合“对勾”函数的性质可求出离心率.【详解】设2PF m =,则m c a ≥-,由双曲线的定义知122PF PF a -=,∴12PF m a =+,()22212244PF m a a m a PF mm+==++,当2a c a ≥-,即13a c ≥时,221244PF a m a PF m =++84823a a c c ≥=>>,不符合题意;当2a c a <-,即3ce a=>时,244a y m a m=++在[),m c a ∈-+∞上单调递增,所以当m c a =-时212PF PF 取得最小值,故2442a c a a c c a-++=-,化简得2240c ac a --=,即2410e e --=,解得2e =(舍)或2e =3e >.综上所述,该双曲线的离心率是2故答案为:2.17.(1)1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N (2)1b =,1c =【分析】(1)根据1n n n a S S -=-,结合已知等式得出112n n a a -=,即可得出数列{}n a 是以首项为1,公比为12的等比数列,即可得出数列{}n a 的通项公式;(2)利用关系式得出1a 、2a 、3a ,再根据等差中项列式,即可得出答案.【详解】(1)令1n =,则11a S b c +=+,即12a b c =+,11a = ,0b =,2c ∴=,则2nn a S +=,即2n n S a =-,当2n ≥时,()1122n n n n n a S S a a --=-=---,化简得112n n a a -=,而11a =,则数列{}n a 是以首项为1,公比为12的等比数列,则数列{}n a 的通项公式1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N ,(2)当1k =时,n n a S nb c +=+,令1n =,则11a S b c +=+,则12a b c =+,11a = ,2b c ∴+=,令2n =,则222a S b c +=+,则2122a b c a =+-,2b c += ,11a =,221a b ∴=+,令3n =,则333a S b c +=+,则31223a b c a a =+--,2b c += ,11a =,212b a +=,33144b a ∴=+, 数列{}n a 为等差数列,2132a a a ∴=+,即311144b b +=++,解得1b =,则21c b =-=.18.(1)证明见解析(2)98【分析】(1)利用余弦定理及面积公式将条件变形得cos sin A B =,再利用诱导公式及三角函数的性质可证明结论;(2)利用(1)的结论及三角公式,将sin sin A C +转化为关于cos B 的二次函数,然后配方可以求最值.【详解】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.19.(1)47108;(2)12.【分析】(1)由相互独立事件同时发生的概率,可得结论;(2)设出男生人数,列出22⨯列联表,根据2 3.841χ≥及,,236x x x均为整数即可求解.【详解】(1)从该校全体学生中随机抽取2名男生和2名女生,记其中恰有2人喜欢课外阅读为事件A ,则()222211221152151247C C 63636633108P A ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)设被调查的男生人数为x ,则被调查的女生人数为2x,则22⨯列联表为:喜欢课外阅读不喜欢课外阅读合计男生6x56x x 女生3x 6x 2x 合计2x x32x若有95%的把握认为喜欢课外阅读和性别有关,则2 3.841χ≥,即223526663 3.84122x x x x x x xx x χ⎛⎫⋅-⋅ ⎪⎝⎭≥≥⋅⋅⋅,则 3.841810.2433x ⨯≥≈,因为,,236x x x均为整数,所以被调查的男生至少有12人.20.(1)DE ∥平面ABC ,证明见解析;5【分析】(1)分别取,AC BC 的中点,O P ,连接,,DO EP OP ,EP DO ∥且EP DO =,再利用线面平行的判定定理,即可得到答案;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB 的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,求出向量1,22DH ⎛= ⎝⎭uuu r 及平面ACE 的法向量()1,0,2m =-,代入夹角公式,即可得到答案;【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())110,0,0,0,1,0,0,1,0,,0,,0,22O A C D H P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1,2DE OP E ⎫=∴-⎪⎪⎭所以()310,2,0,,2222AC AE DH ⎫⎛⎫=-=-=⎪ ⎪⎪ ⎪⎭⎝⎭,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩,所以203022y y -=⎧⎪-+=则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以cos ,DH m DH m DH m ===设直线DH 与平面ACE 所成的角为θ,则sin cos ,DH m θ==21.(1)2x y =(2)存在,32λ=【分析】(1)利用导数求得切线方程2002x x y x p p =-,根据切线方程过点0,2p M ⎛⎫-⎪⎝⎭求得220x p =,再结合两点间距离公式运算求解;(2)根据题意联立方程求点B 的坐标,再分别求直线,AT BT 的方程和,E F 的坐标,代入斜率公式运算求解即可.【详解】(1)∵抛物线()2:20C x py p =>,则20,,22p x M y p ⎛⎫-= ⎪⎝⎭,∴x y p'=,设20,2x P x p ⎛⎫ ⎪⎝⎭,则在点P 处的切线斜率0x k p =,故在点P 处的切线方程为()20002x x y x x p p -=-,即2002x x y x p p =-,∵切线过点0,2p M ⎛⎫- ⎪⎝⎭,则2022x p p -=-,解得220x p =,则2PM ===,解得12p =,故抛物线C 的方程为2x y =.(2)存在,32λ=,理由如下:由题意可得:直线AB 的方程为()121y x -=+,即23y x =+,联立方程223y x x y=+⎧⎨=⎩,解得11x y =-⎧⎨=⎩或39x y =⎧⎨=⎩,即直线AB 与抛物线的交点坐标为()()1,1,3,9A B -,∵直线AT 的斜率1k t =-,故其方程为()1y t x t =-+,联立方程()21y t x t x y⎧=-+⎨=⎩,解得11x y =-⎧⎨=⎩或2x ty t =⎧⎨=⎩,即点()2,E t t,又∵直线BT 的斜率93tk -=,故其方程为93t y x t -=+,联立方程293t y x t x y -⎧=+⎪⎨⎪=⎩,解得11x y =-⎧⎨=⎩或239t x t y ⎧=-⎪⎪⎨⎪=⎪⎩,即点2,39t t F ⎛⎫- ⎪⎝⎭,故直线EF 的斜率为222933t t k t t t λ-===+,则32λ=.【点睛】存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.22.(1)()f x 有极小值()11f a =-,无极大值(2)①证明见详解;②证明见详解【分析】(1)求导,利用导数判断原函数的单调性,进而可求极值;(2)对①:根据分析可得12ln ln x x -<12ln 0t t t-->,构建()12ln g x x x x =--,利用导数证明;对②:令11m x =,整理可得()112ln f m m m m m m ⎛⎫⎛⎫=+-- ⎪⎪⎝⎭⎝⎭,结合()g x 的单调性证明()0f m <,再结合()f x 的单调性即可证明.【详解】(1)由题意可得:()()()3222ln 121ln 2x x x f x x x x +='--=-,∵()3ln 1F x x x =+-在()0,∞+上单调递增,且()10F =,∴当01x <<时,()0F x <,当1x >时,()0F x >,即当01x <<时,()0f x '<,当1x >时,()0f x ¢>,故()f x 在()0,1上单调递减,在()1,+∞上单调递增,可得()f x 有极小值()11f a =-,无极大值.(2)若函数()f x 有两个零点()1212,x x x x >,则()110f a =-<,解得1a >,当111a <<时,则()()2422424e e 4e 0,e e 0ef a f a --=-+>=-->,结合()f x 的单调性可知:()f x 在()0,1,()1,+∞内均只有一个零点,则2101x x <<<,构建()12ln g x x x x =--,则()()22212110x g x x x x-'=-+=≥当0x >时恒成立,故()g x 在()0,∞+上单调递增,①令1t =>,则12ln ln x x -<1121ln x x x x -,等价于221ln t t t-<,等价于12ln 0t t t-->,∵()g x 在()1,+∞上单调递增,则()()10g t g >=,即12ln 0t t t-->,故12ln ln x x -<②若函数()f x 有两个零点()1212,x x x x >,令()110,1m x =∈,即11x m=,则()21212ln1112ln 01m f x f a a m m m m m m⎛⎫⎛⎫==--=-+= ⎪ ⎪⎝⎭⎝⎭,可得212ln a m m m =+,故()2222ln 12ln 112ln 2ln m mf m m a m m m m m m m m m m m ⎛⎫⎛⎫⎛⎫=--=--+=+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,由()0,1m ∈,则10m m+>,∵()g x 在()0,1上单调递增,则()()10g m g <=,即12ln 0m m m--<,∴()112ln 0f m m m m m m ⎛⎫⎛⎫=+--< ⎪⎪⎝⎭⎝⎭当()0,1m ∈时恒成立,又∵()f x 在()0,1上单调递减,且()()20f m f x <=,∴2m x >,即211x x >,故1201x x <<.【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形.(2)构造新的函数h (x ).(3)利用导数研究h (x )的单调性或最值.(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.。
2022年全国卷Ⅰ高考数学理科模拟试题卷班级:_________________ 姓名:_________________ 座号:________________评卷人得分一、选择题(共12题,每题5分,共60分)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.2.已知复数z=(a-3i)(3+2i)(a∈R)的实部与虚部的和为7,则a的值为A.1B.0C.2D.-23.函数y=log0.4(–x2+3x+4)的值域是A.(0,–2]B.[–2,+∞)C.(–∞,–2]D.[2,+∞)4.以AB为直径的半圆如图所示,其中||=8,O为其所在圆的圆心,OB的垂直平分线与圆弧交于点P,与AB交于点D,Q为PD上一点,若=0,则·=A.9B.15C.-9D.-155.已知lg a+lg b=0,函数f(x)=a x与函数g(x)=-log b x的图像可能是A BC D6.袋子中有四个小球,分别写有“和”“平”“世”“界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到才算完成.用随机模拟的方法估计恰好取三次便完成的概率.利用电脑随机产生0到3之间取整数值的随机数,0,1,2,3代表的字分别为“和”“平”“世”“界”,以每三个随机数为一组,表示取球三次的结果,随机模拟产生了以下24组随机数组:由此可以估计,恰好取三次便完成的概率为A. B. C. D.7.在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE 与平面BB1C1C所成的角为A.30°B.45°C.60°D.90°8.执行如图所示的程序框图,若输入的k=,则输出的S=A. B. C. D.9.已知等差数列的前项和分别为,若,则的值是A. B. C. D.10.若x1,x2∈R,则的最小值是A.1B.2C.3D.411.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为A.4x-3y-3=0B.3x-4y-3=0C.3x-4y-4=0D.4x-3y-4=012.若a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是A.若a⊥b,b⊥α,α⊥β,则a⊥βB.若α⊥β,a⊥α,b∥β,则a⊥bC.若a∥α,a∥β,α∩β=b,则a∥bD.若a∥b,a⊥α,b∥β,则α∥β第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(共4题,每题5分,共20分)13.曲线y=在点(-1,-3)处的切线方程为.14.已知{a n}是递增的等差数列,其前n项和为S n,且S2=S7,写出一个满足条件的数列{a n}的通项公式a n= .15.已知数列{a n}的前n项和为S n,a n+2S n=3n,数列{b n}满足(3a n+2-a n+1)(n∈N*),则数列{b n}的前10项和为.16.已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线上.若△PF1F2为直角三角形,且tan∠PF1F2=,则双曲线的离心率为.评卷人得分三、解答题(共7题,共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且sin(+C)=.(1)求角A;(2)若a=4,△ABC的周长为9,求△ABC的面积.18.如图,已知四棱柱ABCD-A1B1C1D1的底面是菱形,BB1⊥底面ABCD,E是棱CC1的中点.(1)求证:AC∥平面B1DE;(2)求证:平面BDD1B1⊥平面B1D E.19.2020年12月10日,首届全国职业技能大赛在广州广交会展馆拉开帷幕,活动为期4天,2 557名参赛选手围绕86个比赛项目展开激烈角逐.大赛组委会秘书长、人社部职业能力建设司司长张立新表示,这次大赛是新中国成立以来规格最高、项目最多、规模最大、水平最高的综合性国家职业技能赛事.为了准备下一届比赛,甲、乙两支代表队各自安排了10名选手参与选拔活动,他们在活动中取得的成绩(单位:分,满分100分)如下:甲代表队:95 95 79 93 86 94 97 88 81 89乙代表队:88 83 95 84 86 97 81 82 85 99(1)分别求甲、乙两支代表队成绩的平均值,并据此判断哪支代表队的成绩更好;(2)甲、乙两支代表队的总负责人计划从这两支队伍得分超过90分的选手中随机选择4名参加强化训练,记参加强化训练的选手来自甲代表队的人数为X,求X的分布列和数学期望.20.已知椭圆的右焦点为,过且与轴垂直的弦长为3.(1)求椭圆的标准方程;(2)过作直线与椭圆交于两点,问在轴上是否存在点,使为定值,若存在,请求出点坐标,若不存在,请说明理由.21.已知函数f(x)=(x-2)e x-x2+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若不等式f(x)+(x+1)e x+x2-2ax+a>0恒成立,求a的取值范围.请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。
2020高考数学(理科)全国二卷高考模拟试卷(2)2020高考数学(理科)全国二卷高考模拟试卷(2)一.选择题(共12小题,满分60分,每小题5分)1.(5分)复数z=(1+2i)2(i为虚数单位)的共轭复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知集合A={x|x2-2x-3<0},集合B={x|x-1≥0},则∁R(A∩B)=()A.(-∞,1)∪[3,+∞]B.(-∞,1]∪[3,+∞]C.(-∞,1)∪(3,+∞)D.(1,3)3.(5分)若x,y满足约束条件{3x-y+1≥0,y≤2,x-y-2≤0},则z=4x+2y的最小值为()A.-17B.-13C.16/3D.204.(5分)下列四个命题中错误的是()A.若直线a、b 相交,则直线a、b确定一个平面B.若四点不共面,则这四点中任意三点都不共线C.若两条直线没有公共点,则这两条直线是异面直线D.经过平面外一点有且只有一条直线与该平面垂直5.(5分)今年入冬以来,我市天机反复.在下图中统计了我市上个月前15的气温,以及相对去年同期的气温差(今年气温-去年气温,单位:摄氏度),以下判断错误的是()A.今年每天气温都比去年气温低B.今年的气温的平均值比去年低C.今年8-12号气温持续上升D.今年8号气温最低6.(5分)已知各项均为正数的数列{an}满足a1=1,an+2an=39(n∈N*),那么数列{an}的前50项和S50的最小值为()A.637B.559C.481+25√39D.492+24√787.(5分)若圆锥的高等于底面直径,侧面积为√5π,则该圆锥的体积为()A.π/3B.π/2C.2π/3D.16π/38.(5分)下列命题错误的是()A.∃α,β∈R,cos(α+β)=cosαcosβ+sinαsinβB.∀x,k∈R,sin(x+k•2π)=sinxC.∃x∈[0,π),sin(x+π/2)=sinxD.∀x∈R+,∃k∈R,sinx≤kx9.(5分)已知sin(π/3+α)= 2/3,则sinα的值等于()A.-7/9B.-2/9C.9/2D.3/710.(5分)已知向量a,b,c满足|a|=1,|b|=√3,a•b=-2,b•c=0,且a,b,c不共面,那么向量c的长度为()A.1/2B.1C.√2D.21.题目未给出文章,无法进行修改。
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
2023年高考数学全真模拟卷二(全国卷)文科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}3A x N x =∈<,{}21B x x =-<≤,则A B = ()A .[]0,2B .{}1,0,1-C .{}0,1,2D .{}0,1【答案】D【分析】利用集合的交集运算求解.【详解】解:因为集合{}3A x N x =∈<,{}21B x x =-<≤,所以A B = {}0,1,故选:D2.已知复数z 在复平面内对应的点的坐标为()3,4-,则43izz +=+()A .5i +B .5i -C .35i -D .4【答案】B【分析】由题意得34i z =-,再代入式子计算即可得到答案.【详解】由复数z 在复平面内对应的点的坐标为()3,4-得34iz =-5z ∴==()()()()34i 43i 34i555i 43i 43i 43i 43i z z ---∴+=+=+=-+++-故选:B.3.机器人是一种能够半自主或全自主工作的智能机器.它可以辅助甚至替代人类完成某些工作,提高工作效率,服务人类生活,扩大或延伸人的活动及能力范畴.某公司为了研究某机器人的销售情况,统计了2022年2月至7月M ,N 两店每月该机器人的营业额(单位:万元),得到如图所示的折线图,则下列说法中不正确的是()A .N 店营业额的平均值是29B .M 店营业额的中位数在[]30,35内C .M 店营业额的极差比N 店营业额的极差小D .M 店营业额的方差大于N 店营业额的方差【答案】D【分析】对A ,计算N 店营业额的平均值即可判断,对B 首先M 店的营业额从小到大排序,即可计算出其中位数,对C ,计算相关数据极差即可判断,对D 首先计算出M 店营业额的平均值,再计算M 店和N 店营业额的方差即可判断.【详解】对于A ,N 店营业额的平均值是()12816355063296⨯+++++=,所以A 正确;对于B ,将M 店的营业额/万元,从小到大排列得14,20,26,36,45,64,故其中位数为]236363152[30,+=∈,故B 正确;对于C ,M 店营业额极差为641450-=,N 店的极差为6326150-=>,故C 正确;所以B 正确;对于D ,M 店营业额的平均值是11(142026456436)3466⨯+++++=,所以M 店营业额的方差为2222222052052052052052051420264564366666666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10109292803636==N 店营业额的方差为()()()()()()2222222292029262945296429362929391.5280636-+-+-+-+-+-=>,故D 错误,故选:D .4.设x ,y 满足约束条件260303x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,则3z x y =-的最大值为()A .3B .152-C .0D .9【答案】A【分析】画出可行域,根据目标函数的几何意义即可求解.【详解】根据约束条件画出可行域(如图),把3z x y =-变形为33x z y =-,得到斜率为13,在y 轴上的截距为3z-,随z 变化的一族平行直线.由图可知,当直线33x z y =-过点(3,0)A 时,截距3z-最小,即z 最大,所以3z x y =-的最大值为3.故选:A .5.在ABC 中,AB AC =,AD 是BC 边上的中线,且4BC =,3AD =,则⋅=AB AC ()A .5-B .5C .8-D .8【答案】B【分析】由题意,根据三角形的性质,结合向量的加法几何意义以及数量积的运算律,可得答案.【详解】由题意如图所示:由AD BC ⊥,所以0,0AD DC AD DB ⋅=⋅= 又AB AC =,所以D 为BC 的中点,所以122BD DC BC ===,所以()()22945AB AC AD DB AD DC AD DC ⋅=+⋅+=-=-= ,故选:B .6.已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且656cos a c b C =+,则cos B =()A .78B .56C .34D .23【答案】B【分析】根据题意,利用正弦定理边化角,由三角形内角和定理,展开化简得cos B .【详解】由656cos a c b C =+,边化角得6sin 5sin 6sin cos A C B C =+,又()sin sin A B C =+,所以()6sin 5sin 6sin cos B C C B C +=+,展开得6sin cos 6cos sin 5sin 6sin cos B C B C C B C +=+,所以6cos sin 5sin B C C =,因为sin 0C >,所以5cos 6B =.故选:B .7.一个正三棱台的上、下底面边长分别为3和6,侧棱长为2,则其高为()A .12B .1C D 【答案】B【分析】将正三棱台补全为正三棱锥再做高,结合勾股定理求解即可【详解】如图,延长正三棱台的三条棱,,AA BB CC ''',交于点P ,因为6AB BC AC ===,3A B B C A C ''''''===,则24PA PB PC AA '====,作PO ⊥底面ABC 于O ,连接BO ,则BO ==,故2PO ==,故正三棱台ABC A B C '''-的高为12PO=故选:B 8.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为5,则C 的离心率为()A .4B .5C .6D .7【答案】A【分析】求出A 点,B 点坐标,利用斜率等于5结合222b c a =-得到22540c ac a -+=,方程两边同除以2a 得到关于离心率的方程,求出答案.【详解】由题意得:(),0F c ,(),0A a ,当x c =时,22221c y a b -=,解得2by a=±,因为AB 的斜率为5,所以B 点位于第一象限,则2,b B c a ⎛⎫⎪⎝⎭,故25ABb a kc a==-,整理得:2255b ac a =-,因为222b c a =-,即22540c ac a -+=,方程两边同除以2a 得:2540e e -+=,解得:4e =或1(舍去)故选:A9.()()cos 0f x x x ωωω=>在ππ,1212⎡⎤-⎢⎥⎣⎦上是单调函数,则ω的最大值是()A .2B .3C .4D .6【答案】C【分析】根据两角和的余弦公式可得()()π2cos 03f x x ωω⎛⎫=+> ⎪⎝⎭,可得其单调区间为π2π,33ωω⎡⎤-⎢⎥⎣⎦,根据题意即可求解.【详解】()()πcos 2cos 03f x x x x ωωωω⎛⎫=-=+> ⎪⎝⎭,令()ππππ3k x k k ω≤+≤+∈Z ()π2ππ33k x k ω-+≤≤∈Z .令0k =,可得π2π33x ωω-≤≤.故函数()f x 在π2π,33ωω⎡⎤-⎢⎥⎣⎦上是单调函数,所以πππ2π312123ωω-≤-<≤,解得04ω<≤.所以ω的最大值是4.故选:C.10.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程是()A .2216448x y -=B .2214864x y +=C .2214864x y -=D .2216448x y +=【答案】D【分析】由两圆外切和内切,得出圆心距与两圆的半径和差的关系,设出动圆的半径r ,消去r ,再由圆锥曲线的定义,可得动圆的圆心M 的轨迹,进一步求出其方程.【详解】设动圆的圆心(),M x y ,半径为r圆M 与圆1C :()224169x y -+=内切,与C2:()2249x y ++=外切.所以1213,3MC r MC r =-=+.1212+168MC MC C C =>=由椭圆的定义,M 的轨迹是以12,C C 为焦点,长轴为16的椭圆.则8,4a c ==,所以2228448b =-=动圆的圆心M 的轨迹方程为:2216448x y +=故选:D11.如图,在平面四边形ABCD 中,,,30AD CD AC BC DAC BAC ︒⊥⊥∠=∠=,现将ACD沿AC 折起,并连接BD ,使得平面ACD ⊥平面ABC ,若所得三棱锥D ABC -的外接球的表面积为4π,则三棱锥D ABC -的体积为()A .14B .4C .8D .6【答案】C【分析】利用面面垂直的性质定理,线面垂直的判定定理可以证得ADB ∠为直角,又ACB ∠为直角,进而利用直角三角形的性质得到外接球的球心为斜边AB 的中点,然后根据球的面积公式求得球的半径,进而计算求得三棱锥D ABC -的体积.【详解】∵平面ACD ⊥平面ABC ,平面ABC∩平面BCD=AC ,AC ⊥BC ,BC ⊂平面ABC ,∴BC ⊥平面ACD ,又∵AD ⊂平面ACD ,∴AD ⊥BC ,又∵AD ⊥DC ,BC∩DC=C ,BC ⊂平面BCD ,DC ⊂平面BCD ,∴AD ⊥平面BCD ,又∵BD ⊂平面BCD ,∴AD ⊥BD ,即ADB ∠为直角,又∵ACB ∠为直角,∴取AB 的中点O ,连接OC ,OD ,由直角三角形的斜边上的中线性质OA=OB=OC=OD ,可得O 为三棱锥D ABC -外接球的球心,由三棱锥D ABC -外接球的表面积为4π,可得外接球的半径1r =,∴32,1,,22AB BC AC AD =====,∵BC ⊥平面ACD ,ADB ∠为直角,∴三棱锥D ABC -的体积为111313322ACD BC S ⨯=⨯⨯⨯=故选:C12.已知函数()ln k f x x x =+,k R ∈,1e()2g x x-=+,若对任意,()0x ∈+∞,不等式()()f x g x ≥恒成立,则实数k 的取值范围是()A .1k >B .1k ≥C .3k >D .3k ≥【答案】B【分析】将不等式()()f x g x ≥恒成立进行转化,利用参数分离法求函数的最值,即可求实数k 的取值范围.【详解】由()()f x g x ≥恒成立,得对一切()0,x ∈+∞,都有1eln 2k x x x-+>+,即21e ln k x x x ≥+--,记()21e ln p x x x x =+--,则()()2ln 11ln p x x x +='=--,令()0p x '=,得e x =,因为当()0,e x ∈时,()0p x '>;函数()p x 在()0,e 上递增;当()e,x ∈+∞时,()0p x '<;函数()p x 在()e,+∞上递减,所以()()max e 1k p x p ≥==,故选:B.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.在()()5611x x ++-展开式中,含4x 的项的系数是__________.【答案】20【分析】根据二项展开式的通项公式可求出结果.【详解】()51x +的展开式中4x 的系数为45C 5=,()61x -的展开式中4x 的系数为46C 15=,故在()()5611x x ++-展开式中,含4x 的项的系数为20.故答案为:2014.经过椭圆C :22195x y +=的左焦点1F ,作不垂直于x 轴的直线AB ,交椭圆于A 、B两点,2F 是椭圆的右焦点,则2AF B 的周长为_________.【答案】12【分析】通过椭圆中的212BF BF a +=,212AF AF a +=,并通过2AF B 的周长为221122AB AF BF AF BF AF BF ++=+++从而求出周长的值.【详解】因为椭圆C :22195x y +=的左焦点1F 为()2,0-,且作不垂直于x 轴的直线AB交椭圆于A 、B 两点,2F 是椭圆的右焦点()2,0所以2126BF BF a +==,2126AF AF a +==而2AF B 的周长为221122412AB AF BF AF BF AF BF a ++=+++==故答案为:12.15.已知直线l :20kx y k +-+=,则圆2242110x x y y -+--=截直线l 所得的弦长的取值范围是______.【答案】⎡⎤⎣⎦【分析】求出直线l 所过的定点、圆心及半径,根据垂径定理可求弦长的最小值,最大值为直径的长度.【详解】直线l 的方程即()()120k x y ++-=,故直线l 恒过定点()1,2M -.圆的标准方程为()()222116x y -+-=,圆心为()2,1,半径为4,因为()()2212211016--+-=<,所以()1,2M -在圆内,直线l 恒与圆相交.圆心()2,1到点()1,2M -=则圆截直线l 所得的弦长的最小值为=248⨯=.所以圆截直线l 所得的弦长的取值范围是⎡⎤⎣⎦.故答案为:⎡⎤⎣⎦.16.①530.3log 5>,②22,③23e 2>,④1112ln sin cos 884⎛⎫+< ⎝⎭,上述不等式正确的有______(填序号)【答案】②④【分析】由指数对数的运算法则和不等式的性质比较大小.【详解】对于①:500.30.31<=,33log 5log 31>=,∴530.3log 5<,不等式①错误;对于②:ln 2ln e <=,∴ln 222<22<,不等式②正确对于③:22e 2.87.848<=<,∴()11233e8<,即23e 2<,不等式③错误;对于④:211111112ln sin cos ln sin cos ln 12sin cos ln 1sin 8888884⎛⎫⎛⎫⎛⎫⎛⎫+==+⋅=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令()()sin ,0,1f x x x x =-∈,则()1cos 0f x x '=->在()0,1x ∈上恒成立,()f x 在()0,1上单调递增,∴111sin (0)0444f f ⎛⎫=->= ⎪⎝⎭,11sin 44<,得115ln 1sin ln 1ln 444⎛⎫⎛⎫+<+= ⎪ ⎪⎝⎭⎝⎭,45ln5544ln ln ln e=11444⎛⎫==< ⎪⎝⎭,∴51ln 44<,∴11512ln sin cos ln 8844⎛⎫+<< ⎪⎝⎭,不等式④正确.故答案为:②④三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.为调查学生住宿情况,某教育主管部门从甲、乙两所学校各抽取200名学生参与调查,调查结果分为“住校”与“走读”两类,结果统计如下表:住校人数走读人数合计甲校80120200乙校60140200合计140260400参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:()20P K k α= 0.10.050.010.0050.0010k 2.706 3.841 6.6357.87910.828(1)分别估计甲,乙两所学校学生住校的概率;(2)能否有95%的把握认为住校人数与不同的学校有关?【答案】(1)甲:0.4,乙:0.3(2)有【分析】(1)根据表格进行数据分析,直接求出两所学校学生住校的概率;(2)计算2K 的观测值,对照参数下结论.(1)由表格数据得,甲校学生住校的概率估计值是800.4200=,乙校学生住校的概率估计值是600.3200=.(2)由题意可得2K 的观测值为()24008014060120400 4.396 3.84114026020020091⨯⨯-⨯=≈>⨯⨯⨯所以有95%的把握认为住校人数与不同的学校有关.18.在公比大于0的等比数列{}n a 中,已知354a a a =,且2a ,43a ,3a 成等差数列.(1)求{}n a 的通项公式;(2)已知12n n S a a a = ,试问当n 为何值时,n S 取得最大值,并求n S 的最大值.【答案】(1)42nn a -=;(2)当3n =或4时,n S 取得最大值,()max 64n S =.【分析】(1)设{}n a 的公比为q ,由354a a a =,得41a =,再根据2a ,43a ,3a 成等差数列,求得公比即可.(2)根据(1)得到(7)321(4)21222n n n n n S a a a -++++-=== ,再利用二次函数的性质求解.【详解】(1)设{}n a 的公比为q ,由354a a a =,即244a a =得41a =或40a =(舍).因为2a ,43a ,3a 成等差数列,所以2346a a a +=,即231116a q a q a q +=则2610q q --=,解得12q =或13q =-(舍),又3411a a q ==,故18a =.所以141822n n n a --⎛⎫=⨯= ⎪⎝⎭.(2)(7)321(4)21222n nn n n S a a a -++++-=== ,又()2717222n ny n n -==-+,该二次函数对称轴为72,又n N +∈,故当3n =或4时,二次函数取得最大值6,故当3n =或4时,n S 取得最大值6264=,即()max 64n S =.19.如图,在直棱柱1111ABCD A B C D -中,底面四边形ABCD 14AA AC ==,E 为AB 的中点,F 为1CC 的中点.(1)证明://EF 平面1ACD ;(2)若点P 为线段EF 上的动点,求点P 到平面1ACD 的距离.【答案】(1)证明见详解;(2)17.【分析】(1)取BC 的中点G ,连接FG ,EG ,1BC ,证明平面EFG ∥平面1ACD ,原题即得证;(2)连接BD 与AC 相交于点O ,利用11E ACD D ACE V V --=求解.【详解】(1)证明:如图,取BC 的中点G ,连接FG ,EG ,1BC .∵G 为BC 的中点,E 为AB 的中点,∴EG AC ∥,因为AC ⊂平面1ACD ,EG ⊄平面1ACD ,所以//EG 平面1ACD .∵G 为BC 的中点,F 为1CC 的中点,∴1FG BC ∥.∵直棱柱1111ABCD A B C D -,∴11AD BC ∥,∴1//AD FG ,因为1AD ⊂平面1ACD ,FG ⊄平面1ACD ,所以//FG 平面1ACD .∵EG FG G = ,,EG FG ⊂平面EFG ,∴平面EFG ∥平面1ACD .又∵EF ⊂平面EFG ,∴//EF 平面1ACD .(2)解:如图,连接BD 与AC 相交于点O ,在1Rt ADD △中,1AD ===,同理1CD 由菱形ABCD 可知AC BD ⊥,2OA OC ==,在Rt OAB 中,1OB =.设点P 到平面1ACD 的距离为d ,由//EF 平面1ACD ,可知点E 到平面1ACD 的距离也为d ,由1OD ==可得1ACD △的面积为142⨯ACE△的面积为11212⨯⨯=.有1144133D ACE V -=⨯⨯=,1133E ACD V d d -=⨯=,由11E ACD D ACE V V --=43=,可得d =故点P 到平面1ACD20.已知抛物线C 的顶点为坐标原点,焦点在y 轴上,点()2,1Q -关于x 轴的对称点P 在抛物线C 上.(1)求抛物线C 的方程;(2)A 、B 是抛物线C 上异于点P 的两个动点,记直线PA 和直线PB 的斜率分别为1k 、()2120k k k ≠,若12112k k +=,求证:直线AB 过定点.【答案】(1)24x y=(2)证明见解析【分析】(1)由题意,设抛物线C 的方程为2x ay =,将点P 的坐标代入抛物线C 的方程,求出a 的值,由此可求得抛物线C 的方程;(2)分析可知直线AB 的斜率存在,设直线AB 的方程为=+y kx b ,设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,利用斜率公式以及韦达定理可求得b 的值,即可求得直线AB 所过定点的坐标.【详解】(1)解:由题意可知,设抛物线C 的方程为2x ay =,易知点()2,1P ,由题意可得224a ==,所以,抛物线C 的方程为24x y =.(2)解:设点()11,A x y 、()22,B x y ,则21111111124224x y x k x x --+===--,同理2214x k +=,若直线AB 的斜率不存在,此时直线AB 与抛物线C 只有一个交点,不合乎题意.所以,直线AB 的斜率存在,设直线AB 的方程为=+y kx b ,联立2=4=+x yy kx b⎧⎨⎩可得2440x kx b --=,216160k b ∆=+>,由韦达定理可得124x x k +=,124x x b =-,()()121212121244114422224x x k k x x x x x x +++=+==+++++,可得124440x x b -=--=,解得1b =-,即直线AB 的方程为1y kx =-,所以,直线AB 过定点()0,1-.21.已知函数()2f x ax =,()lng x x x =.(1)若()()f x g x ≥恒成立,求实数a 的取值范围;(2)若=1a ,()()()1G x f x g x =--,且1mn >,证明:()()0G m G n +>.【答案】(1)1a ≥e(2)证明见解析【分析】(1)由()()f x g x ≥分离参数得ln xa x≥,构造函数,求函数的最值,即可得a 的取值范围;(2)由1mn >,可知m 与n 至少有一个大于1,假设1n >,则1m n>,求导,可得函数()G x 单调递增,所以()()()1G m G n G n G n ⎛⎫+>+ ⎪⎝⎭,证明()10G n G n ⎛⎫+> ⎪⎝⎭即可.(1)由()()f x g x ≥,即2ln ax x x ≥,0x >,所以ln xa x≥,设()ln x h x x =,则()21ln xh x x -'=,令()0h x '=,解得=e x ,所以当0e x <<时,()0h x '>,()h x 单调递增,当e x >时,()0h x '<,()h x 单调递减,所以当=e x 时,()h x 取最大值为()1e eh =,所以1a ≥e ;(2)由1mn >,可知m 与n 至少有一个大于1,假设1n >,则1m n>,又()()()21ln 1G x f x g x x x x =--=--,则()2ln 1G x x x '=--,()1212x G x x x-''=-=,令()0G x ''=,得1=2x ,当102x <<时,()0G x ''<,()G x '单调递减,当12x >时,()0G x ''>,()G x '单调递增,所以()1ln 202G x G ⎛⎫''≥=> ⎪⎝⎭,所以()G x 在()0,+∞上单调递增,所以()1G m G n ⎛⎫> ⎪⎝⎭,则()()()221111ln 11G m G n G n G n n n n n n n ⎛⎫+>+=--+-- ⎪⎝⎭11ln n n n n n ⎛⎫⎛⎫=--- ⎪⎪⎝⎭⎝⎭,又1n n -在1n >时单调递增,所以当1n >时,10n n->,设()1ln F x x x x =--,1x >,则()22222131112410x x x F x x x x x ⎛⎫-+ ⎪-+⎝⎭'=+-==>恒成立,所以()F x 在()1,+∞上单调递增,则()()10F x F >=,所以当1n >时,1ln 0n n n-->,所以11ln 0n n n n n ⎛⎫⎛⎫---> ⎪⎪⎝⎭⎝⎭,即()()0G m G n +>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知圆C 的圆心坐标为()1,0,圆的半径为1.以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系且取相同单位长度.(1)写出圆C 的极坐标方程,(2)将射线l ;0,02πθααρ⎛⎫=-<<> ⎪⎝⎭绕极点逆时针旋转3π得射线m ,设m ,l 与圆C 的交点分别为A ,B .求三角形AOB 的面积的最大值.【答案】(1)2cos ρθ=;(2)最大值为334.【分析】(1)方法一:先求圆的直角坐标方程,再互为极坐标方程;方法二:直接利用极坐标方程的意义求解即可.(2)射线m 的方程为0,032ππθααρ⎛⎫=+-<<> ⎪⎝⎭,进而根据极坐标的意义结合三角形的面积公式得12cos 2cos sin 233AOBS ππαα∆⎛⎫=⨯⨯+⨯ ⎪⎝⎭,再化简求值即可.【详解】解:(1)法一:以原点为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的普通方程为()2211x y -+=,令cos x ρθ=,sin y ρθ=得C 的极坐标方程为2cos ρθ=.法二:如图.设(),P ρθ为圆上任一点﹐在直角三角形 OPB 中,2cos OP θ=,∴2cos ρθ=.(2)由题意得射线m 的方程为0,032ππθααρ⎛⎫=+-<<> ⎪⎝⎭,∴()2cos ,B αα,2cos ,33A ππαα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,0,02παρ⎛⎫-<<> ⎪⎝⎭,12cos 2cos sin233AOB S ππαα∆⎛⎫=⨯⨯+⨯ ⎪⎝⎭1cos cos 3223πααααα⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭231cos 231cos sin sin 22222ααααα+-=-⨯23πα⎛⎫=+ ⎪⎝⎭.∵02πα-<<,∴22333πππα-<+<.∴当203πα+=,即6πα=-时,AOB S ∆的最大值为334.[选修4-5:不等式选讲]23.已知函数()222f x x x =+--.(1)解不等式()6f x ≥.(2)已知0a >,0b >,()()1g x f x x =-+的最大值m ,11m a b+=,求22a b +的最小值.【答案】(1){10x x ≤-或}2x ≥;(2)最小值为89.【分析】(1)分2x >,12x -≤≤和1x <-三种情况解不等式;(2)先利用绝对值三角不等式求出()g x 的最大值为3m =,从而得113a b+=,所以()222221119a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭,化简后利用基本不等式求解即可【详解】解:(1)函数()4,22223,124,1x x f x x x x x x x +>⎧⎪=+--=-≤≤⎨⎪--<-⎩,当2x >时,不等式()6f x ≥即为46+≥x ,解得2x ≥,所以2x >;当12x -≤≤时,不等式()6f x ≥即为36x ≥,解得2x ≥,所以2x =;当1x <-时,不等式()6f x ≥即为46x --≥,解得10x ≤-,所以10x ≤-.综上所述,不等式()6f x ≥的解集为{10x x ≤-或}2x ≥;(2)()()()()112123=-+=+--≤+--=g x f x x x x x x ,所以()g x 的最大值为3m =,则113a b+=,故()222222222111122299⎛⎫⎛⎫+=+⋅+=++++ ⎪ ⎪⎝⎭⎝⎭b a a b a b a b a b a b ba 18299⎛⎫≥++= ⎪ ⎪⎝⎭,当且仅当2222a b b a=且22a b b a =,即23a b ==时取等号,故22a b +的最小值为89.。
全国卷模拟
数 学
第I 卷(客观题共60分)
一、选择题(共12题,每题5分,共60分)
1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ∩N 中元素的个数为( )
A .2
B .3
C .5
D .7
2.复数(3+2i )i 等于( )
A .﹣2﹣3i
B .﹣2+3i
C .2﹣3i
D .2+3i
3.已知向量a=(1,2),b=(1,0),c=(3,4),,若λ为实数,(a+λb)//c ,则λ=( )
A .14
B .12
C .1
D .2
4.已知sin 2α=
32,则cos 2(α+4π)=( ). A .61 B .3
1 C .21 D .3
2 5.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( ).
A .108 cm 3
B .100 cm 3
C .92 cm 3
D .84 cm 3
6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos2θ=( )
A .–45
B .–35
C .35
D .45
7.若直线y =2x 上存在点(x ,y)满足约束条件⎩⎪⎨⎪⎧ x +y -3≤0,x -2y -3≤0,
x ≥m ,则实数m 的最大值为( )
A .–1
B .1 C.32
D .2 8.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B= π6,C=π4
,则△ABC 的面积为( ).
A .23+2
B .3+1
C .23–2
D .3–1
9.设F 为抛物线C :y 2
=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A ,B 两点,则|AB|=( ) A .
3
30 B . 6 C . 12 D . 7 3 10.如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2, ┄,a N ,输出A,B,则( )
A .A +
B 为a 1,a 2, ┄,a N 的和
B .(A + B)/2为a 1,a 2, ┄,a N 的算术平均数
C .A 和B 分别为a 1,a 2, ┄,a N 中的最大数和最小数
D .A 和B 分别为a 1,a 2, ┄,a N 中的最小数和最大数
11.若0<x 1<x 2<1,则( )
A. 1221ln ln x x e e x x ->-
B. 1212ln ln x x e e x x ->-
C. 2112x x e x e x >
D. 2112x x e x e x <
12.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0的取值范围是( )
A . [﹣1,1]
B . [﹣21,21]
C . [﹣2,2]
D . [﹣22,2
2]
第II 卷(主观题共40分)
二、填空题(共4个,每个5分,共20分)
13.若f(x)=ln(e 3x
+1)+ax 是偶函数,则a=____________.
14.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为______
15.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧 面积为 。
16.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移
π2个单位后,与函数y =sin(2x+π3
)的图像重合,则φ=__________.
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题17~21:每小题12分,共60分。
17.在等比数列{a n }中,a 2=3,a 5=81.
求:(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n
18.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点,
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)求四面体B —DEF 的体积;
19. 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:
服用A 药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0
3.1 2.3 2.4
服用B 药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5
1.2
2.7 0.5
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
A B C
D E F
H
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
20.已知点P (2,2),圆C :x 2+y 2
﹣8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.
(1)求M 的轨迹方程;(2)当|OP|=|OM|时,求l 的方程及△POM 的面积.
21.已知函数f(x)=(a+1)lnx+ax 2+1.
(1)讨论函数f(x)的单调性; (2)设a ≤-2,证明:对任意x 1,x 2∈(0,+ ∞),|f(x 1)-f(x 2)|≥4|x 1-x 2|.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22. 不等式解法
设函数f(x)=|x-a|+3x,其中a>0。
(1)当a=1时,求不等式f(x)≥3x+2的解集;
(2)若不等式f(x)≤0的解集为{x|x ≤-1} ,求a 的值。
23.极坐标及参数方程
在直角坐标系xoy 中,直线L 的参数方程为⎪⎪⎩
⎪⎪⎨⎧-=-=t y t x 225223(t 为参数)。
在极坐标系(与直角坐
标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ。
(1)求圆C 的直角坐标方程;
(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为(3,5),求|PA|+|PB|。