八年级下册第19.1平行四边形 能力提升卷
- 格式:doc
- 大小:301.81 KB
- 文档页数:2
八年级初二数学第二学期平行四边形单元提高题学能测试试卷一、解答题1.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.2.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.3.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.4.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.5.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C 作CG ON ⊥,垂足为点G则90CGB ∠=90GCB CBG ∴∠+∠= 又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .6.如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.7.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P 在CB 延长线上时,其余条件不变(如图3).试探索PD 、PE 、CF 之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l 1:y=443x -+与直线l 2:y=2x+4相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为1.求点P 的坐标.8.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC =_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.9.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC 的外部作等腰Rt CED ,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.10.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:AG AE=(2)过点F作FP AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(211【分析】(1)根据题意先证明四边形ABCD是平行四边形,再由AB=AD可得平行四边形ABCD是菱形;(2)根据菱形的性质得出OA的长,根据直角三角形斜边中线定理得出OE=12AC,在Rt ACE∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD ∥,∴OAB DCA ∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE -故答案为(211.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.2.(1)见解析;(23;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE ,BF=DF ,可得∠EBD=∠EDB ,∠FBD=∠FDB ,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF ,可证BE ∥DF ,DE ∥BF ,可得四边形DEBF 是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF 的长;(3)过点D 作BC 的垂线,垂足为H ,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH 的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD 平分∠ABC ,∴∠ABD=∠DBC ,∵EF 垂直平分BD ,∴BE=DE,BF=DF,∵∠EBD=∠EDB,∠FBD=∠FDB,∴∠EBD=∠BDF,∠EDB=∠DBF,∴BE∥DF,DE∥BF,∴四边形DEBF是平行四边形,且BE=DE,∴四边形BEDF是菱形;(2)过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,FH=3DH=3,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴FC=FH+CH=3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.3.(1)详见解析;(2)2BH AE,理由详见解析【分析】1)如图1,连接DF ,根据对称得:△ADE ≌△FDE ,再由HL 证明Rt △DFG ≌Rt △DCG ,可得结论;(2)如图2,作辅助线,构建AM=AE ,先证明∠EDG=45°,得DE=EH ,证明△DME ≌△EBH ,则EM=BH ,根据等腰直角△AEM 得:2EM AE =,得结论;【详解】证明:(1)如图1,连接DF ,∵四边形ABCD 是正方形,∴DA DC =,90A C ∠=∠=︒,∵点A 关于直线DE 的对称点为F ,∴ADE ∆≌FDE ∆,∴DA DF DC ==,90DFE A ∠=∠=︒,∴90DFG ∠=︒,在Rt DFG ∆和Rt DCG ∆中,∵DF DC DG DG =⎧⎨=⎩∴Rt DFG ∆≌Rt DCG ∆(HL ),∴GF GC =;(2)2BH AE =,理由是:如图2,在线段AD 上截取AM ,使AM AE =,∵AD AB =,∴DM BE =,由(1)知:12∠=∠,34∠=∠,∵90ADC ∠=︒,∴123490∠+∠+∠+∠=︒,∴222390∠+∠=︒,∴2345∠+∠=︒,即45EDG ∠=︒,∵EH DE ⊥,∴90DEH ∠=︒,DEH ∆是等腰直角三角形,∴190AED BEH AED ∠+∠=∠+∠=︒,DE EH =,∴1BEH ∠=∠,在DME ∆和EBH ∆中,1DM BE BEH DE EH =⎧⎪∠=∠⎨⎪=⎩∴DME ∆≌EBH ∆∴EM BH =,Rt AEM ∆中,90A ∠=︒,AM AE =,∴EM =,∴BH ; 【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.4.(1)8-2t ,8-t ;(2)83或74 【分析】(1)根据P 、Q 的运动速度以及AB 和CD 的长即可表示;(2)分PQ=PB 、BP=BQ 和QP=QB 三种情况进行分析即可.【详解】解:(1)由题意可得:DP=2t ,AQ=t ,∴PC=8-2t ,BQ=8-t ,故答案为:8-2t ,8-t ;(2)当PQ=PB 时,如图①,QH=BH ,则t+2t=8,解得,t=83, 当PQ=BQ 时,(2t-t )2+62=(8-t )2,解得,t=74,当BP=BQ时,(8-2t)2+62=(8-t)2,方程无解;∴当t=83或74时,△BPQ为等腰三角形.【点睛】本题考查的是矩形的性质、等腰三角形的判定,掌握性质并灵活运用性质是解题的关键,注意分情况讨论思想的应用.5.(1)2;(2)证明见解析过程;(3)AE+EF-AF=2OA.【分析】(1)通过测量可得;(2)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由SAS可证△ABE≌△CBE,可得AE=CE,由线段的和差关系可得结论;(3)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由SAS可证△ABE≌△CBE,可得AE=CE,可得结论.【详解】解:(1)△AEF的周长是OA长的2倍,故答案为:2;(2)如图4,过点C作CG⊥ON,垂足为点G,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO,在△BCG与△ABO中,GCB ABO GCB AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCG ≌△ABO (AAS ),∴BG=AO ,CG=BO ,∵∠AOB=90°=∠CGB=∠CFO ,∴四边形CGOF 是矩形,∴CF=GO ,CG=OF=OB ,在△ABE 和△CBE 中,BE BE ABE CBE AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE (SAS ),∴AE=CE ,∴△AEF 的周长=AE+EF+AF=CE+EF+AF=CF+AF=GO+AF=BG+BO+AF=2AO ;(3)如图5,过点C 作CG ⊥ON 于点G ,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO ,在△BCG 与△ABO 中GCB ABO GCB AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCG ≌△ABO (AAS ),∴BG=AO ,BO=CG ,∵∠AOB=90°=∠CGB=∠CFO ,∴四边形CGOF 是矩形,∴CF=GO ,CG=OF=OB ,在△ABE 和△CBE 中,BE BE ABE CBE AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE (SAS ),∴AE=CE ,∴AE+EF-AF=EF+CE-AF=NB+BO-(OF-AO )=OA+OB-(OB-OA )=2OA .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,矩形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.6.(1)①证明见解析;②60EBF ∠=︒;(2)3IHFH =;(3)222EG AG CE =+. 【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)3IH FH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =,EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩,BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒,3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩,DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.7.【变式探究】:详见解析;【结论运用】:4;【迁移拓展】:P 1的坐标为(12- ,3)或(12,5) 【解析】 试题分析:【变式探究】按照【问题情境】的证明思路即可解决问题.【结论运用】过E 作EQ BF ⊥,利用问题情境中的结论可得PG PH EQ +=,易证EQ DC BF DF ==,,只需求即可.【迁移拓展】分成两种情况进行讨论.试题解析:【变式探究】:连接,AP∵PD ⊥AB ,PE ⊥AC ,CF ⊥AB ,ABC ACP ABP S S S ∴=-,111222AB CF AC PE AB PD ∴⨯=⨯-⨯, AB AC =,.CF PE PD ∴=-【结论运用】过E 作EQ BF ⊥,垂足为Q ,如图④,∵四边形ABCD 是长方形,90AD BC C ADC ∴=∠=∠=︒,.835AD CF BF BC CF AD CF ==∴=-=-=,,.由折叠可得:DF BF BEF DEF =∠=∠,.590DF C ∴=∠=︒.,222253 4.DC DF CF ∴=-=-=90EQ BC C ADC ⊥∠=∠=︒,,90EQC C ADC ∴∠=︒=∠=∠.∴四边形EQCD 是长方形.4EQ DC ∴==.∵AD ∥BC ,DEF EFB ∴∠=∠.BEF DEF BEF EFB BE BF ∠=∠∴∠=∠∴=,..由问题情境中的结论可得:4PG PH EQ PG PH +=∴+=.. PG PH ∴+的值为4.【迁移拓展】由题意得:(04),?(30),(20).A B C -,,, 2234 5.AB =+=5.BC = .AB BC ∴=(1)由结论得:1111 +?4,PD PE OA ==11111 3.PD PE =∴=,即点1P 的纵坐标为3,又点1P 在直线l 2上 ∴24y x =+=3 ,∴12x =-. 即点1P 的坐标为1,3.2⎛⎫-⎪⎝⎭ (2) 由结论得:22224,P E P D OA -== 22221 5.P D P E =∴=, 即点2P 的纵坐标为5,又点2P 在直线l 2上 ∴24y x =+=5.∴12x =. 即点2P 的坐标为1,5.2⎛⎫⎪⎝⎭8.(1)12;(2)13ADAC=.【分析】(1)易证四边形CDEB是矩形,由条件“四边形ADBE是平行四边形可得AD=EB=DC,从而得到ADAC的值.(2)由题可知当DE AC⊥时,DE最短,可以证到四边形DCBE是矩形.从而可以得到各边关系从而求出ADAC的值.【详解】解:(1)∵四边形ADBE是平行四边形,∴AD∥BE,AD=BE.∵DE⊥AC,∠ACB=90°,∴∠ADE=∠C=90°.∴DE∥BC.∵DC∥BE,DE∥BC,∠C=90°,∴四边形DCBE是矩形.∴EB=DC.∴AD=DC.∴ADAC==12.故答案为:12.(2)如图,由题可知当DE AC⊥时,DE最短.最小值是6.∵四边形FDBE 是平行四边形,∴//DF BE ,DF BE =.∵DE AC ⊥,90C ∠=︒,∴90ADE C ∠=∠=︒.∴//DE BC .∴四边形CDEB 是平行四边形,又∵90C ∠=︒,∴四边形CDEB 是矩形.∴BE CD =,6DE BC ==.∴DF CD =.∵AF AD =,∴2DC DF AD ==.∴3AC AD DC AD =+=. ∴13AD AC =. 【点睛】 本题考查了平行线之间的距离、平行线的判定、矩形的判定与性质、平行四边形的性质等知识,具有一定的综合性;本题还考查了阅读能力,体现了自主探究与合作交流相结合的新课程理念,是一道好题.9.(1)证明见解析;(2)①AF 2AE =②42或22.【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=,AB AC =,AC DF ∴=,DE EC =,AE EF ∴=,DEC AEF 90∠∠==,AEF ∴是等腰直角三角形, AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K . 四边形ABFD 是平行四边形, AB//DF ∴,DKE ABC 45∠∠∴==, EKF 180DKE 135∠∠∴=-=,EK ED =, ADE 180EDC 18045135∠∠=-=-=, EKF ADE ∠∠∴=, DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩, EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=, FEA BED 90∠∠∴==, AEF ∴是等腰直角三角形,AF 2AE ∴=. ②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,如图④中当AD AC =时,四边形ABFD 是菱形,易知AE AH EH 32222=-=-=,综上所述,满足条件的AE 的长为4222【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.10.(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形的性质证得BG=DE ,利用SAS 可证明ABG ≌ADE ,再利用全等的性质即可得到结论;(2)过M 作MK ⊥BC 于K ,延长EF 交AB 于T ,根据ASA 可证明MHK △≌AED ,得到AE=MH ,再利用AAS 证明TNF △≌DAE △,得到NF=AE ,从而证得MH=NF ,即可得到结论.【详解】证明:(1)∵四边形ABCD 与四边形CEFG 均为正方形, ∴AB=AD=BC=CD ,CG=CE ,∠ABG=∠ADE=90°, ∴BC -GC=CD -EC ,即BG=DE ,∴ABG ≌ADE ,∴AG=AE ;(2)过M 作MK ⊥BC 于K ,则四边形MKCD 为矩形, ∴∠MKH=∠ADE=90°,MK=CD ,∠AMK=90°, ∴MK=AD ,∠AMP+∠HMK=90°,又∵FP AE ,∴∠EAD+∠AMP=90°,∴∠HMK=∠EAD ,∴MHK △≌AED ,∴MH=AE ,延长EF 交AB 于T ,则四边形TBGF 为矩形,∴FT=BG ,∠FTN=∠ADE=90°,∵ABG ≌ADE ,∴DE=BG ,∴FT=DE ,∵FP ⊥AE ,∠DAB=90°,∴∠N+∠NAP=∠DAE+∠NAP=90°,∴∠N=∠DAE ,∴TNF △≌DAE △,∴FN=AE ,∴FN=MH ,∴FN -FH=MH -FH ,∴NH=FM .【点睛】本题考查了正方形的性质,矩形的判定与性质,及全等三角形的判定与性质,熟练掌握各性质、判定定理是解题的关键.。
八年级初二数学第二学期平行四边形单元提高题学能测试试卷一、解答题1.已知,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.2.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形;(3)连接EH,交BC于点O,若OC=OH,求证:EF⊥EG.3.如图,在平行四边形ABCD 中,AB ⊥AC ,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC ,AD 于点E ,F ,连接BF .(1)如图1,在旋转的过程中,求证:OE =OF ;(2)如图2,当旋转至90°时,判断四边形ABEF 的形状,并证明你的结论; (3)若AB =1,BC =5,且BF =DF ,求旋转角度α的大小.4.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.5.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .6.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =AC=2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.7.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.8.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q .①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.9.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.10.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)DE 2CF ;(2)在情况1与情况2下都相同,详见解析;(3)AF +CF =2DF 或|AF -CF |2【分析】(1)易证△BCD 是等腰直角三角形,得出2CB ,即可得出结果;(2)情况1:过点C 作CG ⊥CF ,交DF 于G ,设BC 交DF 于P ,由ASA 证得△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直角三角形,CF ,连接BE ,设∠CDG=α,则∠CBF=α,∠DEA=∠ADE=90°-α,求出∠DAE=2α,则∠EAB=90°-2α,∠BEA=∠ABE=12(180°-∠EAB )=45°+α,∠CBE=45°-α,推出∠FBE=45°,得出△BEF 是等腰直角三角形,则EF=BF ,推出EF=DG ,DE=FG ,得出CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,由ASA 证得△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直角三角形,得CF ,设∠CDG=α,则∠CBF=α,证明△BEF 是等腰直角三角形,得出EF=BF ,推出DE=FG ,得出CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,由(2)得△BEF 是等腰直角三角形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得出∠EFA=∠BFA=12∠BFE=45°,则△HDF 是等腰直角三角形,得DF ,DH=DF ,∵∠HDF=∠ADC=90°,由SAS 证得△HDA ≌△FDC ,得CF=HA ,即可得出;②当F 在AB 的下方时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,证明△BFN 是等腰直角三角形,得BF=NF ,由SSS 证得△CNF ≌△CBF ,得∠NFC=∠BFC=12∠BFD=45°,则△DFH 是等腰直角三角形,得,DF=DH ,由SAS证得△ADF ≌△CDH ,得出CH=AF ,即可得出DF ;③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,由(2)得△BEF 是等腰直角三角形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得∠EFA=∠BFA=12∠BFE=45°,则△HDF 是等腰直角三角形,得出DF ,DH=DF ,由SAS 证得△ADC ≌△HDF ,得出AH=CF ,即可得出;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,证明△BFE 是等腰直角三角形,得EF=BF ,由SSS 证得△ABF ≌△AEF ,得∠EFA=∠BFA=12∠BFE=45°,则∠DFH=∠EFA=45°,△HDF 是等腰直角三角形,得DH=DF ,,由SAS 证得△HDA ≌△FDC ,得出AF=CF ,即可得出DF .【详解】解:(1)∵四边形ABCD 是正方形,∴CD=CB ,∠BCD=90°,∴△BCD 是等腰直角三角形,∴CB ,当点E 、F 与点B 重合时,则CF ,故答案为:CF ;(2)在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中结论相同;理由如下:情况1:∵四边形ABCD 是正方形,∴CD=CB=AD=AB=AE ,∠BCD=∠DAB=∠ABC=90°,过点C 作CG ⊥CF ,交DF 于G ,如图②所示:则∠BCD=∠GCF=90°,∴∠DCG=∠BCF ,设BC 交DF 于P ,∵BF ⊥DE ,∴∠BFD=∠BCD=90°,∵∠DPC=∠FPB ,∴∠CDP=∠FBP ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴2,连接BE ,设∠CDG=α,则∠CBF=α,∠ADE=90°-α,∵AD=AE ,∴∠DEA=∠ADE=90°-α,∴∠DAE=180°-2(90°-α)=2α,∴∠EAB=90°-2α,∵AB=AE ,∴∠BEA=∠ABE=12(180°-∠EAB )=12(180°-90°+2α)=45°+α, ∴∠CBE=90°-(45°+α)=45°-α,∴∠FBE=∠CBE+∠CBF=45°-α+α=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴EF+EG=DG+EG ,即DE=FG ,∴DE=2CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,如图③所示:∵∠GCF=∠BCD=90°,∴∠DCG=∠BCF ,∵∠FPD=∠BPC ,∴∠FDP=∠PBC ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴2,设∠CDG=α,则∠CBF=α,同理可知:∠DEA=∠ADE=90°-α,∠DAE=2α,∴∠EAB=90°+2α,∵AB=AE ,∴∠BEA=∠ABE=45°-α,∴∠FEB=∠DEA-∠AEB=90°-α-(45°-α)=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴DE=FG ,∴DE=2CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,如图④所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ), ∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴2,DH=DF ,∵∠HDF=∠ADC=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC DA DC ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴CF=HA ,2,即2DF ;②当F 在AB 的下方时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,如图⑤所示:设∠DAE=α,则∠CDN=∠CND=90°-α,∴∠DCN=2α,∴∠NCB=90°-2α,∵CN=CD=CB ,∴∠CNB=∠CBN=12(180°-∠NCB )=12(180°-90°+2α)=45°+α, ∵∠CNE=180°-∠CND=180°-(90°-α)=90°+α,∴∠FNB=90°+α-(45°+α)=45°,∴△BFN 是等腰直角三角形,∴BF=NF ,在△CNF 和△CBF 中,CN CB CF CF NF BF ⎧⎪⎨⎪⎩===,∴△CNF ≌△CBF (SSS ),∴∠NFC=∠BFC=12∠BFD=45°, ∴△DFH 是等腰直角三角形,∴2,DF=DH ,∵∠ADC=∠HDE=90°,∴∠ADF=∠CDH ,在△ADF 和△CDH 中,AD CD ADF CDH DF DH ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CDH (SAS ),∴CH=AF ,∴FH=CH+CF=AF+CF ,∴AF+CF=2DF ;③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,如图⑥所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ), ∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴2,DH=DF ,∵∠ADC=∠HDF=90°,∴∠ADH=∠CDF ,在△ADC 和△HDF 中,AD CD ADH CDF DH DF ⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△HDF (SAS ),∴AH=CF ,∴HF=AF-AH=AF-CF ,∴2DF ;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,如图⑦所示:∵AB=AE=AD ,∴∠AED=∠ADE ,∵∠PFD=∠PAB=90°,∠FPD=∠BPA ,∴∠ABP=∠FDP ,∴∠FEA=∠FBA ,∵AB=AE ,∴∠AEB=∠ABE ,∴∠FEB=∠FBE ,∴△BFE 是等腰直角三角形,∴EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴∠DFH=∠EFA=45°,∴△HDF 是等腰直角三角形,∴DH=DF ,2DF ,∵∠HDF=∠CDA=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC AD CD ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴AF=CF ,∴AH-AF=CF-AF=HF ,∴DF,综上所述,线段AF、CF、DF三者之间的数量关系:DF或DF,故答案为:DF或DF.【点睛】本题是四边形综合题,主要考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的判定与性质是解题的关键.2.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,得出BC∥FG,BC=12FG,证出AD∥FH,AD∥FH,由平行四边形的判定方法即可得出结论;(3)连接EH,CH,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,∵AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.3.(1)证明见解析;(2)平行四边形,理由见解析;(3)45°【分析】(1)由平行四边形的性质得出∠OAF=∠OCE,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【详解】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF ∥BE ,∴四边形ABEF 是平行四边形;(3)在Rt △ABC 中,AB =1,BC∴AC =2,∴OA =1=AB ,∴△ABO 是等腰直角三角形,∴∠AOB =45°,∵BF =DF ,∴△BFD 是等腰三角形,∵四边形ABCD 是平行四边形,∴OB =OD ,∴OF ⊥BD (等腰三角形底边上的中线是底边上的高),∴∠BOF =90°,∴∠α=∠AOF =∠BOF ﹣∠AOB =45°.【点睛】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO 是等腰直角三角形是解本题的关键.4.(1)见解析;(2)①见解析;②PE =【分析】(1)由四边形ABCD 是正方形知∠D=∠ECQ=90°,由E 是CD 的中点知DE=CE ,结合∠DEP=∠CEQ 即可得证;(2)①由PB=PQ 知∠PBQ=∠Q ,结合AD ∥BC 得∠APB=∠PBQ=∠Q=∠EPD ,由△PDE ≌△QCE 知PE=QE ,再由EF ∥BQ 知PF=BF ,根据Rt △PAB 中AF=PF=BF 知∠APF=∠PAF ,从而得∠PAF=∠EPD ,据此即可证得PE ∥AF ,从而得证;②设AP x =,则1PD x =-,1CQ x =-,2BQ x =-,利用三角形中位线定理得到()122EF x =-,由EF AP =,构造方程即可求得23x =,在Rt PDE ∆中,利用勾股定理即可求解.【详解】 (1)∵四边形ABCD 是正方形,∴∠D=∠ECQ=90°,∵E 是CD 的中点,∴DE=CE ,又∵∠DEP=∠CEQ ,∴△PDE ≌△QCE (ASA );(2)①∵PB=PQ ,∴∠PBQ=∠Q ,∵AD ∥BC ,∴∠APB=∠PBQ=∠Q=∠EPD ,∵△PDE ≌△QCE ,∴PE=QE ,∵PF=BF ,∴EF 是PBQ ∆的中位线,∴EF ∥BQ ,∴在Rt △PAB 中,AF=PF=BF ,∴∠APF=∠PAF ,∴∠PAF=∠EPD ,∴PE ∥AF ,∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形;②设AP x =,则1PD x =-,∴1CQ x =-,∴2BQ x =-,∵EF 是PBQ ∆的中位线, ∴()122EF x =-, ∵EFAP =, ∴()122x x -=, ∴23x =, 在Rt PDE ∆中,222PD DE PE +=,即22221(1)()32PE -+=,∴PE =. 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、平行四边形的判定和性质以及勾股定理等知识点.掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.5.(1)见解析;(2)见解析.【分析】(1)连接BD ,BD 与AM 交于点O ,连接CO 并延长交于AB ,则CO 与AB 的交点为点N .可先证明△AOD ≌△COD ,再证明△MOB ≌NOB ,从而可得NB =MB ;(2)连接MO 并延长与AE 交于点Q ,连接QC ,则CQ ∥AM .理由如下:由正方形的性质以及平行线等分线段可证QO =MO ,从而可知四边形AQCM 为平行四边形,从而可得CQ∥AM.【详解】解:(1)如图(1),连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO与AB的交点为点N,则CN 为所作.理由:在△AOD与△COD中,∵AD CDADO CDO OD OD⎧⎪∠∠⎨⎪⎩===,∴△AOD≌△COD(SAS),∴∠OAD=∠OCD,∴∠BAM=∠BCN.在△ABM与△CBN中,∵BAM BCN AB CBABM CBN ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABM≌△CBN(ASA),∴CN=AM.(2)如图2连接AC、BD交与O点,连接MO并延长与AE交于点Q,连接QC,则CQ为所求的线段.在正方形ABCD中,OA=OB=OC=OD,AD∥BC,∴QO=MO∴四边形AQCM为平行四边形,∴QC∥AM【点睛】本题考查了作图-基本作图,解决此题的关键是利用正方形的性质求解.6.(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:71+,31+,13+2,33+2 【分析】(1)根据勾股定理计算BC 的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.【详解】(1)∵BD ⊥CD∴∠BDC =90°,BC >CD∵在“准等边四边形”ABCD 中,BC ≠AB ,∴AB =AD =CD =3,∵BD=4,∴BC =225CD BD +=,(2)正确.如图所示:∵AB =AD∴ΔABD 是等腰三角形.∵AC ⊥BD .∴AC 垂直平分BD .∴BC =CD∴CD =AB =AD =BC∴四边形 ABCD 是菱形.(3)存在四种情况,如图2,四边形ABPC 是“准等边四边形”,过C 作CF PE ⊥于F ,则∠CFE=90,∵EP 是AB 的垂直平分线,∴90AEF A ==∠∠ ,∴四边形AEFC 是矩形,在Rt ABC 中,2,2AB AC BC === , ∴22CF AE BE === , ∵2AB PC == ∴2262PF PC CF =-= ∴BEP CFP AEFC S S S S =++四边形ABPC 矩形1262126222222222⎛⎫=⨯⨯++⨯+⨯⨯ ⎪ ⎪⎝⎭332+= 如图4,四边形ABPC 是“准等边四边形”,∵2AP BP AC AB ==== ,∴ABP △是等边三角形, ∴2313(2)2212ABP ABC S S S =+=⨯+⨯⨯=+四边形ACBP ; 如图5,四边形ABPC 是“准等边四边形”,∵2AB BP BC === ,PE 是AB 的垂直平分线,∴,PD AB ⊥ E 是AB 的中点,∴1222BE AB == , ∴2222214222PE PB BE ⎛⎫=-=-= ⎪ ⎪⎝⎭∴ACBP 1141722212222APB ABC S S S =+=⨯⨯+⨯⨯=+四边形 如图6,四边形ABPC 是“准等边四边形”,过P 作PF AC ⊥于F ,连接AP ,∵2AB AC PB ===∴6PE = ∴1612312222APB APC ABPC S SS +=+=⨯+=四边形【点睛】 本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.7.(1)∠EAF=135°;(2)证明见解析.【分析】(1)根据正方形的性质,找到证明三角形全等的条件,只要证明△EBC ≌△FNE (AAS )即可解决问题;(2)过点F 作FG ∥AB 交BD 于点G .首先证明四边形ABGF 为平行四边形,再证明△FGM ≌△DMC (AAS )即可解决问题;【详解】 (1)解:∵四边形ABCD 是正方形,∴90B N CEF ∠=∠=∠=︒,∴90NEF CEB ∠+∠=,90CEB BCE ∠+∠=,∴NEF ECB ∠=∠,∵EC EF =,∴EBC ∆≌FNE ∆∴FN BE =,EN BC =,∵BC AB =∴EN AB =∴EN AE AB AE -=-∴AN BE =,∴FN AN =,∵FN AB ⊥,∴45NAF ∠=,∴135EAF =∠(2)证明:过点F 作//FG AB 交BD 于点G .由(1)可知135EAF =∠,∵45ABD ∠=︒∴135180EAF ABD ∠=︒+∠=︒,∴//AF BG ,∵//FG AB ,∴四边形ABGF 为平行四边形,∴AF BG =,FG AB =,∵AB CD =,∴FG CD =,∵//AB CD ,∴//FG CD ,∴FGM CDM ∠=∠,∵FMG CMD ∠=∠∴FGM ∆≌CDM ∆∴GM DM =,∴2DG DM =,∴2BD BG DG AF DM =+=+.【点睛】本题考查全等三角形的判定和性质、正方形的性质、平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.8.(1)作图见解析;(2)①见解析;②数量关系为:2NQ MQ =或NQ MQ =.理由见解析;【分析】(1)按照题意,尺规作图即可;(2)连接PE ,先证明PQ 垂直平分BE ,得到PB=PE ,再证明60APE ∠=︒,得到30AEP ∠=︒,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答; (3)NQ=2MQ 或NQ=MQ ,分两种情况讨论,作辅助线,证明ABE FQP ∆≅∆,即可解答.【详解】(1)如图1,分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT并延长交边AD 于点E ;图1(2)①连接PE ,如图2,图2点M 是BE 的中点,PQ BE ⊥∴PQ 垂直平分BE .∴PB PE =,∴90906030PEB PBE AEB ∠=∠=︒-∠=︒-︒=︒,∴60APE PBE PEB ∠=∠+∠=︒,∴90906030AEP APE ∠=︒∠=︒-︒=︒,∴60APE PBE PEB ∠=∠+∠=︒,∴90906030AEP APE ∠=︒∠=︒-︒=︒,∴2BP EP AP ==.②数量关系为:2NQ MQ =或NQ MQ =.理由如下,分两种情况:I 、如图3所示,过点Q 作QF AB ⊥于点F 交BC 于点G ,则QF CB =.图3正方形ABCD 中,AB BC =,∴FQ AB =.在Rt ABE △和Rt FQP 中,BE PQAB FQ =⎧⎨=⎩∴()ABE FQP HL ≌.∴30FQP ABE ∠=∠=︒. 又60MGO AEB ∠=∠=︒,∴90GMO ∠=︒, CD AB .∴30N ABE ∠=∠=︒.∴2NQ MQ =.Ⅱ、如图4所示,过点Q 作QF AB ⊥于点F 交BC 于点G ,则QF CB =.图4同理可证ABE FQP ≌.此时60FPQ AEB ∠=∠=︒. 又FPQ ABE PMB ∠=∠+∠,30N ABE ∠=∠=︒.∴30EMQ PMB ∠=∠=︒.∴N EMQ ∠=∠,∴NQ MQ =.【点睛】本题为正方形和三角形变化综合题,难度较大,熟练掌握相关性质定理以及分类讨论思想是解答本题的关键.9.(1)四边形PBCE 为平行四边形,证明过程见解析;(2)见解析;(3)四边形APCE 为矩形,证明过程见解析.【分析】(1)证明四边形ABCD 为平行四边形,从而得BP//CE ,根据内错角相等证明AD//PE,从而可证PE//BC ,得四边形PBCE 为平行四边形;(2)证明△CBP≌△ACE 即可证明CP=AE ;(3)证明四边形APCE 为平行四边形,然后根据三线合一证明∠APC=90°,可证四边形APCE 为矩形.【详解】解:(1)四边形PBCE 为平行四边形.证明:∵AD BC =,AD BC ∥,∴四边形ABCD 为平行四边形,∴PB//EC,∵DAE AEP ∠=∠,∴AD//PE,∴PE//BC,∴四边形PBCE 为平行四边形.(2)∵四边形ABCD 为平行四边形,∴∠B=∠D,AB//CD,∴BAC ACE =∠∠又∵D ∠=BAC ∠,∴∠B=BAC ∠,∴BC=AC ,B ACE ∠=∠∵四边形PBCE 为平行四边形,∴PB=CE,在△CBP 和△ACE 中BP CE B ACE BC AC =⎧⎪∠=∠⎨⎪=⎩∴△CBP≌△ACE.∴CP AE =.(3)四边形APCE 为矩形,证明:∵P 为AB 的中点∴BP=AP ,∵四边形PBCE 为平行四边形,∴BP=CE,∴AP=CE,又∵AB//CD∴四边形APCE 为平行四边形,∵CB=CA ,AP=BP ,∴CP ⊥AB ,∴∠APC=90°,∴ABCD 为矩形.【点睛】本题考查平行四边形的性质和判定,矩形的判定,全等三角形的性质与判定,等腰三角形“三线合一”.熟记平行四边形的判定和矩形的判定定理,能根据题意分析得出线段与线段、角与角之间的关系,选择合适的定理是解决本题的关键.10.(1)123y x =-+;(2)t=23s 时,四边形ABMN 是平行四边形;(3)存在,点Q 坐标为:618,55⎛⎫ ⎪⎝⎭或(3, 1)-或( 3,1)-或155,88⎛⎫- ⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:1 32kb⎧=-⎪⎨⎪=⎩,∴123y x=-+;(2)如图2中,∵四边形ABMN是平行四边形,∴AN∥BM,∴直线AN的解析式为:1133y x=-+,∴10,3N⎛⎫⎪⎝⎭,∴103BM AN==,∵B(3,1),C(0,2),∴BC=10,∴210CM BC BM=-=,∴2102103t=÷=,∴t=23s时,四边形ABMN是平行四边形;(3)如图3中,如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,连接OQ交BC于E,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13 x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
八年级下册特殊的平行四边形 能力提升卷一、选择题1.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则对角线AC 等于( ) A.20 B.15 C.10 D.52.如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为: 若MN ⊥EF ,则MN =EF .你认为( ) A.仅小明对 B.仅小亮对 C.两人都对 D.两人都不对3.如图(1),把一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A.2m n B.m -n C.2mD.2n4.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞, 则纸片展开后是( )5.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于E , 则AE 的长是( ) A.1.6 B.2.5 C.3 D.3.46.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两 邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.10cm2 B.20cm 2 C.40cm 2D.80cm2 7.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC 则点B 的坐标为( ) ,1)B.(1) +1,1) 8.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕, ∠BAE =30°,AB C 落在AD 边上的C 1处, 并且点B 落在EC 1边上的B 1处.则BC 的长为( )B.2C.3 9.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B →C →D →A →B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )A.2B.4-πC.πD.π-1 10.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形, 点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的 和最小,则这个最小值为( )C.3二、填空题11.长方形一条边长为3cm ,面积为12cm 2,则该长方形另一条边长为___cm. 12.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落 在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线 段CN 的长是___. 13.如图所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于___. BA C D A .B .C .D . A DE P BCmn nn (2) (1)EDC BAOABDRN F CO BAH C14.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件:___,使得该菱形为正方形.15.如图,将两张长为8,宽为2最小值8,那么菱形周长的最大值是___.16.如图所示,两个全等菱形的边长为1米,一个微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在___点.17.如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是___.18.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为___. 19.如图,菱形ABCD 的对角线长分别为a 、b ,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,…,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含 a 、b 的代数式表示为___.20.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点 记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边 的中点,则A ′N =___;若M 、N 分别是AD 、BC 边的 上距DC 最近的n 等分点(n ≥2,且n 为整数),则A ′N =___(用含有n 的式子表示).三、解答题 21.已知:如图,在矩形ABCD 中,AF =BE .求证:DE =CF .22.两个完全相同的矩形纸片ABCD 、BFDE 如图放置,AB =BF ,求证:四边形BNDM 为菱形.23.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. 求证:(1)∠PBA =∠PCQ =30°;(2)P A =PQ .24.如图菱形ABCD 的边长为2,对角线BD =2,E 、F 分别是AD 、CD 上的两个动点,且满足AE +CF =2.(1)求证:△BDF ≌△BCF ; (2)判断△BEF 的形状,并说明理由.同时指出△BCF 是由△BDE 经过如何变换得到?A B D D C BA OO ED CA FN M DC B A E A ′ 第20题图3A CB D PQ BC D A E F C D E M A B FN25.(1)观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为E G(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.26.问题解决如图1,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当CE CD=12时,求AMBN的值.EDCFBA图③E DCAB F G'D'A DECB Fα图④图⑤A图①A图②FEG图2AB CDEFMN图1AB CEFM在图1中,若CE CD =13,则AM BN 的值等于___;若CE CD =14,则AM BN 的值等于___;若CE CD =1n(n 为整数),则AMBN的值等于___. (用含n 的式子表示) 联系拓广如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN ,设ABBC=1m(m >1),CE CD =1n ,则AM BN 的值等于___.(用含m ,n 的式子表示)参考答案1.D.点拨:利用菱形和等边三角形的性质;2.C ;3.A.点拨:利用整式的运算及特殊平行四边形的面积求解;4.D ;5.D.点拨:利用矩形的性质、勾股定理求解;6.A.点拨:菱形的面积等于对角线乘积的一半;7.C.点拨:利用菱形的性质与判定、直角三角形的有关计算、平面内点的坐标的意义; 8.C ; 9.B ;10.A.点拨:易求得正方形的边长等于,由于正方形是轴对称图形,所以点D 与点B 是关于AC 对称,所以BE 与AC 的交点即为使PD +PE 的和最小的点P 位置,此时PD +PE 的和最小等于BE ,即为正方形的边长. 11.4;12.3cm.点拨:设CN =x cm.因为正方形的边长为8cm ,点E 是BC 中点,所以EC =4cm ,又因为由折叠的原理可知EN =DN =8-x ,在Rt △ECN 中,由勾股定理,得EN 2=EC 2+CN 2,即(8-x )2=42+x 2,解得x =3.即线段CN 的长是3cm ; 13.3.点拨:利用菱形的性质和直角三角形斜边上中线的性质求解,或利用菱形的性质和三角形中位线性质求解; 14.答案不惟一.如,AB ⊥BC ,或AC =BD ,或AO =BO 等; 15.17;16.B.点拨:因为有两个全等菱形,则周长和等于8,所以微型机器人由A 点开始行走,每运动8米,则又回到A 点,而2009÷8=251…1,所以微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2009米时则在点B 处停下;17.14,或16,或26.点拨:①长为4,宽为3;②长为12,宽为1;③长为6,宽为2;18.52,或125.点拨:分两种情况:若点F 在DC 上,因为BF =AE ,且AB =BC ,则△ABE ≌△BCF ,则∠BAE =∠BFC ,则∠BME =90°,则AB ×BE =AE ×BM ,则BM =512;若点F 在AD 上,此时可连接FE ,则可证明四边形ABEF 这矩形,则对角线互相平分,则BM =25;19.201012⎛⎫ ⎪⎝⎭ab .点拨:利用矩形、菱形的面积及归纳法求解;20.2、n .点拨:由折叠,得BA ′=AB =1,若M 、N 分别是AD 、BC 边的中点,BN =12,则A ′N若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(n ≥2,且n 为整数),BN =1n n-,则A ′N. 21.因为AF =BE ,EF =EF ,所以AE =BF .因为四边形ABCD 是矩形,所以∠A =∠B =90°,AD =BC ,所以△DAE ≌△CBF ,所以DE =CF .22.因为四边形ABCD 、BFDE 是矩形,BM ∥DN ,DM ∥BN ,所以四边形BNDM 是平行四边形.又因为AB =BF =ED ,∠A =∠E =90°∠AMB =∠EMD ,所以△ABM ≌△EDM ,所以BM =DM ,所以平行四边形BNDM 是菱形. 23.(1)因为四边形ABCD 是矩形,所以∠ABC =∠BCD =90°.因为△PBC 和△QCD 是等边三角形,所以∠PBC =∠PCB =∠QCD =60°,所以∠PBA =∠ABC -∠PBC =30°,∠PCD =∠BCD -∠PCB =30°,所以∠PCQ =∠QCD -∠PCD =30°,即∠PBA =∠PCQ =30°.(2)因为AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,所以△P AB ≌△PQC ,所以P A =PQ . 24.(1)因为菱形ABCD 的边长为2,BD =2,所以BD =BC ,且∠BDE =∠BCF =60°.因为AE +CF =2,而AE +DE =AD =2,所以DE =CF ,所以△BDE ≌△BCF .(2)△BEF 是等边三角形.理由如下:由(1)得△BDE ≌△BCF ,所以BE =BF ,∠CBF =∠DBE ,即∠EBF =∠EBD +∠DBF =∠CBF +∠DBF =60°,所以△BEF 是等边三角形.△BCF 是由△BDE 绕点B 顺时针旋转60°得到.25.(1)同意.如图②,设AD 与EF 交于点G .由折叠知,AD 平分∠BAC ,所以∠BAD =∠CAD .又由折叠知,∠AGE =∠DGE =90°,所以∠AGE =∠AGF =90°,所以∠AEF =∠AFE ,所以AE =AF ,即△AEF 为等腰三角形.(2)由折叠知,四边形ABFE 是正方形,∠AEB =45°,所以∠BED =135°,又由折叠知,∠BEG =∠DEG ,所以∠DEG =67.5°,所以∠α=90°-67.5°=22.5°.26.问题解决:如图1,连接BM ,EM ,BE .由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称,所以MN 垂直平分BE ,所以BM =EM ,BN =EN .因为四边形ABCD 是正方形,所以∠A =∠D =∠C =90°,AB =BC =CD =DA =2.因为CE CD =12,所以CE =DE =1.设BN =x ,则NE =x ,NC =2-x .在Rt △CNE 中,由勾股定理,得NE 2=CN 2+CE 2,即x 2=(2-x )2+12,解得x =54.即BN =54.在Rt △ABM 和Rt △DEM 在中,分别由勾股定理,得BM 2=AM 2+AB 2,EM 2=DM 2+DE 2,所以AM 2+AB 2=DM 2+DE 2.设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+12,解得y =14,即AM =14.所以AM BN =15.类比归纳:设正方形的边长为2,仿照问题解决,当CE CD =13时,则CE =23,DE =43.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x )2+223⎛⎫ ⎪⎝⎭,解得x =109,BN =109;设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+243⎛⎫ ⎪⎝⎭,解得y =49,即AM =49.所以AM BN =410=25.当CE CD =14时,则CE =24,DE =64.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x )2+224⎛⎫ ⎪⎝⎭,解得x =1716,BN =1716;设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+264⎛⎫ ⎪⎝⎭,解得y =916,即AM =916.所以AM BN =917.…当CE CD =1n 时,则CE =2n ,DE =22n n -.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x )2+22n ⎛⎫ ⎪⎝⎭,解得x =221n n +,BN =221n n +;设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+222n n -⎛⎫ ⎪⎝⎭,解得y =()221n n -,即AM =()221n n -.所以AM BN =()2211n n -+.联系拓广:因为AB BC =1m (m >1),所以设AB =a ,则BC =ma ,于是仿照上面求解过程,由CECD=1n,得CE=an,DE=a-an,设BN=x,则NE=x,NC=ma-x.在Rt△CNE中,由勾股定理,得NE2=CN2+CE2,即x2=(ma-x)2+2an⎛⎫⎪⎝⎭,解得x=22212m nmn+a.即BN=22212m nmn+a;同样,在Rt△ABM和Rt△DEM在中,分别由勾股定理,得BM2=AM2+AB2,EM2=DM2+DE2,所以AM2+AB2=DM2+DE2.设AM=y,则DM=ma-y,所以y2+a2=(ma-y)2+2aan⎛⎫-⎪⎝⎭,解得y=222212m n nmn-+a,即AM=222212m n nmn-+a.所以AMBN=2222211n m nn m-++.。
八年级初二数学下学期平行四边形单元提高题学能测试试卷一、选择题1.如图,菱形ABCD 中,4, 120AB ABC =∠=,点E 是边AB 上一点,占F 在BC 上,下列选项中不正确的是( )A .若4AE CF +=,则ADE BDF ∆∆≌B .若, DF AD DE CD ⊥⊥, 则23EF =C .若DEB DFC ∠=∠,则BEF ∆的周长最小值为423+D .若DE DF =,则60ADE FDC ︒∠+∠=2.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以它的对角线OB 1为一边作正方形OB 1B 2C 1,以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,再以正方形OB 2B 3C 2的对角线OB 3为一边作正方形OB 3B 4C 3,…,依次进行下去,则点B 6的坐标是( )A .(42,0)B .(42,0)-C .(8,0)-D .(0,8)-3.如图,正方形ABCD 中,4AB =,点E 在BC 边上,点F 在CD 边上,连接AE 、EF 、AF ,下列说法:①若E 为BC 中点,1CF =,则90AEF ∠=︒;②若E 为BC 中点,90AEF ∠=︒,则1CF =;③若90AEF ∠=︒,1CF =,则点E 为BC 中点,正确的有( )个A .0B .1C .2D .34.如图,菱形ABCD 中,∠A 是锐角,E 为边AD 上一点,△ABE 沿着BE 折叠,使点A 的对应点F 恰好落在边CD 上,连接EF ,BF ,给出下列结论:①若∠A=70°,则∠ABE=35°;②若点F是CD的中点,则S△ABE13=S菱形ABCD下列判断正确的是()A.①,②都对B.①,②都错C.①对,②错D.①错,②对5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4 B.4≥x≥2.4C.4>x>2.4 D.4>x≥2.46.如图,菱形ABCD的边长为4,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为 ( )A.3B.4C.232D.43+7.平行四边形的对角线分别为x、y,一边长为 12,则x、y 的值可能是()A.8 与 14 B.10 与 14 C.18 与 20 D.4 与 288.下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形;③顺次连结矩形四边中点得到的四边形是菱形;④如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是()A.4个B.3个C.2个D.1个9.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①∠EFH=45°;②△AHD≌△EHF;③∠AEF+∠HAD=45°;④若BEEC=2,则1113=BEHAHESS.其中结论正确的是()A .①②③B .①②④C .②③④D .①②③④10.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在点F 处,折痕为MN ,则折痕MN 的长是( )A .53cmB .55cmC .46cmD .45cm 二、填空题11.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.12.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.13.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.14.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.15.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.16.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.17.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.18.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.19.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.22.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.23.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.24.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.25.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.(1)直接写出AQH的面积(用含t的代数式表示).(2)当点M落在BC边上时,求t的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t的值;若不存在请说明理由(不能添加辅助线).26.共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=52.(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF.①连结BH,BG,求BHBG的值;②当四边形BCHF为菱形时,直接写出BH的长.27.如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E 在线段BC 上时,∠BDF=α.①按要求补全图形;②∠EBF =______________(用含α的式子表示);③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.28.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围. (3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)29.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 轴上以每秒32的速度从原点出发向右运动,点D 在1l 上以每秒332+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB 与CD 相交于点E ,P 为x 轴上另一动点.(1)求直线AB 的解析式,并求出t 的值.(2)当PE+PD 取得最小值时,求222PD PE PD PE ++⋅的值.(3)设P 的运动速度为1,若P 从B 点出发向右运动,运动时间为x ,请用含x 的代数式表示△PAE 的面积.30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
一、选择题 1.已知PA 2PB 4==,,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.当∠APB=45°时,PD 的长是( );A .25B .26C .32D .52.如图,在边长为5的正方形ABCD 中,以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形的个数为( )A .3B .4C .5D .63.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM ,连BN ,若DM=1,则△ABN 的面积是( )A .B .C .D .4.如图,已知直线l //AB ,l 与AB 之间的距离为2.C 、D 是直线l 上两个动点(点C 在D 点的左侧),且AB =CD =5.连接AC 、BC 、BD ,将△ABC 沿BC 折叠得到△A ′BC .下列说法:①四边形ABDC 的面积始终为10;②当A ′与D 重合时,四边形ABDC 是菱形;③当A ′与D 不重合时,连接A ′、D ,则∠CA ′D +∠BC A′=180°;④若以A ′、C 、B 、D 为顶点的四边形为矩形,则此矩形相邻两边之和为35或7.其中正确的是( )A .①②③④B .①③④C .①②④D .①②③5.如图,正方形ABCD 中,4AB =,点E 在BC 边上,点F 在CD 边上,连接AE 、EF 、AF ,下列说法:①若E 为BC 中点,1CF =,则90AEF ∠=︒;②若E 为BC 中点,90AEF ∠=︒,则1CF =;③若90AEF ∠=︒,1CF =,则点E 为BC 中点,正确的有()个A.0B.1C.2D.36.如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于 G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为 8.其中正确的个数是()A.1个B.2个C.3个D.4个7.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1 B.2 C.3 D.48.已知四边形ABCD中,对角线BD被AC平分,那么再加上下述中的条件()可以得到结论: “四边形ABCD是平行四边形”.A.AB=CD B.∠BAD=∠BCD C.∠ABC=∠ADC D.AC= BD9.如图,正方形ABCD(四边相等、四内角相等)中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则EF的平方为()A.2 B.125C.3 D.410.如图,矩形ABCD的对角线AC、BD交于点O,点P在边AD上从点A到点D运动,过点P作PE⊥AC于点E,作PF⊥BD于点F,已知AB=3,AD=4,随着点P的运动,关于PE+PF 的值,下面说法正确的是( )A .先增大,后减小B .先减小,后增大C .始终等于2.4D .始终等于3二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.14.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.15.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.16.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.17.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________18.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.19.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ;(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时;情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: .22.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).23.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图224.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.25.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.26.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).27.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.28.如图,已知正方形ABCD 与正方形CEFG 如图放置,连接AG ,AE .(1)求证:AG AE =(2)过点F 作FP AE ⊥于P ,交AB 、AD 于M 、N ,交AE 、AG 于P 、Q ,交BC 于H ,.求证:NH =FM29.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】过P 作PB 的垂线,过A 作PA 的垂线,两条垂线相于与E ,连接BE ,由∠APB=45°可得∠EPA=45°,可得△PAE 是等腰直角三角形,即可求出PE 的长,根据角的和差关系可得∠EAB=∠PAD ,利用SAS 可证明△PAD ≌△EAB ,可得BE=PD ,利用勾股定理求出BE 的长即可得PD 的长.【详解】过P 作PB 的垂线,过A 作PA 的垂线,两条垂线相交与E ,连接BE ,∵∠APB=45°,EP ⊥PB ,∴∠EPA=45°,∵EA ⊥PA ,∴△PAE 是等腰直角三角形,∴PA=AE ,2PA=2,∵四边形ABCD 是正方形,∴∠EAP=∠DAB=90°,∴∠EAP+∠EAD=∠DAB+∠EAD ,即∠PAD=∠EAB ,又∵AD=AB ,PA=AE ,∴△PAD ≌△EAB ,∴22PE PB +2224+5故选A.【点睛】本题考查正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质及勾股定理,熟练掌握相关性质并正确作出辅助线是解题关键.2.C解析:C【分析】分别以3为底和以3为腰构造等腰三角形即可.注意等腰三角形的大小不同.【详解】①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可,此时三角形为腰为3的等腰三角形;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可理由如下:∵四边形ABCD为正方形,∴∠BAC=∠DAC=45°,∵EF⊥AC∴△AEH与△AHF为等腰直角三角形∴EF=EH+FH=AH+AH=3.且2故△AEF为底为3的等腰三角形;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC 一个点,连接即可,此时三角形为腰为3的等腰三角形;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;理由如下:与②同理可证EF=3,且EC=FC,在△DEC和△DFC中,∵AC=AC,∠ACE=∠ACF,EC=FC∴△DEC≌△DFC∴AE=AF,故△AEF为底为3的等腰三角形.⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可根据垂直平分线上的点到线段两端距离相等,三角形为底为3的等腰三角形.故满足条件的所有图形如图所示:故选C.【点睛】本题考查作图——应用与设计作图, 等腰三角形的性质与判定, 勾股定理, 正方形的性质. 明确等腰三角形的性质是解答本题的关键.3.D解析:D【解析】【分析】延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN的面积.【详解】解:延长MN交AB延长线于点Q,∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S △NAB =S △NAQ =×AN•NQ=××4×7.5= ;故选:D .【点睛】本题考查折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质是解题的关键.4.A解析:A【解析】【分析】①根据平行四边形的判定方法可得到四边形ABCD 为平行四边形,然后根据平行四边形的面积公式计算;②根据折叠的性质得到AC=CD ,然后根据菱形的判定方法可判断四边形ABDC 是菱形; ③连结A′D ,根据折叠性质和平行四边形的性质得到C A′=CA=BD ,AB=CD=A′B ,∠1=∠CBA=∠2,可证明△A′CD ≌△A′BD ,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A′D ∥BC ;④讨论:当∠CBD=90°,则∠BCA=90°,由于S △A1CB =S △ABC =5,则S 矩形A′CBD =10,根据勾股定理和完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,于是得到结论.【详解】①∵AB=CD=5,AB ∥CD ,∴四边形ABCD 为平行四边形,∴四边形ABDC 的面积=2×5=10;故①正确;②∵四边形ABDC 是平行四边形,∵A′与D 重合时,∴AC=CD ,∵四边形ABDC 是平行四边形,∴四边形ABDC 是菱形;故②正确;③连结A′D ,如图,∵△ABC 沿BC 折叠得到△A′BC ,∴CA′=CA=BD ,AB=CD=A′B ,在△A′CD 和△A′BD 中CA BD CD BA A D A D ==='⎧⎪'⎨⎪''⎩,∴△A′CD ≌△A′BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A′D ∥BC ,∴∠CA′D +∠BCA′=180°;故③正确;④设矩形的边长分别为a ,b ,当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A′CB =S △ABC =12×2×5=5, ∴S 矩形A′CBD =10,即ab=10,而BA′=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45,∴当∠BCD=90°时,∵四边形ABDC 是平行四边形,∴∠CBA=90°,∴BC=3,而CD=5,∴(a+b )2=(2+5)2=49,∴a+b=7,∴此矩形相邻两边之和为或7.故④正确.故选A .【点睛】本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.5.D解析:D【解析】【分析】正方形的边长相等,因为AB=4,所以其他三边也为4,正方形的四个角都是直角,①若E 为BC 中点,1CF =,则能求出AE 2+EF 2=AF 2,用勾股定理可得90AEF ∠=︒.②若E 为BC 中点,90AEF ∠=︒,用勾股定理列方程可求得CF ,③若90AEF ∠=︒,1CF =,用勾股定理列方程可求得BE ,【详解】解:①若E 为BC 中点,1CF =,∵AB=4,∴BE=CE=2,DF=3,∴AE 2=42+22=20,EF 2=22+12=5,AF 2=42+32=25,∴AE 2+ EF 2=AF 2,∴90AEF ∠=︒;故①正确,②若E 为BC 中点,90AEF ∠=︒,设CF x =;则DF=4-x.∴AE 2=42+22=20,EF 2=4+x 2,AF 2=42+(4-x )2,∵90AEF ∠=︒∴∴AE 2+ EF 2=AF 2,∴20+4+ x 2=42+(4-x )2解得x=1;即CF=1.③若90AEF ∠=︒,1CF =,则DF=3,设BE=x ,∴AE 2+ EF 2=AF 2,即42+x 2+1+(4-x )2=42+32解得x=2,即BE=2,E 为BC 的中点.故①②③正确,答案选D.【点睛】本题考查了正方形的性质及勾股定理及勾股定理逆定理的应用,解题关键是应用勾股定理列方程并求解.6.D解析:D【分析】①作辅助线,延长HF 交AD 于点L ,连接CF ,通过证明△ADF ≌△CDF ,可得:AF=CF ,故需证明FC=FH ,可证:AF=FH ;②由FH ⊥AE ,AF=FH ,可得:∠HAE=45°;③作辅助线,连接AC 交BD 于点O ,证BD=2FG ,只需证OA=GF 即可,根据△AOF ≌△FGH ,可证OA=GF ,故可证BD=2FG ;④作辅助线,延长AD 至点M ,使AD=DM ,过点C 作CI ∥HL ,则IL=HC ,可证AL=HE ,再根据△MEC ≌△MIC ,可证:CE=IM ,故△CEH 的周长为边AM 的长.【详解】①连接FC ,延长HF 交AD 于点L ,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.【点睛】解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.7.D解析:D【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】证明:如图:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.8.B解析:B【分析】设BD与AC交于O点,已知条件为BO=DO,∠AOB=∠COD,结合选项条件应证出能判断平行四边形的条件,或举出反例证明不成立.【详解】解:A、BO=DO,∠AOB=∠COD, AB=CD不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误;B、如图,在直线AC上任取一点C´,使OA=OC´,∵BO=DO,∴四边形ABC´D是平行四边形,∴AD∥BC´,AB∥C´D,∴∠BC´A=∠C´AD, ∠AC´D=∠BAC´,∴∠BC´A+∠AC´D=∠C´AD+∠BAC´,即∠BC´D=∠BAD,∵∠BAD=∠BCD∴∠BC´D=∠BCD,∴点C与点C´重合,∴四边形ABCD是平行四边形.故本选项正确;C、当BO=DO,∠ABC=∠ADC不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误;D、当BO=DO,AC=BD, 不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误.故选:B.【点睛】本题考查平行四边形的判定,根据已知条件证出判定平行四边形的条件及举出反例图形是解答此题的关键.9.A解析:A【分析】根据AB=5,AE=4,BE=3,可以确定△ABE为直角三角形,延长BE构建出直角三角形,在利用勾股定理求出EF的平方即可.【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD=5,如图,延长BE 交CF 于点G ,∵AB=5,AE=4,BE=3,∴AE 2+BE 2=AB 2,∴△ABE 是直角三角形,同理可得△DFC 是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=902,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4-3=1,GF=4-3=1,∴EF 2=EG 2+GF 2=1+1=2故选择:A【点睛】此题考查三角形的判定,勾股定理的运用,根据已知条件构建直角三角形求值是解题的关键.10.C解析:C【分析】在矩形ABCD 中,由矩形边长,可得矩形面积是12,进而得134AOD ABCD S S ==矩形,由矩形对角线相等且互相平分得AO OC =,OB OD =,AC BD =,利用勾股定理可解得5AC =,则52OA OD ==,111()3222AOD AOP DOP S S S OA PE OD PF OA PE PF =+=+=+==,即可求出PE+PF 的值.【详解】解:连接PO ,如下图:∵在矩形ABCD 中,AB=3,AD=4,∴12ABCD S AB BC ==矩形,AO OC =,OB OD =,AC BD =,225AC AB +BC , ∴1112344AOD ABCD S S ==⨯=矩形, 52OA OD ==, 11115()()322222AOD AOP DOP S S S OA PE OD PF OA PE PF PE PF =+=+=+=⨯+=,∴12 2.45PE PF +==; 故选C .【点睛】本题主要考查了矩形的性质,利用等积法间接求三角形的高线长及用勾股定理求直角三角形的斜边;利用面积法求解,是本题的解题突破点. 二、填空题112【分析】过B 点作HE 的平行线交AC 于O 点,延长EG 交AB 于I 点,得到BO=2HE ,其中O 点在线段AC 上运动,再由点到直线的距离垂线段最短求出BO 的长即可求解.【详解】解:过B 点作HE 的平行线交AC 于O 点,延长EG 交AB 于I 点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.12.2【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322,当AC=2,CP=CB=5时,OC=22×(2+5)=722,∴当P从点D出发运动至点B停止时,点O的运动路径长72322.故答案为2点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.13.43 4【解析】分析:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.详解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB=2284=43;②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;.综上所述,AB 的长为4;故答案为4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.14.①③④【分析】由矩形的性质可得AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC ,可判断①;通过证明△DCG ≌△BEG ,可得∠BGE=∠DGC ,BG=DG ,即可判断②③;过点G 作GH ⊥CD 于H ,设AD=4x=DF ,AB=3x ,由勾股定理可求BD=5x ,由等腰直角三角形的性质可得HG=CH=FH=12x ,DG=GB=2x ,由三角形面积公式可求解,可判断④. 【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠F=∠FAD ,∴AD=DF ,∴BC=DF ,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD ,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF 是等腰直角三角形,∵点G 为EF 的中点,∴CG=EG ,∠FCG=45°,CG ⊥AG ,∴∠BEG=∠DCG=135°,在△DCG 和△BEG 中, ===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩,∴△DCG ≌△BEG (SAS ).∴∠BGE=∠DGC ,BG=DG ,∵∠BGE <∠AEB ,∴∠DGC=∠BGE <45°,∵∠CGF=90°,∴∠DGF <135°,故②错误;∵∠BGE=∠DGC ,∴∠BGE+∠DGA=∠DGC+∠DGA,∴∠CGA=∠DGB=90°,∴BG⊥DG,故③正确;过点G作GH⊥CD于H,∵34AB AD=,∴设AD=4x=DF,AB=3x,∴CF=CE=x,BD=22=5AB AD x+,∵△CFG,△GBD是等腰直角三角形,∴HG=CH=FH=12x,DG=GB=52x,∴S△DGF=12×DF×HG=x2,S△BDG=12DG×GB=254x2,∴254BDG FDGS S=,故④正确;故答案为:①③④.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.15.33或3或57【分析】△AEF为等腰三角形,分三种情况讨论,由等腰三角形的性质和30°直角三角形性质、平行四边形的性质可求解.【详解】解:当AE AF=时,如图,过点A作AH EF⊥于H,E 是AB 的中点, 132AE AB ∴==, =AE AF ,AH EF ⊥,120A ∠=︒,30AEF AFE ∴∠=∠=︒,FH EH =,1322AH AE ∴==,3332EH AH ==, 233EF EH ∴==,当AF EF =时,如图2,过点A 作AN CD ⊥于N ,过点F 作FM AB ⊥于M ,图2在平行四边形ABCD 中,6AB =,4BC =,120A ∠=︒,4AD BC ∴==,60ADC ∠=︒,30DAN ∴∠=︒,122DN AD ∴==,323AN DN ==, //AB CD ,AN CD ⊥,FM AB ⊥,23AN MF ∴==,AF EF =,FM AB ⊥,32AM ME ∴==, 22957124EF ME MF ∴=+=+=; 当3AE EF ==时,如图3,图33EF ∴=,综上所述:EF 的长为33357. 【点睛】 本题考查了平行四边形的性质,等腰三角形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.16.37【分析】如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.证明BE=DT,BD=DW,把问题转化为求DT+DW的最小值.【详解】解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC,△DEF都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE∥TC,∵DE=BT=1,∴四边形DEBT是平行四边形,∴BE=DT,∴BD+BE=BD+AD,∵B,W关于直线AC对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,3332,∴TK=1+3+32=112,∴2222113322TK WK⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭37∴DB+BE=DB+DT=DW+DT≥TW,∴37∴BD+BE37,37.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.17.①②④⑤【分析】根据∠B=90°,AB=BE,△ABE绕点A逆时针旋转45°,得到△AHD,可得△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,可证AD//BC,根据DC⊥BC,可得∠HDE=∠CDE,根据三角形的内角和可得∠HDE=∠CDE,即DE平分∠HDC,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD是矩形,有∠ADC=90°,∠HDC=45°,由①有DE平分∠HDC,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH,利用 AE=AD易证∠OHE=∠HEO=67.5°,则有OE=OH,OD=OE,所以②正确;利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC,∴∠ADE=∠DEC,∴∠AED=∠DEC,又∵DC⊥BC,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE,即:DE平分∠HDC,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE平分∠HDC,∴∠HDO=12∠HDC=12×45°=22.5°,∵∠BAE=45°,AB=AH,∴∠OHE=∠AHB= 1 2(180°−∠BAE)=12×(180°−45°)=67.5°,∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH,在△AED中,AE=AD,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°,∴∠OHE=∠HEO=67.5°,∴OE=OH,∴OD=OE,所以②正确;在△DHE和△DCE中,DHE DCEHDE CDEDE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE≅ΔDCE(AAS),∴DH=DC,∠HDE=∠CDE=12×45°=22.5°,∵OD=OH,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③不正确;如图,过H作HJ⊥BC于J,并延长HJ交AD于点I,∵△ABE是等腰直角三角形,JH⊥JE,∴JH=JE,又∵J是BC的中点,H是BF的中点,∴2JH=CF,2JC=BC,JC=JE+CE,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC,即有:BC−CF=2CE,所以④正确;∵AD//BC,∴IJ⊥AD,又∵△AHD是等腰直角三角形,∴I是AD的中点,∵四边形ABCD是矩形,HJ⊥BC,∴J是BC的中点,∴H是BF的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键.18.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD 是矩形,∴AG=DH ,∠GHD=90°,即B'H ⊥CD ,又B'D=B'C ,∴DH =HC =183CD =,AG=DH=8,∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt △EGB'中,由勾股定理得:GB′12,∴B'H=GH ×GB'=18-12=6,在Rt △B'HD 中,由勾股定理得:B′D 10=综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论 . 19.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到。
八年级初二数学下学期平行四边形单元提高题学能测试试卷一、选择题1.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取13n=.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的22倍时就可移转过去;结果取13n=.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对2.如图,在正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于点G,连接AG、HG.下列结论:①CE⊥DF;②AG=DG;③∠CHG=∠DAG.其中,正确的结论有()A.0个B.1个C.2个D.3个3.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A .22B .5C .352D .104.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为( )A .2B .232-C .3D .43- 5.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( )A .8 与 14B .10 与 14C .18 与 20D .4 与 28 6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F.若AB =3,BC =4,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.47.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④8.如图,长方形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠得到△AFE ,且点F 在长方形ABCD 内,将AF 延长交边BC 于点G ,若BG=3CG ,则AD AB=( )A .54B .1C .52D .629.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个10.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.已知在矩形ABCD中,3,3,2AB BC==点P在直线BC上,点Q在直线CD上,且,AP PQ⊥当AP PQ=时,AP=________________.14.如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.15.如图,直线1l,2l分别经过点(1,0)和(4,0)且平行于y轴.OABC的顶点A,C 分别在直线1l和2l上,O是坐标原点,则对角线OB长的最小值为_________.16.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.17.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.18.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.19.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.三、解答题21.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.22.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+23.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.24.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.25.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.26.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE=52.(1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.27.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若DF=3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.28.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.29.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据矩形的性质和勾股定理求出矩形的对角线长,即可判断甲和乙,丙中图示情况不是最长.【详解】甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=2261265+=≈14;乙的思路与计算都正确,n=2261265+=≈14;丙的思路与计算都错误,图示情况不是最长,n=(12+6)×22=92≈13.故选B.【点睛】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.2.C解析:C【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12 DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=12 CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD, AH垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH≌△DCF∴∠DAH=∠CDF,∴∠DAG=2∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠GHC=∠DAG,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE≌△CDF,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC,而DG≠DC,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF即可.3.D解析:D【解析】【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN ,利用勾股定理即可求得.【详解】如图,EF 为剪痕,过点F 作FG EM ⊥于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中, 22223110FG EG EF +=+=故选:D.【点睛】本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键. 4.C解析:C【分析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .首先证明∠ACD =90°,求出AC ,AN ,利用三角形中位线定理,可知EF =12AG ,求出AG 的最大值以及最小值即可解决问题.【详解】解:如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==∴∠D =180°−∠BCD =60°,AB =CD =4,∵AM =DM =DC =4,∴△CDM 是等边三角形,∴∠DMC =∠MCD =60°,AM =MC ,∴∠MAC =∠MCA =30°,∴∠ACD =90°,∴AC =3在Rt△ACN中,∵AC=43,∠ACN=∠DAC=30°,∴AN=12AC=23∵AE=EH,GF=FH,∴EF=12 AG,∵点G在BC上,∴AG的最大值为AC的长,最小值为AN的长,∴AG的最大值为43,最小值为23,∴EF的最大值为23,最小值为3,∴EF的最大值与最小值的差为:3故选:C【点睛】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明∠ACD=90°,属于中考选择题中的压轴题.5.C解析:C【分析】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,在△BDF中,利用三角形三边关系可得到x+y与x-y的取值范围,从而得到结论.【详解】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,连接BD,DF根据题意,设AB=12,BD=x,DF=y则AF=AB=12,BF=24∴在△BDF中,BD+FD>BF,即:x+y>24在△BDF中,BD-FD<BF,即:x-y<24满足条件的只有C选项故选:C【点睛】本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.6.D解析:D【分析】连接OP ,由矩形ABCD 的可求OA=OD=52 ,最后由S △AOD =S △AOP +S △DOP 即可解答. 【详解】解:如图:连接OP∵矩形ABCD ,AB =3,BC =4∴S 矩形ABCD =AB×BC=12, OA=OC,OB=OD,AC=BD,225AC =AB +BC = ∴S △AOD =14S 矩形ABCD =3,OA=OD=52∴S △AOD =S △AOP +S △DOP =()111532222OA PE OD PF PE PF +=⨯+= ∴PE+PF=2.4故答案为D .【点睛】本题考查了矩形的性质,正确的做出辅助线和运用数形结合思想是解答本题的关键..7.D解析:D【分析】由题意得出条件证明△ABC ≌△DAF,根据对应角相等可推出②正确;由F 是AB 中点根据边长转换可以推出④正确;先推出△ECF ≌△DFA 得出对应边相等推出ADFE 为平行四边形且有组临边不等得出①错误;再由以上全等即可得出④正确.【详解】∵△ABD 是等边三角形,∴∠BAD=60°,AB=AD ,∵∠BAC=30°,知∴∠FAD=∠ABC=90°,AC=2BC ,∵F为AC的中点道,∴AC=2AF,∴BC=AF,∴△ABC≌△DAF,∴FD=AC,∴∠ADF=∠BAC=30°,∴DF⊥AB,故②正确,∵EF⊥AC,∠ACB=90°,∴FG∥BC,∵F是AB的中点,∴GF=12 BC,∵BC=12AC,AC=CE,∴GF=14CE,故④说法正确;∵AE=CE,CF=AF,∴∠EFC=90°,∠CEF=30°,∵∠FAD=∠CAB+∠BAD=90°,∴∠EFC=∠DAF,∵DF⊥AB,∴∠ADF=30°,∴∠CEF=∠ADF,∴△ECF≌△DFA(AAS),∴AD=EF,∵FD=AC,∴四边形属ADFE为平行四边形,∵AD≠DF,∴四边形ADFE不是菱形;故①说法不正确;∴AO=12 AF,∴AO=12 AC,∵AE=AC,则AE=4AO,故③说法正确,故选D.【点睛】本体主要考查平行四边形的判定,等边三角形,三角形全等的判定,关键在于熟练掌握基础知识,根据图形结合知识点进行推导.8.B解析:B【解析】【分析】根据中点定义得出DE=CE ,再根据折叠的性质得出DE=EF ,AF=AD ,∠AFE=∠D=90°,从而得出CE=EF ,连接EG ,利用“HL”证明△ECG ≌△EFG ,根据全等三角形性质得出CG=FG ,设CG=a ,则BC=4a ,根据长方形性质得出AD=BC=4a ,再求出AF=4a ,最后求出AG=AF+FG=5a ,最后利用勾股定理求出AB ,从而进一步得出答案即可.【详解】如图,连接EG ,∵点E 是CD 中点,∴DE=EC ,根据折叠性质可得:AD=AF ,DE=EF ,∠D=∠AFE=90°,∴CE=EF ,在Rt △ECG 与Rt △EFG 中,∵EG=EG ,EC=EF ,∴Rt △ECG ≌Rt △EFG (HL ),∴CG=FG ,设CG=a ,∴BG=3CG=3a , ∴BC=4a , ∴AF=AD=BC=4a . ∴AG=5a . 在Rt △ABG 中, ∴224AB AG BG a -=, ∴1AD AB=, 故选B.【点睛】本题主要考查了长方形与勾股定理及全等三角形判定和性质的综合运用,熟练掌握相关概念是解题关键,9.A解析:A根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2=△;再根据勾股定理求得EF ,即可得到答案. 【详解】∵ACB 90∠=︒,2AC BC ==∴AB ==∴A B 45∠=∠=︒∵点D 是AB 的中点∴CD AB ⊥,且1AD BD CD AB 2====∴DCB 45∠=︒∴A DCF ∠∠=,在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE ≌()CDF SAS∴DE DF =,ADE CDF ∠∠=∵CD AB ⊥∴ADC 90∠=︒∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒∴DEF 是等腰直角三角形∵ADE ≌CDF∴ADE 和CDF 的面积相等∵D 为AB 中点∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;当DE AC ⊥,DF BC ⊥时,2EF 值最小根据勾股定理得:222EF DE DF =+此时四边形CEDF 是正方形即EF CD ==∴22EF 2==∴正确的个数是4个【点睛】本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.10.C解析:C【分析】根据三角形中位线定理求出△A1B1C1的周长,根据计算总结规律,根据规律解答.【详解】根据三角形中位线定理求出△A1B1C1的周长,根据计算结果总结规律,根据规律解答.解:∵A1、C1分别为AB、AC的中点,∴A1C1=BC=13,同理,A1B1=12AC=7,B1C1=12AB=12,∴△A1B1C1的周长=7+12+13=32,∴△A1B1C1的周长=△ABC的周长×12,则△A2B2C2的周长=△A1B1C1的周长×12=△ABC的周长×(12)2,……∴△A8B8C8的周长=△ABC的周长×(12)8=64×1256=14,故选:C.【点睛】本题考查三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题11【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.12.2【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE ,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.133223102【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴AP=223322+()()=322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形 ,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC ∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC+PC=3+32=92∴223922+()()31023223102【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.14101【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时, 22221310NB C N C B ''''=+=+=DB ′(即DE ″)=10﹣1﹣10=(9﹣10)(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)(cm ).101.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.15.5【分析】过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则22OE BE +OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键. 16.5【分析】取DE的中点N,连结ON、NG、OM.根据勾股定理可得55NG=.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.【详解】如图1,取DE的中点N,连结ON、NG、OM.∵∠AOB=90°,∴OM=12AB=5.同理ON=5.∵正方形DGFE,N为DE中点,DE=10,∴222210555NG DN DG++===.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=12∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值5故答案为:5【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.17.1382+【分析】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=2,进一步可得2221382FN FR NR=+=+,再延长NS交ML于点Z,利用全等三角形性质与判定证明四边形FHMN为正方形,最后进一步求解即可.【详解】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,∵ABCD为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE∥DG,CT∥SN,DG⊥CT,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴2FQ=FE+EQ=22+∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR是矩形,∴2,∴FR=FQ+QR=222+,NR=KQ=DK−2121=,∴2221382=+=+FN FR NR再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),∴FN=MN,∠NFR=∠MNZ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN 为正方形,∴正方形FHMN 的面积=21382FN =+, 故答案为:1382+.【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.18.5【分析】先判断四边形BCEF 的形状,再连接FM FC 、,利用正方形的性质得出AFG 是等腰直角三角形,再利用直角三角形的性质得出12MN FC =即可. 【详解】∵四边形ABCP 是边长为4的正方形,//EF BC ,∴四边形BCEF 是矩形,∵1PE =,∴3CE =,连接FM FC 、,如图所示:∵四边形ABCP 是正方形,∴=45BAC ∠ ,AFG 是等腰直角三角形,∵M 是AG 的中点,即有AM MG = ,∴FM AG ⊥,FMC 是直角三角形,又∵N 是FC 中点,12MN FC =, ∵225FC BF BC =+=∴ 2.5MN =,故答案为:2.5 .【点睛】本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.19.13【分析】根据12•BC •AH =12•AB •AC ,可得AH =13,根据 12AD •BO =12BD •AH ,得OB =,再根据BE =2OB EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC∵点D 是BC 的中点,∴AD =DC =DB , ∵12•BC •AH =12•AB •AC ,∴AH =13, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE , ∵12AD •BO =12BD •AH ,∴OB∴BE =2OB , ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°,∴在Rt △BCE 中,EC =13..【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.202【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴22112=+=+=FG GC FC2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.三、解答题21.EF=13.【分析】首先连接AD,由△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,可得:AD=DC,∠EAD=∠C=45°,AD⊥BC,即∠CDF+∠ADF=90°,又DE⊥DF,可得:∠EDA+∠ADF=90°,故∠EDA=∠CDF,从而可证:△AED≌△CFD;根据全等三角形的性质得到AE=CF=5,进而得出BE=AF=12.然后在Rt△AEF中,运用勾股定理可将EF的值求出;【详解】解:连接AD.∵△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,∴AD =DC =DB ,AD ⊥BC ,∴∠BAD =∠C =45°,∵∠EDA +∠ADF =90°,又∵∠CDF +∠ADF =90°,∴∠EDA =∠CDF .在△AED 与△CFD 中,EDA FDC AD CDEAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ).∴AE =CF =5.∵AB =AC ,∴BE =AF =12.在Rt △AEF 中,∵∠EAF =90°,∴22222512169EF AE AF =+=+=,∴EF =13.【点睛】本题考查等腰直角三角形, 直角三角形斜边上的中线,掌握等腰三角形“三线合一”的性质、直角三角形斜边上的中线等于斜边的一半的性质为解题关键.22.(1)证明见解析;(2)62BE =(3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论. 【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS );∴△DGF ≌△CGH, ∴12AE DG CG CD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴2422AB CD AD ,∴22AE =,∴62BE AB BE =+=;(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD , ∴222222244()AC BD AC OD AC OC CD ++++== 2222222(2)446AC A OC CD AC D C CD C ++=++==, 且222222223CD AD CD AC CD C AB BC D =+=+++=, ∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.23.(1)见解析;(2)①见解析;②6PE =【分析】(1)由四边形ABCD 是正方形知∠D=∠ECQ=90°,由E 是CD 的中点知DE=CE ,结合∠DEP=∠CEQ 即可得证;(2)①由PB=PQ 知∠PBQ=∠Q ,结合AD ∥BC 得∠APB=∠PBQ=∠Q=∠EPD ,由△PDE ≌△QCE 知PE=QE ,再由EF ∥BQ 知PF=BF ,根据Rt △PAB 中AF=PF=BF 知∠APF=∠PAF ,从而得∠PAF=∠EPD ,据此即可证得PE ∥AF ,从而得证;②设AP x =,则1PD x =-,1CQ x =-,2BQ x =-,利用三角形中位线定理得到()122EF x =-,由EF AP =,构造方程即可求得23x =,在Rt PDE ∆中,利用勾股定理即可求解.【详解】(1)∵四边形ABCD 是正方形,∴∠D=∠ECQ=90°,∵E 是CD 的中点,∴DE=CE ,又∵∠DEP=∠CEQ ,∴△PDE ≌△QCE (ASA );(2)①∵PB=PQ ,∴∠PBQ=∠Q ,∵AD ∥BC ,∴∠APB=∠PBQ=∠Q=∠EPD ,∵△PDE ≌△QCE ,∴PE=QE ,∵PF=BF ,∴EF 是PBQ ∆的中位线,∴EF ∥BQ ,∴在Rt △PAB 中,AF=PF=BF ,∴∠APF=∠PAF ,∴∠PAF=∠EPD ,∴PE ∥AF ,∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形;②设AP x =,则1PD x =-,∴1CQ x =-,∴2BQ x =-,∵EF 是PBQ ∆的中位线, ∴()122EF x =-, ∵EFAP =, ∴()122x x -=, ∴23x =, 在Rt PDE ∆中,222PD DE PE +=,即22221(1)()32PE -+=,∴13PE =. 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、平行四边形的判定和性质以及勾股定理等知识点.掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.24.(1)B (12,4);(2)52t s =;(3)58,4,3,4,2,4,,42 【分析】(1)由四边形OABC 是平行四边形,得到OA BC =,//OA BC ,于是得到 10OA =,2OE AF ,可求出点B 的坐标; (2)根据四边形PCDA 是平行四边形,得到PC AD =,即1025t -=,解方程即可得到结论;(3)如图2,可分三种情况:①当5PD OD 时,②当5PO OD 时,③当 PD OP =时分别讨论计算即可.【详解】解:如图1,过C 作CE OA ⊥于E ,过B 作BF OA ⊥于 F ,四边形OABC 是平行四边形,OA BC ,//OA BC ,A ,C 的坐标分别为(10,0), (2,4),10OA ∴=,2OE AF ,10BC ∴=,(12,4)B ; (2)设点P 运动t 秒时,四边形PCDA 是平行四边形,由题意得:102PC t =-,点D 是OA 的中点, 152OD BC AD OA ,四边形PCDA 是平行四边形,PC AD ,即1025t -=,52t ∴=, ∴当52t =秒时,四边形PCDA 是平行四边形; (3)如图2,①当5PDOD 时,过1P 作1PE OA 于 E ,则14PE ,3DE ∴=,1(8,4)P ,又D ,C 的坐标分别为()5,0,(2,4), ∴225245CD ,即有,当点P 与点C 重合时,5PDOD ,2,4P ; ②当5POOD 时,过2P 作2P G OA 于 G , 则24P G ,3OG ∴=,2(3,4)P ;③当PD OP =时,过3P 作3P FOA 于 F , 则34P F ,52OF =,。
八年级初二数学下学期平行四边形单元提高题学能测试试题一、选择题1.如图,在正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于点G,连接AG 、HG .下列结论:①CE ⊥DF ;②AG=DG;③∠CHG=∠DAG .其中,正确的结论有( )A .0个B .1个C .2个D .3个2.如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A .3B .13+C .7D .33.如图,在菱形ABCD 中,AB =5cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB .CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1c m/s ,点F 的速度为2c m/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .34B .43C .32D .534.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14 B .10 与 14 C .18 与 20 D .4 与 285.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A .32B .1C .32D .236.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为6和14,则b 的面积为( )A .8B .18C .20D .267.已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 均在x 轴正半轴上,若已知正方形1111D C B A 的边长为1,1160B C O ︒∠=,且112233////B C B C B C ,则点3A 的坐标是( )A .331(3,)26++B .333(3,)218++C .331(3,)26++D .333(3,)218++ 8.已知,如图,在菱形ABCD 中.(1)分别以C ,D 为圆心,大于12CD 长为半径作弧,两弧分别交于点E ,F ;(2)作直线EF ,且直线EF 恰好经过点A ,且与边CD 交于点M ;(3)连接BM .根据以上作图过程及所作图形,判断下列结论中错误..的是( )A .∠ABC =60°B .如果AB =2,那么BM =4C .BC =2CMD .2ABM ADM S S =△△9.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .410.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 3二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC = ,则平行四边形ABCD 的周长等于______________ .12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.14.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.15.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.16.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.17.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.18.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.19.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.22.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.23.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.24.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.25.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条; (3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.26.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .27.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)28.问题背景 若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E在AB边上,点F在AD边上,请用圆规和无刻度的直尺作出点E、F,使得点E与点C关于BF互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E是直线AB上的动点,点P是平面内一点,点E与点C关于BP互为勾股顶针点,直线CP与直线AD交于点F.在点E运动过程中,线段BE与线段AF的长度是否会相等?若相等,请直接写出AE的长;若不相等,请说明理由.∆是边长为3的等边三角形,点D是射线BC上的一个动点(点D不与29.如图,ABC∆是以AD为边的等边三角形,过点E作BC的平行线,交直线点B、C重合),ADEAC于点F,连接BE.(1)判断四边形BCFE的形状,并说明理由;(2)当DE AB⊥时,求四边形BCFE的周长;(3)四边形BCFE能否是菱形?若可为菱形,请求出BD的长,若不可能为菱形,请说明理由.30.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12 DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=12 CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD, AH垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH≌△DCF ∴∠DAH=∠CDF,∴∠DAG=2∠CDF,∵GH=DH ,∴∠HDG=∠HGD ,∴∠GHC=∠HDG+∠HGD=2∠CDF ,∴∠GHC=∠DAG ,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE ≌△CDF ,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC ,而DG≠DC ,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF 即可.2.C解析:C【分析】设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,则'BO 即为PO +PB 的最小值,易证△ABO 为等边三角形,过点A 作AH ⊥BO 于H ,求出AH OO =',然后利用勾股定理求出BO 即可.【详解】解:如图,设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,∵P 为AE 中点,∴点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,∴OP OP =',∴PO +PB =BP O P BO +='',∵四边形ABCD 是矩形,∠AOD =120°,∴OA =OB ,∠AOB =60°,∴△AOB 为等边三角形,∴AB =BO =4,过点A 作AH ⊥BO 于H , ∴2221=3AH =-,∵MN ∥BD ,点H 关于MN 的对称点为A ,点O 关于MN 的对称点为'O , ∴3AH OO =='OO BD ⊥', ∴2222+=2+(3)=7BO BO OO =''即PO +PB的最小值为7,故选:C .【点睛】本题考查了利用轴对称求最短路径,矩形的性质,三角形中位线定理,等边三角形的判定及性质,勾股定理的应用,通过作辅助线,得出'BO 为PO +PB 的最小值是解题关键.3.D解析:D【分析】由题意知道AE=t ,CF=2t ,连接BD ,证明△DEB ≌△DFC,得到EB=FC=2t ,进而AB=AE+EB=3t=5,进而求出t 的值.【详解】解:连接DB ,如下图所示,∵四边形ABCD 为菱形,且∠ADC=120°,∴∠CDB=60°∴△CDB 为等边三角形,∴DB=DC又∵△DEF 为等边三角形,∴∠EDF=60°,DE=DF∴∠CDB=∠EDF∴∠CDB-∠BDF=∠EDF-∠BDF∴∠CDF=∠BDE在△EDB 和△FDC 中:=⎧⎪∠=∠⎨⎪=⎩DE DF EDB FDC DB DC ,∴△EDB ≌△FDC(SAS)∴FC=BE=2t∴AB=AE+EB=t+2t=3t=5∴t=53. 故答案为:D.【点睛】本题考查了三角形全等、菱形的性质等相关知识,关键是能想到连接BD后证明三角形全等,本题是动点问题,将线段长用t的代数式表示,化动为静.4.C解析:C【分析】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,在△BDF中,利用三角形三边关系可得到x+y与x-y的取值范围,从而得到结论.【详解】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,连接BD,DF根据题意,设AB=12,BD=x,DF=y则AF=AB=12,BF=24∴在△BDF中,BD+FD>BF,即:x+y>24在△BDF中,BD-FD<BF,即:x-y<24满足条件的只有C选项故选:C【点睛】本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.5.D解析:D【分析】分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD 上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,过A作AF⊥BC于F,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt△ABF中,∠BAF=30°,∴BF=12AB=1,AF=3,∴此时△ABE的最大面积为:12×4×3=23;②当E在CD上时,如图2,此时,△ABE的面积=12S▱ABCD=12×4×3=23;③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积3综上,△ABE的面积的最大值是3故选:D.【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.6.C解析:C【分析】由题意根据全等三角形的判定与性质,结合勾股定理和正方形的面积公式进行分析计算.【详解】解:∵a、b、c都为正方形,a,c的面积分别为6和14,∴AC=CE,AB2=6,DE 2=14,90ACF︒∠=,∵90,90BAC BCA BCA DCE︒︒∠+∠=∠+∠=,∴BAC DCE∠=∠,在ABC和CDE△中,ABC CDEBAC DCEAC CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC CDE AAS≅,∴BC=DE,BC2=DE2=14,由勾股定理可知222AC AB BC =+,∴b 的面积为261420AC =+=.故选:C.【点睛】本题考查全等三角形的判定与性质以及勾股定理和正方形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.7.C解析:C【分析】根据两直线平行,同位角相等可得∠B 3C 3O=∠B 2C 2O=∠B 1C 1O=60°,然后利用三角形全等可得B 2E 2=E 1E 2=D 1E 1=E 3C 2,E 2C 2=E 3E 4=B 3E 4,解直角三角形求出OC 1、C 1E 、E 1E 2、E 2C 2、C 2E 3、E 3E 4、E 4C 3,再求出B 3C 3,过点A 3延长正方形的边交x 轴于M ,过点A 3作A 3N ⊥x 轴于N ,先求出A 3M ,再解直角三角形求出A 3N 、C 3N ,然后求出ON ,再根据点A 3在第一象限写出坐标即可.【详解】解∵B 1C 1∥B 2C 2∥B 3C 3,∴∠B 3C 3O =∠B 2C 2O =∠B 1C 1O =60°,∵正方形A 1B 1C 1D 1的边长为1,B 1C 1=C 1D 1,∠B 1C 1D 1=90°,∴∠C 1B 1O=∠D 1C 1E 1=30°,∴△C 1B 1O ≌△D 1C 1E 1;∴B 1O=C 1E 1,OC 1=D 1E 1,同理可得B 2E 2=E 1E 2=D 1E 1=E 3C 2;E 2C 2=E 3E 4=B 3E 4;111122223111111222OC D E E E B E C E B C ∴======⨯=11111C E D C ===2234342213236E C E E B E B E ====⨯=433413636E C B E ==⨯= 3343112263B C E C ∴==⨯= 过点A 3延长正方形的边交x 轴于M ,过点A 3作A 3N ⊥x 轴于N ,则332323333331133333A M A D D B C B C +=+=+=+= 333333312926A N A M === 3313313322C M A M ++=== 343133331233186C N E M C M ⎛⎫∴=-=⨯-= ⎪ ⎪⎝⎭111122223343ON OC C E E E E C C E E E C N =++++++1313131313322262-=++++++= ∵点A 3在第一象限,∴点A 3的坐标是33132+⎭. 故选C.【点睛】本题考查正方形的性质,坐标与图形性质,全等三角形的判定与性质,30°角的直角三角形.熟练掌握有30°角的直角三角形各边之间的数量关系是解决本题的关键.8.B解析:B【分析】连接AC ,根据线段重直平分线的性质及菱形的性质即可判断A 选项正确;根据线段垂直平分线的性质及菱形的性质求出∠BAM=90°,利用三角函数求出AM ,即可利用勾股定理求出BM ,由此判断B 选项;根据线段垂直平分的性质和菱形的性质可得BC=2CM ,由此判断C 选项;利用同底等高的性质证明△ABM 的面积=△ABC 的面积=△ACD 的面积,再利用线段垂直平分线的性质即可判断D 选项.【详解】如图,连接AC ,由题意知:EF 垂直平分CD ,∴AC=CD ,∵四边形ABCD 是菱形,∴AD=AB=BC=CD ,∴AC=AD=CD=AB=BC ,∴△ABC 和△ACD 都是等边三角形,∴∠BAC=∠CAD=∠ABC=60°,故A 正确;∵AM 垂直平分CD ,∴∠CAM=∠DAM=30°,∴∠BAM=90°,∴S △ABM =S △ABC =S △ABD =2S △ADM ,故D 项正确;∵AB=2,∴AC=CD=2,∴AM=AC ·cos30°=233, ∴22AB AM +()222+37B 项错误;由AM 垂直平分CD 可得CM=12CD , 又∵BC=CD ,∴CM=12BC ,即BC=2CM ,故C 项正确; 故选:B .【点睛】本题考查线段垂直平分线的作图,线段垂直平分线的性质,等边三角形的判定及性质,菱形的性质,三角函数,勾股定理,是一道综合题,掌握知识点是解题关键.9.C解析:C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM , ∵BF ⊥AD ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN,∴∠BFE=2∠DEF,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.D解析:D【分析】由于在四边形中,MN∥AB∥DC,EF∥DA∥CB,因此MN、EF把一个平行四边形分割成四个小平行四边形.可设MN到DC的距离为h1,MN到AB的距离为h2,根据AB=CD,DE=AF,EC=FB及平行四边形的面积公式即可得出答案.【详解】解:∵MN∥AB∥DC,EF∥DA∥CB,∴四边形ABCD,四边形ADEF,四边形BCEF,红、紫、黄、白四边形都为平行四边形,∴AB=CD,DE=AF,EC=BF.设MN到DC的距离为h1,MN到AB的距离为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE,h1,FB,h2的关系不确定,所以S1与S4的关系无法确定,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1+S3=CD•h1,S2+S4=AB•h2,又AB=CD,而h1不一定与h2相等,故C错误;S1·S4=DE•h1•FB•h2=AF•h1•FB•h2,S2·S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1·S4=S2·S3,故D正确;故选:D.【点睛】本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.二、填空题11.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222=-=-=,BE AB AE543∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222(25)42CE AC AE,在Rt△ABE中,由勾股定理可知:2222-=-,BE AB AE543∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.12.2【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322,当AC=2,CP=CB=5时,OC=22×(2+5)=722,∴当P从点D出发运动至点B停止时,点O的运动路径长72-3222.故答案为2点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.13.43 4【解析】分析:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.详解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB=22;84=43②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;.综上所述,AB的长为43或4;故答案为43或4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.14.102-【分析】连结AC,取OC中点M,连结 MB,MG,则MB,MG为定长,利用两点之间线段最短解决问题即可.【详解】连接AC,交EF于O,∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵AE=CF,∴△AEO≌△CFO(ASA),∴OA=OC,∴O是正方形的中心,∵AB=BC=4,∴AC=2OC=2,取OC中点M,连结 MB,MG,过点M作MH⊥BC于H,∵MC=12OC2,∴MH=CH=1,∴BH=4−1=3,由勾股定理可得MB2231+10在Rt△GOC中,M是OC的中点,则MG=12OC2∵BG≥BM−MG102,当B,M,G三点共线时,BG最小=10−2,故答案为:10−2.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E,F运动到AD,BC的中点时,MG最小是解决本题的关键.15.24【分析】由菱形的性质可得OD=OB,∠COD=90°,由直角三角形的斜边中线等于斜边的一半,可得OH=12BD=OB,可得∠OHB=∠OBH,由余角的性质可得∠DHO=∠DCO,即可求解.【详解】【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∠DAB=∠DCB=48°,∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12∠DCB=24°,故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH是BD的一半,和∠DHO=∠DCO是解决本题的关键.16.102【分析】根据菱形的性质求出∠DAB=2∠DAC,AD=CD;再根据垂直平分线的性质得出AF=DF,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB的度数.【详解】连接BD,BF,∵四边形ABCD是菱形,∴AD=CD,∴∠DAC=∠DCA.∵EF垂直平分AB,AC垂直平分BD,∴AF=BF,BF=DF,∴AF=DF,∴∠FAD=∠FDA,∴∠DAC+∠FDA+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°.故答案为:102°.【点睛】本题主要考查了线段的垂直平分线的性质,三角形内角和定理的应用以及菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.17.3﹣32 2【分析】作辅助线,构建全等三角形和矩形,利用面积法可得AE的长,根据勾股定理可得BE的长,设AE=x,证明△ABE≌△EQF(AAS),得FQ=BE=2,最后根据三角形面积公式可得结论.【详解】解:如图,过D作DH⊥AE于H,过E作EM⊥AD于M,连接DE,∵EF⊥AE,DF⊥EF,∴∠DHE=∠HEF=∠DFE=90°,∴四边形DHEF是矩形,∴DH=EF=AE,∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠AME=90°,∴四边形ABEM是矩形,∴EM=AB=2,设AE =x ,则S △ADE =11AD EM AE DH 22⋅=⋅, ∴3×2=x 2,∴x ,∵x >0,∴x ,即AE ,由勾股定理得:BE ,过F 作PQ ∥CD ,交AD 的延长线于P ,交BC 的延长线于Q ,∴∠Q =∠ECD =∠B =90°,∠P =∠ADC =90°,∵∠BAE +∠AEB =∠AEF =∠AEB +∠FEQ =90°,∴∠FEQ =∠BAE ,∵AE =EF ,∠B =∠Q =90°,∴△ABE ≌△EQF (AAS ),∴FQ =BE ,∴PF =2,∴S △ADF =1AD PF 2⋅=13(22⨯⨯=3﹣2. 【点睛】此题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理,有难度,正确作辅助线构建全等三角形是关键,并用方程的思想解决问题.18.13+【分析】如图所示,延长CD 交FN 于点P ,过N 作NK ⊥CD 于点K ,延长FE 交CD 于点Q ,交NS 于点R ,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR 是矩形得出22213FN FR NR =+=+NS 交ML 于点Z ,利用全等三角形性质与判定证明四边形FHMN 为正方形,最后进一步求解即可.【详解】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,∵ABCD为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE∥DG,CT∥SN,DG⊥CT,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴2FQ=FE+EQ=22+∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR是矩形,∴2,∴FR=FQ+QR=222=,+,NR=KQ=DK−2121∴2221382FN FR NR=+=+再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),∴FN=MN,∠NFR=∠MNZ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN为正方形,∴正方形FHMN的面积=21382FN=+故答案为:1382+【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.19.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴=,,AF EC n m BC BCm n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形 11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形 1()4ABEF CDFE S S =+12874=⨯=故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键.20.答案不唯一,例AC=BD 等【分析】连接AC、BD,先证明四边形ABCD是平行四边形,再根据菱形的特点添加条件即可.【详解】连接AC,∵点E、F分别是AB、BC的中点,∴EF是△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,连接BD,同理EH=FG,EF∥FG,当AC=BD时,四边形EFGH是平行四边形,故答案为:答案不唯一,例AC=BD 等.【点睛】此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.三、解答题21.(1)见解析;(2)四边形EGCF 为平行四边形,理由见解析;(3)AC=2AB .【分析】(1)根据平行四边形的性质得到OE=OF 即可证得结论;(2)利用AOE COF ∆≅∆得到∠EAO=∠FCO ,AE=CF ,由此推出AE ∥CF ,EG=CF 即可证得四边形EGCF 是平行四边形;(3)AC=2AB ,根据平行四边形的性质推出AB=AO ,利用点E 是OB 的中点,得到AG ⊥OB ,即可得到四边形EGCF 是矩形.【详解】(1)四边形ABCD 为平行四边形,OA OC ∴=,OB OD =,点E 、F 分别为OB 、OD 的中点,12OE OB ∴=,12OF OD =, 则OE OF =,在AOE ∆与COF ∆中OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆;(2)AOE COF ∆≅∆,EAO FCO ∴∠=∠,AE CF =,//AE CF ∴,又GE AE =,GE CF ∴=,∴四边形EGCF 为平行四边形;(3)当AC=2AB 时,四边形EGCF 是矩形.∵AC=2AB ,AC=2AO ,∴AB=AO ,∵点E 是OB 的中点,∴AG ⊥OB ,∴∠GEF=90°,∴四边形EGCF 是矩形.故答案为:AC=2AB .【点睛】此题考查了平行四边形的判定及性质,三角形全等的判定及性质,矩形的判定定理,等腰三角形的三线合一的性质,熟练掌握各知识点并运用解题是关键.22.(1)见解析;(2;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE,BF=DF,可得∠EBD=∠EDB,∠FBD=∠FDB,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF,可证BE∥DF,DE∥BF,可得四边形DEBF是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF的长;(3)过点D作BC的垂线,垂足为H,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵EF垂直平分BD,∴BE=DE,BF=DF,∵∠EBD=∠EDB,∠FBD=∠FDB,∴∠EBD=∠BDF,∠EDB=∠DBF,∴BE∥DF,DE∥BF,∴四边形DEBF是平行四边形,且BE=DE,∴四边形BEDF是菱形;(2)过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,33,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.。
八年级初二数学第二学期平行四边形单元提高题学能测试一、选择题1.如图,已知平行四边形ABCD ,6AB =,9BC =,120A ∠=︒,点P 是边AB 上一动点,作PE BC ⊥于点E ,作120EPF ∠=︒(PF 在PE 右边)且始终保持33PE PF +=,连接CF 、DF ,设m CF DF =+,则m 满足( )A .313m ≥B .63m ≥C .313937m <+≤D .3337379m +<<+2.已知在直角梯形ABCD 中, AD ∥BC ,∠BCD =90°, BC =CD =2AD , E 、F 分别是BC 、CD 边的中点,连结BF 、DE 交于点P ,连结CP 并延长交AB 于点Q ,连结AF ,则下列结论不正确的是( )A .CP 平分∠BCDB .四边形 ABED 为平行四边形C .CQ 将直角梯形 ABCD 分为面积相等的两部分D .△ABF 为等腰三角形 3.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )A .2B 5C 35D 104.如图,在平行四边形ABCD 中,272BC AB B CE AB =∠=︒⊥,,于E F ,为AD 的中点,则AEF ∠的大小是( )A .54︒B .60︒C .66︒D .72︒5.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A .233-B .322-C .22D .236.如图,在正方形ABCD 中,点G 是对角线AC 上一点,且CG =CB ,连接BG ,取BG 上任意一点H ,分别作HM ⊥AC 于点M ,HN ⊥BC 于点N ,若正方形的边长为2,则HM +HN 的值为( )A .2B .1C .3D .227.如图,矩形ABCD 中,AB =10,AD =4,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .1B .103C .4D .1438.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .49.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB :②GC 平分∠BGD ;③S 四边形BCDG =3CG 2;④∠BGE 的大小为定值.其中正确的结论个数为( )A .1B .2C .3D .410.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 3二、填空题11.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.12.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.13.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.14.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).15.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.16.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.综合与实践.问题情境:如图①,在纸片ABCD □中,5AD =,15ABCD S =,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '. 独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D '的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D '的两条对角线长;(4)若四边形ABCD 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.25.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若3,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 26.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .(1)如图,当点E 在线段BC 上时,∠BDF=α.①按要求补全图形;②∠EBF =______________(用含α的式子表示);③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.27.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DC AE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O . (1)求证:EF DA ⊥. (2)若4,23BC AD ==,求EF 的长.28.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.29.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。
八年级初二数学下学期平行四边形单元提高题学能测试试卷一、解答题1.如图1所示,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E ,F 分别在正方形的边CB ,CD 上,连接AE 、AF .(1)求证:AE =AF ;(2)取AF 的中点M ,EF 的中点N ,连接MD ,MN .则MD ,MN 的数量关系是 ,MD 、MN 的位置关系是(3)将图2中的直角三角板ECF ,绕点C 旋转180°,如图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.2.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由. 3.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+4.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F . (1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想; (3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.5.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC.(直接写出结果)6.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CFOF= (直接填结果).7.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积; (2)若CG CB =,求证:2BG FH CE +=.8.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DCAE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O .(1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.9.已知:如图,在ABC 中,直线PQ 垂直平分AC ,与边AB 交于点E ,连接CE ,过点C 作//CF BA 交PQ 于点F ,连接AF . (1)求证:四边形AECF 是菱形;(2)若8AC =,AE=5,则求菱形AECF 的面积.10.已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP.将△AEF绕点A逆时针旋转.(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为.(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP的取值范围为.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(2)相等,垂直;(3)成立,理由见解析【分析】(1)由等腰直角△ECF得到CE=CF,再由正方形ABCD进一步得到BE=DF,最后证明△ABE≌△ADF即可求解;(2)MN是△AEF的中位线,得到AE=2MN,又M是直角三角形ADF斜边上的中点,得到AF=2MD,再由(1)中的AE=AF即可得到MN=MD;由∠DMF=∠DAF+∠ADM,∠FMN=∠FAE,∠DAF=∠BAE,∠ADM=∠DAF=∠BAE,由此得到∠DMN=∠BAD=90°;(3)连接AE,同(1)中方法证明△ABE≌△ADF,进而得到AE=AF,此时MN是△AEF中位线,MD是直角△ADF斜边上的中线,证明方法等同(2)中即可求解.【详解】解:(1)证明:如图1中,∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF.(2)如图2中,MD,MN的数量关系是相等,MD、MN的位置关系是垂直,理由如下:∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN是△AEF的中位线,∴AE=2MN,由(1)知:AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠BAD=90°,∴DM⊥MN,故答案为:相等,垂直;(3)如图3中,(2)中的两个结论还成立,理由如下: 连接AE ,交MD 于点G ,如下图所示,∵点M 为AF 的中点,点N 为EF 的中点, ∴MN ∥AE ,MN =12AE , 由(1)同理可证,AB =AD =BC =CD ,∠B =∠ADF ,CE =CF , 又∵BC +CE =CD +CF ,即BE =DF , ∴△ABE ≌△ADF (SAS ),∴AE =AF , 在Rt △ADF 中,∵点M 为AF 的中点,∴DM =12AF , ∴DM =MN ,∵△ABE ≌△ADF ,∴∠1=∠2, ∵AB ∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4, ∵DM =AM ,∴∠MAD =∠5, ∴∠DGE =∠5+∠4=∠MAD +∠3=90°, ∵MN ∥AE ,∴∠DMN =∠DGE =90°, ∴DM ⊥MN . 故答案为:仍成立. 【点睛】本题考查了正方形的性质、三角形的中位线、直角三角形斜边上的中线等于斜边的一半,三角形全等几何知识,熟练掌握各图形的性质是解决本题的关键.2.(1)AE t =;122AD t =-;DF t =;(2)证明见解析;(3)3t =;理由见解析. 【分析】(1)根据题意用含t 的式子表示AE 、CD ,结合图形表示出AD ,根据直角三角形的性质表示出DF ;(2)根据对边平行且相等的四边形是平行四边形证明; (3)根据矩形的定义列出方程,解方程即可.【详解】解:(1)由题意得,AE t =,2CD t =, 则122AD AC CD t =-=-,∵DF BC ⊥,30C ∠=︒,∴12DF CD t == (2)∵90ABC ∠=︒,DF BC ⊥,∴AB DF ,∵AE t =,DF t =,∴AE DF =, ∴四边形AEFD 是平行四边形; (3)当3t =时,四边形EBFD 是矩形, 理由如下:∵90ABC ∠=︒,30C ∠=︒,∴162BC AC cm ==, ∵BE DF ∥,∴BE DF =时,四边形EBFD 是平行四边形, 即6t t -=,解得,3t =,∵90ABC ∠=︒,∴四边形EBFD 是矩形, ∴3t =时,四边形EBFD 是矩形. 【点睛】本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.3.(1)证明见解析;(2)BE =3)证明见解析. 【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AE DG CGCD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论.【详解】解:(1)证明:∵四边形ABCD 为平行四边形, ∴AB//CD ,AD//BC , ∴∠E=∠EGD ,∠H=∠DFG , ∵∠CGH=∠EGD ,∠DFG=∠AFE , ∴∠E=∠CGH ,∠H=∠AFE , ∵//EH AC ,AB//CD , ∴四边形ACGE 是平行四边形, ∴AE=CG ,∴△AEF ≌△CGH (AAS ); (2)∵四边形ABCD 为平行四边形, ∴AB//CD ,AB=CD , ∴∠E=∠EGD ,∠D=∠EAF , ∵F 是AD 的中点, ∴AF=FD ,∴△AEF ≌△DGF (AAS ); 由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH, ∴12AEDG CGCD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴2422ABCDAD ,∴22AE =, ∴62BE AB BE =+=; (3)如下图,∵四边形ABCD 为平行四边形, ∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD , ∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==, 且222222223CD AD CD AC CD C AB BC D =+=+++=, ∴22222()AC BD AB BC +=+ 【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键. 4.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析 【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案. 【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒, ∴ADE FEM ∠=∠; (2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形, ∴AD AB = ,∵,N E 分别为,AD AB 中点∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE ==又∵90A ∠=︒ ∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒, 又∵90CBM ∠=︒,BF 平分CBM ∠ ∴45,135CBF EBF ∠=︒∠=︒. ∴DNE EBF ∠=∠ 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF = (3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =, ∴AN AE =,∴AEN △为等腰直角三角形, ∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒, ∵BF 平分CBM ∠, AN AE =, ∴9045135EBF ∠=︒+︒=︒, ∴DNE EBF ∠=∠, 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DNE EBF ASA ≌, ∴DE EF =. 【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE ≌△EBF .5.(1)见解析;(2)222MN BN DM =+,理由见解析;(3)32【分析】(1)由直角三角形的性质得AO=MO=12BE=BO=EO ,得∠ABO=∠BAO ,∠OBM=∠OMB ,证出∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°即可;(2)在AD 上方作AF ⊥AN ,使AF=AN ,连接DF 、MF ,证△ABN ≌△ADF (SAS ),得BN=DF ,∠DAF=∠ABN=45°,则∠FDM=90°,证△NAM ≌△FAM (SAS ),得MN=MF ,在Rt △FDM 中,由勾股定理得FM 2=DM 2+FD 2,进而得出结论;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,则△PCQ ≌△ECQ ,∠ECQ=∠PCQ=135°,EQ=PQ=9,得∠PCE=90°,则∠BCE=∠DCP ,△PCE 是等腰直角三角形,得2PE ,证△BCE ≌△DCP (SAS ),得∠CBE=∠CDB=∠CBD=45°,则∠EBQ=∠PBE=90°,由勾股定理求出BE=42PE=6,即可得出PC 的长. 【详解】 解:(1)证明:四边形ABCD 是正方形,90ABC BAD ∴∠=∠=︒,45ABD ADB ∠=∠=︒,ME BD ⊥,90BME ∴∠=︒, O 是BE 的中点,12AO MO BE BO EO ∴====, ABO BAO ∴∠=∠,OBM OMB ∠=∠,22290AOM AOE MOE ABO MBO ABD ∴∠=∠+∠=∠+∠=∠=︒;(2)222MN BN DM =+,理由如下:在AD 上方作AF AN ⊥,使AF AN =,连接DF 、MF ,如图2所示:则90NAF ∠=︒,四边形ABCD 是正方形,AB AD ∴=,90BAD NAF ∠=∠=︒,BAN DAF ∴∠=∠,45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在ABN ∆和ADF ∆中,AB AD BAN DAF AN AF =⎧⎪∠=∠⎨⎪=⎩,()ABN ADF SAS ∴∆≅∆,BN DF ∴=,45DAF ABN ∠=∠=︒,90FDM ADB ADF ∴∠=∠+∠=︒,45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在NAM ∆和FAM ∆中,AN AF NAM FAM AM AM =⎧⎪∠=∠⎨⎪=⎩,()NAM FAM SAS ∴∆≅∆,MN MF ∴=,在Rt FDM ∆中,222FM DM FD =+,即222MN BN DM =+;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,如图3所示: 则PCQ ECQ ∆≅∆,135ECQ PCQ ∠=∠=︒,9EQ PQ ==,36090PCE PCQ ECQ ∴∠=︒-∠-∠=︒,BCE DCP ∴∠=∠,PCE ∆是等腰直角三角形, 2CE CP PE ∴==, 在BCE ∆和DCP ∆中,BC DC BCE DCP CE CP =⎧⎪∠=∠⎨⎪=⎩,()BCE DCP SAS ∴∆≅∆,45CBE CDB CBD ∴∠=∠=∠=︒,90EBQ ∴∠=︒,90PBE ∴∠=︒,2PB =,9PQ =,7BQ PQ PB ∴=-=,22229742BE EQ BQ ∴=-=-=,22222(42)6PE PB BE ∴=+=+=,232PC PE ∴==; 故答案为:32.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的判定、勾股定理、轴对称的性质等知识;本题综合性强,熟练掌握正方形的性质和勾股定理,证明三角形全等是解题的关键.6.(1)见解析;(2)FG=EP ,理由见解析;(3【分析】(1)证△ODE ≌△OFB (ASA ),即可得出OE=OF ;(2)连AC ,由(1)可知OE=OF ,OB=OD ,证△AOE ≌△COF (SAS ),得AE=CF ,由折叠性质得AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,则∠D=∠B 1,证△A 1PE ≌△CGF (AAS ),即可得出FG=EP ;(3)作OH ⊥BC 于H ,证四边形ABCD 是矩形,则∠ABC=90°,得∠OBC=30°,求出AC=8,由勾股定理得BC=CF=,由等腰三角形的性质得BH=CH=12BC=HF=4-,OH=12OB=2,由勾股定理得OF=,进而得出答案. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ODE=∠OBF ,∠OED=∠OFB ,∵AE=CF ,∴AD-AE=BC-CF ,即DE=BF ,在△ODE 和△OFB 中, ODE OBF DE BFOED OFB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODE ≌△OFB (ASA ),∴OE=OF ;(2)FG=EP ,理由如下:连AC ,如图②所示:由(1)可知:OE=OF ,OB=OD ,∵四边形ABCD 是平行四边形,∴AC 过点O ,OA=OC ,∠BAD=∠BCD ,∠D=∠B ,在△AOE 和△COF 中,OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴AE=CF ,由折叠性质得:AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,∴∠D=∠B 1,∵∠A 1PE=∠DPH ,∠PHD=∠B 1HG ,∴∠DPH=∠B 1GH ,∵∠B 1GH=∠CGF ,∴∠A 1PE=∠CGF ,在△A 1PE 和△CGF 中,111A PE CGF A FCG A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1PE ≌△CGF (AAS ),∴FG=EP ;(3)作OH ⊥BC 于H ,如图③所示:∵△AOB 是等边三角形,∴∠ABO=∠AOB=∠BAO=60°,OA=OB=AB=4,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∴AC=BD ,∴四边形ABCD 是矩形,∴∠ABC=90°,∴∠OBC=∠OCB=30°,∵AB=OB=BF=4,∴AC=BD=2OB=8,由勾股定理得:2222=84AC AB --3 ∴CF=43,∵OB=OC ,OH ⊥BC ,∴BH=CH=12BC=23 ∴HF=4-23OH=12OB=2, 在Rt △OHF 中,由勾股定理得: 22OH HF +()222423+-2622,∴434226222CF OF -===-, 故答案为:2.【点睛】本题是四边形综合题,考查了平行四边形的性质、矩形的判定与性质、翻折变换的性质、全等三角形的判定与性质、等腰三角形的性质、含30°角的直角三角形的性质、等边三角形的性质、勾股定理等知识;本题综合性强,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,属于中考压轴题.7.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD 是正方形,再根据已知条件证明△BCF ≌△DCE ,即可得到四边形AECF 的面积=正方形ABCD 的面积;(2) 延长BG 交AD 于点M ,作AN ⊥MN ,连接FG ,先证明四边形BCEM 是平行四边形,得到BM=CE ,证明△BCF ≌△GCF ,得到BF=GF ,∠FGC=∠FBC=90︒,由AN ⊥MN ,得GM=2MN ,根据∠BAC=45︒,BC ∥AD 得到AM=BF ,再证△BFH ≌△AMN,得到GM=2FH , 由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.8.(1)见解析;(2)2【分析】(1)由ABC 和BCD 中,90BAC BDC ∠=∠=︒,E 为BC 的中点,得到12DE AE BC ==,从而EDA EAD ∠=∠,根据//DC AE 得到ADC EDA ∠=∠,再根据等腰三角形的性质得到EF DA ⊥;(2)由4BC =求出DE=AE=2,根据EF DA ⊥,得到12DO AD ==理求出EO ,由此得到22EF EO ==.【详解】(1)∵ABC 和BCD 中,90BAC BDC ∠=∠=︒,E 为BC 的中点 ∴12DE AE BC ==∴EDA EAD ∠=∠∵//DC AE∴ADC EAD ∠=∠∴ADC EDA ∠=∠ ∵DF DE =∴EF DA ⊥.(2)∵4BC =, ∴122DE BC ==∵DE AE =, ,EF DA AD ⊥=∴12DO AD ==Rt DEO 中,1EO =∵DF DE =∴22EF EO ==【点睛】此题考查直角三角形的性质,等腰三角形的性质,勾股定理的运用.(1)中点的运用很关键,确定边相等,利用等边对等角求得角的相等关系;(2)在证明中利用(1)的结论求得12DO AD ==是解题的关键. 9.(1)答案见解析;(2)24【分析】 (1) 首先利用ASA 证明△CDF ≌△ADE ,进而得到AE=CF ,于是得四边形AECF 是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得到结论;(2)首先利用勾股定理求出DE 的长,再利用对角线乘积的一半求出菱形的面积.【详解】(1)∵CF// AB ,∴∠DCF= ∠DAE ,∵PQ 垂直平分AC ,∴CD= AD ,在△CDF 和△ADE 中,DCF DAE CD ADCDF ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDF ≌△ADE ,∴CF=AE,∵CF ∥AE ,∴四边形AECF 是平行四边形,∵PQ 垂直平分AC ,∴AE=CE ,∴四边形AECF 是菱形;(2)∵四边形AECF 是菱形,∴△ADE 是直角三角形,∵AD=142AC ,AE=5 , ∴3==,∴EF= 2DE=6, ∴菱形AECF 的面积为11862422AC EF ⋅=⨯⨯=. 【点睛】此题考查菱形的判定及性质定理,三角形全等的判定定理,线段垂直平分线的性质定理,勾股定理,正确掌握菱形的判定及性质定理是解题的关键.10.(1)AP⊥BF,12AP BF =(2)见解析;(3)1≤AP ≤2 【分析】(1)根据直角三角形斜边中线定理可得12AP ED PD == ,即△APD 为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF 可得∠ABF=∠EDA=∠DAP 且 BF=ED 由三角形内角和可得∠AOF=90°即AP⊥BF 由全等可得1122AP ED BF == 即12AP BF = (2)延长AP 至Q 点使得DQ ∥AE,PA 延长线交于G 点,利用P 是DE 中点,构造△AEP≌△PDQ 可得∠EAP=∠PQD,DQ=AE=FA 可得∠QDA=∠FAB 可证△FAB≌△QDA 得到∠AFB=∠PQD=∠EAP,AQ=FB 由三角形内角和可得∠FAG=90°得出AG⊥FB 即AP⊥BF 由全等可得1122AP AQ FB ==(3)由于12AP BF=即求BF的取值范围,当BF最小时,即F在AB上,此时BF=2,AP=1当BF最大时,即F在BA延长线上,此时BF=4,AP=2可得1≤AP≤2【详解】(1)根据直角三角形斜边中线定理有AP是△AED中线可得12AP ED PD==,即△APD为等腰三角形.∴∠DAP=∠EDA又AE=AF,∠BAF=∠DAE=90°,AB=AD ∴△AED≌△ABF∴∠ABF=∠EDA=∠DAP 且 BF=ED设AP与BF相交于点O∴∠ABF+∠AFB=90°=∠DAP+∠AFB∴∠AOF=90°即AP⊥BF∴1122AP ED BF==即12AP BF=故答案为AP⊥BF,12 AP BF=(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点∴∠EAP=∠PQD,∠AEP=∠QDP∵P是DE中点,∴EP=DP∴△AEP≌△PDQ则∠EAP=∠PQD,DQ=AE=FA∠QDA=180°-(∠PAD+∠PQD)=180°-∠EAD而∠FAB=180°-∠EAD,则∠QDA=∠FAB∵AF=DQ,∠QDA=∠FAB ,AB=AD∴△FAB≌△QDA∴∠AFB=∠PQD=∠EAP,AQ=FB而∠EAP+∠FAG=90°∴∠AFB+∠FAG=90°∴∠FAG=90°∴AG⊥FB即AP⊥BF又1122 AP AQ FB ==∴1 AP2BF=(3)∵12 AP BF=∴即求BF的取值范围BF最小时,即F在AB上,此时BF=2,AP=1BF最大时,即F在BA延长线上,此时BF=4,AP=2∴ 1≤AP≤2【点睛】掌握三角形全等以及直角三角形斜边上的中线,灵活运用各种角关系是解题的关键.。
八年级数学试卷 第1页,共4页
八年级数学试卷 第2页,共4页
八年级下册第19.1平行四边形 能力提升卷
一、细心选一选
1.平行四边形ABCD 的四个角度数的比∠A :∠B :∠C :∠D 可能是( )
A .2:5:2:5
B .3:4:4:3
C .4:4:3:2
D .2:3:5:6 2.能判别四边形ABCD 是平行四边形的题设是 ( )
A 、A
B ∥CD ,AD =B
C B 、∠A =∠B ,∠C =∠
D C 、AB =CD ,AD =BC D 、AB =AD ,CB =CD
3.小华的爸爸用40米的铁丝围成一个平行四边形场地(接口长度忽略不计),如
图1所示,其中一条边AD 的长为6米,则AB 的长为 ( ) A 、28米 B 、14米 C 、12米 D 、6米
D
B
C
A
O
D
B
C
A
4.平行四边形ABCD 的周长为32cm ,AB :BC =3:5,则CD 、AD 的长分别为( )
A 、12cm ,20cm
B 、20cm ,12cm
C 、10cm ,6cm
D 、6cm ,10cm 5.有以下四个说法:
①两点的距离,点到直线的距离,两条平行线间的距离,都是指某种线段的长. ②如果两点的位置固定,那么它们的距离是定值.
③如果一点和一条直线的位置固定,那么它们的距离是定值. ④两条平行线间的距离不是定值 其中正确说法的个数是 ( ) A .1 B .2 C .3 D .4
6.小华的爸爸在钉制平行四边形框架时采用了一种方法:如图2所示,将两根木
条AC 、BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )
A 、对角线互相平分的四边形是平行四边形
B 、一组对边平行且相等的四边形是平行四边形
C 、两边对边分别平行的四边形是平行四边形
D 、两组对边分别相等的四边形是平行四边形
7.如图3,在□ABCD 中,O 是对角线的交点,过O 的直线交AB 于E ,交DC 于F ,
图中全等三角形共有 ( ) A .2对 B .3对 C .6对 D .8对
O
F
E
D
C
B
A A B
C
O
E
D
图3 图4
8.如图4,平行四边形A BCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD
于E ,则△DCE 的周长为 ( ) A 、4cm B 、6cm C 、8cm D 、10cm
9. A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD 这
四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有 ( ) A 、3种 B 、4种 C 、5种 D 、6种
10.国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平
行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( ) A .红花、绿花种植面积一定相等 B .紫花、橙花种植面积一定相等 C .红花、蓝花种植面积一定相等 D .蓝花、黄花种植面积一定相等 二、用心填一填
11.把两个全等的不等边三角形按不同的方法拼成一个四边形,可拼成一个平行四
边形的个数有__个。
12.已知一个四边形的两条对角线长分别是10和12,顺次连结各边的中点所得的
四边形是__四边形,这个四边形的周长是___。
13.如图3,在平行四边形ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,则∠DAE
等于___。
第35题
E
D
C
B
A
E O
D
C B
A
图3 图4
14.如图4,已知平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过O 作OE ∥CD
交BC 于E ,若OE =4cm ,则AB =___。
15.数学课上,王老师为了检测同学们对平行四边形的学习情况,出了下列一组题
八年级数学试卷第3页,共4页八年级数学试卷第4页,共4页
目:
①对角线相等,且一组对角相等的四边形是平行四边形;
②一边长为5cm,两条对角线长分别是4cm,6cm的四边形是平行四边形;
一组对边平行,且一组对角相等的四边形是平行四边形;
④一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形,其中
你认为正确的有___(把正确的序号填在横线上)
16.如图5,AC、BD是平行四边形ABCD的对角线,AC与BD交于点O,AC=4,BD =5,BC=3,在△BOC的周长是____。
O
D C B
A
图5
17.如果□ABCD的对角线AC、BD相交于点O,△AOB的面积为4,那么□ABCD的面积为_________.
18.已知□ABCD中,∠A的平分线分BC成4cm和3cm两条线段,则平行四边形的周长为___.
19.在平行四边形ABCD中,对角线AC长为10cm,∠CAB=︒
30,AB=6cm,则此平行四边形的面积为________2
cm.
20.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是.
三、耐心做一做
21.(8分)如图6,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出多少个平行四边形?试在图中画出来.
图6
22.(10分)如图7,平行四边形ABCD的两条对角线AC,BD相交于O。
(1) 图中有哪些三角形全等? 有哪些相等的线段?
(2)若平行四边形ABCD的周长是20cm,△AOD的周长比△ABO的周长大6cm。
求AB,AD的长.
D
C图7
23.(10分)已知,如图8,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO =CO。
求证:四边形ABCD是平行四边形。
D
C图8 24.(10分)已知:如图9,四边形ABCD是平行四边形,且∠=∠
EAD BAF。
(1)求证:∆CEF是等腰三角形。
(2)∆CEF
的哪两边之和等于平行四边形ABCD的周长,为什么?
9。