高考数学第二轮同步复习题17-空间几何体
- 格式:doc
- 大小:434.50 KB
- 文档页数:15
人教版必修二高一数学:空间几何体练习与答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.有下列三组定义:①有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;③有一个面是多边形,其余各面都是三角形的几何体是棱锥.其中正确定义的个数为()A.0 B.1C.2 D.32.如图,正方体ABCD﹣A1B1C1D1中,E、F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则空间四边形AEFG在该正方体各面上的投影不可能是()A.B.C.D.3.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆中的()A.①②B.②③C.③④D.①④4.用斜二测画法画出水平放置的正方形ABCD ABCD 的面积为( )A .4B .2C .2D5.已知边长为1的正方体的所有顶点在一个球面上,则这个球的表面积为( )A .43π B .2π C .3π D .4π6.如图,一竖立在水平地面上的圆锥形物体的母线长为4m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处,若该小虫爬行的最短路程为,则圆锥底面圆的半径等于( )A .1mB .3m 2C .4m 3D .2m7.已知圆锥的母线长为5,底面周长为8π,则它的体积为( ) A .48π B .64π3 C .16πD .80π38.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C.3 D.69.一圆锥的侧面展开图是半径为4的半圆,则该圆锥表面积为()A.12πB.4πC.3D.16π310.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为()A.4 B..11.边长为)A.4B.1C.D.812.如图所示为某三棱锥的三视图,则该三棱锥外接球的表面积为()A.B.24πC.16πD.8π二、填空题:请将答案填在题中横线上.13.下列四个平面图形都是正方体的展开图,还原成正方体后,数字排列规律完全一样的两个是________.(1) (2) (3) (4)14.棱长为a的正方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长为__________.15.若将边长为2 cm的正方形绕着它的一边所在的直线旋转一周,则所得圆柱的侧面积为__________ cm2.16.已知一个几何体的三视图如图所示(单位: cm),则该几何体的体积为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.如图是一个正四棱台的直观图,它的上底面是边长为2的正方形,下底面是边长为4的正方形,侧棱长为2,侧面是全等的等腰梯形,求此四棱台的表面积.18.在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.问:①依据题意画出这个几何体;②这个几何体由哪几个面构成,每个面的三角形是什么三角形;③若正方形边长为2a,则每个面的三角形面积为多少.19.已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.20.如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm与2 cm.如图所示,俯视图是一个边长为4 cm的正方形.(1)求该几何体的全面积;(2)求该几何体的外接球的体积.21.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求)22.一个几何体的三视图如图所示.已知正视图是底边长为11的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ; (2)求该几何体的表面积S .1.【答案】B【解析】由棱柱的定义可知只有①正确;②截面必须平行于底面;③其余各三角形应有一个公共顶点,所以②③都不正确.故选B . 2.【答案】B【解析】光线由上向下照射可以得到A 的投影,光线有面ABB 1A 1照射,可以得到C 的投影,光线由侧面照射可以得到D 的投影,故选B . 3.【答案】B【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.所以其俯视图不可能为②正方形;③圆,故选B . 4.【答案】A【解析】斜二测画法画出水平放置的正方形ABCD 的直观图,如图所示,设正方形的边长为a ,则直观图的面积为a •12a •sin45° a =2,∴正方形ABCD 的面积为a 2=4.故选A .5.【答案】C【解析】由题意,正方体的中心为其外接球的球心,∵正方体的棱长为12,∴外接球的表面积为24π3π⨯=.故选C . 6. 【答案】C【解析】作出该圆锥的侧面展开图,如下图所示:该小虫爬行的最短路程为PP ',在OPP '△中,OP =OP '=4,P P '=120P OP '∠=.设底面圆的半径为r ,则有1202ππ4180r =⋅,∴34=r .故C 正确.7.【答案】C【解析】∵圆锥的底面周长为8π,∴圆锥的底面半径r =4; 又∵圆锥的母线长l =5,∴圆锥的高h =3, 所以圆锥的体积为V 13=⨯π•42×3=16π,故选C . 8.【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2, 所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A9.【答案】A【解析】底面圆的半径为r ,则12π2π42r =⋅⋅,所以r =2,所以圆锥的表面积为:221π2π412π2⋅+⋅=.故选A . 10.【答案】B【解析】设长方体的三条棱的长分别为:,,x y z ,则2()524()36xy yz zx x y z ++=⎧⎨++=⎩,===.故选B .11.【答案】C【解析】边长为(2=8,水平放置的正方形的面积与斜二测画法所得的直观图的面积之比为:1,=C .12.【答案】B【解析】由已知中的三视图可得,该几何体的外接球,相当于一个棱长为1,1,2的长方体的外接球,故外接球直径2R ==S =4πR 2=24π,故选B .13.【答案】(2)(3)【解析】 (2)(3)中,①④为相对的面,②⑤为相对的面,③⑥为相对的面,故它们的排列规律完全一样.14【解析】因为正方体内接于球,所以2R =R 2a =, 过球心O 和点E 、F 的大圆的截面图如图所示, 则直线被球截得的线段为QR ,过点O 作OP ⊥QR 于点P ,所以在△QPO 中,QR =2QP =. 15.【答案】8π【解析】将边长为2 cm 的正方形绕着它的一边所在的直线旋转一周, 所得圆柱的底面圆半径为r =2 cm ,母线长为l =2 cm .则圆柱的侧面积为S 侧=2πrl =2π×2×2=8π( cm 2).故答案为:8π. 16.【答案】363π2-【解析】几何体的直观图如图是一个棱柱挖去一个圆柱的几何体,几何体的体积为:213334π()232⨯⨯-⋅⋅⋅=363π2-.故答案为:363π2-.17.【答案】20+【解析】依题意,上底面和下底面的面积分别是222,4, ∵侧面是全等的等腰梯形,且侧棱长2,∴侧面高==,∴侧面面积为()1242⨯+=∴该四棱台的表面积2224420S =++=+. 18.【解析】①如图所示.②这个几何体由四个面构成,即面DEF 、面DFP 、面DEP 、面EFP . 由题意可知DE =DF ,∠DPE =∠EPF =∠DPF =90°,所以△DEF 为等腰三角形,△DFP 、△EFP 、△DEP 为直角三角形.③由②可知,DE =DF =,EF =,所以,S △DEF 32=a 2.DP =2a ,EP =FP =a , 所以S △DPE =S △DPF =a 2,S △EPF 12=a 2.19.【解析】设圆台的母线长为l ,∵圆台的上下底面半径分别是2、5,∴圆台的上底面面积:2π2S =⨯=上4π, 圆台的下底面面积:2π525πS =⨯=下,∴圆台的底面面积:S =S 上+S 下=29π, 又圆台的侧面积:S 侧=π(2+5)l =7πl . ∵圆台的侧面面积等于两底面面积之和,∴7πl =29π,解得l 297=. ∴该圆台的母线长为297.20.【解析】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64 cm 2. 所以几何体的全面积是64 cm 2.(2)由长方体与球的性质可得,长方体的对角线是球的直径,记长方体的体对角线为d ,球的半径是r ,则d =,所以球的半径r =3. 因此球的体积V =344π27π36π 33r =⨯=(cm 3), 所以外接球的体积是36π cm 3.21.【解析】由题可知题目所述几何体是正六棱台,画法如下:画法: (1)画轴画x 轴、y 轴、z 轴,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°(图1) (2)画底面以O ′为中心,在XOY 坐标系内画正六棱台下底面正方形的直观图ABCDEF . 在z ′轴上取线段O ′O 1等于正六棱台的高;过O 1 画O 1M 、O 1N 分别平行O ’x ′、O ′y ′,再以O 1为中心,画正六棱台上底面正方形的直观图A ′B ′C ′E ′F ′(3)成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图(如图2).22.【解析】(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1∴V=1×1=(2)由三视图可知,该平行六面体中,A1D⊥面ABCD,CD⊥面BCC1B1,∴AA1=2,侧面ABB1A1,CDD1C1均为矩形∴S=2×(1×1+11×2)。
高中数学必修2第1章《空间几何体》高考真题及答案一、选择题1.【05广东】 已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三角形(如图1所示),则三棱锥B ′—ABC 的体积为 A .41B .21C .63D .43图22.【05福建·理】如图2,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是A .515arccosB .4π C .510arccos D .2π3.【05湖北·理】如图3,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B '' 的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为A .KB .HC .GD .B '图3 图44.【05湖南·理】如图4,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,如图1 A C 1A C则O 到平面AB C 1D 1的距离为 A .21B .42C .22 D .235.【05湖北·文】木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的A .60倍B .6030倍C .120倍D .12030倍6.【05江苏】正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A 1的距离为A .43 B .23 C .433 D .3 7.【05江西·理】矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC -D ,则四面体ABCD 的外接球的体积为A .π12125 B .π9125 C .π6125 D .π3125 9.【05全国Ⅰ·理】一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为A .π28B .π8C .π24D .π410.【05全国Ⅰ·理】如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 A .32 B .33C .34D .23 图511.【05全国Ⅱ·理】将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 AB .C .D12.【05全国Ⅱ·文】ABC ∆的顶点在平面α内,A 、C 在α的同一侧,AB 、BC 与α所成的角分别是30o 和45o .若AB =3,BC=AC =5,则AC 与α所成的角为 A .60o B .45o C .30o D .15o13.【05全国Ⅲ·理】设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为A .16V B .14V C .13V D .12V14.【05山东·理】设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075 东经0120,则甲、乙两地球面距离为 AB .6R π C .56R πD .23R π 15.【05重庆·理】如图6,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使AE : EB=AF : FC=AG : GD=2 : 1,记O 为三平面BCG 、CDE 、DBF 的交点,则三棱锥O —BCD 的体积等于 A .91 B .81 C . 71 D .41图6 图716.【05重庆·文】有一塔形几何体由若干个正方体构成,构成方式如图7所示,上层正方体下底面的四个顶点是下层正方体上底面各连接中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 A .4 B .5 C .6 D .7二、填空题1.【05辽宁】如图8,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .图8 图9M1A2.【05江西·理】如图9,在直三棱柱ABC —A 1B 1C 1中,AB=BC=2,BB 1=2,ο90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 .3.【05北京春考·理】如图10,正方体1111D C B A ABCD -的棱长为a ,将该正方体沿对角面D D BB 11切成两块,再将这两块拼接成一个不是正方体的四棱柱,那么所得四棱柱的全面积为_________.4.【05江西·理】如图11,在三棱锥P —ABC 中,PA=PB=PC=BC ,且2π=∠BAC ,则PA与底面ABC 所成角为 .5. 【05上海·理】 如图12,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a (0)a >。
第1讲空间几何体空间几何体的三视图自主练透夯实双基1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先由俯视图确定底面,再利用正视图与侧视图确定几何体.[题组通关]1.(2016·高考天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()B [解析] 由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②。
2.已知长方体的底面是边长为1的正方形,高为错误!,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该长方体的正视图的面积等于()A.1 B。
错误!C.2 D.2错误!C [解析]依题意得,题中的长方体的侧视图的高等于错误!,正视图的长是2,因此相应的正视图的面积等于错误!×错误!=2,故选C.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.空间几何体的表面积与体积高频考点多维探明1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(S,S′分别为上下底面面积,h为高)(不要求记忆).由空间几何体的结构特征计算表面积与体积如图,在棱长为6的正方体ABCD。
立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________. 答案 432.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”[问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________. 答案 2 23.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式 S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积 S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( ) A .4π B .3π C .2π D.32π 答案 D4.空间直线的位置关系:①相交直线——有且只有一个公共点.②平行直线——在同一平面内,没有公共点.③异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 答案 相交5.空间直线与平面、平面与平面的位置关系 (1)直线与平面①位置关系:平行、直线在平面内、直线与平面相交. ②直线与平面平行的判定定理和性质定理:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.③直线与平面垂直的判定定理和性质定理:判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 性质定理:垂直于同一个平面的两条直线平行. (2)平面与平面①位置关系:平行、相交(垂直是相交的一种特殊情况). ②平面与平面平行的判定定理和性质定理:判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. ③平面与平面垂直的判定定理和性质定理:判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.[问题5] 已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的________条件. 答案 充分不必要 6.空间向量(1)用空间向量求角的方法步骤①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|. ②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. ③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离: 可表示为d =|n ·AB →||n |.[问题6] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________. 答案 (1)64 (2)24解析 (1)方法一 取A 1C 1的中点E ,连接AE ,B 1E ,如图. 由题意知B 1E ⊥平面ACC 1A 1,则∠B 1AE 为AB 1与侧面ACC 1A 1所成的角. 设正三棱柱侧棱长与底面边长为1, 则sin ∠B 1AE =B 1E AB 1=322=64.方法二 如图,以A 1C 1中点E 为原点建立空间直角坐标系E -xyz ,设棱长为1,则A ⎝⎛⎭⎫12,0,1,B 1⎝⎛⎭⎫0,32,0, 设AB 1与平面ACC 1A 1所成的角为θ,EB 1→为平面ACC 1A 1的法向量. 则sin θ=|cos 〈AB 1→,EB 1→〉|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫-12,32,-1·⎝⎛⎭⎫0,32,02×32=64. (2)建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1. 设平面ABC 1D 1的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0.令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1),又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n|=122=24.易错点1 三视图认识不清致误例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80错解 由三视图知,该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4,宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是正方形,边长为4. 所以表面积S =42×3+2×4+2×12(2+4)×4=48+8+24=80.找准失分点 不能准确把握三视图和几何体之间的数量关系,根据正视图可知,侧视图中等腰梯形的高为4,而错认为等腰梯形的腰为4.正解 由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12 =17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.答案 C易错点2 对几何概念理解不透致误例2 给出下列四个命题:①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱; ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③底面是平行四边形的四棱柱是平行六面体; ④底面是矩形的平行六面体是长方体.其中正确的命题是__________(写出所有正确命题的序号). 错解1 ①②③ 错解2 ②③④找准失分点 ①是错误的,因为棱柱的侧棱要都平行且相等;④是错误的,因为长方体的侧棱必须与底面垂直. 正解 ②③易错点3 对线面关系定理条件把握不准致误例3 已知m 、n 是不同的直线,α、β、γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α,或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β; ⑤若m 、n 为异面直线,则存在平面α过m 且使n ⊥α. 其中正确的命题序号是________. 错解 ②③④⑤找准失分点③是错误的;⑤是错误的.正解①是错误的.如正方体中面ABB′A′⊥面ADD′A′,交线为AA′.直线AC⊥AA′,但AC不垂直面ABB′A′,同时AC也不垂直面ADD′A′.②正确.实质上是两平面平行的性质定理.③是错误的.在上面的正方体中,A′C不垂直于平面A′B′C′D′,但与B′D′垂直.这样A′C就垂直于平面A′B′C′D′内与直线B′D′平行的无数条直线.④正确.利用线面平行的判定定理即可.⑤错误.从结论考虑,若n⊥α且m⊂α,则必有m⊥n,事实上,条件并不能保证m⊥n.故错误.答案②④1.已知三条不同直线m,n,l与三个不同平面α,β,γ,有下列命题:①若m∥α,n∥α,则m∥n;②若α∥β,l⊂α,则l∥β;③α⊥γ,β⊥γ,则α∥β;④若m,n为异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 C解析因为平行于同一平面的两条直线除了平行,还可能相交或成异面直线,所以命题①错误;由直线与平面平行的定义知命题②正确;由于垂直于同一个平面的两个平面可能平行还可能相交,因此命题③错误;过两条异面直线分别作平面互相平行,这两个平面是唯一存在的,因此命题④正确.故选C.2.设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()A.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件答案 A解析当m⊂α时,若n∥α可得m∥n或m,n异面;若m∥n可得n∥α或n⊂α,所以“n∥α”是“m∥n”的既不充分也不必要条件,答案选A.3.一个几何体的三视图如图所示,则该几何体的体积是()A .64B .72C .80D .112答案 B解析 根据三视图,该几何体为下面是一个立方体、上面两个三棱锥,所以V =4×4×4+2×13×(12·4·2)×3=72,故选B.4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( ) A .① B .② C .③ D .④ 答案 C解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图所示中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .2+ 2B .3+ 2C .1+2 2D .5答案 A解析 由三视图可知,该几何体是一个四棱锥,如图所示. 该几何体的底面是边长为1的正方形,故S 1=12=1. 侧棱P A ⊥面ABCD ,且P A =1, 故S △P AB =S △P AD =12×1×1=12,而PD ⊥DC ,CB ⊥PB ,且PB =PD =2, 所以S △PBC =S △PDC =12×2×1=22.所以该几何体的表面积为S =1+2×12+2×22=2+ 2.故选A.6.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( ) A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 答案 D解析 若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A , ∴∠PDA =45°,D 正确.7.对于四面体ABCD ,给出下列四个命题: ①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中正确的是________.(填序号) 答案 ①④解析 取线段BC 的中点E ,连接AE ,DE , ∵AB =AC ,BD =CD , ∴BC ⊥AE ,BC ⊥DE , ∴BC ⊥平面ADE , ∵AD ⊂平面ADE , ∴BC ⊥AD ,故①正确.设点O 为点A 在平面BCD 上的射影, 连接OB ,OC ,OD , ∵AB ⊥CD ,AC ⊥BD , ∴OB ⊥CD ,OC ⊥BD , ∴点O 为△BCD 的垂心, ∴OD ⊥BC ,∴BC ⊥AD ,故④正确,易知②③不正确,填①④.8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.答案 π3解析 由∠ABC =∠DCB =π2知,BA →与CD →的夹角θ就是二面角A -BC -D 的平面角. 又AD →=AB →+BC →+CD →,∴AD →2=(AB →+BC →+CD →)2 =AB →2+BC 2→+CD →2+2AB →·CD →.因此2AB →·CD →=(23)2-12-32-22=-2, ∴cos(π-θ)=-12,且0<π-θ<π,则π-θ=23π,故θ=π3.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号) 答案 ①④解析 对命题①,则l ⊥α,α∥β得,l ⊥β,m ⊂β,∴l⊥m,故①正确.对命题②,l⊥mD⇒/l⊥β,则l⊥mD⇒/α∥β,故②错误.对命题③,当α⊥β时,l与m也可能相交或异面或平行,故③错误.对命题④,由l⊥α,l∥m得m⊥α,又m⊂β,∴α⊥β,故④正确.10.三棱锥D-ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱BD的长为________.答案4 2解析由正(主)视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=2;由侧(左)视图知CD=4,BE=23,在Rt△BCE中,BC=BE2+EC2=(23)2+22=4,在Rt△BCD中,BD=BC2+CD2=42+42=4 2.故答案为4 2.。
高考数学复习空间几何体的表面积与体积专题训练(含答案)答案 C4.已知三棱锥S-ABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为().A. B. C. D.解析在直角三角形ASC中,AC=1,SAC=90,SC=2,SA==;同理SB=.过A点作SC的垂线交SC于D点,连接DB,因SAC≌△SBC,故BDSC,故SC平面ABD,且平面ABD为等腰三角形,因ASC=30,故AD=SA=,则ABD的面积为1=,则三棱锥的体积为2=.答案 A.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为().A.cm2B.cm2C.cm2D.cm2解析该几何体的上下为长方体,中间为圆柱.S表面积=S下长方体+S上长方体+S圆柱侧-2S圆柱底=244+442+233+431+21-22=94+.答案 C.已知球的直径SC=4,A,B是该球球面上的两点,AB=,ASC=BSC=30,则棱锥SABC的体积为().A.3B.2C.D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥SABD和CABD,在SAD和SBD中,由已知条件可得AD=BD=x,又因为SC为直径,所以SBC=SAC=90,所以DCB=DCA=60,在BDC中,BD=(4-x),所以x=(4-x),所以x=3,AD=BD=,所以三角形ABD为正三角形,所以V=SABD4=.答案 C二、填空题.已知S、A、B、C是球O表面上的点,SA平面ABC,ABBC,SA=AB=1,BC=,则球O的表面积等于________.解析将三棱锥S-ABC补形成以SA、AB、BC为棱的长方体,其对角线SC为球O的直径,所以2R=SC=2,R=1,表面积为4.答案 4.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连接顶点和底面中心即为高,可求得高为,所以体积V=11=.答案9.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为________.解析借助常见的正方体模型解决.由三视图知,该几何体由正方体沿面AB1D1与面CB1D1截去两个角所得,其表面由两个等边三角形、四个直角三角形和一个正方形组成.计算得其表面积为12+4.答案 12+4.如图所示,正方体ABCD-A1B1C1D1的棱长为6,则以正方体ABCD-A1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为________.解析设O为正方体外接球的球心,则O也是正方体的中心,O到平面AB1D1的距离是体对角线长的,即为.又球的半径是正方体对角线长的一半,即为3,由勾股定理可知,截面圆的半径为=2,圆锥底面面积为S1=(2)2=24,圆锥的母线即为球的半径3,圆锥的侧面积为S2=23=18.因此圆锥的全面积为S=S2+S1=18=(18+24).答案 (18+24)三、解答题.一个几何体的三视图如图所示.已知主视图是底边长为1的平行四边形,左视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=11=.(2)由三视图可知,该平行六面体中,A1D平面ABCD,CD平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,S=2(11+1+12)=6+2..在直三棱柱ABC-A1B1C1中,底面为直角三角形,ACB=90,AC=6,BC=CC1=,P是BC1上一动点,如图所示,求CP+PA1的最小值.解 PA1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.铺平平面A1BC1、平面BCC1,如图所示.计算A1B=AB1=,BC1=2,又A1C1=6,故A1BC1是A1C1B=90的直角三角形.CP+PA1A1C.在AC1C中,由余弦定理,得A1C===5,故(CP+PA1)min=5..某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的主视图和俯视图.(1)请画出该安全标识墩的左视图;(2)求该安全标识墩的体积.(1)左视图同主视图,如图所示:(2)该安全标识墩的体积为V=VPEFGH+VABCDEFGH=40260+40220=64 000(cm3)..如图(a),在直角梯形ABCD中,ADC=90,CDAB,AB=4,AD=CD=2,将ADC沿AC折起,使平面ADC平面ABC,得到几何体D-ABC,如图(b)所示.(1)求证:BC平面ACD;(2)求几何体D-ABC的体积.(1)证明在图中,可得AC=BC=2,从而AC2+BC2=AB2,故ACBC,又平面ADC平面ABC,平面ADC平面ABC=AC,BC平面ABC,BC平面ACD.(2)解由(1)可知,BC为三棱锥B-ACD的高,BC=2,SACD=2,VB-ACD=SACDBC=22=,由等体积性可知,几何体D-ABC的体积为.空间几何体的表面积与体积专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。
第17练 空间几何体1.(2021·新高考全国Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .2 2C .4D .4 22.(2022·新高考全国Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5 m 时,相应水面的面积为140.0 km 2;水位为海拔157.5 m 时,相应水面的面积为180.0 km 2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5 m 上升到157.5 m 时,增加的水量约为(7≈2.65)( ) A .1.0×109 m 3 B .1.2×109 m 3 C .1.4×109 m 3D .1.6×109 m 33.(2022·新高考全国Ⅱ)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π4.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.345.(2018·全国Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.334 B.233 C.324 D.326.(2022·新高考全国Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是( ) A.⎣⎡⎦⎤18,814 B.⎣⎡⎦⎤274,814 C.⎣⎡⎦⎤274,643D .[18,27]7.(2019·全国Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm,3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.8.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.9.(2022·哈尔滨模拟)已知圆锥的底面半径为1,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的表面积为( ) A .2π B .3π C .4π D .5π10.(2022·洛阳模拟)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P ,Q 分别是棱AD ,DD 1的中点,则经过B ,P ,Q 三点的平面截正方体所得的截面的面积为( ) A .3 2 B.3152 C.92 D.92211.(2022·九江模拟)正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将△ADE ,△CDF ,△BEF 分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O -DEF ,则该三棱锥外接球半径R 与内切球半径r 的比值为( )A .2 3B .4 3C .2 6 D. 612.(2022·青海模拟)在四边形ABCD 中(如图1所示),AB =AD ,∠ABD =45°,BC =BD =CD =2,将四边形ABCD 沿对角线BD 折成四面体A ′BCD (如图2所示),使得∠A ′BC =90°,则四面体A ′BCD 外接球的表面积为( )A .9πB .8πC .7πD .6π13.(2022·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2AD =2,E ,F 分别为BB 1和D 1C 1的中点,则( ) A .EF ⊥ACB .三棱锥C 1-CEF 的体积为16C .三棱锥C 1-CEF 外接球的表面积为4πD .三棱锥C 1-CEF 外接球球心到平面C 1EF 的距离为2214.(多选)(2022·长沙模拟)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,O 1,O 2为圆柱上、下底面的圆心,O 为球心,EF 为底面圆O 1的一条直径,若球的半径r =2,则( )A .球与圆柱的表面积之比为1∶2B .平面DEF 截得球的截面面积的最小值为165πC .四面体CDEF 的体积的取值范围为⎝⎛⎦⎤0,323 D .若P 为球面和圆柱侧面的交线上一点,则PE +PF 的取值范围为[2+25,43] 15.(2022·黄山质检)已知水平放置的边长为23的等边△ABC ,其所在平面的上方有一动点P 满足两个条件:①三棱锥P -ABC 的体积为43;②三棱锥P -ABC 的外接球球心到底面ABC 的距离为2,则动点P 的轨迹长度为________.16.(2022·南京外国语学校模拟)在正方体ABCD -A 1B 1C 1D 1中,AB =32,点P 是正方体ABCD -A 1B 1C 1D 1的内切球O 的球面上的点,点N 为B 1C 1上一点,2NB 1=NC 1,DP ⊥BN ,则线段PC 长度的最大值为________.[考情分析] 高考常考知识,主要考查几何体的表面积与体积、球的组合体问题.常以选择题、填空题的形式出现,部分题目难度较大. 一、空间几何体的截面问题 核心提炼1.用一个平面去截几何体,此平面与几何体的交集叫做这个几何体的截面,利用平面的性质确定截面形状是解决截面问题的关键. 2.确定截面的主要依据有 (1)平面的四个基本事实及推论. (2)直线和平面平行的判定和性质. (3)两个平面平行的性质. (4)球的截面的性质. 练后反馈题目 5 8 10 15 正误错题整理:二、表面积与体积 核心提炼1.柱体、锥体、台体、球的表面积公式: (1)圆柱的表面积S =2πr (r +l ); (2)圆锥的表面积S =πr (r +l );(3)圆台的表面积S =π(r ′2+r 2+r ′l +rl ); (4)球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: (1)V 柱体=Sh (S 为底面面积,h 为高); (2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 球=43πR 3.练后反馈题目 1 2 7 9 正误错题整理:三、多面体与球 核心提炼多面体的外接球模型:(1)长方体的外接球直径为体对角线, 则R =a 2+b 2+c 22;正方体的外接球半径为R =3a 2; 正方体的内切球半径为r =a2.(2)柱体模型如图①,在三棱柱PB 1C 1-ABC 中,已知P A ⊥平面ABC ,设外接球半径为R ,球心为O ,△ABC的外接圆圆心为O 1,则R =OO 21+O 1A 2=⎝⎛⎭⎫P A 22+r 2,其中r =O 1A 为△ABC 外接圆半径.(3)锥体模型如图②,在正三棱锥P -ABC 中,先求出高线长h =PO 1=P A 2-r 2,在Rt △OO 1A 中,R 2=OO 21+r 2=(h -R )2+r 2,解方程求出R ,其中R 为外接球半径,r =O 1A为△ABC 外接圆半径,O 1为△ABC 的外接圆圆心. (4)正四面体(构造正方体)、对棱相等的三棱锥(构造长方体)如图③:正四面体D -A ′BC ′可构造正方体(所有面对角线相等); 如图④:对棱相等的三棱锥A -BCD 可构造长方体(对面的对角线相等).练后反馈题目 3 4 6 11 12 13 14 16 正误错题整理:1.[T11补偿](2022·九江模拟)如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为r .若是放入一个正方体,合上盒盖,可放正方体的最大棱长为a ,则ra等于( )A.22B.34 C .2- 2D.32(2-1) 2.[T12补偿](2022·乐山质检)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,三棱锥P -ABC 的体积为16,Q 为BC 的中点,则过点Q 的平面截球O 所得截面面积的取值范围是( ) A.⎣⎡⎦⎤π2,3π4 B.⎣⎡⎦⎤π2,2π3 C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎦⎤π4,2π33.[T14补偿](多选)(2022·长沙模拟)香囊,又名香袋、花囊,是我国古代常见的一种民间刺绣工艺品,香囊形状多样,如图1所示的六面体就是其中一种,已知该六面体的所有棱长均为2,其平面展开图如图2所示,则下列说法正确的是( )A .AB ⊥DEB .直线CD 与直线EF 所成的角为45°C .该六面体的体积为223D .该六面体内切球的表面积是32π274.[T13补偿](多选)(2022·郑州模拟)勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分,如图所示,若正四面体ABCD 的棱长为a ,则( )A .能够容纳勒洛四面体的正方体的棱长的最小值为aB .勒洛四面体能够容纳的最大球的半径为⎝⎛⎭⎫1-64a C .勒洛四面体的截面面积的最大值为14(2π-3)a 2D .勒洛四面体的体积V ∈⎝⎛⎭⎫212a 3,68πa 35.[T12补偿](2022·潮州模拟)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从点C 出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该鳖臑的外接球的表面积为________.6.[T15补偿](2022·巴中模拟)在长方体ABCD -A 1B 1C 1D 1中,BC =3,CC 1=2,M 为CD 的中点,动点P 在侧面BCC 1B 1内,且∠APB =∠MPC ,则动点P 的轨迹长度为________.。
2017年高考数学空间几何高考真题一.选择题(共9小题)1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC4.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.105.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1 B.+3 C.+1 D.+36.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.162.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.二.填空题(共5小题)8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.三.解答题(共9小题)13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.15.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.16.如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.21.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.3.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.4.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.7.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.8.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.2017年高考数学空间几何高考真题参考答案与试题解析一.选择题(共7小题)1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r==,∴该圆柱的体积:V=Sh==.故选:B.3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC【解答】解:法一:连B1C,由题意得BC1⊥B1C,∵A1B1⊥平面B1BCC1,且BC1⊂平面B1BCC1,∴A1B1⊥BC1,∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1,∵A1E⊂平面A1ECB1,∴A1E⊥BC1.故选:C.法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),=(﹣2,1,﹣2),=(0,2,2),=(﹣2,﹣2,0),=(﹣2,0,2),=(﹣2,2,0),∵•=﹣2,=2,=0,=6,∴A1E⊥BC1.故选:C.4.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1 B.+3 C.+1 D.+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6),Q,R,=,=(0,3,6),=(,5,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.二.填空题(共5小题)8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为36π.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为14π.【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为:=.则球O的表面积为:4×=14π.故答案为:14π.10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•()3=;故答案为:.11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.三.解答题(共9小题)13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,∴V P=﹣ABCD====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面PAD,BC⊄平面PAD,∴直线BC∥平面PAD;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.设AD=2x,则AB=BC=x,CD=,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=,PO=,PE==,△PCD面积为2,可得:=2,即:,解得x=2,PE=2.=×(BC+AD)×AB×PO==4.则V P﹣ABCD15.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【解答】证明:(1)取AC中点O,连结DO、BO,∵△ABC是正三角形,AD=CD,∴DO⊥AC,BO⊥AC,∵DO∩BO=O,∴AC⊥平面BDO,∵BD⊂平面BDO,∴AC⊥BD.解:(2)法一:连结OE,由(1)知AC⊥平面OBD,∵OE⊂平面OBD,∴OE⊥AC,设AD=CD=,则OC=OA=1,∴E是线段AC垂直平分线上的点,∴EC=EA=CD=,由余弦定理得:cos∠CBD==,即,解得BE=1或BE=2,∵BE<<BD=2,∴BE=1,∴BE=ED,∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,∵BE=ED ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1. 法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴BO==,∴BO 2+DO 2=BD 2,∴BO ⊥DO ,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系, 则C (﹣1,0,0),D (0,0,1),B (0,,0),A (1,0,0),设E (a ,b ,c ),,(0≤λ≤1),则(a ,b ,c ﹣1)=λ(0,,﹣1),解得E (0,,1﹣λ),∴=(1,),=(﹣1,),∵AE ⊥EC ,∴=﹣1+3λ2+(1﹣λ)2=0,由λ∈[0,1],解得,∴DE=BE ,∵四面体ABCE 与四面体ACDE 的高都是点A 到平面BCD 的高h , ∵DE=BE ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1.16.如图,直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC ﹣A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小.【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面ABC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC =S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S=×1×1=.△BDC18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:(Ⅱ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,则AD=PC=2,∴PB=,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.【解答】证明:(Ⅰ)取B1D1中点G,连结A1G、CG,∵四边形ABCD为正方形,O为AC与BD 的交点,∴四棱柱ABCD﹣A 1B1C1D1截去三棱锥C1﹣B1CD1后,A1G OC,∴四边形OCGA1是平行四边形,∴A1O∥CG,∵A1O⊄平面B1CD1,CG⊂平面B1CD1,∴A1O∥平面B1CD1.(Ⅱ)四棱柱ABCD﹣A 1B1C1D1截去三棱锥C1﹣B1CD1后,BD B1D1,∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥A1E,∵四边形ABCD为正方形,O为AC与BD 的交点,∴AO⊥BD,∵M是OD的中点,E为AD的中点,∴EM⊥BD,∵A1E∩EM=E,∴BD⊥平面A1EM,∵BD∥B1D1,∴B1D1⊥平面A1EM,∵B1D1⊂平面B1CD1,∴平面A1EM⊥平面B1CD1.21.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.3.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.4.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:设点D,B到平面ACE的距离分别为h D,h E.则=.∵平面AEC把四面体ABCD分成体积相等的两部分,∴===1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.=(﹣1,0,1),=,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面BDP的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.7.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=或t=.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.8.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.文档。
空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式 V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高);V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r .在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎫33,1时,V ′<0.∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面P AB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面P AB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面P AB 上, 即球心就是△P AB 的外心,根据正弦定理ABsin ∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知P A ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵P A ⊥平面ADE ,∴R 1=⎝⎛⎭⎫P A 22+r 21, 可得P A 2=R 21-r 21=102,∴P A =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵P A ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝⎛⎭⎫P A 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π. 专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18 答案 C 解析 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形, 设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元 答案 B解析 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A.32π3 B .3π C.4π3 D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36 B.12 C.13 D.32答案 C解析 ∵在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等, ∴此三棱锥的外接球即以P A ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即P A =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △P AB ×PC =13×12×⎝⎛⎭⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确.12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点,则P A =2AA 1=4,OA =2,所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC=4,AC =4,得△P AC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×(23)2+(2)2=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r·l=2.由于侧面展开图为半圆,可知12πl2=2π,可得l=2,因此r=1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm,母线长最短50 cm,最长80 cm,则斜截圆柱的侧面面积S=________cm2.答案 2 600π解析将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(π×40)×(50+80)=2 600π(cm2).15.已知球O与棱长为4的正四面体的各棱相切,则球O的体积为________.答案82 3π解析将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O与正四面体的各棱都相切,所以球O为正方体的内切球,即球O的直径2R=22,则球O的体积V=43πR3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.答案2π2解析如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5, ∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。
高考数学二轮复习同步练习:专题5 立体几何第1讲空间几何体一、选择题1.(文)(2011·北京文,5)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32B.16+16 2C.48 D.16+32 2[答案] B[解析]由三视图知,四棱锥为正四棱锥,四个侧面为四个全等的三角形,由图知三角形的高h=22,S′=12×4×22×4=162,所以表面积为S′+4×4=162+16.(理)(2011·北京理,7)某四面体的三视图如图所示,该四面体四个面的面积中最大的是()A.8B.6 2C .10D .8 2[答案] C[解析] 依题意,该四面体如图所示.其中,BC ⊥CD ,AB ⊥平面BCD ,BC =4,CD =3,AB =4.于是AC =42,BD =5. ∴S △BCD =6,S △ABC =8, S △ACD =62,S △ABD =10,故选C.2.(2011·广东文,9)如下图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2[答案] C[解析] 由三视图知S =12×23×2=23,h =3,所以V =13Sh =13×23×3=2 3.3.(2011·江西文,9)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )[答案] D[解析] 左视图为正方形含有一条对角线,即D 项中的对角线. 4.(2011·福建福州质检)某简单几何体的一条对角线长为a ,在该几何体的正视图、侧视图与俯视图中,这条对角线的投影都是长为2的线段,则a 等于( )A.2B.3 C .1 D .2[答案] B[解析] 可以把该几何体想象为一长方体AC 1,设AC 1=a ,则由题意知A 1C 1=AB 1=BC 1=2,设长方体的长、宽、高分别为x 、y 、z ,则x 2+y 2=2,y 2+z 2=2,z 2+x 2=2,三式相加得2(x 2+y 2+z 2)=2a 2=6.∴a = 3.故选B.5.(2011·山东威海模拟)已知球的表面积等于16π,圆台上、下底面圆周都在球面上,且下底面过球心,圆台的母线与底面的夹角为π3,则圆台的轴截面的面积是( )A .9π B.332 C .3 3 D .6 [答案] C[解析] 本题考查简单组合体的知识.如右图,过圆台的轴截面截球得截面如下:AB 为球的大圆的直径,据题意知球的半径为2,∠DAB =60°,连结OD ,易知三角形OAD 为等边三角形,AD =2,DE =3,AE =1,故DC =2(2-1)=2,故S 梯形ABCD =12(2+4)·3=3 3.6.(2011·天津十二区县联考,理3)如图,直三棱柱的正视图面积为2a 2,则侧视图的面积为( )A .2a 2B .a 2 C.3a 2 D.34a 2[答案] C[解析] 由正视图的面积为2a 2,则直三棱柱的侧棱长为2a ,侧视图为矩形,一边长为2a ,另一边长为32a ,所以侧视图的面积为3a 2.7.(2011·广东深圳)利用斜二测画法可以得到①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④[答案] A[解析] 因为斜二测画法规则依据的是平行投影的性质,故①②正确,对于③,④,只有平行于x 轴的线段长度不变,所以不正确,故选A.8.(文)(2011·辽宁文,10)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A.33B.233C.433D.533[答案] C[分析] 本题考查球的相关性质以及三棱锥体积的求法. [解析] 如图所示,由题意知,在棱锥S -ABC 中,△SAC ,△SBC 都是等腰直角三角形,其中AB =2,SC =4,SA =AC =SB =BC =2 2.取SC 的中点D ,易证SC 垂直于面ABD ,因此棱锥S -ABC 的体积为两个棱锥S -ABD 和C -ABD 的体积和,所以棱锥S -ABC 的体积V =13SC ·S △ADB =13×4×3=43 3.(理)(2011·辽宁理,12)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( )A .3 3B .2 3 C. 3 D .1[答案] C[分析] 本题考查球的相关性质以及三棱锥体积的求法,难度较大.[解析] 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2.作BD ⊥SC 于D 点,易证SC ⊥平面ABD ,因此V =13×34×(3)2×4= 3.二、填空题9.(2011·福建理,12)三棱锥P -ABC 中,P A ⊥底面ABC ,P A =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.[答案]3[解析] V =13×3×12×2×2×sin60°= 3.10.(文)(2011·新课标文,16)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.[答案] 13[解析] 依据题意画出示意图:设球半径R ,圆锥底面半径r ,则 πr 2=316·4πR 2,即r 2=34R 2,在Rt △OO 1C 中,由OC 2=OO 21+O 1C 2得OO 1=12R .所以,高的比为13.(理)(2011·新课标理,15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =23,则棱锥O -ABCD 的体积为________.[分析] 本小题考查对球的内接几何体的理解,球的截面性质及四棱锥体积的求解,考查空间想象能力和运算求解能力.[答案] 8 3[解析] 依题意棱锥O -ABCD 的四条侧棱长相等且均为球O 的半径,如图连接AC ,取AC 中点O ′,连接OO ′.易知AC =AB 2+BC 2=43,故AO ′=2 3.在Rt △OAO ′中,OA =4,从而OO ′=42-12=2. 所以V O -ABCD =13×2×6×23=8 3.11.(2011·惠州一模)已知△ABC 的斜二测直观图是边长为2的等边△A 1B 1C 1,那么原△ABC 的面积为________.[答案] 2 6[解析] 如图,过C 1作C 1D 1∥y 1轴,在△A 1D 1C 1中,设C 1D 1=a ,由正弦定理得:a sin 2π3=2sin π4⇒a =6⇒S △ABC =12×2×26=26.12.(2011·济南三模)一个几何体的三视图及部分数据如图所示,左视图为等腰三角形,俯视图为正方形,则这个几何体的体积等于________.[答案] 13[解析] 根据三视图可知,该几何体是高为2的四棱锥,且底面正方形的对角线长为1,∴V =13×12×1×1×2=13. 三、解答题13.(文)一个多面体的直观图,主视图(正前方观察),俯视图(正上方观察),左视图(左侧正前方观察)如下图所示.(1)探求AD与平面A1BCC1的位置关系并说明理由;(2)求此多面体的表面积和体积.[解析]从俯视图可得:底面四边形ABCD和侧面四边形A1C1CB 是矩形,又从主视图可得,BC⊥AB,BC⊥BA1,且AB∩BA1=B,BC⊥面ABA1,△A1AB是正三角形,∴三棱柱是正三棱柱.(1)∵底面四边形ABCD是矩形,∴AD∥BC.又∵BC⊂面A1BCC1,∴AD∥面A1BCC1.(2)依题意可得:AB=BC=a,∵S=12×sin60°×a×a=34a2,∴V=S×h=34a2×a=34a3.S侧=C×h=3a×a=3a2;S表=S侧+2S底=3a2+2×34a2=(3+32)a2,此多面体的表面积和体积分别为(3+32)a2,34a3.(理)下图是一几何体的直观图、正视图、俯视图、侧视图.(1)若F为PD的中点,求证:AF⊥平面PCD;(2)求几何体BEC-APD的体积.[解析](1)证明:由几何体的三视图可知,底面ABCD是边长为4的正方形,P A⊥平面ABCD,P A∥EB,P A=2EB=4.∵P A=AD,F为PD的中点,∴PD⊥AF.又∵CD⊥DA,CD⊥P A,∴CD⊥AF.∴AF⊥平面PCD.(2)V BEC-APD=V C-APEB+V P-ACD=13×12(4+2)×4×4+13×12×4×4×4=80 3.14.如图所示,四棱锥P—ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP∽△BAD.(1)求线段PD的长;(2)若PC=11R,求三棱锥P—ABC的体积.[解析](1)∵BD是圆的直径,∴∠BAD=90°,又△ADP∽△BAD,∴AD BA =DP AD ,DP =AD 2BA =(BD sin60°)2BD sin30°=4R 2×342R ×12=3R .(2)在Rt △BCD 中,CD =BD cos45°=2R ,∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∵PD ⊥CD ,又∠PDA =90°,∴PD ⊥底面ABCD .S △ABC =12AB ·BC sin(60°+45°)=12R ·2R ·(32·22+12·22)=3+14R 2,则三棱锥P —ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.15.(文)(2011·福建文,20)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,点E在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面P AD ;(2)若P A =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P -ABCD 的体积.[解析] (1)∵P A ⊥底面ABCD ,EC ⊂平面ABCD∴CE ⊥P A ,又∵AB ⊥AD ,CE ∥AB .∴CE ⊥AD .又∵P A ∩AD =A ,∴CE ⊥平面P AD .(2)由(1)知CE ⊥AD .在Rt △ECD 中,DE =CD cos45°=1,CE =CD sin45°=1.又∵AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形.∴S 四边形ABCD =S 矩形ABCE +S △CDE =AB ·AE +12CE ·DE=1×2+12×1×1=52.又P A ⊥底面ABCD ,P A =1所以V 四棱锥p -ABCD =13×S 四边形ABCD ×P A =13×52×1=56.(理)(2011·重庆理,19)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB ⊥BC ,AD =CD ,∠CAD =30°.(1)若AD =2,AB =2BC ,求四面体ABCD 的体积;(2)若二面角C -AB -D 为60°,求异面直线AD 与BC 所成角的余弦值.[解析] (1)解:如图,设F 为AC 的中点,由于AD =CD ,所以DF ⊥AC .故由平面ABC ⊥平面ACD ,知DF ⊥平面ABC ,即DF 是四面体ABCD 的面ABC 上的高,且DF =AD sin30°=1,AF =AD cos30°= 3.在Rt △ABC 中,因AC =2AF =23,AB =2BC ,由勾股定理易知BC =2155,AB =4155.故四面体ABCD 的体积V =13·S △ABC ·DF =13×12×4155×2155=45.(2)解法一:如图,设G ,H 分别为边CD ,BD 的中点,则FG ∥AD ,GH ∥BC ,从而∠FGH 或其补角是异面直线AD 与BC 所成的角.设E 为边AB 的中点,则EF ∥BC ,由AB ⊥BC ,知EF ⊥AB .又由(1)有DF ⊥平面ABC ,故由三垂线定理知DE ⊥AB .所以∠DEF 为二面角C -AB -D 的平面角.由题设知∠DEF =60°.设AD =a ,则DF =AD ·sin ∠CAD =a 2.在Rt △DEF 中,EF =DF ·cot ∠DEF =a 2·33=36a ,从而GH =12BC =EF =36a .因Rt △ADE ≌Rt △BDE ,故BD =AD =a , 从而在Rt △BDF 中,FH =12BD =a 2.又FG =12AD =a 2,从而在△FGH 中,因FG =FH ,由余弦定理得cos ∠FGH =FG 2+GH 2-FH 32FG ·GH=GH 2FG =36. 因此,异面直线AD 与BC 所成角的余弦值为36.解法二:如图,过F 作FM ⊥AC ,交AB 于M .已知AD =CD ,平面ABC ⊥平面ACD ,易知FC ,FD ,FM 两两垂直.以F 为原点,射线FM ,FC ,FD 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系F -xyz .不妨设AD =2,由CD =AD ,∠CAD =30°,易知点A ,C ,D 的坐标分别为A (0,-3,0),C (0,3,0),D (0,0,1),则AD→=(0,3,1).显然向量k =(0,0,1)是平面ABC 的法向量.已知二面角C -AB -D 为60°,故可取平面ABD 的单位法向量n =(l ,m ,n ),使得〈n ,k 〉=60°,从而n =12.由n ⊥AD →,有3m +n =0,从而m =-36.由l 2+m 2+n 2=1,得l =±63.设点B 的坐标为B (x ,y,0),由AB →⊥BC →,n ⊥AB →,取l =63,有⎩⎨⎧ x 2+y 2=3,63x -36(y +3)=0,解之得,⎩⎨⎧ x =469,y =739,⎩⎪⎨⎪⎧ x =0,y =-3(舍去)易知l =-63与坐标系的建立方式不合,舍去.因此点B 的坐标为B (469,739,0).所以CB →=(469,-239,0).从而cos 〈AD →,CB →〉=AD →·CB →|AD →||CB →|=3⎝⎛⎭⎪⎫-2393+1⎝⎛⎭⎪⎫4692+⎝⎛⎭⎪⎫-2392=-36.故异面直线AD与BC所成的角的余弦值为3 6.。