定理与逆定理_直角三角形-优质公开课-鲁教7下精品
- 格式:ppt
- 大小:217.50 KB
- 文档页数:1
1.2 直角三角形第2课时直角三角形全等的判定学习目标:1、了解直角三角形全等的判定定理(HL),发展演绎推理能力;2、采用动手动脑相结合的方式,进一步学习严密科学的证明方法;3、通过推理、论证的训练,养成严谨的科学态度,不懈的探究精神和良好的说理方法。
学习过程:一、前置准备1、直角三角形的勾股定理及勾股定理的逆定理;2、命题与逆命题,定理与逆定理的关系。
二、自主学习问题1:两边分别相等且其中一边的对角分别相等的两个三角形全等吗?如果其中一边所对的角是直角呢?请证明你认为正确的结论。
问题2:(做一做)已知一条直角边和斜边,求作一个直角三角形。
作直角三角形:写出已知、求作、作法。
与教材第19页小明作的直角三角形进行比较,你们俩个作直角三角形的是全等的吗?得出定理:证明这个定理。
已知:求证:证明:三、例题讲解例如图,有两个长度相等的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?四、归纳总结1、直角三角形全等的判定定理及运用。
2、如何作一个直角三角形?五、知识应用D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF,求证BF=CE.[解析]本题解决的关键是利用“HL”证明△BFD≌△CED当堂训练:1、下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形。
B.两条锐角边对应相等的两个直角三角形。
C.斜边和一条直角边对应相等的两个直角三角形。
D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等。
2、下列长度的三条线段能构成直角三角形的是()①8、15、17 ②4、5、6、③7.5、4、8.5 ④ 24、25、7 ⑤ 5、8、10A.①②④B.②④⑤C.①③⑤D.①③④3、下列命题中,假命题是()A.三个角的度数之比为1:3:4的三角形是直角三角形。
B.三个角的度数之比为1:3:2的三角形是直角三角形。
勾股定理及其逆定理⑴勾股定理的内容:在直角三角形中,斜边的平方等于两条直角边的平方和.例如:①如图所示,在等腰△ABC中,若AB=AC=13,BC=10,求底边上的高.②如图所示,在△ABC中,∠ACB=,AC=4,CB=3,求斜边AB上的高.解:①作AH⊥BC∵AB=AC=13,AH⊥BC⑵勾股定理逆定理的内容:如果三角形一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形,这条边所对的角是直角.例如:①如图所示,在△ABC中,三条边之比为9:12:15,那么此三角形为何三角形?②如图所示,在△ABC中,若,,那么此三角形为何三角形?解:①∴设∴此三角形是Rt△.②证:∴此三角形是Rt△.注:勾股定理与勾股定理逆定理的联系与区别:区别:勾股定理是直角三角形的性质定理,而其逆定理是直角三角形的判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关.2. 勾股定理的证明方法介绍勾股定理曾引起很多人的兴趣,几千年来,人们已经发现了400多种勾股定理的证明方法,其中包括大画家达·芬奇和美国总统詹姆士·阿·加菲尔德.以下我们撷取几个优美而巧妙的证法供同学们欣赏.(1)赵爽的拼图法我国古代著名数学家赵爽在《勾股圆方图》一书中运用四个相同的直角三角形组成一个正方形,从面积的角度证明了勾股定理,其方法简捷、优美.如图,在边长为的正方形中,有四个斜边为的全等的直角三角形,已知它们的直角边为、利用这个图,即可证明勾股定理.理由如下:因为正方形边长为,所以正方形的面积为.又因为正方形的面积=,所以有.(2)旋转面积法如图,设矩形ABCD为火柴盒侧面,将这个火柴盒推倒至A'B'C'D的位置,D点不动.若设AB=,BC=,DB=,则梯形的面积=,又因为其面积还等于三个三角形面积的和,即为:.所以有:=.化简为:,即.(3)美国第20任总统的拼图面积法加菲尔德的证法的关键是用两个相同的直角三角形,组成直角梯形,使两斜边之间的夹角为90°.如图所示,将两个全等的直角三角形拼成如图所示的直角梯形,设AC=BE=,BC=DE=,AB=DB=.因为,.即=即.3. 有关勾股定理题时常用的辅助线和数学思想方法⑴解有关勾股定理的题型时常作垂线构成直角三角形.⑵解有关勾股定理的题型时常用方程思想、分类讨论思想、转化思想和数形结合思想.4. 勾股定理及其逆定理的应用勾股定理及其逆定理在实际生活中有着广泛的应用,我们要能善于从实际生活背景中抽象出直角三角形,再运用勾股定理及其逆定理解答相关的问题.【典型例题】例1. 若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积. 分析:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解.解:设此直角三角形两直角边分别是3x,4x,根据题意得:(3x)2+(4x)2=202化简得x2=16;∴直角三角形的面积=×3x×4x=6x2=96例2. 如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE 把ΔAED折叠,使点D恰好落在BC边上,设此点为F,若ΔABF的面积为30cm2,那么折叠的ΔAED的面积为______.分析:注意折叠后相等的角与相等的线段的转化,通过设未知数列方程求解. 解:由已知条件可得BF=12,则在RtΔABF中,AB=5,BF=12根据勾股定理可知AF=13,再由折叠的性质可知AD=AF=13,所以FC=1,可设DE=EF =x,则EC=5-x,则在RtΔEFC中,可得方程:12+(5-x)2=x2.解这个方程,得x=.所以SΔAED=××13=16.9(cm2).例3. 直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积.分析:两条直角边长不能直接求出,要求直角三角形的面积,只要求出两直角边长的积即可.解:设此直角三角形两直角边分别是x,y,根据题意得:由(1)得:x+y=7,(x+y)2=49,x2+2xy+y2=49 (3)(3)-(2),得:xy=12∴直角三角形的面积是xy=×12=6(cm2)例4. 等边三角形的边长为2,求它的面积.分析:要求等边三角形的面积,已知边长,只需求出任意一边上的高.解:如图,等边△ABC,作AD⊥BC于D则:BD=BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD=1在直角三角形ABD中AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3∴AD=S△ABC=BC·AD=注:等边三角形面积公式:若等边三角形边长为a,则其面积为a2.例5. 飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?分析:根据题意,可以先画出符合题意的图形,如图,图中△ABC•中的∠C=90°,AC=4000米,AB=5000米,•要求出飞机这时飞行多少千米,•就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,•斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.解:根据题意可得示意图:(如图)在△ABC•中的∠C=90°,AC=4000米,AB=5000米,根据勾股定理可得:BC===3000(千米)所以:飞机飞行了3000千米.例6. 以下列各组数为边长,能组成直角三角形的是()A、8,15,17B、4,5,6C、5,8,10D、8,39,40分析:此题可直接用勾股定理的逆定理来进行判断,对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c-a)(c+a)来判断.例如:对于选择项D,∵82≠(40+39)×(40-39),∴以8,39,40为边长不能组成直角三角形.解:因为172=82+152,所答案为:A.例7. 如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC =36m,求这块地的面积.分析:在求面积时一般要把不规则图形分割为规则图形,若连接BD,则无法求出.由于题中含有直角∠ADC,故可考虑连结AC,应用勾股定理.解:连结AC,在Rt△ADC中,AC2=CD2+AD2=92+122=225,所以AC=15m.在Rt△ABC中,AB2=1521,AC2+BC2=152+362=1521,所以AB2=AC2+BC2,所以∠ACB=90°.所以S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216(m2).答:这块地的面积是216m2.例8. 如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为( )A. 2B. 2C. 4D. 2分析:在运用勾股定理解决有关问题时,常常需要将一些线段通过平移、旋转、翻折等运动变化从而转化到一个直角三角形中.化归思想即转化思想,它是我们初中阶段数学解题方法的灵魂,是指当有些问题如果直接解决则难以入手,于是换一个角度来考虑,从而使问题清晰明朗.运用转化思想来解题常用的策略有:化复杂为简单;化陌生为熟悉;换一种方式来表达等等.解:求几何体的表面的最短距离,可联系我们学过的圆柱体的侧面展开图,化“曲面”为“平面”,再寻找解题的途径.如右图,可得展开图中的AB长为2π,BS为2,根据勾股定理,在RtΔABS中,得AS=2所以,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为2.故选A.例9. 在锐角△ABC中,已知其两边a=1,b=3,求第三边的变化范围.分析:显然第三边b-a<c<b+a,但这只是能保证三条边能组成一个三角形,却不能保证它一定是一个锐角三角形,为此,先求△ABC为直角三角形时第三边的值.解:设第三边为c,并设△ABC是直角三角形(1)当第三边是斜边时,c2=b2+a2,∴c=(2)当第三边不是斜边时,则斜边一定是b,b2=a2+c2,∴c=2(即)∵△ABC为锐角三角形所以点A应当绕着点B旋转,使∠ABC成为锐角(如图),但当移动到点A'位置时∠ACB成为直角.故点A应当在A和A'间移动,此时2<AC<注:此题易忽视①或②中一种情况,因为假设中并没有明确第三边是否直角边,所以有两种情况要考虑.例10. 四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:先根据勾股定理求出AC的长,再由勾股定理的逆定理得到ΔADC是直角三角形,将四边形ABCD分成两个直角三角形.本题是一个典型的勾股定理及其逆定理的应用题.解:连结AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=36例11. 若、为正实数,且,则的最小值是多少?试求之.解析:此题是竞赛题,不知从何下手,若仔细观察分析,从x2+1和y2+4入手,结合勾股定理的形式可为我们提供解题的思路.可以看出,、分别是以x、1,y、2为直角边的直角三角形的斜边长,这时,上述问题就变成了求两条线段之和的最值问题.构造如图所示的图形:线段AB=4,P为AB上任意一点.设PA=x,PB=y.CA⊥AB于A,DB⊥AB于B,且CA=1,BD=2,则PC+PD=.要求的最小值就是求PC+PD最小,很明显,当点P、C、D在同一直线上时,PC+PD的最小值.再过C作CE⊥DB交DB的延长线于点E,构造RtΔDCE,在RtΔDCE中,CE=AB=4,ED=1+2=3,所以PC+PD=DC==5.所以的最小值是5.例12. (2006年山西中考题)如图,分别以直角ΔABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定分析:将阴影部分的面积表示出来,再观察所列代数式与直角三角形三边长的关系可得答案.解:直线AB左边阴影部分的面积为:=,直线AB右边阴影部分的面积为:=.∵ΔABC是直角三角形,根据勾股定理有:.故选A.【模拟试题】(答题时间:40分钟)一、填空题:1. 设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是_____.2. 如图,•某人欲横渡一条河,•由于水流的影响,•实际上岸地点C•偏离欲到达点B200m,结果他在水中实际游了520m,则该河流的宽度为_____m.二、选择题:3. 直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为().A. 6cmB. 8.5cmC. cmD. cm4. 有四个三角形:⑴△ABC的三边之比为3:4:5;⑵△A′B′C′的三边之比为5:12:13;⑶△A′B′C′的三个内角之比为1:2:3;⑷△CDE的三个内角之比为1:1:2.其中是直角三角形的有().A. ⑴⑵B. ⑴⑵⑶C. ⑴⑵⑷D. ⑴⑵⑶⑷三、解答题:5. 在△ABC中,AC=21cm,BC=28cm,AB=35cm,求△ABC的面积.6. 如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC•落在AB上,求DC的长.7. 如图,一只鸭子要从边长分别为16m和6m的长方形水池一角M•游到水池另一边中点N,那么这只鸭子游的最短路程应为多少米?8. 如图,铁路上A、B两点相距25km,C、D为两村庄,DA•垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?【试题答案】一、填空题1. 62. 480二、选择题3. D4. D三、解答题5. 294cm26. 因为AC2+BC2=52+122=169=132=AB2,•∴∠C=90°,将△ABC沿AD折叠,使AC落在AB上,C的对称点为E,则CD=DE,AC=AE,BE=AB-AE=8,设CD=x,则x2+82=(12-x)2,x=,∴CD=.7. 10m8. 10km处。
直角三角形的判定教学目标知识与技能:掌握直角三角形的判定条件,并能进行简单应用.过程与方法:经历探索直角三角形的判定条件的过程,理解勾股逆定理.情感态度与价值观:激发学生解决的愿望,体会勾股逆向思维所获得的结论.明确其应用范围和实际价值.重点、难点、关键重点:理解和应用直角三角形的判定.难点:运用直角三角形判定方法进行解决问题.关键:运用合情推理的方法,对勾股定理进行逆向思维,形成一种判别方法.教学准备教师准备:直尺、圆规、投影片.学生准备:复习勾股定理,预习本节课内容.教学过程一、创设情境神秘的数组(投影显示).美国哥伦比亚大学图书馆收藏着一块编号为“普林顿322”(plim pton 322)的古巴比伦泥板.泥板上的一些神秘符号实际上是一些数组,这些神秘的数组揭示了什么奥秘呢?经专家的潜心研究,发现其中2列数字竟然是直角三角形的勾和弦,•只要添加一列数(如表所示)左边的一列,那么每列的3个数就是一个直角三角形的三边的长!120 119 1693456 3367 48254800 4601 664913500 12709 1854172 65 97360 319 4812700 2291 3541960 799 1249600 481 7696430 4961 816160 45 752400 1679 2929240 161 2892700 1771 322990 56 106例如:60、45、70是这张表中的一组数,而且602+452=752,小明画了以60mm•、•45mm、75mm为边长的△ABC.(如图所示)请你猜想,小明所画的△ABC是直角三角形吗?为什么?教师活动:操作投影仪,提出问题,引导学生思考.学生活动:观察问题,小组合作交流,思考上述问题的解答.思路点拨:思路一:用量角器量三角形的3个内角,看有无直角.思路二:动手画一个直角三角形,使它的2条直角边的长为60mm和45mm,•看能否与△ABC全等.媒体使用:投影显示“普林顿322”泥板的图片,以及数字.古埃及人实验(投影显示)古埃及人曾用下面的方法得到直角:如图所示,用13个等距离的结把一根绳子分成等长12段,一个工匠同时握住绳子的第一个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,•就会得到一个直角三角形,其直角在第4个结论.请你思考:按这种做法真能得到一个直角三角形吗?教师活动:提出问题,引导思考.学生活动:继续探索,感悟其中的道理.形成共识:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.(勾股定理)思考:这个结论与勾股定理有什么关系呢?学生活动:通过小组讨论、分析,发现它与勾股定理恰好是条件与结论互相对换的一个语句.教师点拨:实际上它是勾股定理的逆定理,用它可以判定一个三角形是否是直角三角形.从神秘的数组中的数据可以发现它们都是勾股数,也就是满足a2+b2=c2的3个正整数a、b、c称为勾股数,古埃及实验也体现出这个特征.可见利用勾股数可以构造直角三角形.二、范例学习例3 设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形.(1)7,24,25;(2)12,35,37;(3)13,11,9思路点拨:判断的依据是勾股逆定理,但是应该是将两个较小数的平方和与较大数平方进行比较,若相等,则可构成直角三角形,最大边所对的角是直角,这一点应该明确.教师活动:引导学生完成例3,然后提问学生,强调方法.学生活动:动手计算,对照勾股定理进行判断.三、随堂练习1.课本P54页第1,2题.2.探研时空:(1)如图所示,在△ABC中,已知AB=10,BD=6,AD=8,AC=17,你能求出DC•的长吗?思路点拨:本题首先要将△ABC分割成Rt△ABD和Rt△ADC,然后具体的分析,将题设条件进行对照,确定运算.在△ABD中,∵AB=10,BD=6,AD=8,62+82=102,∴AD2+BD2=AB2于是∠ADB=90°(2)一个零件的形状如图(a)所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边尺寸如图(b),这个零件符合要求吗?思路点拨:这是利用勾股定理的逆定理解决实际问题的例子,只要能运用自己的语言表达清楚解决问题的过程即可,这个问题,首先应在△ABD中计算出AB2+AD2=9+6=25=BD2,得到△ABD是直角三角形,∠A=90°,再在△BCD中,计算BD2+BC2=25+144=169=CD2,得到△BCD是直角三角形,∠DBC是直角,由此,可以推断出这个零件符合要求.教师活动:操作投影仪,提出问题,巡视、启发,关注“学困生”,•可以请部分学生上台演示. 学生活动:小组合作交流.媒体使用:投影显示“探研时空”.教学方法:讲练结合,互动交流.四、问题求索如图所示,在正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC=14BC . 请你猜想AF 与EF 的位置关系,说说你的理由. 思路点拨:要弄清两条线段在同一平面内位置关系,就有方向了.可以猜想,AF 与EF 互相垂直,从理由上讲就是要得到∠AFE=90°,那么必定要构建与AF 、EF 有关的三角形去证明它是Rt △,因此可连接AE ,利用勾股定理,求得AF 2、EF 2、AE 2,然后再判定是否存在AF 2+EF 2=AE 2.连接AE ,设正方形边长为a ,则DF=FC=2a ,EC=4a , 在Rt ∠ADF 中,有AF 2=AD 2+DF 2=a 2+(2a )2=54a 2, 同理,在Rt △ECF 中,有EF 2=(2a )2+(4a )2=516a 2, 在Rt △ABE 中,有BE=a-14a=34a ∵AE 2=a 2+(34a )2=2516a 2 ∴AF 2+EF 2=AE 2根据勾股定理逆定理得∠AEF=90°.因此,AF ⊥EF .教师活动:操作投影仪,启发、引导学生运用勾股定理以及它的逆定理来解决猜想,然后归纳出方法. 学生活动:小组合作讨论,共同思考、并猜想,而后去证明自己的猜想.媒体使用:投影显示.教学形式:分四人小组合作交流.五、课堂总结1.勾股定理的逆定理:如果三角形的三条边长a 、b 、c 有下列关系:a 2+b 2=c 2.•那么这个三角形是直角三角形.2.该逆定理给出判定一个三角形是否是直角三角形的判定方法.3.•利用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.六、布置作业1.课本P54习题14.1第6题.2.选用课时作业设计.七、课后反思(略)作业设计一、填空题1.请完成以下未完成的勾股数:(1)8,15,______; (2)15,12,______;(3)10,26,_______; (4)7,24,______.2.△ABC中,b=17,c=8,a=15,则∠ABC=_________.3.△ABC中,若a2+b2=25,a2-b2=7,又c=5,则最大边上的高是_______.4.已知三角形的三边长分别为5cm,12cm,13cm,则这个三角形是_____.5.△ABC中,∠C=90°,∠B=30°,AC=1,以BC为边的正方形面积为_______.6.三条线段m,n,p满足m2-n2=p2,以这三条线段为边组成的三角形为______.二、判断题7.由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5•为边的三角形不是直角三角形.()8.由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3.是勾股数。
2 直角三角形第1课时勾股定理及其逆定理课题第1课时勾股定理及其逆定理授课人教学目标知识技能1.掌握直角三角形的性质定理(勾股定理)和判定定理.2.了解逆命题、互逆命题及逆定理、互逆定理的含义.数学思考进一步掌握推理证明的方法,发展演绎推理能力.问题解决1.能应用定理解决与直角三角形有关的问题.2.能结合自己的生活体验举出逆命题、互逆命题及逆定理、互逆定理的例子情感态度进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维能力.教学重点1.勾股定理逆定理的证明方法.2.了解逆命题、互逆命题的概念,知道原命题成立其逆命题不一定成立.教学难点勾股定理及其逆定理的证明.授课类型新授课课时教具课件、三角尺、等腰三角形纸片教学活动教学步骤师生活动设计意图回顾活动内容:问题1:我们曾经探索过直角三角形的哪些性质和判定方法?问题2:勾股定理的内容是什么?复习回顾直角三角形的性质和判定,以及勾股定理内容,为本课直角三角形的性质和判定定理的证明做准备.活动一: 创设情境导入新课【课堂引入】1.什么是勾股定理?定理:直角三角形两条直角边的平方和等于斜边的平方.2.在△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.(1)若a=8,c=17,则b= 15.(2)若a=8,∠A=30°,则b= 8√3.(3)若a=8,∠A=45°,则c= 8√2.3.如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.通过与本课时相关的问题导入,为新知的学习做好铺垫.活动二: 实践探究交流新知【探究1】直角三角形的两个锐角关系定理及逆定理问题1:直角三角形的两个锐角有怎样的关系?为什么?问题2:如果一个三角形有两个角互余,那么这个三角形是直角三角形吗?为什么?定理:直角三角形的两个锐角互余.已知:如图1-2-6,在Rt△ABC中,∠C=90°.求证:∠A+∠B=90°.图1-2-6证明:在△ABC中,∠A+∠B+∠C=180°,∵∠C=90°,∴∠A+∠B=180°-∠C=180°-90°=90°.定理:有两个角互余的三角形是直角三角形.已知:如图1-2-7,在△ABC中,∠A+∠B=90°.求证:△ABC是直角三角形.图1-2-7证明:在△ABC中,∠A+∠B+∠C=180°,学生分小组讨论,各抒己见.教师及时引导并展示.活动二: 实践探究交流新知∵∠A+∠B=90°,∴∠C=180°-(∠A+∠B)=180°-90°=90°,∴△ABC是直角三角形.【探究2】勾股定理及其逆定理问题1:直角三角形的三条边有什么样的数量关系?你能证明吗?问题2:在一个三角形中,当两边的平方和等于第三边的平方时,它是直角三角形吗?勾股定理:直角三角形两条直角边的平方和等于斜边的平方.已知:如图1-2-8,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.求证:a2+b2=c2.图1-2-8证明:延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED,AE(如图1-2-9),则△ABC≌△BED.图1-2-9∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等).从而四边形ACDE是直角梯形.∴S梯形ACDE=12(a+b)(a+b)=12(a+b)2.由全等可得∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,且AB=BE,∴S△ABE=12c2.让学生通过分析归纳总结出直角三角形的两锐角定理和其逆定理内容,并能够对定理和逆定理进行证明.活动二: 实践探究交流新知∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴12(a+b)2=12c2+12ab+12ab,即12a2+ab+12b2=12c2+ab,∴a2+b2=c2.勾股定理逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.已知:如图1-2-10:在△ABC中,AB2+AC2=BC2.求证:△ABC是直角三角形.图1-2-10分析:要从边的关系推出∠A=90°是不容易的,如果能借助于△ABC与一个直角三角形全等,而得到∠A与对应角(构造的三角形的直角)相等,可证.图1-2-11证明:作Rt△A'B'C'(如图1-2-11),使∠A'=90°,A'B'=AB,A'C'=AC,则A'B'2+A'C'2=B'C'2(勾股定理).∵AB2+AC2=BC2,A'B'=AB,A'C'=AC,∴BC2=B'C'2,∴BC=B'C',∴△ABC≌△A'B'C'(SSS),∴∠A=∠A'=90°(全等三角形的对应角相等).因此,△ABC是直角三角形.【探究3】互逆命题和互逆定理问题1:观察上面我们得到的两组定理,它们的条件和结论之间有怎样的关系?问题2:观察下面三组命题:让学生根据以前所学的勾股定理和逆定理的知识直接回答出定理的内容,对于证明学生有一定的难度,尤其是逆定理的证明,在证明时教师加以指导.在证明时只要求学生能够接受证明的方法和过程即可,不宜对学生提出更高的要求.活动二: 实践探究交流新知 (1){如果两个角是对顶角,那么它们相等.如果两个角相等,那么它们是对顶角.(2){如果小明患了肺炎,那么他一定发烧.如果小明发烧,那么他一定患了肺炎.(3){三角形中相等的边所对的角相等.三角形中相等的角所对的边相等.上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流.问题3:如果原命题是真命题,那么逆命题一定是真命题吗?并通过具体的实例说明.互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.相对于逆命题来说,另一个就为原命题.互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.通过师生的共同探究,使学生掌握互逆命题和互逆定理的定义,既培养学生独立思考与小组合作讨论的能力,又感受到数学逻辑关系存在的必然性.活动三: 开放训练体现应用【应用举例】例1若a,b,c能构成直角三角形,则它们的比可能为()A.2∶3∶4B.3∶4∶6C.5∶12∶13D.4∶6∶7例2在Rt△ABC中,∠C=90°,∠A=30°,则a∶b∶c= .例3若△ABC中,a=b=5,c=5√2,则△ABC的面积为.例4对角线长为m的正方形的边长为.通过举例使学生区分勾股定理描述的是直角三角形的性质,而其逆定理则展示的是直角三角形的判定方法.【拓展提升】例5直角三角形两直角边长分别为6和8,则斜边上的高为.例6高为h的等边三角形的边长为.活动三: 开放训练体现应用例7小亮手里拿着长分别为30 cm,40 cm的两根木棒,请帮他找第三根木棒,使三根木棒构成一个直角三角形,则第三根木棒的长应为cm.例8一块钢板的形状如图1-2-12所示,已知AB=12cm,BC=13 cm,CD=4 cm,AD=3 cm,∠ADC=90°,则这块钢板的面积是cm2.图1-2-12例9如图1-2-13,已知在Rt△ABC中,∠BAC=90°,BC=4,分别以AB,AC,BC为边向外作等边三角形,面积分别记为S1,S2,S3,则S1+S2+S3的值等于.图1-2-13例10如图1-2-14,在Rt△ABC中,∠C=90°,BC=6cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边上的点C'处,那么△ADC'的面积是.图1-2-14跨章节知识的综合可进一步培养学生综合运用所学知识解决具体问题的能力.活动四: 课堂总结反思【当堂训练】1.下列命题中,其逆命题成立的是.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;活动四: 课堂总结反思③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.“直角三角形两锐角互余”的逆命题是.3.在Rt△ABC中,∠C=90°,若a∶b=1∶2,且c=5,则ab= .图1-2-154.在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,若∠A=60°,AB=4 cm,则CD= .5.如图1-2-15,在△ABC中,已知AB=13 cm,BC=10 cm,BC边上的中线AD=12 cm.求证:AB=AC.练习可使学生进一步加强对本课所学新知的理解,同时亦可检验本课教学的成果,为日后的复习总结提供依据.【板书设计】第1课时勾股定理及其逆定理直角三角形勾股定理勾股定理的逆定理互逆命题、互逆定理简洁明了,层次清晰.【教学反思】①[授课流程反思]本课时设计让学生从原有知识出发,通过引导学生观察、思考、计算,直观展示勾股定理的产生及其证明.为激发学生参与,以“问题串”的形式引发学生思考.②[讲授效果反思]在实际教学中,由于学生积极参与,勤于思考,使得本节课的重、难点得以顺利突破,培养了学生探究意识的同时,将数形结合思想较好地融入课堂教学的各个环节.③[师生互动反思]反思,更进一步提升.活动四: 课堂总结反思教学中,加强学生间的互动学习,培养学生的自学能力,注重培养学生的合作探究意识,有利于完成教学任务,提升教学效果.④[习题反思]好题题号错题题号详见电子资源详见电子资源温馨提示:为满足广大一线教师的不同教学需求,特新增“典案三学案设计”案例,word排版,可编辑加工,方便使用.内容详见电子资源.。
直角三角形的性质和判定(Ⅱ)【课时安排】2课时【第一课时】【教学目标】一、知识与技能使学生掌握勾股定理,培养在实际生活中发现问题总结规律的意识和能力。
二、过程与方法了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
三、情感、态度与价值观介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
【教学重难点】1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
【教学过程】一、新课引入已知树高6米,在树梢上有一猫头鹰,猫头鹰从树梢斜飞落地抓老鼠,落点与树根相距8米,那么猫头鹰至少飞过多少米?二、探究定理(一)画一画:让学生动手画一个直角边长为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.(二)做一做1.如图,以这个直角三角形的三边为边作三个正方形,探究这三个正方形的面积之间有什么关系。
正方形P Q R面积91625思考:(1)这三个正方形的面积分别为多少?你是怎么求的?(2)这三个正方形的面积之间满足一个什么等式?(3)正方形的面积等于边长的平方,那么它们的面积用边长代入得到一个什么等式?(4)我们前面说过:在直角三角形中,我们把较短的直角边叫勾,较长的直角边叫股,斜边叫弦,那么勾股弦之间满足一个什么等式?2.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
这个三角形的三边也满足勾2+股2=弦2吗?(三)议一议对于任意的直角三角形也有这个性质吗?(四)猜一猜直角三角形的两直角边的平方和等于斜边的平方。
即在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c,有a2+b2=c2过渡语:猜想的结论是否正确须经过严格论证。