导数专题训练2
- 格式:docx
- 大小:1.24 MB
- 文档页数:21
高中数学学习材料马鸣风萧萧*整理制作专题分层训练(三十三) 压轴大题规范练(2)——函数与导数1.已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +ax (x >0), F ′(x )=1x -a x 2=x -ax 2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数. 由F ′(x )<0⇒x ∈(0,a ), ∴F (x )在(0,a )上是减函数. 综上,F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞).(2)由F ′(x )=x -a x 2(0<x ≤3),得k =F ′(x )=x -a x 2≤12(0<x 0≤3)恒成立⇒a ≥-12x 20+x 0(0<x 0≤3)恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即实数a 的最小值为12.2.(2015·重庆卷)设函数f (x )=3x 2+axe x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +a e x, 因为f (x )在x =0处取得极值, 所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x , 故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1), 化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x , 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366. 当x <x 1时,g (x )<0,即f ′(x )<0, 故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0, 故f (x )为减函数.由f (x )在[3,+∞)上为减函数, 知x 2=6-a +a 2+366≤3, 解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.3.已知f (x )=x 3+ax 2-a 2x +2.(1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a ≠0,求函数f (x )的单调区间;(3)若不等式2x ln x ≤f ′(x )+a 2+1恒成立,求实数a 的取值范围. 解 (1)∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴k =f ′(1)=4,又f (1)=3,∴切点坐标为(1,3), ∴所求切线方程为y -3=4(x -1), 即4x -y -1=0.(2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ), 由f ′(x )=0,得x =-a 或x =a3. ①当a >0时,由f ′(x )<0,得-a <x <a3. 由f ′(x )>0,得x <-a 或x >a3, 此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞. ②当a <0时,由f ′(x )<0,得a3<x <-a . 由f ′(x )>0,得x <a3或x >-a ,此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和(-a ,+∞).综上,当a >0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞. 当a <0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和()-a ,+∞. (3)依题意x ∈(0,+∞),不等式2x ln x ≤f ′(x )+a 2+1恒成立,等价于2x ln x ≤3x 2+2ax +1在(0,+∞)上恒成立,可得a ≥ln x -32x -12x 在(0,+∞)上恒成立, 设h (x )=ln x -3x 2-12x ,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2. 令h ′(x )=0,得x =1,x =-13(舍), 当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0. 当x 变化时,h ′(x )与h (x )变化情况如下表x (0,1) 1 (1,+∞)h ′(x ) + 0 - h (x )单调递增-2单调递减∴当x =1时,h (x )取得最大值,h (x )max =-2, ∴a ≥-2,即a 的取值范围是[-2,+∞). 4.(2015·全国卷Ⅱ)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.解 (1)f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增. 又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1],g (m )≤0,g (-m )≤0,即①式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1,不符题意; 当m <-1时,g (-m )>0,即e -m +m >e -1,不符题意. 综上,m 的取值范围是[-1,1].5.(2015·全国卷Ⅰ)已知函数f (x )=x 3+ax +14,g (x )=-ln x . (1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0), 则f (x 0)=0,f ′(x 0)=0,即⎩⎨⎧x 30+ax 0+14=0,3x 20+a =0.解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线. (2)当x ∈(1,+∞)时,g (x )=-ln x <0, 从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)上无零点. 当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0, 故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0, 故x =1不是h (x )的零点. 当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)上的零点个数.①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点; 当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0,-a 3上单调递减,在⎝⎛⎭⎪⎫-a 3,1上单调递增,故在(0,1)中,当x = -a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫-a 3=2a 3-a 3+14.a .若f ⎝ ⎛⎭⎪⎫-a 3>0,即-34<a <0,f (x )在(0,1)上无零点; b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点;c .若f ⎝ ⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.。
函数与导数解答题训练21.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间;(2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数.2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈. (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间;(3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.3.设01a <<,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D AB =.(1)求集合D (用区间表示); (2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.4.已知函数321()3f x x x ax =++. (1)讨论()f x 的单调性; (2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.5.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值. (1)求a 、b 的值与函数()f x 的单调区间;(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围.6.设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2.(1)求,a b 的值; (2)证明:()2 2.f x x ≤-1.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间;(2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数.解:(1)因为22()ln .0f x a x x ax x =-+>其中,所以2()(2)()2a x a x a f x x a x x-+'=-+=-由于0a >,所以()f x 的增区间为(0,)a ,减区间为(,)a +∞(2)证明:由题意得,(1)11,f a c a c =-≥-≥即,由(1)知()[1,]f x e 在内单调递增,要使21()[1,]e f x e x e -≤≤∈对恒成立,只要222(1)11,()f a e f e a e ae e=-≥-⎧⎨=-+≤⎩解得.a e = 2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈. (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间;(3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 解:(1)当1t =时,322()436,(0)0,()1266f x x x x f f x x x '=+-==+-(0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =-(2)22()1266f x x tx t '=+-,令()0f x '=,解得.2tx t x =-=或0t ≠,以下分两种情况讨论:(1)若0,,tt t x <<-则当变化时,(),()f x f x '的变化情况如下表:()f x ∴的单调递增区间是(,)2-∞,(),t -+∞,单调递减区间是(,)2t -.(2)若0,tt t >-<则,当x 变化时,(),()f x f x '的变化情况如下表:∴()f x 的单调递增区间是(),t -∞-,(,)2t +∞,单调递减区间是(,)2tt -。
导数专题训练一.解答题(共30小題)1.(2018* 德阳模拟)函数f (x) =ln (x+1).(1)当xW ( - 1, 0)时,求证:f (x) <x< - f ( - x);(2)设函数g (x) =e x - f (x) - a (aGR),且g (x)有两个不同的零点x】,x2 (x)<x2),①数a的取值围;②求证:Xi+x2>0.2.(2018・达州模拟)函数f (x) =lnx - ax t g (x)二x■-(2a+l) x+ (a+1) lnx.(1)当a=l时,求函数f (x)的极大值;(2)当a$l时,求证:方程f (x) =g (x)有唯一实根.3.(2018* 市模拟)函数f (x) =x - (a - 2) x-alnx (a^R).(I )求函数产f (x)的单调区间;(II )当时,证明:对任意的x>0, f (x) +e x>x2+x+2.4.(2018* 一模)函数f (x)二e" - ax・(1)讨论f (x)的单调性;(2)当x>0时,f (x) >ax2+l,求a的取值围.5.(2018-模拟)设M是满足以下条件的函数构成的集合:①方程f (x) -x=0有实数根;②函数f (x)的导数f r (x)满足0<f‘(x) <1.2/14(1)假设函数f〔X)为集合M中的任意一个元素,证明:方程f (x) - x=o只有一个实根;(2)判断函数是否是集合M中的元素,并说明理由;(3)设函数f (x)为集合M中的元素,对于定义域中任意a, B,当丨a -2012 <1, B -2012 <1 时,证明:If ( a ) -f ( B ) I <2.6.(2018* 模拟)函数f (x) =ax+lnx (aGR).(I )假设a=2,求曲线y=f (x)在x=l处的切线方程;(][)求f (x)的单调区间;(III)设g (x) =x'-2x+2,假设对任意(0, +8),均存在x2C|0, 1],使得f (xj < g (x2),求a的取值围.7.(2018・模拟)函数f (x) =- lnx+2+ (a-l) x-2 (aWR).(1)求f (x)的单调区间;(2)假设a>0,求证:f (x) $ -.8.(2018-铁东区校级一模)设函数f (x) = (2-x) e\(1)求f(X)在x=0处的切线;(2)当x$0时,f (x) Wax+2,求a的取值围・9.(2018>江一模)函数f (x) =e x-2,其中e^2. 71828…是自然对数的底数.(I )证明:当x>0 时,f (x) >x - 1 >lnx;(II )设m为整数,函数g (x) =f (x) - lnx - m有两个零点,求m的最小值.10.(2018・模拟)函数f (x) =e x,直线1 的方程为y二kx+b, (k$R, bER).(1)假设直线1是曲线y=f (x)的切线,求证:f (x) $kx+b对任意xER成立;(2)假设f (x) Mkx+b对任意xe[o, +8)恒成立,数k, b应满足的条件.11・(2018>模拟)函数(其中a>0).(1)求函数f(X)的极值;(2)假设函数f (x)有两个零点x“ x2,求a的取值围,并证明(其中f r (x)是f (x)的导函数). 12.(2018* 株洲一模)函数f (x) =lnx+a (x - 1) " (a>0).(1)讨论f (x)的单调性;(2)假设f (x)在区间(0, 1)有唯一的零点x。
导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。
高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。
(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。
2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。
3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。
导 数 专题训练1.定积分ʃ10x (2-x )d x 的值为( )A.π4B.π2C .πD .2π 2.已知函数f (x )=(x 2-2x )e x -a ln x (a ∈R)在区间(0,+∞)上单调递增,则a 的最大值是( )A .-eB .eC .-e 22 D .4e 23.已知函数f (x )=f ′(1)e e x +f (0)2x 2-x ,若存在实数m 使得不等式f (m )≤2n 2-n 成立,则实数n 的取值范围为( )A.⎝⎛⎦⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪⎣⎡⎭⎫12,+∞ C.(]-∞,0∪⎣⎡⎭⎫12,+∞ D.⎝⎛⎦⎤-∞,-12∪[0,+∞) 4.已知函数f (x )=x 2+(ln 3x )2-2a (x +3ln 3x )+10a 2,若存在x 0使得f (x 0)≤110成立,则实数a 的值为( )A.110B.25C.15D.1305.已知函数f (x )=⎩⎪⎨⎪⎧ln (x +1),x >0,12x +1,x ≤0,若m <n ,且f (m )=f (n ),则n -m 的取值范围为( )A .[3-2ln 2,2)B .[3-2ln 2,2]C .[e -1,2)D .[e -1,2]6.已知函数f (x )=a ln(x +2)-x 2,在区间(0,1)内任取两个实数p ,q ,且p >q ,若不等式f (p +1)-f (q +1)p -q>2恒成立,则实数a 的取值范围是( )A.()12,+∞B.[)12,+∞C.()24,+∞D.[)24,+∞ 7.y =f (x )的导函数满足:当x ≠2时,(x -2)(f (x )+2f ′(x )-xf ′(x ))>0,则( ) A .f (4)>(25+4)f (5)>2f (3) B .f (4)>2f (3)>(25+4)f (5) C .(25+4)f (5)>2f (3)>f (4) D .2f (3)>f (4)>(25+4)f (5)8.若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为( ) A.⎝⎛⎦⎤0,e 28 B.⎝⎛⎦⎤0,e 24 C.⎣⎡⎭⎫e 28,+∞ D.⎣⎡⎭⎫e24,+∞ 9.已知函数f (x )=e 2 018x +mx 3-m (m >0),当x 1+x 2=1时,对于任意的实数θ,都有不等式f (x 1)+f (sin 2θ)>f (x 2)+f (cos 2θ)成立,则实数x 1的取值范围是( )A .[1,+∞)B .[1,2] C.(]1,2 D .(1,+∞)10.已知函数f (x )=e x|x |,关于x 的方程f 2(x )-2af (x )+a -1=0(a ∈R)有3个相异的实数根,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫e 2-12e -1,+∞B.⎝ ⎛⎭⎪⎫-∞,e 2-12e -1C.⎝ ⎛⎭⎪⎫0,e 2-12e -1D.⎩⎨⎧⎭⎬⎫e 2-12e -1 11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x +1,-2≤x <0,e x ,x ≥0,若函数g (x )=f (x )-ax +a 存在零点,则实数a 的取值范围为( )A.⎣⎡⎦⎤-13,e 2B.⎝⎛⎦⎤-∞,-13∪[e 2,+∞) C.⎣⎡⎦⎤-13,1e D.⎝⎛⎦⎤-∞,-13∪[e ,+∞) 12. 已知函数f (x )=ln x +ax 2+(2+a )x (a ∈R),g (x )=xe x -2,对任意的x 0∈(0,2],关于x的方程f (x )=g (x 0)在(]0,e 上有两个不同的实数根,则实数a 的取值范围(其中e =2.718 28…为自然对数的底数)为( ) A.⎝⎛⎭⎪⎫-2e ,-3+2e e 2+e B.⎝⎛⎦⎤-2e ,-e e 2+2 C.⎝⎛⎦⎥⎤-e ,-3+2e e 2+e D.⎝⎛⎭⎫-e ,-ee 2+213.若f (x )=3xf ′(1)-2x 2,则f ′(0)=________.14.若直线y =2x +b 是曲线y =e x -2的切线,则实数b =________.15.若存在两个正实数x ,y 使等式2x +m (y -2e x )(ln y -ln x )=0成立(其中e =2.718 28…),则实数m 的取值范围是_____________.16.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则ba 的最小值为________. 所以b a 的最小值为-1e.导 数 专题训练答案1.定积分ʃ10x (2-x )d x 的值为( )A.π4B.π2 C .π D .2π 答案 A 解析 ∵y =x (2-x ),∴(x -1)2+y 2=1表示以(1,0)为圆心,以1为半径的圆,∴定积分ʃ10x (2-x )d x 等于该圆的面积的四分之一, ∴定积分ʃ1x (2-x )d x =π4.2.已知函数f (x )=(x 2-2x )e x -a ln x (a ∈R)在区间(0,+∞)上单调递增,则a 的最大值是( ) A .-e B .e C .-e 22 D .4e 2答案 A解析 因为函数f (x )=(x 2-2x )e x -a ln x (a ∈R), 所以f ′(x )=e x (x 2-2x )+e x (2x -2)-ax =e x (x 2-2)-ax(x >0).因为函数f (x )=(x 2-2x )e x -a ln x (a ∈R)在区间(0,+∞)上单调递增,所以f ′(x )=e x (x 2-2)-a x ≥0在区间(0,+∞)上恒成立,即ax ≤e x (x 2-2)在区间(0,+∞)上恒成立,亦即a ≤e x (x 3-2x )在区间(0,+∞)上恒成立, 令h (x )=e x (x 3-2x ),x >0,则 h ′(x )=e x (x 3-2x )+e x (3x 2-2)=e x (x 3-2x +3x 2-2)=e x (x -1)(x 2+4x +2),x >0, 因为x ∈(0,+∞),所以x 2+4x +2>0. 因为e x >0,令h ′(x )>0,可得x >1, 令h ′(x )<0,可得0<x <1.所以函数h (x )在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 所以h (x )min =h (1)=e 1(1-2)=-e. 所以a ≤-e.所以a 的最大值是-e. 3.已知函数f (x )=f ′(1)e e x +f (0)2x 2-x ,若存在实数m 使得不等式f (m )≤2n 2-n 成立,则实数n 的取值范围为( )A.⎝⎛⎦⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪⎣⎡⎭⎫12,+∞ C.(]-∞,0∪⎣⎡⎭⎫12,+∞ D.⎝⎛⎦⎤-∞,-12∪[0,+∞) 答案 A解析 对函数求导可得, f ′(x )=f ′(1)e ·e x +f (0)2×2x -1,∴f ′(1)=f ′(1)+f (0)-1, ∴f (0)=f ′(1)e=1,∴f ′(1)=e ,f (x )=e x +12x 2-x ,f ′(x )=e x +x -1,设g (x )=f ′(x ),则g ′(x )=e x +1>0, ∴函数f ′(x )单调递增,而f ′(0)=0, ∴当x <0时,f ′(x )<0,f (x )单调递减; 当x >0时,f ′(x )>0,f (x )单调递增. 故f (x )min =f (0)=1,由存在性的条件可得关于实数n 的不等式2n 2-n ≥1, 解得n ∈⎝⎛⎦⎤-∞,-12∪[1,+∞). 4.已知函数f (x )=x 2+(ln 3x )2-2a (x +3ln 3x )+10a 2,若存在x 0使得f (x 0)≤110成立,则实数a 的值为( )A.110B.25C.15D.130 答案 D解析 f (x )=x 2+(ln 3x )2-2a (x +3ln 3x )+10a 2=(x -a )2+(ln 3x -3a )2表示点M (x ,ln 3x )与点N (a,3a )距离的平方,M 点的轨迹是函数g (x )=ln 3x 的图象,N 点的轨迹是直线y =3x ,则g ′(x )=1x .作g (x )的平行于直线y =3x 的切线,切点为(x 1,y 1),则1x 1=3,所以x 1=13,切点为P ⎝⎛⎭⎫13,0,所以曲线上点P ⎝⎛⎭⎫13,0到直线y =3x 的距离最小,最小距离d =110,所以f (x )≥110,根据题意,要使f (x 0)≤110,则f (x 0)=110,此时N 为垂足,点M 与点P 重合,k MN =3a -0a -13=-13,得a =130. 5.已知函数f (x )=⎩⎪⎨⎪⎧ln (x +1),x >0,12x +1,x ≤0,若m <n ,且f (m )=f (n ),则n -m 的取值范围为( )A .[3-2ln 2,2)B .[3-2ln 2,2]C .[e -1,2)D .[e -1,2] 答案 A解析 作出函数f (x )的图象,如图所示,若m <n ,且f (m )=f (n ),则当ln(x +1)=1时,得x +1=e ,即x =e -1, 则满足0<n ≤e -1,-2<m ≤0,则ln(n +1)=12m +1,即m =2ln(n +1)-2,则n -m =n +2-2ln(n +1),设h (n )=n +2-2ln(n +1),0<n ≤e -1, 则h ′(n )=1-2n +1=n -1n +1,0<n ≤e -1,由h ′(n )>0,解得1<n ≤e -1, 由h ′(n )<0,解得0<n <1, 当n =1时,函数h (n )取得最小值 h (1)=1+2-2ln(1+1)=3-2ln 2, 当n =0时,h (0)=2-2ln 1=2; 当n =e -1时,h ()e -1=e -1+2-2ln(e -1+1)=e -1<2, 所以3-2ln 2≤h (n )<2,即n -m 的取值范围是[3-2ln 2,2).6.已知函数f (x )=a ln(x +2)-x 2,在区间(0,1)内任取两个实数p ,q ,且p >q ,若不等式f (p +1)-f (q +1)p -q>2恒成立,则实数a 的取值范围是( )A.()12,+∞B.[)12,+∞C.()24,+∞D.[)24,+∞ 答案 D解析 由已知p >q ,可得f (p +1)-f (q +1)>2(p -q ), f (p +1)>f (q +1)+2p -2q , f (p +1)-2p >f (q +1)-2q , f (p +1)-2p -2>f (q +1)-2q -2, f (p +1)-2(p +1)>f (q +1)-2(q +1). 令g (x )=f (x )-2x ,则有g (p +1)>g (q +1). 因为p ,q ∈(0,1),所以p +1∈(1,2),q +1∈(1,2),又因为p >q ,所以g (x )=f (x )-2x 在(1,2)上为单调递增函数,则g ′(x )=f ′(x )-2=ax +2-2x -2≥0在(1,2)上恒成立,即a ≥(x +2)(2x +2)在x ∈(1,2)时恒成立, 令h (x )=(x +2)(2x +2)=2⎝⎛⎭⎫x +322-12, h (x )在(1,2)上为增函数, 所以a ≥h (2)=24.即a 的取值范围为[)24,+∞.7.y =f (x )的导函数满足:当x ≠2时,(x -2)(f (x )+2f ′(x )-xf ′(x ))>0,则( ) A .f (4)>(25+4)f (5)>2f (3) B .f (4)>2f (3)>(25+4)f (5) C .(25+4)f (5)>2f (3)>f (4) D .2f (3)>f (4)>(25+4)f (5) 答案 C解析 令g (x )=f (x )x -2,则g ′(x )=(x -2)f ′(x )-f (x )(x -2)2,因为当x ≠2时,(x -2)[f (x )+(2-x )f ′(x )]>0, 所以当x >2时,g ′(x )<0,即函数g (x )在(2,+∞)上单调递减, 则g (5)>g (3)>g (4), 即f (5)5-2>f (3)3-2>f (4)4-2, 即(25+4)f (5)>2f (3)>f (4).8.若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为( ) A.⎝⎛⎦⎤0,e 28 B.⎝⎛⎦⎤0,e 24 C.⎣⎡⎭⎫e 28,+∞ D.⎣⎡⎭⎫e24,+∞ 答案 D解析 设公共切线在曲线C 1,C 2上的切点分别为(m ,am 2),(t ,e t ),则2am =e t =am 2-e t m -t,所以m =2t -2,a =e t 4(t -1)(t >1),令f (t )=e t4(t -1)(t >1),则f ′(t )=e t (t -2)4(t -1)2,则当t >2时,f ′(t )>0;当1<t <2时,f ′(t )<0,因此f (t )≥f (2)=e 24,所以a ≥e 24,故选D.9.已知函数f (x )=e 2 018x +mx 3-m (m >0),当x 1+x 2=1时,对于任意的实数θ,都有不等式f (x 1)+f (sin 2θ)>f (x 2)+f (cos 2θ)成立,则实数x 1的取值范围是( )A .[1,+∞)B .[1,2] C.(]1,2 D .(1,+∞) 答案 D解析 g (x )=f (x )-f (1-x )=(e 2 018x +mx 3)-[e 2 018(1-x )+m (1-x )3],则g ′(x )=2 018[e 2 018x +e 2 018(1-x )]+3m [x 2+(1-x )2]>0, 据此可得函数g (x )单调递增, 又x 1+x 2=1,则不等式f (x 1)+f (sin 2θ)>f (x 2)+f (cos 2θ),即 f (x 1)+f (sin 2θ)>f (1-x 1)+f (1-sin 2θ),则f (x 1)-f (1-x 1)>f (1-sin 2θ)-f [1-(1-sin 2θ)], 即g (x 1)>g (1-sin 2θ),结合函数g (x )的单调性可得x 1>1-sin 2θ恒成立, 当sin θ=0时,(1-sin 2θ)max =1,结合恒成立的条件可得实数x 1的取值范围是(1,+∞).10.已知函数f (x )=e x|x |,关于x 的方程f 2(x )-2af (x )+a -1=0(a ∈R)有3个相异的实数根,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫e 2-12e -1,+∞B.⎝ ⎛⎭⎪⎫-∞,e 2-12e -1C.⎝ ⎛⎭⎪⎫0,e 2-12e -1D.⎩⎨⎧⎭⎬⎫e 2-12e -1 答案 D解析f (x )=⎩⎨⎧e xx ,x >0,-exx ,x <0,当x >0时,f ′(x )=e x (x -1)x 2,当0<x <1时,f ′(x )<0,函数单调递减, 当x >1时,f ′(x )>0,函数单调递增, 当x =1时,函数取得极小值f (1)=e.当x <0时,f ′(x )=-e x (x -1)x 2>0,函数单调递增,如图,画出函数的图象,设t =f (x ),当t >e 时,t =f (x )有3个根,当t =e 时,t =f (x )有2个实根,当0<t <e 时,t =f (x )有1个实根,考虑到原方程的判别式大于零恒成立,所以原方程等价于t 2-2at +a -1=0有2个相异实根,其中t 1=e ,t 2∈(0,e)或t 1≤0,t 2>e ,当t =e 时,e 2-2a e +a -1=0,解得a=e 2-12e -1,检验满足条件;由t 1≤0,t 2>e 得⎩⎪⎨⎪⎧02-2a ×0+a -1≤0,e 2-2a e +a -1<0,无解.故选D.11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x +1,-2≤x <0,e x ,x ≥0,若函数g (x )=f (x )-ax +a 存在零点,则实数a 的取值范围为( )A.⎣⎡⎦⎤-13,e 2B.⎝⎛⎦⎤-∞,-13∪[e 2,+∞) C.⎣⎡⎦⎤-13,1e D.⎝⎛⎦⎤-∞,-13∪[e ,+∞) 答案 B解析 函数g (x )=f (x )-ax +a 存在零点, 即方程f (x )=ax -a 存在实数根,即函数y =f (x )与y =a (x -1)的图象有交点,如图所示,作出f (x )图象,直线y =a (x -1)恒过定点(1,0),过点(-2,1)与(1,0)的直线的斜率k =1-0-2-1=-13,设直线y =a (x -1)与y =e x 相切于点(x 0,0e x), 则切点处的导数值为0e x,则过切点的直线方程为y -0e x =0e x(x -x 0), 又切线过点(1,0),则-0e x=0e x(1-x 0), ∴x 00e x=20e x,得x 0=2, 此时切线的斜率为e 2,由图可知,要使函数g (x )=f (x )-ax +a 存在零点, 则实数a 的取值范围是a ≤-13或a ≥e 2.13. 已知函数f (x )=ln x +ax 2+(2+a )x (a ∈R),g (x )=xe x -2,对任意的x 0∈(0,2],关于x 的方程f (x )=g (x 0)在(]0,e 上有两个不同的实数根,则实数a 的取值范围(其中e =2.718 28…为自然对数的底数)为( ) A.⎝⎛⎭⎪⎫-2e ,-3+2e e 2+e B.⎝⎛⎦⎤-2e ,-ee 2+2C.⎝ ⎛⎦⎥⎤-e ,-3+2e e 2+e D.⎝⎛⎭⎫-e ,-ee 2+2答案 C解析 函数f (x )的定义域为(0,+∞),且f ′(x )=1x +2ax +(2+a )=(2x +1)(ax +1)x(x >0), 当a =0时,f ′(x )>0,f (x )在(0,+∞)上单调递增;当a >0时,f ′(x )>0,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在⎝⎛⎭⎫-1a ,+∞上单调递减, 在⎝⎛⎭⎫0,-1a 上单调递增. g (x )=x e x -2,则g ′(x )=1-x e x , 当x ∈(-∞,1)时,g ′(x )>0,g (x )单调递增,当x ∈(1,+∞)时,g ′(x )<0,g (x )单调递减,其中g (0)=-2,g (1)=1e -2,g (2)=2e 2-2, 则函数g (x )在区间(0,2]上的值域为⎝⎛⎦⎤-2,1e -2, f (x )=g (x 0)在(0,e]上有两个不同的实数根,则必有a <0,且由f (x )的解析式有f (0)→-∞,f ⎝⎛⎭⎫-1a =ln ⎝⎛⎭⎫-1a -1a-1, f (e)=1+a e 2+(2+a )e ,则满足题意时应有⎩⎨⎧f ⎝⎛⎭⎫-1a =ln ⎝⎛⎭⎫-1a -1a -1>1e -2,f (e )=1+a e 2+(2+a )e ≤-2,-1a <e ,注意到函数f (x )=ln x +x -1是单调递增函数,且f ⎝⎛⎭⎫1e =1e -2,据此可知方程ln ⎝⎛⎭⎫-1a -1a -1=1e-2的唯一实数根满足-1a =1e ,即a =-e ,则不等式ln ⎝⎛⎭⎫-1a -1a -1>1e-2的解集为(-e ,+∞), 求解不等式1+a e 2+(2+a )e ≤-2,可得a ≤-3+2e e 2+e . 求解不等式-1a <e ,可得a <-1e, 据此可得实数a 的取值范围是⎝ ⎛⎦⎥⎤-e ,-3+2e e 2+e . 13.若f (x )=3xf ′(1)-2x 2,则f ′(0)=________.答案 6解析 由题意得f ′(x )=3f ′(1)-4x ,∴f ′(1)=3f ′(1)-4,∴f ′(1)=2,∴f ′(x )=6-4x ,∴f ′(0)=6-4×0=6.14.若直线y =2x +b 是曲线y =e x -2的切线,则实数b =________.答案 -2ln 2解析 由题意可知,设切点为(x 0,y 0),y ′=e x ,由y =2x +b 是曲线y =e x -2的切线,得e x 0=2,x 0=ln 2,代入曲线得y 0=0,然后将切点坐标代入切线得b =-2ln 2.15.若存在两个正实数x ,y 使等式2x +m (y -2e x )(ln y -ln x )=0成立(其中e =2.718 28…),则实数m 的取值范围是_____________.答案 (-∞,0)∪⎣⎡⎭⎫2e ,+∞ 解析 由题意可得m =2x (2e x -y )(ln y -ln x ), 则1m =(2e x -y )(ln y -ln x )2x=⎝⎛⎭⎫e -12·y x ·ln y x , 令t =y x ()t >0,构造函数g (t )=⎝⎛⎭⎫e -t 2ln t (t >0), 则g ′(t )=-12ln t +⎝⎛⎭⎫e -t 2×1t =-12ln t +e t -12(t >0), 设h (t )=g ′(t ),则h ′(t )=-12t -e t 2=-t +2e 2t 2<0恒成立, 则g ′(t )在(0,+∞)上单调递减,当t =e 时,g ′(t )=0,则当t ∈(0,e)时,g ′(t )>0,函数g (t )单调递增,当t ∈(e ,+∞)时,g ′(t )<0,函数g (t )单调递减,则当t =e 时,g (t )取得最大值g (e)=e 2, 据此有1m ≤e 2,∴m <0或m ≥2e. 综上可得实数m 的取值范围是(-∞,0)∪⎣⎡⎭⎫2e ,+∞.16.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则b a的最小值为________. 答案 -1e解析 因为函数f (x )=ln x +(e -a )x -b ,所以f ′(x )=1x+(e -a ),其中x >0, 当a ≤e 时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增,所以f (x )≤0不恒成立;当a >e 时,令f ′(x )=1x +e -a =0,得x =1a -e, 当x ∈⎝ ⎛⎭⎪⎫0,1a -e 时,f ′(x )>0,f (x )单调递增, 当x ∈⎝ ⎛⎭⎪⎫1a -e ,+∞时,f ′(x )<0,f (x )单调递减, 所以当x =1a -e时,f (x )取得最大值, 因为不等式f (x )≤0恒成立,所以f ⎝ ⎛⎭⎪⎫1a -e =-ln(a -e)-b -1≤0, 所以ln(a -e)+b +1≥0,所以b ≥-1-ln(a -e),所以b a ≥-1-ln (a -e )a,a >e , 设F (x )=-1-ln (x -e )x,x >e , 则F ′(x )=-1x -e x +1+ln (x -e )x 2=(x -e )ln (x -e )-e (x -e )x 2,x >e ,令H (x )=(x -e)ln(x -e)-e ,则H ′(x )=ln(x -e)+1,由H ′(x )=0,解得x =e +1e, 当x ∈⎝⎛⎭⎫e +1e ,+∞时,H ′(x )>0,H (x )单调递增, 当x ∈⎝⎛⎭⎫e ,e +1e 时,H ′(x )<0,H (x )单调递减, 所以当x =e +1e时,H (x )取得最小值, 最小值为H ⎝⎛⎭⎫e +1e =-e -1e, 因为当x →e 时,H (x )→-e ,当x >2e 时,H (x )>0,H (2e)=0,所以当x ∈(e,2e)时,F ′(x )<0,F (x )单调递减, 当x ∈(2e ,+∞)时,F ′(x )>0,F (x )单调递增,所以当x =2e 时,F (x )取最小值F (2e)=-1-12e =-1e, 所以b a 的最小值为-1e.。
导数专题训练题1.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,2.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )3.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .324.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件5. 函数)(x f 的图像如图所示,下列数值排序正确的是( )(A ))2()3()3()2(0//f f f f -<<< (B ) )2()2()3()3(0//f f f f <-<< (C ))2()3()2()3(0//f f f f -<<< (D ))3()2()2()3(0//f f f f <<-< 6、 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .97、已知二次函数f (x )=ax 2+bx +1的导函数为f ′(x ),f ′(0)>0,f (x )与x 轴恰有一个交点,则'(1)(0)f f 的最小值为 ( )A .2B .32C .3D .528、 已知α、β是三次函数f (x )=13x 3+12ax 2+2bx 的两个极值点,且α∈(0,1),β∈(1,2),则b -2a -1的取值范围是( )A .1,14⎛⎫⎪⎝⎭ B .1,12⎛⎫ ⎪⎝⎭C .11,24⎛⎫- ⎪⎝⎭ D .11,22⎛⎫- ⎪⎝⎭9、函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为 ( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)10. 设函数()322()311f x kx k x k =+--+在()0,4上是减函数,则k 的取值范围是( )A .13k <B .103k <≤C .103k ≤<D .13k ≤ 11. 点P 在曲线323y x x =-+上移动时,过点P 的切线的倾斜角的取值范围是( )A .[]0,πB .30,,24πππ⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦C .30,,224πππ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭D .30,,24πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦12. 方程5436151010x x x -++=的实解的集合中( )A .至少有2个元素B .至少有3个元素C .至多有1个元素D .恰好有5个元素13.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ( )A 1个B 2个C 3个D 4个15.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A (-3,0)∪(3,+∞)B (-3,0)∪(0,3)C (-∞,-3)∪(3,+∞)D (-∞,-3)∪(0,3) 16.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则( )A BC DA f (x )=g (x )B f (x )-g (x )为常数函数C f (x )=g (x )=0D f (x )+g (x )为常数函数 17. 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A .(0)(2)2(1)f f f +<B .(0)(2)2(1)f f f +≤C . (0)(2)2(1)f f f +≥D . (0)(2)2(1)f f f +>18、 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A ()f x =2()g xB ()f x -()g x 为常数函数C ()f x =()0g x =D ()f x +()g x 为常数函数19.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( ) A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 20.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件21.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 .22. 幂指函数y =f (x )g (x )在求导数时,可以运用对数法:在函数解析式两边求对数得ln y =g (x )ln f (x ),两边求导得y ′y =g ′(x )ln f (x )+g (x )f ′(x )f (x ),于是y ′=f (x )g (x )·⎣⎡⎦⎤g ′(x )ln f (x )+g (x )f ′(x )f (x ).运用此方法可以探求得知y =x 1x(x >0)的一个单调递增区间为________23.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 .24. 设函数())(0)f x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ=__________25. 设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 .26. 要做一个长方体的带盖的盒子,其体积为372cm ,其底面两邻边长之比为1:2,则盒子的长、宽、高各为多少时,才能使其表面积最小?27、设函数329()62f x x x x a =-+-.(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;(2)若方程()0f x =有且仅有一个实根,求a 的取值范围. 28、 已知a 为实数,))(4()(2a x x x f --=。
导数及其应用专项训练一. 选择题1.若函数f (x )可导,则lim Δx →0(1)(1)2f x f x∆∆--等于( )A .-2f ′(1) B.12 f ′(1) C .-12f ′(1) D .f ′12⎛⎫ ⎪⎝⎭2.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-3.曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+= 4.已知函数f (x )的图象如图所示,则下列不等关系中正确的是( ) A .0<f ′(2)<f ′(3)<f (3)-f (2) B .0<f ′(2)<f (3)-f (2)<f ′(3) C .0<f ′(3)<f (3)-f (2)<f ′(2) D .0<f (3)-f (2)<f ′(2)<f ′(3) 5.下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C. ()()222sin sin x x x x x '''-⎛⎫= ⎪⎝⎭D .(cos x ·sin x )′=(sin x )′cos x +(cos x )′cos x 6.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2 B .0 C .钝角 D .锐角 7.设曲线11x y x +=-在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A .2 B.12 C .-12D .-2 8. 函数2cos(2)3y x x π=-的导数为( )A .22cos(2)sin(2)33y x x x x ππ'=---B . 22cos(2)2sin(2)33y x x x x ππ'=---C .2cos(2)2sin(2)33y x x x x ππ'=---D . 22cos(2)2sin(2)33y x x x x ππ'=-+-9.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A .0 B .1 C .2 D .310.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )11.已知函数y =f (x )的定义域为[-1,5],部分对应值如下表.f (x )的导函数y =f ′(x )的图象如图所示.x -1 0 4 5 f (x )1221①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中正确说法的个数是( )A .4B .3C .2D .1 12.函数f (x )=3+x ·ln x 的单调递增区间是( ) A. 10,e ⎛⎫ ⎪⎝⎭B .(e ,+∞) C. 1,e ⎛⎫+∞ ⎪⎝⎭D. 1,e e ⎛⎫ ⎪⎝⎭13.函数f (x )的导函数f ′(x )的图象如图所示,若△ABC 为锐角三角形,则下列不等式一定成立的是( )A .f (cos A )<f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (sin A )>f (cos B )14.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A. 31,2⎡⎫⎪⎢⎣⎭B. 31,2⎛⎤ ⎥⎝⎦C .(1,2]D .[1,2)15.设函数()2ln f x x x=+,则( ) A .12x =为f (x )的极大值点 B .12x =为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点16.设三次函数f (x )的导函数为f ′(x ),函数y =xf ′(x )的图象的一部分如图所示,则( )A .f (x )极大值为f (3),极小值为f (-3)B .f (x )极大值为f (-3),极小值为f (3)C .f (x )极大值为f (-3),极小值为f (3)D .f (x )极大值为f (3),极小值为f (-3)17.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值和最小值分别是( )A .1,-1B .1,-17C .3,-17D .9,-1918.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元 二. 填空题19.若f ′(x 0)=2,则lim Δx →000()()2f x f x x x∆∆-+ =________.20.一物体的运动方程为s (t )=7t 2-13t +8,则t 0=________时该物体的瞬时速度为1. 21.已知f (x )=ln x 且()0201f x x '=,则x 0= . 22.函数()2(1)21xf x f x x '=+-,则f ′(0)=________. 23.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .24.若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.25.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________. 26.函数f (x )=(x 2+2x )e x (x ∈R )的单调递减区间为____________.27.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为[-1,2],则b =________,c =________. 28.若函数f (x )的导函数为f ′(x )=x 2-4x +3,则函数f (x +1)的单调递减区间是________. 29.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________. 30.若函数343y x ax =-+有三个单调区间,则a 的取值范围是________. 31.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________. 32.将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________ cm.33.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为313812800080y x x =-+,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少. 34.已知,若对任意两个不等的正实数都有恒成立,则的取值范围是 .21()ln (0)2f x a x x a =+>12x x 、1212()()2f x f x x x ->-a三. 解答题35.已知曲线y =f (x )=x ,y =g (x )=1x,过两条曲线交点作两条曲线的切线,求两切线与x 轴所围成的三角形面积.36.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数为f ′(x )=2x -8. (1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.37.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0.(1)求函数y =f (x )的解析式;(2)求函数y =f (x )的单调区间.38.已知函数f (x )=ax 2+ln(x +1). (1)当a =-14时,求函数f (x )的单调区间; (2)若函数f (x )在区间[1,+∞)上为减函数,求实数a 的取值范围.61.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加,年销售量y 关于x 的函数为y =3 240⎝⎛⎭⎫-x 2+2x +53,则当x 为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量)55.讨论函数f (x )=12ax 2+x -(a +1)ln x (a ≥0)的单调性.。
导数专题训练学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.(2016高考新课标1文数)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦2.(2016高考四川文数)设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) (A )(0,1) (B ) (0,2) (C ) (0,+∞) (D ) (1,+ ∞) 3.(2016高考四川文数)已知a 函数3()12f x x x =-的极小值点,则a =( ) (A )-4 (B ) -2 (C )4 (D )24.(2016河北衡水四调)设过曲线()x f x e x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A .[]1,2-B .()1,2-C .[]2,1-D .()2,1-5.(2016江西五校联考)已知函数()y f x =对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+> (其中()f x '是函数()f x 的导函数),则下列不等式成立的是A ()()34f ππ-<-B ()()34f ππ<C .(0)2()3f f π>D .(0)()4f π>第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题6.[2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤时,1()x f x e x --=-,则曲线()y f x =在(1,2)处的切线方程式_____________________________. 7.(2016云南统测一)已知实数,a b 都是常数,若函数2112x a x y be x --=++的图象在切点10,2⎛⎫ ⎪⎝⎭处的切线方程为2113420,2x a x x y y be x --+-==++与()31y k x =-的图象有三个公共点,则实数k 的取值范围是.三、解答题8.(2016高考新课标1文数)(本小题满分12分)已知函数()()()22e 1xf x x a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.9.(2016高考新课标2文数)已知函数()(1)ln (1)f x x x a x =+--. (Ⅰ)当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 10.(2016高考新课标Ⅲ文数)设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)xc x c +->. 11.(2016高考北京文数)设函数()32.f x x ax bx c =+++(Ⅰ)求曲线().y f x =在点()()0,0f 处的切线方程;(Ⅱ)设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围;(Ⅲ)求证:230a b ->是().f x 有三个不同零点的必要而不充分条件. 12.(2016高考山东文数)设f (x )=xlnx –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x=1处取得极大值.求实数a 的取值范围.13.(2016高考天津文数)设函数b ax x x f --=3)(,R x ∈,其中R b a ∈, (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.14.(2016高考浙江文数)设函数()f x =311x x++,[0,1]x ∈.证明: (Ⅰ)()f x 21x x ≥-+;(Ⅱ)34<()f x 32≤. 15.(2016高考四川文数)设函数2()ln f x ax a x =--,1()x e g x x e=-,其中q R ∈,e=2.718…为自然对数的底数.(Ⅰ)讨论f (x )的单调性;(Ⅱ)证明:当x >1时,g (x )>0;(Ⅲ)确定a 的所有可能取值,使得()()f x g x >在区间(1,+∞)内恒成立. 16.(2016河北衡水四调)已知函数()32f x x x b =-++,()ln g x a x =. (1)若()f x 在1,12x ⎡⎫∈-⎪⎢⎣⎭上的最大值为38,求实数b 的值;(2)若对任意[]1,x e ∈,都有()()22g x x a x ≥-++恒成立,求实数a 的取值范围;(3)在(1)的条件下,设()()(),1F ,1f x x xg x x <⎧⎪=⎨≥⎪⎩,对任意给定的正实数a ,曲线()F y x =上是否存在两点P 、Q ,使得Q ∆PO 是以O (O 为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y 轴上?请说明理由.参考答案1.C 【解析】试题分析:()21cos2cos 03f x x a x '=-+…对x ∈R 恒成立, 故()2212cos 1cos 03x a x --+…,即245cos cos 033a x x -+…恒成立, 即245033t at -++…对[]1,1t ∈-恒成立,构造()24533f t t at =-++,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-⎪⎪⎨⎪-=+⎪⎩……,解得1133a -剟.故选C . 考点:三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性. 2.A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A xB x -++又1l 与2l 的交点为221111112222111121121,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭ ,故选A .考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用. 3.D 【解析】试题分析:()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 极小值为()2f ,由已知得2a =,故选D .考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点,4.A【解析】由题意得:12,,x R x R ∀∈∃∈使得12(1)(2sin )1x e a x ---=-,即函数111x y e =+的值域为函数22s i n y a x =-的值域的子集,从而(0,1)[2,2]a a ⊆-+,即20,211a a a -≤+≥⇒-≤≤,故选A .5.A【解析】令()()()()()()()()xx x f x x f x x x f x x f x g x x f x g 2'2'''cos sin cos cos cos cos ,cos -=-==则,由对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+>可得()0'>x g ,所以函数()x g 在⎪⎭⎫ ⎝⎛-2,2ππ上为增函数,所以⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛-43ππg g ,即⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-4c o s 43c o s 3ππππf f ,所以⎪⎭⎫⎝⎛-<⎪⎭⎫ ⎝⎛-432ππf f ,故选A . 6.2y x =【解析】试题分析:当0x >时,0x -<,则1()x f x e x --=+.又因为()f x 为偶函数,所以1()()x f x f x e x -=-=+,所以1()1x f x e -'=+,则切线斜率为(1)2f '=,所以切线方程为22(1)y x -=-,即2y x =.考点:1、函数的奇偶性;2、解析式;3、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.7.),0()41,(+∞--∞【解析】当1<x 时,12122)1(2|1|--++-=++-=x x be x x a be x x a y ,则122'2)2(3)(-++-=x be x a x f , 因为函数2112x a x y be x --=++的图象在切点10,2⎛⎫⎪⎝⎭处的切线方程为0243=-+y x , 所以⎪⎪⎩⎪⎪⎨⎧-==43)(21)0('x f f ,即⎪⎪⎩⎪⎪⎨⎧-=+-=+43243212e b a e b a ,解得⎩⎨⎧==01b a ,即2|1|+-=x x y ;3)1(2|1|-=+-x k x x ,得当1=x 时,方程成立, 当1>x 时,得3)1(21-=+-x k x x ,即2)1)(2(1-+=x x k , 当1<x 时,得3)1(2)1(-=+--x k x x ,即2)1)(2(1-+-=x x k,令k y 1=,⎪⎩⎪⎨⎧<-+->-+=1,)1)(2(1,)1)(2()(22x x x x x x x f ,则⎩⎨⎧<+-->+-=1),1)(1(31),1)(1(3)('x x x x x x x f , 则)(x f 在)1,(--∞上单调递增,在)1,1(-、),1(+∞上单调递增,且4)1(-=-f ,0)1(=f ,作出k y 1=、⎪⎩⎪⎨⎧<-+->-+=1,)1)(2(1,)1)(2()(22x x x x x x x f 的图象如图所示,由图象,得当01>k 或014<<-k时, 两图象有两个交点,即2112x a x y be x --=++与()31y k x =-的图象有三个公共点, 即0>k 或41-<k ,所以实数k 的取值范围是),0()41,(+∞--∞ . 8.见解析(Ⅱ)()0,+∞ 【解析】试题分析:(Ⅰ)先求得()()()'12.xf x x e a =-+再根据1,0,2a 的大小进行分类确定()f x 的单调性;(Ⅱ)借助第一问的结论,通过分类讨论函数单调性,确定零点个数,从而可得a 的取值范围为()0,+∞.试题解析: (Ⅰ)()()()()()'12112.x xf x x e a x x e a =-+-=-+(ⅰ)设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. (ⅱ)设0a <,由()'0f x =得x=1或x=ln (-2a ).①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2ea >-,则ln (-2a )<1,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减.③若2ea <-,则()21ln a ->,故当()()(),1l n 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(Ⅱ)(ⅰ)设0a >,则由(Ⅰ)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()()12f e f a =-=,,取b 满足b <0且ln 22b a <, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=->⎪⎝⎭,所以()f x 有两个零点. (ⅱ)设a=0,则()()2xf x x e =-所以()f x 有一个零点.(ⅲ)设a <0,若2ea ≥-,则由(Ⅰ)知,()f x 在()1,+∞单调递增. 又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2ea <-,则由(Ⅰ)知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.考点:函数单调性,导数应用【名师点睛】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解. 9.(Ⅰ)220x y +-=;(Ⅱ)(],2.-∞ 【解析】试题分析:(Ⅰ)先求函数的定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解. 试题解析:(Ⅰ)()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 所以曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-= (Ⅱ)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x , 则222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(ⅰ)当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;(ⅱ)当2>a 时,令()0'=g x得1211=-=-x a x a由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x . 综上,a 的取值范围是(],2.-∞考点:导数的几何意义,函数的单调性. 【名师点睛】求函数的单调区间的方法: (1)确定函数y =f (x )的定义域; (2)求导数y′=f′(x );(3)解不等式f′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f′(x )<0,解集在定义域内的部分为单调递减区间.10.(Ⅰ)当01x <<时,()f x 单调递增;当1x >时,()f x 单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)首先求出导函数()f x ',然后通过解不等式()0f x '>或()0f x '<可确定函数()f x 的单调性(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的x 换为1x即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理.试题解析:(Ⅰ)由题设,()f x 的定义域为(0,)+∞,'1()1f x x=-,令'()0f x =,解得1x =. 当01x <<时,'()0f x >,()f x 单调递增;当1x >时,'()0f x <,()f x 单调递减.(Ⅱ)由(Ⅰ)知,()f x 在1x =处取得最大值,最大值为(1)0f =, 所以当1x ≠时,ln 1x x <-, 故当(1,)x ∈+∞时,ln 1x x <-,11ln1x x <-,即11ln x x x-<<. (Ⅲ)由题设1c >,设()1(1)xg x c x c =+--,则'()1ln xg x c c c =--.令'()0g x =,解得01lnln ln c c x c-=. 当0x x <时,'()0g x >,()g x 单调递增;当0x x >时,'()0g x <,()g x 单调递减.由(Ⅱ)知,11ln c c c-<<,故001x <<.又(0)(1)0g g ==,故当01x <<时,()0g x >, 所以当(0,1)x ∈时,1(1)xc x c +->.考点:1、利用导数研究函数的单调性;2、不等式的证明与解法. 【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明.11.(Ⅰ)y bx c =+;(Ⅱ)320,27c ⎛⎫∈ ⎪⎝⎭;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)求函数f (x )的导数,根据()0f c =,()0f b '=求切线方程; (Ⅱ)根据导函数判断函数f (x )的单调性,由函数()f x 有三个不同零点,求c 的取值范围;(Ⅲ)从两方面必要性和不充分性证明,根据函数的单调性判断零点个数. 试题解析:(Ⅰ)由()32f x x ax bx c =+++,得()232f x x ax b '=++.因为()0f c =,()0f b '=,所以曲线()y f x =在点()()0,0f 处的切线方程为y bx c =+. (Ⅱ)当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-. ()f x 与()f x '在区间(),-∞+∞上的情况如下:所以,当0c >且32027c -<时,存在()14,2x ∈--,222,3x ⎛⎫∈-- ⎪⎝⎭, 32,03x ⎛⎫∈- ⎪⎝⎭,使得()()()1230f x f x f x ===.由()f x 的单调性知,当且仅当320,27c ⎛⎫∈ ⎪⎝⎭时,函数()3244f x x x x c =+++有三个不同零点.(Ⅲ)当24120a b ∆=-<时,()2320f x x ax b '=++>,(),x ∈-∞+∞,此时函数()f x 在区间(),-∞+∞上单调递增,所以()f x 不可能有三个不同零点. 当24120a b ∆=-=时,()232f x x ax b '=++只有一个零点,记作0x .当()0,x x ∈-∞时,()0f x '>,()f x 在区间()0,x -∞上单调递增; 当()0,x x ∈+∞时,()0f x '>,()f x 在区间()0,x +∞上单调递增. 所以()f x 不可能有三个不同零点.综上所述,若函数()f x 有三个不同零点,则必有24120a b ∆=->.故230a b ->是()f x 有三个不同零点的必要条件.当4a b ==,0c =时,230a b ->,()()232442f x x x x x x =++=+只有两个不同零点, 所以230a b ->不是()f x 有三个不同零点的充分条件. 因此230a b ->是()f x 有三个不同零点的必要而不充分条件.考点:利用导数研究曲线的切线;函数的零点 【名师点睛】1.证明不等式问题可通过作差或作商构造函数,然后用导数证明. 2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值. 3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论. 4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.12.(Ⅰ)当0a ≤时,函数()g x 单调递增区间为()0,+∞; 当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (Ⅱ)12a >. 【解析】试题分析:(Ⅰ)求导数()'ln 22,f x x ax a =-+ 可得()()ln 22,0,g x x ax a x =-+∈+∞,从而()112'2ax g x a x x-=-=, 讨论当0a ≤时,当0a >时的两种情况下导函数正负号,确定得到函数的单调区间.(Ⅱ)分以下情况讨论:①当0a ≤时,②当102a <<时,③当12a =时,④当12a >时,综合即得.试题解析:(Ⅰ)由()'ln 22,f x x ax a =-+ 可得()()ln 22,0,g x x ax a x =-+∈+∞, 则()112'2axg x a x x-=-=, 当0a ≤时,()0,x ∈+∞时,()'0g x >,函数()g x 单调递增; 当0a >时,10,2x a ⎛⎫∈ ⎪⎝⎭时,()'0g x >,函数()g x 单调递增, 1,2x a ⎛⎫∈+∞ ⎪⎝⎭时,()'0g x <,函数()g x 单调递减.所以当0a ≤时,函数()g x 单调递增区间为()0,+∞; 当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (Ⅱ)由(Ⅰ)知,()'10f =.①当0a ≤时,()'0f x <,()f x 单调递减. 所以当()0,1x ∈时,()'0f x <,()f x 单调递减. 当()1,x ∈+∞时,()'0f x >,()f x 单调递增. 所以()f x 在1x =处取得极小值,不合题意. ②当102a <<时,112a >,由(Ⅰ)知()'f x 在10,2a ⎛⎫⎪⎝⎭内单调递增, 可得当当()0,1x ∈时,()'0f x <,11,2x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >, 所以()f x 在(0,1)内单调递减,在11,2a ⎛⎫⎪⎝⎭内单调递增,所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,即112a=时,()'f x 在(0,1)内单调递增,在()1,+∞内单调递减, 所以当()0,x ∈+∞时,()'0f x ≤,()f x 单调递减,不合题意. ④当12a >时,即1012a <<,当1,12x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >,()f x 单调递增, 当()1,x ∈+∞时,()'0f x <,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >. 考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等. 13.(Ⅰ)递减区间为()33-,递增区间为(,3-∞-,()3+∞.(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题分析:(Ⅰ)先求函数的导数:2()3f x x a '=-,再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有2()30f x x a '=-≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得200()30f x x a '=-=即203ax =,再由)()(01x f x f =化简可得结论(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1)f f -,||,|(|f f 的大小即可,分三种情况研究①当3a ≥时,11≤-<≤,②当334a ≤<时,11≤-<<<≤,③当304a <<时,11-<<<.试题解析:(1)解:由3()f x x ax b =--,可得2()3f x x a '=-,下面分两种情况讨论:①当0a ≤时,有2()30f x x a '=-≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,令()0f x '=,解得x =x = 当x 变化时,()f x '、()f x 的变化情况如下表:所以()f x 的单调递减区间为(,单调递增区间为(,-∞,()+∞.(2)证明:因为()f x 存在极值点,所以由(1)知0a >且00x ≠.由题意得200()30f x x a '=-=,即203a x =, 进而300002()3af x x ax b x b =--=--, 又3000000082(2)822()33a a f x x axb x ax b x b f x -=-+-=-+-=--=,且002x x -≠, 由题意及(1)知,存在唯一实数1x 满足10()()f x f x =,且10x x ≠,因此102x x =-, 所以10+2=0x x .(3)证明:设()g x 在区间[1,1]-上的最大值为M ,max{,}x y 表示x ,y 两数的最大值,下面分三种情况讨论:①当3a ≥时,11≤-<≤,由(1)知()f x 在区间[1,1]-上单调递减, 所以()f x 在区间[1,1]-上的取值范围为[(1),(1)]f f -,因此,max{[(1),(1)]}max{|1|,|1|}M f f a b a b =-=---+-max{|1|,|1|}a b a b =-+--1,0,1,0,a b b a b b --≥⎧=⎨--<⎩所以1||2M a b =-+≥.②当334a ≤<时,113333-≤-<-<<≤由(1)和(2)知(1)(f f f -≥=,(1)(f f f ≤=,所以()f x 在区间[1,1]-上的取值范围为[(f f ,所以max{||,|(|}max{||,||}f f b b =231max{||,||}||944b b b ==≥⨯=.③当304a <<时,1133-<-<<,由(1)和(2)知,(1)(f f f -<=,(1)(f f f >=, 所以()f x 在区间[1,1]-上的取值范围为[(1),(1)]f f -,因此,max{[(1),(1)]}max{|1|,|1|}M f f a b a b =-=-+---max{|1|,|1|}a b a b =-+--11||4a b =-+>. 综上所述,当0a >时,()g x 在区间[1,1]-上的最大值不小于14. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数f (x )的定义域(定义域优先); (2)求导函数f′(x );(3)在函数f (x )的定义域内求不等式f′(x )>0或f′(x )<0的解集.(4)由f′(x )>0(f′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f′(x )≥0(或f′(x )≤0)恒成立问题,要注意“=”是否可以取到. 14.(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到()32f x ≤, 再结合第一问的结论,得到()34f x >, 从而得到结论. 试题解析:(Ⅰ)因为()()4423111,11x x x x x x x----+-==--+ 由于[]0,1x ∈,有411,11x x x-≤++ 即23111x x x x -≤-++,所以()21.f x x x ≥-+(Ⅱ)由01x ≤≤得3x x ≤, 故()()()()312111333311222122x x f x x x x x x -+=+≤+-+=+≤+++ , 所以()32f x ≤. 由(Ⅰ)得()221331244f x x x x ⎛⎫≥-+=-+≥ ⎪⎝⎭,又因为11932244f ⎛⎫=> ⎪⎝⎭,所以()34f x >,综上,()33.42f x <≤ 考点:函数的单调性与最值、分段函数.【思路点睛】(Ⅰ)先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-≤-++,进而可证()21f x x x ≥-+;(Ⅱ)由(Ⅰ)的结论及放缩法可证()3342f x <≤. 15.(1)当x ∈(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增;(2)证明详见解析;(3)a ∈1+)2∞[,. 【解析】试题分析:(Ⅰ)对()f x 求导,对a 进行讨论,研究'()f x 的正负,可判断函数的单调性;(Ⅱ)要证明()0g x >,只要证()g x 在(1,)+∞上的最小值大于0,因此可利用导数求得()g x 在(1,)+∞上的最小值,就可完成证明;(Ⅱ)要证明不等式11()xf x e x->-在(1,)+∞上恒成立,基本方法是设11()()()(1)x h x f x e x x -=--?,当1x >时,1211()2e x h x ax x x-¢=-+-,'()0h x =的解不易确定,因此结合(Ⅰ)的结论,缩小a 的范围,设()g x =111e x x --11x x e x xe ---,并设()s x =1e x x --,通过研究()s x 的单调性得1x >时,()0g x >,从而()0f x >,这样得出0a ≤不合题意,又102a <<时,()f x 的极小值点1x =>,且)(1)0f f <=,也不合题意,从而12a ≥,此时考虑1211()2e x h x ax x x -¢=-+-得'()h x 2111x x x x>-+-0>,得此时()h x 单调递增,从而有()(1)0h x h >=,得出结论.试题解析:(Ⅰ)2121'()20).ax f x ax x x x -=-=>( 0a ≤当时,'()f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由'()f x =0,有x =当x ∈(时,'()f x <0,()f x 单调递减; 当x ∈+)∞时,'()f x >0,()f x 单调递增. (Ⅱ)令()s x =1ex x --,则'()s x =1e 1x --.当1x >时,'()s x >0,所以1e x x ->,从而()g x =111ex x -->0. (Ⅲ)由(Ⅱ),当1x >时,()g x >0. 当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当12a <<1.由(Ⅰ)有(1)0f f <=,从而0g >, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ≥时,令()h x =()f x -()g x (1x ≥). 当1x >时,'()h x =122111112e xax x x x x x x --+->-+-=322221210x x x x x x -+-+>>. 因此()h x 在区间1+)∞(,单调递增.又因为(1)h =0,所以当1x >时,()h x =()f x -()g x >0,即()f x >()g x 恒成立.综上,a ∈1+)2∞[,. 考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度. 16.【解析】(1)由()32f x x x b=-++,得()()23232f x x x x x '=-+=--,令()0f x '=,得0x =或23x =.函数()f x ',()f x 在1,12x ⎡⎫∈-⎪⎢⎣⎭上的变化情况如下表:1328f b ⎛⎫-=+ ⎪⎝⎭,24327f b ⎛⎫=+ ⎪⎝⎭,∴1223f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭.即最大值为133288f b ⎛⎫-=+=⎪⎝⎭,∴0b =. (2)由()()22g x x a x≥-++,得()2ln 2x x a x x -≤-.[]1,x e ∈,ln 1x x ≤≤,且等号不能同时取得,∴ln x x <,即ln 0x x ->.∴22ln x x a x x -≤-恒成立,即2min 2ln x x a x x ⎛⎫-≤ ⎪-⎝⎭. 令()22ln x x t x x x -=-,[]1,x e ∈,则()()()()2122ln ln x x x t x x x -+-'=-,当[]1,x e ∈时,10x -≥,ln 1x ≤,22ln 0x x +->,从而()0t x '≥.∴()t x 在区间[]1,e 上为增函数,∴()()min 11t x t ==-,1a ≤-.(3)由条件()()(),1F ,1f x x x g x x <⎧⎪=⎨≥⎪⎩. 假设曲线()F y x =上存在两点P ,Q 满足题意,则P ,Q 只能在y 轴的两侧,不妨设()(),F t t P (0t >),则()32Q ,t t t -+(0t ≠).Q ∆PO 是以O (O 是坐标原点)为直角顶点的直角三角形,∴Q 0OP⋅O =,∴()()232F 0t t t t -++=,是否存在P ,Q 等价于该方程0t >且1t ≠是否有根.当01t <<时,方程可化为()()232320t t t t t -+-++=,化简得4210t t -+=,此时方程无解;当1t >时,方程为()232ln 0t a t t t -++=,即()11ln t t a =+,设()()1ln h t t t =+(1t >),则()1ln 1h t t t '=++(1t >),显然,当1t >时,()0h t '>,即()h t 在区间()1,+∞上是增函数,()h t 的值域是()()1,h +∞,即()0,+∞.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。