九年级上册图形的旋转教案
- 格式:doc
- 大小:750.50 KB
- 文档页数:8
23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形? 分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴AE=2211()4 =17 ∵对应点到旋转中心的距离相等且F 是E 的对应点∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE∴△EAF 是等腰直角三角形.三、巩固练习教材P64 练习1、2.四、应用拓展例3.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.六、布置作业1.教材P66 复习巩固4 综合运用5、6.2.作业设计.作业设计一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD 绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.三、综合提高题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,•将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB 的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案一、1.C 2.A 3.D二、1.相等 2.△ACE 图形全等 CE 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=12 .3.重合:证明:∵EG⊥AF∴∠2+∠3=90°∵∠3+∠1+90°=180°∵∠1+∠3=90°∴∠1=∠2同理∠E=∠F,∵四边形ABCD是正方形,∴AB=BC ∴△ABF≌△BCE,∴BF=CE,∴OE=OF,∵OA=OB∴△OBE绕O点旋转90°便可和△OAF重合.。
人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。
本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。
图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。
通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。
但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。
因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。
三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。
2.教学难点:旋转的计算方法,旋转在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。
2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。
2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。
3.计算器:为学生提供计算器,便于进行旋转的计算练习。
七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。
2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。
人教版数学九年级上册23.1《图形的旋转(3)》教学设计一. 教材分析人教版数学九年级上册23.1《图形的旋转(3)》是本册教材的一个重点章节。
在此之前的章节中,学生已经学习了图形的旋转、平移等基本知识。
本节课将继续深入学习图形的旋转,通过实例让学生理解旋转的性质,掌握旋转的计算方法,并能应用于实际问题中。
本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何知识,对于图形的旋转、平移等基本概念有一定的了解。
但是,对于图形的旋转性质和计算方法,部分学生可能还较为模糊。
因此,在教学过程中,需要结合学生的实际情况,通过实例和练习来引导学生理解和掌握。
三. 教学目标1.让学生理解旋转的性质,掌握旋转的计算方法。
2.培养学生运用图形旋转解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.旋转的性质和计算方法。
2.将旋转应用于实际问题中。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和解决问题来理解和掌握旋转的性质和计算方法。
2.利用多媒体和实物模型,帮助学生直观地理解旋转的概念和性质。
3.采用小组合作和讨论的方式,培养学生的团队协作能力和沟通能力。
4.通过大量的练习和实际问题,巩固学生对旋转的理解和应用能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和几何画板。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题,如地图上的两个城市如何通过旋转来观察,引发学生对旋转的兴趣和思考。
2.呈现(15分钟)利用多媒体和实物模型,呈现旋转的概念和性质,引导学生直观地理解旋转。
同时,介绍旋转的计算方法,如旋转角度的计算、旋转后图形的位置和大小变化等。
3.操练(15分钟)学生分组进行练习,运用旋转的性质和计算方法解决实际问题。
教师巡回指导,解答学生的疑问,并给予反馈。
4.巩固(10分钟)学生独立完成一些关于图形旋转的练习题,巩固对旋转的理解和应用能力。
人教版数学九年级上册教学设计23.1《图形的旋转》一. 教材分析《图形的旋转》是人教版数学九年级上册第23.1节的内容,本节课主要让学生了解图形的旋转概念,掌握图形旋转的性质和运用。
通过本节课的学习,学生能够理解图形旋转的定义,掌握旋转中心、旋转方向和旋转角等基本概念,并能够运用旋转性质解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了图形的平移、翻转等变换知识,具备一定的几何图形基础。
但图形旋转与平移、翻转存在一定的区别,学生可能对旋转概念和性质的理解存在一定的困难。
因此,在教学过程中,教师需要通过具体实例和实际操作,帮助学生理解和掌握图形旋转的性质。
三. 教学目标1.知识与技能:学生能够理解图形旋转的概念,掌握图形旋转的性质,并能够运用旋转性质解决实际问题。
2.过程与方法:学生通过观察、操作、思考等活动,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。
四. 教学重难点1.重点:图形旋转的概念和性质。
2.难点:图形旋转的性质运用。
五. 教学方法1.情境教学法:通过生活实例和实际操作,引发学生对图形旋转的思考,提高学生的学习兴趣。
2.问题驱动法:教师提出问题,引导学生思考和探索,培养学生的问题解决能力。
3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和操作过程。
2.学具:准备一些图形卡片和模型,供学生操作和观察。
3.教学视频:准备一些关于图形旋转的实际操作视频,供学生观看和分析。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件呈现图形旋转的实例,引导学生观察和思考,引出图形旋转的概念。
同时,教师讲解图形旋转的性质,如旋转中心、旋转方向和旋转角等。
人教版数学九年级上册23.1《图形的旋转(2)》教学设计一. 教材分析《图形的旋转(2)》是人教版数学九年级上册第23章的一部分,本节内容是在学生已经掌握了图形的旋转的基本概念和性质的基础上进行进一步的学习。
通过本节课的学习,学生将进一步理解图形旋转的性质,并能运用旋转性质解决一些实际问题。
教材通过丰富的实例,引导学生探索图形旋转的性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于图形的旋转已经有了初步的认识。
但是,对于旋转的性质和应用可能还不够深入。
因此,在教学过程中,教师需要根据学生的实际情况,逐步引导学生深入理解旋转的性质,并能够运用旋转性质解决实际问题。
三. 教学目标1.理解图形旋转的性质,掌握旋转的度数、方向和距离等基本概念。
2.能够运用旋转性质解决一些实际问题,提高学生的应用能力。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.旋转的度数、方向和距离的确定。
2.运用旋转性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等方式,自主探索图形旋转的性质。
2.利用多媒体辅助教学,展示图形的旋转过程,帮助学生直观理解旋转的性质。
3.结合实际例子,让学生亲自动手操作,体会旋转的性质,提高学生的实践能力。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些实际例子,如钟表、风扇等,引导学生观察这些物体是如何运动的,引出图形的旋转。
然后提出问题:“图形的旋转有哪些性质呢?”从而引出本节课的主题。
2.呈现(10分钟)展示教材中的几个实例,让学生观察并回答以下问题:a.图形旋转了多少度?b.旋转的方向是什么?c.旋转后的图形与原图形之间的距离是多少?3.操练(10分钟)让学生分组进行讨论,每组选择一个图形进行旋转,并观察旋转后的图形与原图形之间的关系。
人教版数学九年级上册23.1《图形的旋转》说课稿一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第23.1节的内容。
本节内容是在学生已经掌握了图形的平移、翻转的基础上,引入图形的旋转概念,让学生进一步理解图形的变换,提高学生的空间想象力。
教材通过丰富的实例,引导学生探究图形的旋转性质,培养学生的观察能力、操作能力和推理能力。
二. 学情分析九年级的学生已经掌握了图形的平移、翻转知识,具备一定的学习基础。
但是,对于图形的旋转,学生可能在生活中接触较少,对其理解和掌握可能存在一定的困难。
因此,在教学过程中,教师需要通过生动的实例,让学生感受图形的旋转,帮助学生建立直观的空间观念。
三. 说教学目标1.知识与技能目标:让学生理解图形的旋转概念,掌握图形旋转的性质,能够运用旋转知识解决实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象力,提高学生的观察能力和操作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:图形的旋转概念及其性质。
2.教学难点:图形的旋转在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受,帮助学生理解和掌握知识。
六. 说教学过程1.导入新课:通过一个生活中的实例,如风车的旋转,引导学生思考图形的旋转现象,激发学生的学习兴趣。
2.探究新知:引导学生观察和操作实物模型,让学生亲身体验图形的旋转,从而引导学生总结出图形的旋转性质。
3.深化理解:通过几何画板演示图形的旋转过程,让学生更直观地理解旋转性质,帮助学生建立空间观念。
4.应用拓展:设计一些实际问题,让学生运用旋转知识解决,巩固所学知识,提高学生的应用能力。
《图形的旋转》教案(15篇)《图形的旋转》教案1[课时]:1节课[教学内容]:复制粘贴和旋转功能的使用[教学目标]:1、使同学熟练掌握复制粘贴和旋转功能的使用方法。
2、使同学养成在实际操作中的动手动脑和小组合作的学习习惯。
3、培养同学对电脑绘图的兴趣。
[教学重点]:复制、旋转的操作使用[教学难点]:在实际绘图中的复制的多种用法[教学准备]:多媒体教室、远志多媒体教室广播软件[教学过程]:一、导入播放《欢乐的小鸡》图师:在这图里你看到了什么?生回答师:同学们,观察得真仔细啊!这幅图里的小鸡小花不是都要我们一笔一笔的画呢?其实我们只要画好其中的一朵花,一只鸡就可以利用绘图软件中的一个新功能来实现这幅画了,今天老师就来和大家一起学习新知识。
二、复制功能的学习。
师:要完成那么多的小花的绘制,我们得先画出一朵花。
活动一:下面请大家选好前景色,用工具栏中的'“椭圆”、“刷子”等来花小花。
1、教师先示范,同学动手一起画一朵花。
(可参考课本第20页的方法,画出一朵花)2、单击“图像”菜单,检查菜单中“不透明处置”前是否有打钩,有的话把钩去掉。
3、单击工具箱中“选定”工具,在小花周围拖动鼠标把要复制的小花围出。
4、选“编辑”菜单的“复制”,再点“粘贴”。
5、在出现新的小花选区上按住鼠标左键就可以把小花拖到其他位置,这样就复制了一朵小花了。
6、教学新的复制方法:选择要复制的图像后按CTRL键同时用鼠标脱动也可以复制。
让同学动手,教师指导,让好的同学进行演示。
三、画小鸡大家庭师:在草地上有许多的小鸡,大家能用刚才学习的知识进行绘制吗?但是如何绘制有大有小的呢?活动二:1、请同学们先用学的知识进行操作,画出1只小鸡。
2、然后复制一只小鸡后用选定工具再将一只小鸡选中,将鼠标指针移到“选定”框四周图像大小调整柄上,拖动鼠标后你发现什么?(变大变小)3你们试一试。
完成练习后,老师根据实际中出现的问题进行讲解并请一些操作较好的同学进行讲解。
浙教版初中数学九年级上册32图形的旋转教案一、教学内容本节课选自浙教版初中数学九年级上册第32章,主要教学内容为图形的旋转。
详细内容包括:旋转的定义、性质和运用;旋转对称图形的概念及性质;运用旋转进行图形的变换。
二、教学目标1. 理解并掌握旋转的定义、性质和应用,能够运用旋转进行图形变换。
2. 能够识别旋转对称图形,并掌握其性质。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点教学难点:旋转的性质及运用;旋转对称图形的识别和性质。
教学重点:旋转的定义;旋转对称图形的性质。
四、教具与学具准备1. 课件:展示旋转的定义、性质、应用以及旋转对称图形的示例。
2. 直尺、圆规、量角器等绘图工具。
3. 练习题:包括旋转图形的绘制和旋转对称图形的识别。
五、教学过程1. 导入:通过展示生活中的旋转现象,如风车、风扇等,引发学生对旋转的兴趣。
a. 提问:你们在生活中还见过哪些旋转的现象?b. 学生分享并讨论。
2. 基本概念:介绍旋转的定义和性质。
a. 展示旋转的定义。
b. 解释旋转的性质,如旋转角度、旋转中心、旋转方向等。
c. 演示旋转的过程,让学生直观感受。
3. 实践操作:运用旋转进行图形变换。
a. 出示例题,让学生绘制旋转后的图形。
b. 学生操作,教师巡回指导。
4. 知识拓展:介绍旋转对称图形。
a. 展示旋转对称图形的例子。
b. 讲解旋转对称图形的性质,如旋转角度、对称轴等。
5. 随堂练习:完成旋转图形的绘制和旋转对称图形的识别。
六、板书设计1. 旋转的定义、性质和运用。
2. 旋转对称图形的概念及性质。
3. 例题及解答过程。
七、作业设计1. 作业题目:绘制给定旋转角度和旋转中心的旋转图形;识别旋转对称图形。
答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对旋转的定义、性质和运用掌握程度如何?哪些地方需要加强?2. 拓展延伸:研究旋转与轴对称、平移等其他图形变换的关系;探索旋转在生活中的应用。
23.1 图形的旋转(第1课时)
教学目标:
1、知识技能:通过观察具体实例认识旋转,经历探索,发现旋转的性
质.
2、数学思考:在发现、探究的过程中完成对旋转这一图形变化从直观
到抽象、从感性认识到理论认识的转变,发展学生直观
想象能力,分析、归纳、抽象概括的思维能力.
3、解决问题:在了解图形旋转的特征,并进一步应用所掌握的这些特
征进行旋转变化的学习过程中,让学生从数学的角度认
识现实生活中的现象,增强数学的应用意识.
4、情感态度:学生在经历了实验探究、知识应用等数学活动中,体验
数学的具体、生动、灵活,调动学生学习数学的主动性.
教学重点:探索归纳图形旋转的特征,并能根据这些特征作出旋转后的几何图形.
教学难点:对图形进行旋转变换
教学过程:
一、创设情境,导入新课
[师]同学们都见过电风扇吧,电风扇在接通电源后就不停地转动.像这样,能够转动的物体有很多,下面就请同学们欣赏老师带来的一组图片并回答问题:以上这些现象有什么共同特点?
教师演示课件[我欣赏、我发现]
钟表的指针、飞机的螺旋桨、风车的叶片
(学生观察、思考、回答问题,共同特点是物体绕定点转动)
二、师生互动,探求新知
(一)旋转的概念
[师]同学们观察得很仔细,我们把这样的转动叫做旋转,这节课我们共同来
探讨——图形的旋转(板书课题)
[师]在数学中,如何定义旋转呢?哪位同学能用自己的语言把风车叶片转动的过程描述出来吗?
(学生思考、讨论,教师巡视,引导学生归纳出旋转的概念)
旋转的概念:在平面内,把一个图形绕着一个定点沿某个方向转动一个角度的图形变换叫做旋转.这个定点叫旋转中心,转动的角叫旋转角.
以螺旋桨为例加以解释,并通过几个练习(P63)巩固概念(详见课件)(二)旋转的基本性质
[师]通过刚才的欣赏,我们发现了旋转的共同特点.那经过旋转变换后的图形与原图形有什么关系呢?让我们一起动手实践来探索这个问题吧!
教师演示课件[我实践,我探究]
问题:见P63探究
(学生分小组进行数学实验,教师参与到学生当中交流、讨论,并鼓励学生能否找到其余线段,角的相等关系)
[生]……
[师]刚才很多同学都说出了自己的想法,我想不管结果怎样,我和同学们都非常感谢你们,因为我认为:当你把自己的想法暴露给大家的时候,无论是对的还是错的,你对班级的贡献是一样的.
[师]刚才我们通过实践探究得出的三个结论,就是旋转的基本性质,请同学们阅读P 63的归纳.
三、自主探究,合作交流 1.请你判断
下列一组图形变换属于旋转变换的是( )
(学生讨论、交流,老师点评,并适时的对学生进行爱国主义思想教育)
2.请你思考
B
C
D
右图可以看做是一个菱形通过 次旋转得到的. 旋转中心是 ,旋转角的度数是 . [发散、拓展思维] 上图还可以看做是由图形 通过 次旋转得到的,旋转
角的度数是
还可以由图形 通过 次旋转得到的,旋转角的度数是
还可以由图形 通过 次旋转得到的,旋转
角的度数是
也可以由图形 通过 次旋转得到的,旋转角的度数是
四、应用新知,体验成功
(一)按要求作出简单平面图形经旋转变换后的图形.
例:如图,在方格纸上作出“小旗子”绕0点按顺时针方向旋转90
°
O
后的图案,并简述理由.
(学生讨论,老师点评,指出关键是确定O、A、B、C四个点的对应点,即它们旋转后的位置).
[师]这面旗子是结构简单的平面图形,在方格纸上大家能画出它绕定点旋转后的图形,那么在没有方格纸的情况下,能否画出简单平面图形旋转后的图形呢?请同学们完成下面这道题:P64例
(学生独立思考、分析、解答问题.教师应重点关注:①学生在画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据;②学生中作图的不同方法.)
(二)欣赏旋转在现实生活中的应用
[师]通过刚才的学习,我们对旋转有了更深刻的理解,下面就让我们一道去寻找它在现实生活中的应用吧!
教师演示课件[生活中的旋转]
水车、辘轳、压水井、电风扇、汽车的
方向盘、风力发电机.
[师]通过我们的寻找,旋转在我们身边无处不在.无论在农村,还是城市;无论是在古代,还是当今社会,旋转为我们的生活以及经济建设发挥了巨大的作用!
五、课堂小结,深化目标
[师]通过今天的学习,你有什么收获?有何感想?
在学生自行归纳总结的基础上,教师从以下几个方面进行点拔:
①知道了旋转的概念.
②明白了旋转的基本性质.
③学会了按要求作出简单平面图形旋转后的图形.
④肯定学生在课堂中合作交流意识和良好的反思习惯,在今后的学习中要继续发扬.
六、布置作业,复习巩固.
1、必做题P66第1和4题.
2、思考题
一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的两个边长都是1的正方形纸片叠在一起,且点E是正方形ABCD的中心.他把正方形EFGH绕着点E转动,……
小明思考这样一个问题:在正方形EFGH绕点E转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?若认
B
G
H
G
H。