高考本源探究之平面解析几何
- 格式:doc
- 大小:388.50 KB
- 文档页数:4
高中数学平面解析几何平面解析几何是高中数学中的一门重要的学科,它研究平面上的几何图形和方程的关系。
下面将通过几个小节来详细介绍平面解析几何的相关概念和应用。
第一节:平面直角坐标系在平面解析几何中,我们通常使用平面直角坐标系来表示平面上的点和图形。
平面直角坐标系由两条相互垂直的坐标轴组成,分别称为x 轴和y轴。
我们可以用一个有序数对(x, y)表示平面上的一个点,其中x表示横坐标,y表示纵坐标。
第二节:平面几何图形的方程在平面解析几何中,我们通常通过方程来表示平面上的几何图形。
常见的平面几何图形包括直线、曲线、圆等。
我们以直线为例来介绍平面几何图形的方程。
1. 直线的方程在平面直角坐标系中,一条直线可以通过方程Ax + By + C = 0 来表示,其中A、B、C为实数且A、B不同时为零。
这个方程被称为直线的一般方程。
另外,还有直线的截距式方程、点斜式方程等不同形式的表示方法。
2. 曲线的方程除了直线,平面上的曲线也可以通过方程来表示。
常见的曲线包括抛物线、椭圆、双曲线等。
每种曲线都有其特定的方程形式,并且可以通过改变方程中的参数来实现曲线的平移、旋转和缩放等操作。
3. 圆的方程圆在平面解析几何中也是一个重要的概念。
在平面直角坐标系中,圆可以由圆心的坐标和半径来确定。
一个圆的方程可以写成(x-a)² + (y-b)² = r²的形式,其中(a, b)表示圆心的坐标,r表示半径的长度。
第三节:平面解析几何的应用平面解析几何不仅是一门理论学科,它也有广泛的应用。
以下是几个常见的应用场景。
1. 几何问题的求解平面解析几何提供了一种直观和简单的方法来解决几何问题。
通过使用坐标系和方程,我们可以精确地描述几何图形并进行计算,从而得到几何问题的解答。
2. 图形的变换平面解析几何也可以用来实现平面图形的变换,如平移、旋转、缩放等。
通过对坐标和方程的变化,我们可以方便地实现图形的操作和变换。
高中数学平面解析几何的应用数学是一门追求准确性和精确性的学科,而平面解析几何则是数学中的一个重要分支。
它通过利用坐标系统和代数方法来研究几何问题,并应用于各种实际情境中。
在高中数学课程中,学生将接触到平面解析几何的基本概念和方法,并学习如何将其运用于实际问题中。
一、平面解析几何的基本概念平面解析几何的核心概念包括点、直线和曲线。
在二维坐标系中,我们可以用有序对 (x, y) 来表示平面上的点,其中 x 表示横坐标,y 表示纵坐标。
直线可以通过一元一次方程的形式来表示,即 y = kx + b,其中 k 为斜率,b 为截距。
曲线则可以通过高次方程的形式来表示,例如二次曲线的方程为 y = ax^2 + bx + c。
这些基本概念为平面解析几何的应用打下了坚实的基础。
二、平面解析几何在几何图形的性质研究中的应用平面解析几何的方法可以应用于研究几何图形的性质。
例如,我们可以利用解析几何的方法证明平行线的性质。
假设有两条直线 L1 和L2,通过选择相应的坐标系并运用直线方程,我们可以得到 L1 和 L2的方程分别为 y = k1x + b1 和 y = k2x + b2。
若 k1 = k2,则两条直线平行。
这种方法可以推广到研究其他几何图形的性质,如垂直线、角的性质等。
三、平面解析几何在直线与曲线的交点求解中的应用求解直线与曲线的交点是平面解析几何的一个重要应用领域。
通过给定的直线和曲线方程,我们可以将直线方程代入曲线方程中,从而得到交点的坐标。
例如,假设有直线 L: y = 2x + 1 和曲线 C: y = x^2,我们可以将直线方程代入曲线方程得到 x^2 = 2x + 1。
进一步解方程可得到 x = -1 和 x = 3。
将 x 值代入直线方程可以得到相应的 y 值,从而得到交点的坐标。
四、平面解析几何在三角形和圆的性质研究中的应用平面解析几何可以应用于研究三角形和圆的性质。
例如,我们可以利用解析几何的方法证明三角形的垂心、重心和外心的性质。
平面解析几何知识点归纳平面解析几何是研究平面上点、直线、圆及其相关性质和相互关系的数学分支。
在平面解析几何中,我们通过坐标系的建立和运用向量的概念,可以方便地描述和研究平面上的各种几何图形和问题。
本文将对平面解析几何中的一些重要知识点进行归纳,以帮助读者更好地理解和掌握这些知识。
1. 坐标系的建立平面解析几何中,坐标系是最基本的工具之一。
一般来说,我们可以建立直角坐标系、极坐标系或其他特定的坐标系来描述平面上的点。
以直角坐标系为例,我们用x轴和y轴分别表示水平和垂直方向,将一个点P的位置用有序数对(x, y)表示,其中x称为点P的横坐标,y称为点P的纵坐标。
2. 点的坐标计算对于已知坐标系的平面上的点P(x, y),我们可以通过给定的信息计算出点的坐标。
例如,已知点A和点B的坐标,我们可以通过运用向量的加法和数乘运算,求得点P的坐标。
设向量OA的坐标为A(x1,y1),向量OB的坐标为B(x2, y2),则向量OP的坐标为P(x, y),其中P 的坐标满足向量OP = 向量OA + 向量OB。
3. 向量的定义和运算在平面解析几何中,向量是重要的概念之一。
向量可以表示有大小和方向的量,并且可以与点一一对应。
向量的表示方法有很多种,常见的有坐标表示和位置向量表示。
在坐标表示中,向量通常用有序数对(x, y)表示。
在位置向量表示中,我们用一个固定点O与向量表示的点P的坐标差,来表示向量OP。
向量的运算包括加法、减法和数乘。
设向量u = (x1, y1),向量v = (x2, y2),实数k,向量u与v的加法定义为:u + v = (x1 + x2, y1 + y2);向量u与v的减法定义为:u - v = (x1 - x2, y1 - y2);向量u的数乘定义为:k * u = (kx1, ky1)。
4. 直线的方程直线是平面几何中的基本要素之一。
在平面解析几何中,我们可以通过直线上的点和直线的斜率来确定直线的方程。
平面解析几何1. 引言平面解析几何是数学中的一个重要分支,研究平面上的点、直线和曲线之间的关系和性质。
它是解析几何的基础,也是许多其他数学学科的基础。
本篇文档将介绍平面解析几何的基本概念、基本性质以及常见的应用。
我们将从平面上的点和直线开始讨论,然后引入曲线的概念,最后介绍椭圆、抛物线和双曲线等特殊曲线。
2. 平面上的点和直线2.1 点的坐标表示在平面上,我们可以使用笛卡尔坐标系来表示一个点的位置。
假设平面上有一个直角坐标系,其中x轴和x轴相交于原点x。
对于任意一个点x,我们可以使用它在x轴上的坐标x x和在x轴上的坐标x x来表示它的位置,记作x(x x,x x)。
2.2 直线的方程直线是平面解析几何中的重要概念,它是由无数个点组成的。
在平面上,一条直线可以由它上面的两个不重合的点确定。
如果我们已知直线上的两个点x1(x1,x1)和x2(x2,x2),那么直线的方程可以通过以下公式得到:$$\\frac{x-x_1}{x_2-x_1} = \\frac{y-y_1}{y_2-y_1}$$这个公式被称为点斜式方程,其中斜率可以通过两点之间的坐标计算得到。
2.3 直线的性质平面解析几何中,直线有很多重要的性质,包括平行、垂直和相交等。
下面是一些直线的性质:•平行线的性质:如果两条直线的斜率相等,那么它们是平行线。
•垂直线的性质:如果两条直线的斜率的乘积为-1,那么它们是垂直线。
•直线的方程变形:直线的方程也可以写成其他形式,如一般式方程、斜截式方程等。
3. 曲线的方程除了直线,平面上还存在着各种各样的曲线。
在平面解析几何中,我们经常需要研究曲线的方程。
3.1 二次曲线的方程在平面解析几何中,二次曲线是一类非常重要的曲线。
它的方程可以写成二次多项式的形式。
常见的二次曲线有椭圆、抛物线和双曲线等。
•椭圆的方程:椭圆是平面上一类特殊的曲线,其方程可以写成如下的标准方程:$$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1$$其中x和x分别是椭圆的半长轴和半短轴的长度。
高三数学基础知识、常见结论详解八、平面解析几何(一)直线与圆知识要点1.直线的倾斜角与斜率k=tg α,直线的倾斜角α一定存在,范围是[0,π],但斜率不一定存在。
牢记下列图像。
斜率的求法:依据直线方程 依据倾斜角 依据两点的坐标2.直线方程的几种形式,能根据条件,合理的写出直线的方程;能够根据方程,说出几何意义。
3.两条直线的位置关系,能够说出平行和垂直的条件。
会判断两条直线的位置关系。
(斜率相等还有可能重合)4.两条直线的交角:区别到角和夹角两个不同概念。
5.点到直线的距离公式。
6.会用一元不等式表示区域。
能够解决简单的线性规划问题。
7.曲线与方程的概念,会由几何条件列出曲线方程。
8.圆的标准方程:(x -a)2+(y -b)2=r 2圆的一般方程:x 2+y 2+Dx+Ey+F=0 注意表示圆的条件。
圆的参数方程:⎩⎨⎧+=+=θθsin cos r b y r a x 掌握圆的几何性质,会判断直线与圆、圆与圆的位置关系。
会求圆的相交弦、切线问题。
圆锥曲线方程(二)圆锥曲线1.椭圆及其标准方程⎪⎪⎪⎩⎪⎪⎪⎨⎧==为三角函数问题。
点的坐标,把问题转化 可用参数方程设在椭圆上时,当点椭圆的参数方程,焦半径的几何意义,准线方程、、、椭圆的简单几何性质:哪个轴上)标准方程(注意焦点在第一定义、第二定义P b y a x e c b a ,sin ,cos )(θθ 2.双曲线及其标准方程:⎪⎩⎪⎨⎧)(,焦半径,渐近线的几何意义,准线方程、、、:双曲线的简单几何性质哪个轴上)标准方程(注意焦点在注意与椭圆相类比)第一定义、第二定义(e c b a 3.抛物线及其标准方程:⎪⎪⎩⎪⎪⎨⎧)(与焦点有关的结论焦点坐标,准线方程,:抛物线的简单几何性质的几何意义)四种形式哪个轴上,开口方向,标准方程(注意焦点在化为到准线的距离。
)焦点的距离问题经常转 (抛物线上的点到中的灵活应用定义,以及定义在解题p 直线与圆锥曲线:⎪⎩⎪⎨⎧面积。
平面解析几何解析几何是数学中的一个分支,研究的是在平面或者空间中的点、线、面之间的关系。
平面解析几何主要研究平面内点的位置、线的性质以及二次曲线的方程等问题。
在这篇文章中,我们将深入探讨平面解析几何的相关概念、基本原理以及应用。
一、平面坐标系平面解析几何的基础是平面坐标系。
平面坐标系是通过两个互相垂直的坐标轴来确定平面上任意一点的位置。
通常将水平轴称为x轴,竖直轴称为y轴。
我们可以用有序数对(x, y)来表示一个点在坐标系中的位置,其中x为横坐标,y为纵坐标。
二、点的位置关系在平面坐标系中,点的位置可以通过其坐标值来确定。
对于两个点A(x₁, y₁)和B(x₂, y₂),可以计算它们之间的距离和斜率来研究它们的位置关系。
1. 距离:两点之间的距离可以通过勾股定理计算。
假设两点A(x₁, y₁)和B(x₂, y₂),它们之间的距离d可以表示为d = √((x₂ - x₁)² + (y₂ - y₁)²)。
2. 斜率:对于直线上的两点A(x₁, y₁)和B(x₂, y₂),它们之间的斜率可以表示为k = (y₂ - y₁) / (x₂ - x₁)。
根据斜率的正负和大小,我们可以判断直线的倾斜方向和倾斜程度。
三、直线的方程直线是平面解析几何中的重要对象。
直线的方程可以分为一般式、斜截式和点斜式等形式。
1. 一般式:一般式方程表示为Ax + By + C = 0,其中A、B和C为实常数,且A和B不同时为0。
2. 斜截式:斜截式方程表示为y = kx + b,其中k为斜率,b为截距。
3. 点斜式:点斜式方程表示为(y - y₁) = k(x - x₁),其中(x₁, y₁)为直线上的已知点,k为斜率。
通过这些方程,我们可以根据已知条件推导出直线的方程,或者根据方程求出直线的性质。
四、二次曲线的方程除了直线,二次曲线也是平面解析几何中研究的重点之一。
二次曲线的方程一般形式为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为实常数。
高考真题平面解析几何答案高考作为中国学生人生中的重要事件之一,备受关注和重视。
其中,数学科目无疑是考生们最为重视的科目之一。
在数学中,平面解析几何是考察学生几何直观和数学推理能力的重要内容之一。
那么,本文将对高考真题平面解析几何的一道题目进行详细解析和讲解。
首先,我们来看待这个问题。
假设有平面上的一条曲线,过曲线上两点A和B,画AB的中垂线。
问中垂线是否与曲线交于另一点C。
在解答这道题目之前,我们一定要先明确几何定义和定理。
中垂线的定义是垂直平分一条直线段。
在平面上,对于任意一条线段AB,我们可以通过以下步骤作出它的中垂线:1. 以A为圆心,AB的长度为半径作一个圆;2. 以B为圆心,AB的长度为半径作一个圆;3. 两个圆相交于两个点,这两个点与AB的中点重合,即为AB的中垂线的交点。
然而,这里问题的变化在于曲线。
对于曲线上的两点A和B,请注意“曲线”二字,在解答中我们不能假设这条曲线是直线。
因此,问题的关键在于解决如何处理曲线这个特殊情况。
我们需要根据问题的信息来构造解决方案。
首先,我们可以通过观察发现,如果曲线是直线,那么中垂线一定会与曲线交于另一点C,因为直线上的任意一条中垂线都可以延伸到无穷远,与直线必然相交。
而对于曲线来说,情况可能会有所不同。
假设曲线是一条圆弧。
我们可以先在纸上画一个圆,然后进行实际操作。
在圆上随意选取两个点A和B,然后通过上述步骤作出它们的中垂线。
我们会发现,在大部分情况下,中垂线都会与圆弧交于另一点C。
这是因为圆弧的几何特性使得它与直线有很大的相似性。
然而,在一些特殊情况下,中垂线可能与圆弧不相交,这是由于圆弧的形状和两点A、B的位置造成的。
接下来,我们可以通过代数方法来证明这一结论。
假设曲线是一个函数图像,我们可以通过函数的性质进行求解。
设曲线上一点的坐标为(x, f(x)),那么中垂线的方程为y = (x + x1)/2,其中x1和f(x1)为中垂线经过的另一点的坐标。
高三平面解析几何知识点解析几何是数学中的重要分支之一,它研究了点、线、面等几何元素在坐标平面上的几何性质和关系。
在高三学习过程中,平面解析几何是一个重要的知识点。
本文将介绍高三平面解析几何的基本概念和常见问题。
一、二维坐标系在平面解析几何中,我们首先要了解二维坐标系。
二维坐标系由平面上的两条互相垂直的直线组成,分别称为x轴和y轴。
它们的交点称为坐标原点O。
我们可以在坐标系上标出各个点的坐标,用有序数对(x, y)表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影。
二、点的坐标在平面解析几何中,点的坐标表示了点在坐标系上的位置关系。
给定一个点A,在坐标系上,可以通过测量A点到x轴和y轴的距离来确定它的坐标。
设A点到x轴的距离为x,到y轴的距离为y,则A点的坐标为(x, y)。
三、向量的表示在平面解析几何中,向量是一个有方向和大小的量。
向量可以用有序数对(x, y)来表示,其中x表示向量在x轴上的分量,y表示向量在y轴上的分量。
向量的大小可以用向量的模长表示,即√(x² + y²)。
四、直线的方程在平面解析几何中,直线可以用不同的方式表示。
一种常见的表示方式是使用直线的一般方程Ax + By + C = 0,其中A、B、C 是实常数,并且A和B不同时为0。
另一种表示方式是使用截距式方程x/a + y/b = 1,其中a和b分别为直线在x轴和y轴上的截距。
五、直线的性质在平面解析几何中,直线有许多重要的性质。
其中一些常见的性质包括:1. 平行和垂直关系:两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积为-1。
2. 相交关系:两条直线相交于一点的条件是它们的方程组有唯一解。
3. 距离公式:点到直线的距离可以用点到直线的垂线长来表示,即d = |Ax0 + By0 + C| / √(A² + B²)。
4. 中点公式:两点A(x1, y1)和B(x2, y2)的中点坐标为[(x1+x2)/2, (y1+y2)/2]。
平面解析几何解析几何是数学中的一个重要分支,它通过使用代数和几何的方法来研究图形在平面上的性质和关系。
本文将介绍平面解析几何的基本概念和原理,并探讨一些相关的应用。
一、平面直角坐标系平面直角坐标系是平面解析几何的基础,它由两条互相垂直的坐标轴组成,通常称为$x$轴和$y$轴,它们的交点称为原点$O$。
平面上的任意一点$P$可以通过它相对于原点的横纵坐标来确定,记作$(x,y)$,其中$x$称为横坐标,$y$称为纵坐标。
二、向量向量是平面解析几何中的另一个重要概念,它表示平面上的一条有方向的线段。
向量$\overrightarrow{AB}$由起点$A$和终点$B$唯一确定,记作$\overrightarrow{AB}$或$\overrightarrow{AB}$。
向量的长度称为模,记作$|\overrightarrow{AB}|$。
向量的方向可以用一个有向角来表示,有向角的起边是$x$轴正半轴,终边是向量$\overrightarrow{AB}$。
如果一个向量的终点与另一个向量的起点重合,这两个向量可以相加,称为向量的加法。
三、直线方程在平面解析几何中,直线方程的表达形式有多种,常见的有一般式、点斜式和截距式。
一般式方程$Ax+By+C=0$表示一条直线的所有点$(x,y)$满足这个方程。
点斜式方程$y-y_1=m(x-x_1)$表示一条直线通过点$(x_1,y_1)$且斜率为$m$。
截距式方程$y=mx+b$表示一条直线在$y$轴和$x$轴上的截距分别为$b$和$m$。
四、圆的方程圆是平面解析几何中的一个重要几何图形,它由到圆心距离相等的所有点构成。
圆的方程有多种形式,常见的有标准方程和一般方程。
标准方程$(x-a)^2+(y-b)^2=r^2$表示圆心坐标为$(a,b)$,半径为$r$的圆。
一般方程$Ax^2+By^2+Cx+Dy+E=0$表示一个圆。
五、距离公式平面解析几何中经常涉及到线段或两点之间的距离,距离公式可以用来计算它们之间的距离。
高考数学中的平面解析几何知识点整理平面解析几何是高中数学的重要知识点,也是高考数学必考的部分。
平面解析几何涉及坐标系、直线、圆、双曲线、椭圆、抛物线等内容,需要注重理论的掌握、题目的练习和解题技巧的提高。
本篇文章就高考数学中平面解析几何的知识点进行整理和总结,帮助学生更好地应对高考数学。
一、坐标系坐标系是平面解析几何的基础,需要掌握笛卡尔坐标系和极坐标系。
笛卡尔坐标系是平面上以两条相互垂直的直线为坐标轴,确定一点的位置需要用到两个数,称为该点的坐标。
极坐标系是以圆心为原点,以极轴为基准线的坐标系。
一个点在极坐标系中的坐标表示为(r,θ),其中r为该点到圆心的距离,θ为该点与极轴正方向的夹角。
二、直线直线是平面解析几何中最基本也最重要的图形。
直线的斜率、截距和两点式都是需要掌握的公式。
斜率表示直线在笛卡尔坐标系中的倾斜程度,截距表示直线与坐标轴的交点,两点式表示直线经过的两个点的坐标。
三、圆圆是平面上与一个点距离相等的点的集合。
圆的一般式、标准式、参数式都是需要掌握的公式。
一般式表示圆心坐标为(h,k),半径为r的圆,标准式表示圆心在原点,半径为r的圆,参数式表示圆心坐标为(a,b),半径为r的圆,其中参数t在区间[0,2π)内变化。
四、椭圆椭圆是平面上到两个固定点F1和F2距离之和等于常数2a的点的集合。
椭圆的标准式、参数式和离心率都是需要掌握的公式。
标准式表示椭圆的长轴在x轴上,椭圆的中心在原点,离心率小于1;参数式表示椭圆的中心在(a,b)处,椭圆的长轴倾斜角度为θ,离心率小于1。
五、抛物线抛物线是平面上到一个定点F距离等于到另一个定点D的距离的平方的定点P的集合。
抛物线的标准式、参数式和焦距都是需要掌握的公式。
标准式表示抛物线的焦点在原点,开口朝上或朝下;参数式表示抛物线的焦点在(a,b)处,开口朝上或朝下。
六、双曲线双曲线是平面上到两个定点F1和F2距离之差等于常数2a的点的集合。
双曲线的标准式、参数式和离心率都是需要掌握的公式。
高中数学中的平面解析几何平面解析几何是高中数学中的重要内容之一,它研究了平面上点的坐标和直线的方程,是帮助我们研究几何图形的一种重要工具。
本文将从基本概念、坐标系、直线的方程和相关定理等方面,介绍高中数学中的平面解析几何。
基本概念在平面上,我们通常使用直角坐标系来描述点的位置。
直角坐标系由x轴和y轴组成,其中x轴和y轴的交点称为原点O。
通过在x轴和y轴上取单位长度,并在平面上描述的点与原点之间的距离,我们可以得到点的坐标。
例如,点A的坐标可以表示为(x,y)。
坐标系在平面解析几何中,我们使用笛卡尔坐标系。
笛卡尔坐标系由两条互相垂直的坐标轴组成,通常表示为x轴和y轴。
x轴水平,y轴垂直于x轴。
原点O位于坐标系的交点处。
在笛卡尔坐标系中,我们可以通过给定点的x坐标和y坐标来唯一描述一个点的位置。
直线的方程在平面解析几何中,我们经常遇到直线。
直线的方程可以使用不同的形式来表示,如一般式、斜截式和点斜式等。
下面将介绍几种常见的直线方程。
1. 一般式:一般式的直线方程可以表示为Ax + By + C = 0,其中A、B、C是常数。
A和B不同时为0。
2. 斜截式:斜截式的直线方程可以表示为y = mx + c,其中m是斜率,c是截距。
3. 点斜式:点斜式的直线方程可以表示为y - y₁ = m(x - x₁),其中m是斜率,(x₁, y₁)是直线上的一点。
相关定理在平面解析几何中,有一些重要的定理和性质。
下面将介绍其中的一些。
1. 平行和垂直的直线:如果两条直线的斜率相等,则这两条直线平行。
如果两条直线的斜率的乘积为-1,则这两条直线垂直。
2. 距离公式:两点之间的距离可以使用距离公式来计算,即d = √((x₂-x₁)² +(y₂-y₁)²)。
3. 直线的夹角:两条直线的夹角可以使用斜率公式来计算,即tanθ = |(m₁-m₂)/(1+m₁m₂)|,其中θ是两条直线的夹角,m₁和m₂是两条直线的斜率。
高中数学知识点归纳平面解析几何的性质与运算高中数学知识点归纳——平面解析几何的性质与运算一、引言在高中数学学习中,平面解析几何是一门重要的数学分支,它将代数和几何相结合,通过运用坐标系的方法来研究平面上的几何性质和相互关系。
本文将对平面解析几何的性质与运算进行归纳总结。
二、平面解析几何的基本概念1. 坐标系平面解析几何中,常使用直角坐标系来描述平面上的点。
直角坐标系由两个相互垂直的轴组成,分别称为x轴和y轴。
点在坐标系中的位置可由其坐标表示,标有符号的数对(x, y)即表示点的坐标,其中x 表示横坐标,y表示纵坐标。
2. 距离公式在平面解析几何中,计算两点之间的距离是常见的操作。
根据勾股定理,可以得到点A(x₁, y₁)和点B(x₂, y₂)之间的距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 斜率公式斜率是平面解析几何中的重要概念,表示直线的倾斜程度。
对于直线上的两点A(x₁, y₁)和B(x₂, y₂),可以使用斜率公式计算斜率:斜率k = (y₂ - y₁) / (x₂ - x₁)4. 中点公式平面解析几何中,中点是指线段的中点,可以通过中点公式求得。
对于线段的两个端点A(x₁, y₁)和B(x₂, y₂),中点的坐标为:中点M(x, y) = ((x₁+ x₂)/2 , (y₁+ y₂)/2)三、平面解析几何的性质1. 平行性质平面解析几何中,两条直线平行的判断条件之一是它们的斜率相等。
若两条直线的斜率分别为k₁和k₂,则当k₁= k₂时,两条直线平行。
2. 垂直性质两条直线垂直的判断条件之一是它们的斜率之积为-1。
若两条直线的斜率分别为k₁和k₂,则当k₁ * k₂ = -1时,两条直线垂直。
3. 距离性质平面解析几何中,根据距离公式可得,点P(x, y)到直线Ax + By +C = 0的距离为:d = |Ax + By + C| / √(A² + B²)4. 判定点是否在直线上对于直线Ax + By + C = 0和点P(x₀, y₀),若Ax₀ + By₀ + C = 0,则表明点P在直线上。
2024高考数学平面解析几何知识点
在2024年高考数学中,平面解析几何是一个重要的知识点,主要包括以下几个部分:
1. 有向线段和直线:了解有向线段和直线的概念,掌握直线的方程式和参数方程,理解直线的倾斜角、截距等概念。
2. 圆:掌握圆的标准方程和一般方程,理解圆心、半径、弦、直径等概念,会求圆的方程和圆心、半径等。
3. 椭圆、双曲线和抛物线:掌握椭圆、双曲线和抛物线的标准方程和性质,理解焦点、准线、离心率等概念,会求这些曲线的方程和相关性质。
4. 参数方程和极坐标:了解参数方程和极坐标的概念,掌握参数方程和极坐标的转换关系,会求参数方程和极坐标的方程。
5. 平面几何的基本概念:理解平面几何中的点、线、面的概念,掌握基本性质和定理,如平行线、垂直线、角等概念和性质。
6. 解析几何的基本方法:掌握解析几何中的基本方法,如向量法、解析法等,理解这些方法的几何意义和代数表示,能够运用这些方法解决一些平面几何问题。
7. 圆锥曲线的应用:理解圆锥曲线的应用,如椭圆用于卫星轨道、双曲线用于光学等,了解圆锥曲线在日常生活和科学研究中的应用。
以上是2024年高考数学平面解析几何的主要知识点,考生需要熟练掌握并能够灵活运用。
同时,也需要注重理解和应用,不要死记硬背。
高中数学中的平面解析几何平面解析几何是高中数学中的重要内容之一,它是研究平面上的几何图形和几何关系的一门学科。
通过数学分析和计算方法,我们可以揭示平面上的几何规律,并解决相应的几何问题。
本文将介绍平面解析几何的基本概念、常见定理和应用。
一、平面坐标系在平面解析几何中,我们通常引入平面坐标系来描述平面上的点和图形。
平面坐标系由横坐标轴x和纵坐标轴y所构成,它们相互垂直,并将平面分为四个象限。
设平面上一点P的坐标为(x,y),其中x表示横坐标的值,y表示纵坐标的值。
二、平面上的点和向量在平面解析几何中,点是最基本的要素。
点P(x,y)表示平面上的一个具体位置。
而向量则表示平面上的一个有方向和大小的量。
向量由起点和终点确定,可以用箭头表示,例如向量AB。
向量的大小表示为|AB|,方向则由指向终点的箭头确定。
三、平面上的直线平面解析几何中研究的另一个重要对象是直线。
平面上的直线可以通过一般式方程、点斜式方程或两点式方程来表示。
一般式方程为Ax+By+C=0,其中A、B、C为实数且A和B不同时为0;点斜式方程为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率;两点式方程为(y-y₁)/(x-x₁)=(y₂-y₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)为直线上的两点。
四、平面上的曲线除了直线外,平面解析几何还研究了各种曲线,如抛物线、圆、双曲线等。
这些曲线可以通过特定的函数方程来描述。
例如,抛物线的标准方程为y=ax²+bx+c,其中a、b、c为实数且a不等于0。
五、平面上的距离和中点在平面解析几何中,我们可以计算两点之间的距离和直线段的中点。
设平面上两点A(x₁,y₁)和B(x₂,y₂),则两点之间的距离为|AB| =√((x₂-x₁)²+(y₂-y₁)²)。
若直线段AB的中点为M(xₘ,yₘ),则中点的坐标可以通过求取x和y的平均值得到。
高考数学-平面解析几何(含22年真题讲解)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a =√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】解:A(−a,0),设P(x1,y1),则Q(−x1,y1),则k AP=y1x1+a ,k AQ=y1−x1+a,故k AP⋅k AQ=y1x1+a ⋅y1−x1+a=y12−x12+a2=14,又x12a2+y12b2=1,则y12=b2(a2−x12)a2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】(多选)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】AC 【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,利用正弦定理结合三角变换、双曲线的定义得到2b=3a或a=2b,即可得解,注意就M,N在双支上还是在单支上分类讨论.【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,若M,N分别在左右支,因为OG⊥NF1,且cos∠F1NF2=35>0,所以N在双曲线的右支,又|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,在△F1NF2中,有|NF2|sinβ=|NF1|sin(α+β)=2csinα,故|NF1|−|NF2|sin(α+β)−sinβ=2csinα即asin(α+β)−sinβ=csinα,所以asinαcosβ+cosαsinβ−sinβ=csinα,而cosα=35,sinβ=ac,cosβ=bc,故sinα=45,代入整理得到2b=3a,即ba =32,所以双曲线的离心率e=ca =√1+b2a2=√132若M,N均在左支上,同理有|NF 2|sinβ=|NF 1|sin (α+β)=2c sinα,其中β为钝角,故cosβ=−bc ,故|NF 2|−|NF 1|sinβ−sin (α+β)=2c sinα即a sinβ−sinαcosβ−cosαsinβ=csinα, 代入cosα=35,sinβ=ac ,sinα=45,整理得到:a4b+2a =14, 故a =2b ,故e =√1+(b a)2=√52,故选:AC.5.【2022年北京】若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( ) A .12 B .−12C .1D .−1【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12. 故选:A .6.【2022年新高考1卷】(多选)已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1B .直线AB 与C 相切C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD7.【2022年新高考2卷】(多选)已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】 【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2√6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误; 对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p 3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.8.【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M 的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=59.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)10.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.【答案】√33【解析】 【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可. 【详解】解:双曲线y 2−x 2m2=1(m >0)的渐近线为y =±xm ,即x ±my =0,不妨取x +my =0,圆x 2+y 2−4y +3=0,即x 2+(y −2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.11.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13;若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;12.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0,由题意{√1+k 2=1√1+k2=4 ,解得{k =−724p =2524,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.13.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】 【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.14.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]15.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x 1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−m k ,即M (−m k ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x+√2y−2√2=016.【2022年北京】已知双曲线y2+x2m =1的渐近线方程为y=±√33x,则m=__________.【答案】−3【解析】【分析】首先可得m<0,即可得到双曲线的标准方程,从而得到a、b,再跟渐近线方程得到方程,解得即可;【详解】解:对于双曲线y2+x2m =1,所以m<0,即双曲线的标准方程为y2−x2−m=1,则a=1,b=√−m,又双曲线y2+x2m =1的渐近线方程为y=±√33x,所以ab =√33,即√−m=√33,解得m=−3;故答案为:−317.【2022年浙江】已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A(x1,y1),交双曲线的渐近线于点B(x2,y2)且x1<0<x2.若|FB|=3|FA |,则双曲线的离心率是_________.【答案】3√64【解析】【分析】联立直线AB 和渐近线l 2:y =ba x 方程,可求出点B ,再根据|FB|=3|FA|可求得点A ,最后根据点A 在双曲线上,即可解出离心率. 【详解】过F 且斜率为b4a 的直线AB:y =b4a (x +c),渐近线l 2:y =ba x , 联立{y =b4a (x +c)y =b a x,得B (c 3,bc 3a ),由|FB|=3|FA|,得A (−5c 9,bc 9a), 而点A 在双曲线上,于是25c 281a 2−b 2c 281a 2b 2=1,解得:c 2a 2=8124,所以离心率e =3√64. 故答案为:3√64.18.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.19.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点.(1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程:y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2). 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4 ,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4 , 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y−y2=y1−y23y1+6−x1−x2(x−x2),将(0,−2),代入整理得2(x1+x2)−6(y1+y2)+x1y2+x2y1−3y1y2−12=0,将(∗)代入,得24k+12k2+96+48k−24k−48−48k+24k2−36k2−48=0,显然成立,综上,可得直线HN过定点(0,−2).【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】(1)−1;(2)16√29.【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q (x2,y2),再根据k AP+k BP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tan∠PAQ=2√2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出△PAQ的面积.(1)因为点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,所以4a2−1a2−1=1,解得a2=2,即双曲线C:x22−y2=1易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q(x2,y2),联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0,即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0,因为方程有一个根为2,所以x P =10−4√23,y P = 4√2−53,同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.21.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1> x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.=1【答案】(1)x2−y23(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到x0+ky0=8k2;由直线PM和QM的斜率得到直线方程,结合双曲线的方k2−3,由②PQ//AB等价转化为ky0=3x0,由程,两点间距离公式得到直线PQ的斜率m=3x0y①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)=√3,∴b=√3a,∴c2=a2+右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴bab2=4a2=4,∴a=1,∴b=√3.=1;∴C的方程为:x2−y23(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x3−x4)[2x0−(x3+x4)]+(y3−y4)[2y0−(y3+y4)]=0,[2x0−(x3+x4)]+y3−y4x3−x4[2y0−(y3+y4)]=0,即x−x N+k(y0−y N)=0,即x0+ky0=8k2k2−3;由题意知直线PM的斜率为−√3, 直线QM的斜率为√3, ∴由y1−y0=−√3(x1−x0),y2−y0=√3(x2−x0), ∴y1−y2=−√3(x1+x2−2x0),所以直线PQ的斜率m=y1−y2x1−x2=−√3(x1+x2−2x0)x1−x2,直线PM:y=−√3(x−x0)+y0,即y=y0+√3x0−√3x,代入双曲线的方程3x2−y2−3=0,即(√3x+y)(√3x−y)=3中,得:(y0+√3x0)[2√3x−(y0+√3x0)]=3,解得P的横坐标:x1=2√3(y+√3x+y0+√3x0),同理:x2=2√3(y−√3xy0−√3x0),∴x1−x2=√3(3y0y02−3x02+y0),x1+x2−2x0=−3x0y02−3x02−x0,∴m=3x0y,∴条件②PQ//AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上,等价于ky0=k2(x0−2);条件②PQ//AB等价于ky0=3x0;条件③|AM|=|BM|等价于x0+ky0=8k2k2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立. 22.【2022年北京】已知椭圆:E:x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,1),焦距为2√3. (1)求椭圆E 的方程;(2)过点P(−2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN|=2时,求k 的值. 【答案】(1)x 24+y 2=1(2)k =−4 【解析】 【分析】(1)依题意可得{b =12c =2√3c 2=a 2−b 2,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设B (x 1,y 1)、C (x 2,y 2),联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出x M 、x N ,根据|MN |=|x N −x M |得到方程,解得即可; (1)解:依题意可得b =1,2c =2√3,又c 2=a 2−b 2, 所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P (−2,1)的直线为y −1=k (x +2),设B (x 1,y 1)、C (x 2,y 2),不妨令−2≤x 1<x 2≤2,由{y −1=k (x +2)x 24+y 2=1 ,消去y 整理得(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, 所以Δ=(16k 2+8k )2−4(1+4k 2)(16k 2+16k )>0,解得k <0,所以x 1+x 2=−16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k 1+4k 2,直线AB 的方程为y −1=y 1−1x 1x ,令y =0,解得x M =x11−y 1, 直线AC 的方程为y −1=y 2−1x 2x ,令y =0,解得x N =x21−y 2, 所以|MN |=|x N −x M |=|x21−y 2−x11−y 1|=|x 21−[k (x 2+2)+1]−x 11−[k (x 1+2)+1]| =|x 2−k (x 2+2)+x 1k (x 1+2)| =|(x 2+2)x 1−x 2(x 1+2)k (x 2+2)(x 1+2)|=2|x 1−x 2||k |(x 2+2)(x 1+2)=2,所以|x 1−x 2|=|k |(x 2+2)(x 1+2),即√(x 1+x 2)2−4x 1x 2=|k |[x 2x 1+2(x 2+x 1)+4] 即√(−16k 2+8k1+4k 2)2−4×16k 2+16k 1+4k 2=|k |[16k 2+16k 1+4k 2+2(−16k 2+8k 1+4k 2)+4]即81+4k 2√(2k 2+k )2−(1+4k 2)(k 2+k )=|k |1+4k2[16k 2+16k −2(16k 2+8k )+4(1+4k 2)]整理得8√−k =4|k |,解得k =−4 23.【2022年浙江】如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q (0,12)在线段AB 上,直线PA,PB 分别交直线y =−12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD|的最小值.【答案】(1)12√1111;(2)6√55.【解析】 【分析】(1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,再根据两点间的距离公式求出|PQ|2,再根据二次函数的性质即可求出;(2)设直线AB:y =kx +12与椭圆方程联立可得x 1x 2,x 1+x 2,再将直线y =−12x +3方程与PA 、PB 的方程分别联立,可解得点C,D 的坐标,再根据两点间的距离公式求出|CD |,最后代入化简可得|CD |=3√52⋅√16k 2+1|3k+1|,由柯西不等式即可求出最小值. (1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,P(0,1),则|PQ|2=12cos 2θ+(1−sinθ)2=13−11sin 2θ−2sinθ=−11(sinθ+111)2+14411≤14411,当且仅当sinθ=−111时取等号,故|PQ|的最大值是12√1111.(2)设直线AB:y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得(k 2+112)x 2+kx −34=0,设A (x 1,y 1),B (x 2,y 2),所以{x 1+x 2=−kk 2+112x 1x 2=−34(k 2+112), 因为直线PA:y =y 1−1x 1x +1与直线y =−12x +3交于C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1,同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1.则|CD|=√1+14|x C −x D |=√52|4x 1(2k +1)x 1−1−4x 2(2k +1)x 2−1|=2√5|x 1−x 2[(2k +1)x 1−1][(2k +1)x 2−1]|=2√5|x 1−x 2(2k +1)2x 1x 2−(2k +1)(x 1+x 2)+1|=3√52⋅√16k 2+1|3k+1|=6√55⋅√16k 2+1√916+1|3k+1|≥6√55×√(4k×34+1×1)2|3k+1|=6√55, 当且仅当k =316时取等号,故|CD |的最小值为6√55.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.1.(2022·全国·模拟预测)设M 是椭圆C :()222210x y a b a b+=>>的上顶点,P 是C 上的一个动点,当P 运动到下顶点时,PM 取得最大值,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,M b ,求出()2220PM x y b =+-消元可得,22342220222c b b PM y a b b c c⎛⎫=-++++ ⎪⎝⎭,再根据0b y b -≤≤以及二次函数的性质可知,32b bc -≤-,即可解出. 【详解】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PM x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b =-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即0e 2<≤故选:C .2.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a的取值范围是( )A .[B .[C .D .[[3,15]【答案】D【解析】 【分析】由题意求出OP 的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案. 【详解】由题可知圆O 的半径为32,圆M 上存在点P ,过点P 作圆 O 的两条切线,切点分别为A ,B ,使得60APB ∠=︒,则30APO ∠=︒, 在Rt PAO △中,3PO =, 所以点 P 在圆229x y +=上,由于点 P 也在圆 M 上,故两圆有公共点. 又圆 M 的半径等于1,圆心坐标(),1M a , 3131OM -≤≤+∴,∴24≤≤,∴a ∈[[3,15]. 故选:D.3.(2022·全国·模拟预测(文))已知双曲线22221x y a b-=(0a >,0b >)一个虚轴的顶点为()0,B b ,右焦点为F ,分别以B ,F 为圆心作圆与双曲线的一条斜率为正值的渐近线相切于M ,N 两点,若ON =,则该渐近线的斜率为( )A .12 B .1 C D 【答案】A 【解析】 【分析】根据渐近线倾斜角的正切值表达出ON =,再化简得到4224200b a b a --=求解即可 【详解】由题意,如图,设NOF θ∠=,则因为该渐近线的斜率为ba ,故tanb aθ=,cos acθ==,sin bcθ==,又因为圆与渐近线相切,故BM OM ⊥,FN ON ⊥,故2cos sin 2b OM OB OB c π-θθ⎛⎫=== ⎪⎝⎭,cos ON OF a θ==,所以a =,即2,所以4224200b a b a --=,即()()2222450b a b a -+=,故2240b a -=,即2a b =,故该渐近线的斜率为12b k a ==故选:A4.(2022·河南·开封市东信学校模拟预测(理))已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F △的内切圆半径为1r ,12BF F △的内切圆半径为2r ,若12r r >,且直线l 的倾斜角为60︒,则12r r 的值为( ) A .2 B .3CD.【答案】B 【解析】 【分析】根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可. 【详解】记12AF F △的内切圆圆心为C ,边1212,,AF AF F F 上的切点分别为M ,N ,E ,则C ,E 横坐标相等,则1122||||,,AM AN F M F E F N F E ===,由122AF AF a -=,即()12||||2AM MF AN NF a +-+=,得122MF NF a -=,即122F E F E a -=,记C 的横坐标为0x ,则()0,0E x ,于是()002x c c x a +--=,得0x a =,同理12BF F △的内心D 的横坐标也为a , 则有CD x ⊥轴,由直线的倾斜角为60︒,则230OF D ∠=︒,260CF O ∠=︒, 在2CEF △中,122tan tan 60r CF O EF ∠=︒=,可得12r =, 在2DEF △中,222tan tan 30r DF O EF ∠=︒=,可得22r =,可得123r r ==.故选:B5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线22214x y b-=的左、右焦点分别为12,,F F 过左焦点1F 作斜率为2的直线与双曲线交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则b 的值是( )A .2 BC .32D【答案】D 【解析】 【分析】利用点差法设()11,A x y 、()22,B x y ,作差即可得到2121212124y y y y b x x x x -+⋅=-+,再根据斜率公式,从而得到2124b =,即可得解;【详解】解:设()11,A x y 、()22,B x y ,则2211214x y b -=,2222214x y b-=, 两式相减可得()()()()1212121221104x x x x y y y y b-+--+=,P 为线段AB 的中点,122p x x x ∴=+,122p y y y =+, 2121212124y y y y b x x x x -+∴⋅=-+,又12122AB y y k x x -==-,121214y y x x +=+, 2124b ∴=,即22b =,b ∴= 故选:D.6.(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为( ) A.1) B.1) C.1 D.1【答案】B 【解析】 【分析】由题意求得a,b,c ,即可得双曲线的方程,结合双曲线的定义确定当1||QF PQ +取最小值时Q 点的位置,利用方程组求得Q 点坐标,再利用两点间的距离公式求得答案. 【详解】由题意可得24,2a a == ,又2e =,故4c = , 所以22212b c a =-= ,则双曲线方程为221412x y -= ,结合双曲线定义可得221||4||||4QF PQ QF PQ QF PQ +=++=++, 如图示,连接2PF ,交双曲线右支于点M ,即当2,,P Q F 三点共线, 即Q 在M 位置时,1||QF PQ +取最小值,此时直线2PF 方程为4y x =-+ ,联立221412x y-=,解得点Q的坐标为2,6-,( Q 为双曲线右支上的一点),故21)QF =, 故选:B7.(2022·上海市七宝中学模拟预测)若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线222222222:1(0,0)x y C a b a b -=>>的焦点相同,且12a a >给出下列四个结论:①22221221a a b b -=-;②1221a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2112a a b b +>+;其中所有正确的结论序号是( ) A .①② B .①③C .②③D .①④【答案】B 【解析】 【分析】对于①,根据双曲线的焦点相同,可知焦距相同,可判断22221221a a b b -=-;对于②,举反例可说明1122a b a b <;对于③,根据120a a >>可推得12<b b ,继而推得1212b ba a <,可判断双曲线1C 与双曲线2C 一定没有公共点;对于④,举反例可判断.【详解】对于①:∵两双曲线的焦点相同,∴焦距相同,∴22221122a b a b +=+,即22221221a a b b -=-,故①正确;对于②:若1a =,2a =11b =,2b 1122a b a b <,故②错误; 对于③:∵120a a >>,∴22221221a a b b -=->0,∴2221b b > ,即12<b b ,即1212b b a a <,双曲线1C 与双曲线2C 一定没有公共点,故③正确; 对于④:∵22221221a a b b -=-,∴12121221()()()()a a a a b b b b +-=+-,∵12a a >且12<b b ,∴12211212a ab b b b a a +-=+- , 若12a =,21a =,11b =,22b =,则1212a a b b +=+,故④错误. 故选:B8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M 为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦【答案】D 【解析】 【分析】由12MF MF ⊥可得1212sin MF c MF F =∠、2212cos MF c MF F =∠,由双曲线定义可构造方程得到2114caMF F π=⎛⎫∠- ⎪⎝⎭;由正弦型函数值域的求法可求得离心率的取值范围.【详解】M 在以12F F 为直径的圆上,12MF MF ∴⊥,12112sin MF MF F F F ∴∠=,22112cos MF MF F F F ∠=,1212sin MF c MF F ∴=∠,2212cos MF c MF F =∠, 由双曲线定义知:122MF MF a -=,即21212sin 2cos 2c MF F c MF F a ∠-∠=,21212111sin cos 4c a MF F MF F MF F π∴==∠-∠⎛⎫∠- ⎪⎝⎭; 215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,21,4126MF F πππ⎡⎤∴∠-∈⎢⎥⎣⎦,211sin 42MF F π⎤⎛⎫∴∠-∈⎥ ⎪⎝⎭⎣⎦,214MF F π⎛⎫∠-∈ ⎪⎝⎭⎣⎦,1c a ⎤∴∈⎦,即双曲线离心率的取值范围为1⎤⎦.故选:D.9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( ) A .3 BCD .2【答案】B 【解析】 【分析】由双曲线定义可推导得244AF a ==,求得1a =;在12BF F △中,利用余弦定理可求得12F F ,进而得到c ,由ce a=可求得离心率. 【详解】224AB BF AF ===,1212BF BF AF a ∴-==,又212AF AF a -=,244AF a ∴==,解得:1a =,16BF ∴=, 在12BF F △中,由余弦定理得:2221212122cos 283F F BF BF BF BF π=+-⋅=,解得:12F F =2c =,c ∴=∴双曲线C 的离心率ce a==故选:B.10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】由题可知六个P 点,有两个是短轴端点,因此在四个象限各一个,设(,)P x y 是第一象限内的点,分112PF F F =或212PF F F =,列方程组求得P 点横坐标x ,由0x a <<可得离心率范围;或结合椭圆的性质列出不等关系即得. 【详解】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a +-+=, 解得22a ac x c --=(舍去)或22a acx c -+=, 由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a --+=, 解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意. 综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c == 当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,。
平面解析几何高考复习知识点平面解析几何是数学中的一个分支,主要研究平面上的点、直线、圆、曲线等几何图形的性质和运算。
在高考中,平面解析几何通常是在数学试卷中占有一定的比重。
本文将介绍平面解析几何的高考复习知识点,包括坐标系、点的坐标、线的方程、圆的方程等内容。
一、坐标系1.笛卡尔坐标系:平面上的点可以用两个有序实数来表示,称为点的坐标。
一个点的坐标用有序对(x,y)表示,其中x为横坐标,y为纵坐标。
横纵坐标轴相互垂直,且原点的坐标为(0,0)。
2.极坐标系:平面上的点可以用极径和极角来表示。
极径为点到原点的距离,极角为点到横轴的角度。
极坐标系转换为直角坐标系的公式为:x = rcosθy = rsinθ3.参数方程:平面上的点可以用一个参数来表示。
参数方程为:x=x(t)y=y(t)4.直角坐标系与极坐标系的转换:r²=x²+y²tanθ = y/x二、点的坐标1.两点间的距离:设两点A(x₁,y₁)和B(x₂,y₂),则两点之间的距离d 为:d=√[(x₂-x₁)²+(y₂-y₁)²]2.中点:设两点A(x₁,y₁)和B(x₂,y₂),则两点连线的中点M的坐标为:x=(x₁+x₂)/2y=(y₁+y₂)/2三、线的方程1.一般式方程:形如Ax+By+C=0的线的方程。
其中A、B、C为实数,且A和B不同时为0。
2.点斜式方程:已知线上一点A(x₁,y₁)和该线的斜率k,线的方程可以表示为:y-y₁=k(x-x₁)3.斜截式方程:已知直线与y轴的交点为(0,b),直线的斜率为k,则直线的方程可以表示为:y = kx + b4.两点式方程:已知直线上两点A(x₁,y₁)和B(x₂,y₂),直线的方程可以表示为:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁)5.截距式方程:已知直线与x轴和y轴的截距分别为a和b,直线的方程可以表示为:x/a+y/b=1四、圆的方程1.标准方程:圆心为(h,k)、半径为r的圆的方程可以表示为:(x-h)²+(y-k)²=r²2.参数方程:圆心为(h,k)、半径为r的圆的参数方程为:x = h + rcosθy = k + rsinθ3.一般方程:圆心为(h,k)、半径为r的圆的一般方程可以表示为:x²+y²+Dx+Ey+F=0五、其他知识点1.直线与圆的位置关系:直线与圆相交、相切或相离。
平面解析几何
例题
1.已知圆()()22
:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点 P ,使得90APB ∠=,则m 的最大值为
2.如何理解:“直线1x y a b
+=通过点(cos sin )M αα,”? 3. 如果圆C:22()(2)4x m y m -+-=总存在两点到原点距离为1,求实数m 的取值范围.
4.在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.
5.过定点M (4,2)任作互相垂直的两条直线1l 和2l ,分别与x 轴、y 轴交于A,B 两点, 线段AB 中点为P ,求OP 的最小值.
6. 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值
7.直线12=+by ax 与圆122=+y x 相交于A 、B 两点(其中b a ,是实数),且AOB ∆是
直角三角形(O 是坐标原点),则点(,)P a b 与点)1,0(之间距离的最大值为( )
A . 12+
B . 2
C . 2
D . 12-
8.如图,线段=8AB ,点C 在线段AB 上,且=2AC ,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设=CP x , CPD △的面积为()f x .则()f x 的定
义域为 ; '()f x 的零点是 .
9.已知点()0,2A ,()2,0B . 若点C 在函数2y x =的图象上,则使得ABC △的面积为2的点C 的个数为
10. 直线=+1y kx 与圆0422=-+++my kx y x 交于,M N 两点,且,M N 关于直线+=0x y 对称.求+m k 的值.
C B D
11.双曲线22
1169
x y -=,右支上一点M ,12F F M ∆的内切圆与x 轴切于P 点, 则12PF PF -的值是
12. 直线0ax by b a ++-=与圆2220x y x +--=的位置关系是
13.设关于x ,y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩
,,表示的平面区域内存在点()00P x y ,,满足0022x y -=,求得m 的取值范围是
A .43⎛⎫-∞ ⎪⎝⎭,
B .13⎛⎫-∞ ⎪⎝⎭,
C .23⎛⎫-∞- ⎪⎝⎭,
D .53⎛⎫-∞- ⎪⎝
⎭,
14. 若实数,x y 满足221x y +≤,则2236x y x y +-++-的最小值是 .
15 点P 在左右焦点分别为12,F F 的双曲线2211620
x y -=上,若19,PF =则2PF = 16.已知椭圆22
1169
x y +=的左右焦点分别为12,F F ,点P 在椭圆上,若P ,12,F F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为
17.已知椭圆C:22
143
x y +=.确定m 的取值范围,使得对于直线4y x m =+,C 上有两个不同的点关于该直线对称.
18. 抛物线22 (0)y px p =>上存在两点,A B 关于直线:1l y x =-+对称,求p 的取值范围.
19.已知菱形ABCD 的顶点C A 、在椭圆4322=+y x 上,对角线BD 所在直线的斜率为1.
(Ⅰ)当直线BD 过点)1,0(时,求直线AC 的方程;
(Ⅱ)当︒=∠60ABC 时,求菱形ABCD 面积的最大值.
20.设,A B 分别为椭圆13
42
2=+y x 的左、右顶点,设P 为直线4x =上不同于点(4,0)的任意一点,若直线,AP BP 分别与椭圆相交于异于,A B 的点M N 、,证明点B 在以MN
为直径的圆内.
21. 已知:,A B 在22y px =上,直线,OA OB 倾斜角为,αβ,且4παβ+=
.
证明直线AB 过定点.
22. 已知椭圆22:24C x y +=.设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,
且OA OB ⊥,试判断AB 与圆222x y +=的位置关系,并证明你的结论. 23.已知W: 22
122
x y -=(2x ≥),若 A ,B 是W 上的不同两点,O 是坐标原点,求OA ·OB 的最小值.
三、如何教会学生解决数学问题的方法
如何找到解决数学问题的方法呢.过去我强调比较多的是解决数学问题的一般方法,但是这样的阐述就解决数学问题而言还不是全面的.我曾经的一个观点是解决数学问题的方法越少越好,就是针对解决数学问题的一般方法而言的.但是解决数学问题只靠一般方法就能解决吗?换句话说,解决数学问题的一般方法是解决哪个方面的问题?为什么叫一般方法或通性通法呢?我们常见的数学问题(这里专指学生做的数学题目)都包含两个要素:一个是这个问题中涉及到的研究对象,如函数的解析式、曲线方程、空间几何体、数列的通项等,这个对象不一定是一个,也许是两个或更多;还有一个要素是针对研究对象所提出来的需要解决的具体问题.因此,要解决一个数学问题,首先就要对数学问题的对象(也可以称之为数学问题的主体)进行研究.要研究单个对象的属性、性质以及两个及以上对象之间的关系.如:对于一个函数要研究其所有的性质;对于两个函数不仅要研究它们各自的性质,还要研究它们的代数关系;同样,对于两个几何对象也要研究它们之间的位置关系,等等.这种方法是研究问题主体的性质、属性及关系的,也是解决任何一个数学问题都需要面对的并加以解决的.从这个意义上来说,这种研究数学问题的方法就是一般方法、通性通法.
解决针对这个研究对象的具体问题的方法是怎么得到的呢?
在教学实践中,教师经常会结合例题来讲解决问题的方法,通常是对数学问题分类,针对不同类型的问题对应着不同的方法进行教学.为了让学生能够熟练地掌握老师教给的方法,常常需要通过一定量的练习、考试等手段达到教学目的.在这种理念下进行的教学,教
师不太关注解决数学问题的方法是如何得到的,而是把教学的重点放在了学生会不会熟练运用方法去解决问题. 课堂上如果涉及这个方法是从哪里来的时候,教师经常会说和这个问题类似的我们什么时候做过、上周我们讲过,所以解决这个问题的方法是什么等等.这种说辞掩盖了解决数学问题方法的本质,就是说方法是老师教的,只要会用就够了.如此,在学生的数学思维中,关于方法的思维活动就变得缺乏逻辑,数学教学就很容易演变成对解题方法熟练运用的教学,解决数学问题的思维活动越来越偏离数学学科的本质.
我认为,解决数学具体问题的方法是数学问题的研究对象的性质及关系转化而来的,是对研究对象的性质及关系研究之后并深刻理解的基础上得到的. 这种方法不是前面我们所说的一般方法,而是在运用一般方法之后的解决具体数学问题的具体方法.学生要体会到:这种具体方法不是老师告诉的,这样的方法没有套路可循,这样的方法是学生自己根据对问题对象的性质及关系的研究基础上找到的.如果不分析研究对象的性质及关系,就不会有解决数学具体问题的具体方法.
这样,我们就看到解决数学问题的方法实际上是两个方法,即一般方法和具体方法.一般方法不多,但是,由于对数学具体问题分理解不同,对研究对象的性质和关系运用的角度不同,就出现了各种各样的具体方法.但是,有经验的数学教师会从多种多样的具体方法中提炼概括,让学生感受到这些具体方法都是来源于问题对象的性质或关系的.
如果学生面对数学问题时,不再是急急忙忙地进行运算或套用现成的方法,而是能够比较从容的对数学问题的研究对象进行理解和深入研究,并能够在研究的基础上,找到解决具体问题的具体方法,那么他的解决数学问题的活动就是有逻辑的数学思维活动.这种能力一旦获得,他就不需要依赖老师是否讲过类似的题目,他也不再靠识别问题的类型和所记忆的方法来解决问题.因为他把面对的每一个数学题目都是当成新的问题来看待的,对于如何找到解决这个问题的方法他充满信心.
总之,教师要能够站在思维的高度来认识如何教会学生解决数学问题,要明确思维能力的培养才是提高数学成绩的关键,才是数学教学的价值所在.教师要研究我们的教学,要有信心找到培养学生解决数学问题能力的规律,把握数学教学的本质.。