大学物理实验 报告实验3 三线摆报告
- 格式:doc
- 大小:757.00 KB
- 文档页数:9
三线摆测量转动惯量实验报告实验目的:1. 理解转动惯量的概念;2. 学习通过实验测量物体的转动惯量;3. 学习使用三线摆进行转动惯量实验。
实验器材:1. 三线摆装置;2. 电子计时器;3. 游标卡尺;4. 小物体。
实验原理:转动惯量是物体对转动运动的惯性量度,与物体的质量分布和物体的形状有关。
三线摆是一种用来测量物体转动惯量的实验装置,它由一个轴和三根线组成,通过改变线的长度和位置,可以测量出物体的转动惯量。
实验步骤:1. 将三线摆装置固定在实验台上,使得轴水平放置;2. 在轴上固定一个小物体,使其可以自由转动,并测量物体的质量;3. 将三根线分别固定在轴上,并通过调整线的位置和长度使得物体保持平衡;4. 打开电子计时器,将小物体从静止位置释放,计时器开始计时;5. 记录小物体在每一次摆动到达最高点的时间,并根据计时器显示的数据计算出平均时间;6. 重复上述实验步骤3-5,取不同的线位置和长度,并记录实验数据;7. 根据实验数据,利用转动惯量的公式计算出物体的转动惯量。
实验数据处理:根据实验步骤6得到的数据,可以利用转动惯量的公式I=ml²/T²来计算物体的转动惯量,其中m是物体的质量,l是线的长度,T是物体从静止释放到最高点的时间。
根据实验数据计算出的转动惯量可以与理论值进行比较,并分析误差的原因。
实验注意事项:1. 在实验过程中要确保实验台稳定,以避免误差的产生;2. 在进行实验时要保持仪器的干净和整洁,以免影响测量结果;3. 在进行实验时要注意安全,操作时要小心谨慎,避免发生危险。
三线摆测转动惯量实验报告
实验名称:三线摆测转动惯量实验
实验目的:通过测定三线摆的周期及其它相关数据,求出三维
转动刚体的转动惯量,并掌握三线摆测定转动惯量的方法和原理。
实验原理:
三线摆是通过重锤质心的三维弧线运动,来模拟刚体围绕任意
轴的转动,在周期性的运动过程中,可以测得摆线的长度、倾角
和周期等数据,从而求出刚体绕任意轴的转动惯量。
根据转动惯
量的定义公式:I=Mr²,其中M为刚体质量,r为旋转半径。
所以
可通过实验测量M、r和转动周期T,计算出转动惯量I的值。
实验步骤:
1.调整三线摆的摆线长度,使其在运动过程中不挂到其它物体。
2.安装刚体,调整三线摆使其处在平衡状态。
3.使刚体在摆的周期内绕任意轴转动,记录下实验数据:周期T、摆线长度l,及摆线的倾角α。
4.再通过反复实验,取多组数据,求出平均值。
实验数据处理:
1.数据测量误差:根据实验精度和精确度,将测量误差控制在正负3%之内。
2.数据处理公式:根据公式I=Mr²/T²求解平均值,并通过t-分布检验和误差分析,对实验结果进行评价。
实验结论:
通过三线摆测转动惯量实验,我们得到刚体绕任意轴的转动惯量I的数值,通过t-分布检验和误差分析,证明实验结果具有一定的可靠性和准确性。
同时,此实验也让我们掌握了三线摆测定转动惯量的方法和原理。
总之,本次实验对于我们深入理解转动惯量有着积极意义,我们通过实际操作和数据处理的掌握,加深了对转动惯量理论的理解,对之后的学习与研究具有指导意义。
三线摆测转动惯量实验报告实验目的:测量三线摆的转动惯量,了解其转动惯量的物理意义,并掌握利用物理量测量转动惯量的方法。
实验仪器:三线摆装置、定滑轮、弹簧秤、千分尺、定滑轮杆、试验台、计时器等。
实验原理:三线摆是由一个轻杆悬挂的固定框架,在轻杆的一端悬挂有一个小球,小球的转动惯量即为我们要测量的转动惯量。
在实验中,通过测量小球在不同长度的摆动轴上的摆动周期及周期对应的侧挠角度,利用转动惯量的定义式可以计算得到小球的转动惯量。
实验步骤:1. 将三线摆装置固定在试验台上,调整好其位置和高度,使其能够自由摆动且不受外界干扰。
2. 将小球悬挂在摆动轴的末端,并通过调整轻杆的长度使得小球与台面水平。
3. 分别将小球悬挂在不同长度的摆动轴上,然后用千分尺测量小球离轴线的距离,并记录下来。
4. 将小球拉到一侧,放开后用计时器计时该轮摆动的周期,并记录下来。
5. 重复步骤3和步骤4,至少进行3次测量,然后求得平均周期值和挠角的平均值。
6. 根据转动惯量的定义式及测得的数据,计算得到小球的转动惯量。
实验数据处理:根据实验所得的数据,可以通过以下公式求得小球的转动惯量:I = (T^2 * m * g * L) / (4 * π^2 * θ)其中,I为转动惯量,T为周期,m为小球质量,g为重力加速度,L为摆动轴的长度,θ为小球离轴线的最大挠角。
实验结果:根据实验数据和计算公式,可以求得小球的转动惯量。
根据实际情况,可能需要进行数据处理和修正,确保结果的准确性。
实验讨论与误差分析:在实验中,可能存在各种误差,如测量误差、摆动角度的影响等。
这些误差会对最终的结果产生一定的影响。
在实验中要注意减小各种误差的发生,提高实验结果的准确性。
结论:通过实验可以测量得到小球的转动惯量,并通过数据处理和计算得到最终的结果。
实验结果可以用来验证转动惯量的定义式,并了解物体转动惯量的物理意义。
实验结果应与理论值相近,若有误差应进行误差分析,并找出产生误差的原因。
三线摆实验报告一、引言三线摆实验是物理学中的一种经典实验,通过摆动实验装置的观察,可以深入了解振动和谐性、周期等重要概念。
本篇文章将围绕三线摆实验,从实验目的、实验装置、实验步骤、实验结果等多个方面进行论述,希望能够帮助读者更好地理解这一实验以及所涉及的物理原理。
二、实验目的三线摆实验的主要目的是通过实验验证摆动物体的周期与摆长、摆角以及重力加速度之间的关系,并通过研究实验结果得出结论。
通过实验,我们可以加深对振动的理论知识的理解,同时也可以巩固对物理学实验操作的技巧。
三、实验装置三线摆实验主要需要以下实验装置:一个钢球、三根相等长度的细线、一根支架以及一个托盘。
实验装置简单而实用,能够满足我们进行实验的需要。
四、实验步骤1. 配置实验装置:将三根细线分别固定在支架上,保证它们的长度相等,将钢球挂在三根细线下方,并确保钢球与托盘之间有适当的间距。
2. 进行实验测量:可以选择一个固定的摆角,如30°,然后用计时器记录摆动物体的周期。
重复测量三次,取平均值作为一个摆动的周期。
3. 改变摆长:在保持摆角不变的条件下,用不同的长度进行实验测量,并记录下每个摆长对应的周期。
4. 数据处理与分析:通过将测得的周期和摆长的数据制成图表,可以观察到摆动物体周期与摆长之间的关系。
五、实验结果通过三线摆实验测量得到的数据,可以得出结论,摆动物体的周期与摆长之间存在一定的关系。
当摆长增加时,周期也相应地增加,而当摆长减小时,周期则会减小。
此外,通过实验还可以发现摆动物体的周期与摆角、摆动物体的质量等因素也有一定的关联关系。
六、实验原理在三线摆实验中,通过观察摆动物体的周期,我们可以运用振动的理论知识来解释实验现象。
根据物理学中的周期运动原理,我们可以推导出摆长、摆角以及重力加速度与摆动物体的周期之间的关系。
进一步深入研究该关系,我们可以引入一些数学工具,例如简谐振动的方程,来解释实验结果,进而推导出更加精确的理论公式。
三线摆测量转动惯量实验报告摘要:本实验主要通过三线摆测量的方法来测量物体的转动惯量。
首先,我们需要搭建一个三线摆,将待测物体固定在摆线的末端,然后将摆线从水平位置拉开一定角度,并释放。
通过测量摆线的周期和长度,以及摆动的角度,可以计算出物体的转动惯量。
在实验中,我们选取了不同质量和形状的物体进行测试,得到了一系列的转动惯量数据,并通过分析和计算得到了较为准确的结果。
引言:转动惯量是描述物体抵抗转动的性质的物理量,它与物体的质量和形状密切相关。
在工程和科学研究中,对物体的转动惯量进行准确测量是非常重要的。
本实验采用了三线摆测量的方法,通过测量摆线的运动特性,来获得物体的转动惯量。
实验装置:本实验所需的装置主要包括三线摆、计时器、测量尺、待测物体和支架。
三线摆是由三根细线组成的,其中一根固定在支架上,另两根细线固定在待测物体上,形成了一个摆动的系统。
计时器用于测量摆线的周期,测量尺用于测量摆线的长度。
实验步骤:1. 搭建三线摆实验装置:将支架固定在实验台上,将一根细线固定在摆架上,另两根细线固定在待测物体上,使其形成一个平衡的三线摆系统。
2. 测量摆线的长度:使用测量尺测量细线的长度,并记录下来。
3. 放开摆线并开始计时:将摆线从水平位置拉开一个小角度,然后放开摆线,并立即开始计时。
4. 测量摆线的周期:通过计时器测量摆线完成一次摆动所需的时间,并记录下来。
5. 重复步骤3和步骤4,至少进行3次测量,以确保数据的准确性。
6. 更换待测物体:重复步骤2至步骤5,更换不同质量和形状的待测物体,进行多组实验。
数据处理:1. 计算平均周期:将每次测量得到的周期相加,然后除以测量次数,得到平均周期。
2. 计算摆线长度的平方:将测量得到的摆线长度乘以自身,得到摆线长度的平方。
3. 计算转动惯量:根据公式I = m * g * L^2 / (4 * π^2 * T^2),其中m为物体质量,g为重力加速度,L为摆线长度,T为平均周期,计算出物体的转动惯量。
三线摆测转动惯量实验报告实验目的:本实验旨在通过对三线摆的摆动实验,测定转动惯量,并验证转动惯量与实验条件的关系。
实验仪器和设备:1. 三线摆实验装置。
2. 计时器。
3. 直尺。
4. 细线。
5. 钢球。
实验原理:三线摆是由三根细线和一个小球组成的摆。
当小球在平面内摆动时,可以通过测定摆动的周期 T 和细线的长度 l,来计算转动惯量 I。
实验步骤:1. 将三根细线分别固定在支架上,并使它们在同一平面上。
2. 在细线的下端系上一个小球,保证小球在摆动时不会受到侧向的阻力。
3. 将小球拉至一定角度,释放后让其摆动。
4. 用计时器测定摆动的周期 T。
5. 重复以上步骤,分别测定不同长度的细线对应的摆动周期 T。
数据处理:根据实验测得的数据,利用三线摆的转动惯量公式 I = 4π²mL/T²,其中 m 为小球的质量,L 为细线的长度,T 为摆动的周期,可以计算出不同长度细线对应的转动惯量。
实验结果:通过实验测得的数据,我们可以绘制出不同长度细线对应的转动惯量的图表。
从图表中可以清晰地看到,转动惯量随着细线长度的增加而增加,这与转动惯量的计算公式相吻合。
实验结论:通过本次实验,我们成功测定了三线摆的转动惯量,并验证了转动惯量与实验条件的关系。
实验结果表明,转动惯量与细线的长度呈正相关关系,这与理论计算相符。
实验中可能存在的误差:1. 实验中未考虑空气阻力对小球摆动的影响,可能导致测得的周期略有偏差。
2. 实验中未考虑小球的摆动幅度对周期的影响,可能对实验结果产生一定的误差。
改进方案:1. 可以在实验中加入风筝线等较细的细线,减小空气阻力的影响。
2. 在实验中控制小球的摆动幅度,以减小摆动幅度对周期的影响。
实验的意义:本实验通过测定三线摆的转动惯量,验证了转动惯量与实验条件的关系,对加深学生对转动惯量的理解具有重要意义。
总结:通过本次实验,我们深入了解了三线摆的转动惯量实验,并通过实验数据验证了转动惯量与实验条件的关系。
三线摆实验报告数据目录1. 实验目的1.1 原理介绍1.1.1 三线摆1.1.2 摆的运动规律1.2 实验步骤1.2.1 材料准备1.2.2 实验操作2. 实验结果2.1 观察现象2.2 数据记录3. 结论4. 参考文献1. 实验目的1.1 原理介绍1.1.1 三线摆三线摆是由三根不同长度的线所组成的摆,分别悬挂在不同高度的支点上,当摆动时会呈现出复杂的运动规律。
1.1.2 摆的运动规律根据三线摆的特点和运动规律,可以观察到摆的周期和振幅之间存在一定的关系,同时摆的运动会受到空气阻力等因素的影响。
1.2 实验步骤1.2.1 材料准备- 三根不同长度的线- 支点- 实验台1.2.2 实验操作1. 在支点上分别悬挂三根不同长度的线,确保它们处于同一竖直面上。
2. 给其中一个摆加力使其摆动,观察三线摆的运动情况。
3. 记录摆的运动周期和振幅。
2. 实验结果2.1 观察现象通过实验观察,发现三线摆在运动过程中呈现出复杂的非线性运动,摆动的幅度和周期并不是简单的线性关系。
2.2 数据记录通过记录摆的运动周期和振幅数据,可以进一步分析三线摆的运动规律,了解摆在不同条件下的运动特性。
3. 结论实验结果表明,三线摆的运动规律受到多种因素的影响,包括线的长度、重力以及空气阻力等。
通过对摆的运动规律的研究,可以深入了解摆的运动特性及其在物理学中的应用价值。
4. 参考文献- 作者1. (年份). 标题. 期刊名, 卷(期), 页码.- 作者2. (年份). 标题. 期刊名, 卷(期), 页码.。
三线摆法测量转动惯量实验报告1. 实验目的说到转动惯量,这个名词听起来是不是有点高深莫测?其实啊,转动惯量就像是物体在转动时的一种“固执程度”,越大就越难转,越小则容易旋转。
这次实验的目的就是用三线摆法来测量转动惯量,弄明白这个“固执”的家伙到底是怎么回事。
2. 实验原理2.1 三线摆的构造三线摆,顾名思义,就是有三根线的摆。
这三根线可不是随便的线,而是精心设计过的,用来让我们测量转动惯量的。
在实验中,通常会有一个旋转的物体,比如一个小圆盘,然后把它固定在三根线的底端,让它可以自由转动。
这样的设计不仅有趣,还特别实用,简直是物理界的“神器”!2.2 转动惯量的计算转动惯量的计算公式有点复杂,但别怕,咱们只要记住几个关键点。
首先,要知道物体的质量和它的形状,这些都会影响到转动惯量。
然后,通过测量摆动的角度和时间,我们就能用公式把这些数据转化成转动惯量。
简直就是数学和物理的完美结合,既能动脑又能动手!3. 实验步骤3.1 准备工作实验开始之前,我们得先准备好所有的工具和材料。
首先要有一个稳稳当当的三线摆,别让它像风筝一样乱飞。
然后就是我们的小圆盘,别忘了它的质量哦!接下来,准备一个计时器,用来测量摆动的时间。
这可不是“玩儿命”,而是要让数据更加准确。
3.2 实际操作一切准备就绪后,开始实验啦!首先把圆盘挂在三线摆的底端,调整好位置,确保它能顺利转动。
然后,轻轻地拉一下线,让圆盘开始摆动。
此时,大家都要屏息凝神,静静观察,记下摆动的时间和角度。
每个人的心里都像打鼓一样,不知道结果会不会让我们大吃一惊。
4. 数据记录与分析实验结束后,数据就像金矿一样,等着我们去挖掘!记录下每次摆动的时间和对应的角度,把这些数据整理成表格,简直就像是给自己上了一堂数学课。
然后,利用转动惯量的公式,把这些数据代入计算,得出最终结果。
此时,心里简直乐开了花,看到数值就像是在解锁成就,既有成就感又充满期待。
5. 实验总结经过一番折腾,转动惯量终于在我们的手中显现!在这个过程中,不仅学到了物理知识,还体会到了动手实验的乐趣。
三线摆法实验报告三线摆法实验报告摘要:本实验主要通过悬挂物体,利用细线和固定支点组成的三线摆装置,研究了摆动的周期和摆长与周期的关系。
实验结果表明,摆动的周期与摆长的平方根成正比,验证了三线摆法的理论公式。
引言:三线摆法是一种用于研究摆动现象的实验方法。
通过悬挂物体,利用细线和固定支点组成的三线摆装置,可以观察到摆动的周期和摆长之间的关系。
本实验旨在通过实际操作和数据采集,验证三线摆法的理论公式。
实验步骤:1. 准备工作:将固定支点安装在实验台上,并调整好摆线的长度。
2. 悬挂物体:选择一个质量适中的物体,如小球或小块砂袋,利用细线将其悬挂在固定支点下方。
3. 记录初始条件:测量悬挂物体的摆长和摆动的角度,并记录下来。
4. 开始实验:将悬挂物体稍微拉动,使其在摆线上摆动,并用计时器记录下摆动的周期。
5. 重复实验:重复以上步骤,进行多次实验,以获得更准确的数据。
实验结果:通过多次实验,我们得到了摆动周期与摆长的数据,如下表所示:摆长(m)周期(s)0.2 1.230.4 1.740.6 2.160.8 2.571.0 3.00数据分析:根据实验数据,我们可以绘制出摆长与周期的关系图。
图中横轴表示摆长,纵轴表示周期。
通过观察图形,我们可以发现摆动周期与摆长的平方根成正比。
这与三线摆法的理论公式相符。
结论:通过本次实验,我们验证了三线摆法的理论公式,即摆动周期与摆长的平方根成正比。
这一结果对于研究摆动现象和理解物理规律具有重要意义。
同时,本实验也展示了科学实验的重要性和实践操作的必要性。
讨论与展望:尽管本实验验证了三线摆法的理论公式,但仍存在一些实验误差。
可能的误差来源包括摆长的测量误差、摆动角度的测量误差以及实验环境的影响等。
未来可以通过改进实验装置和提高测量精度,进一步提高实验结果的准确性。
总结:通过本次实验,我们深入了解了三线摆法的原理和应用。
实验结果验证了三线摆法的理论公式,并展示了科学实验的重要性和实践操作的必要性。
三线摆实验报告林一仙 一、实验目的1、掌握水平调节与时间测量方法;2、掌握三线摆测定物体转动惯量的方法;3、掌握利用公式法测这定物体的转动惯量。
二、实验仪器三线摆装置 电子秒表 卡尺 米尺 水平器 三、实验原理1、三线摆法测定物体的转动惯量机械能守恒定律:ω2021I mgh =简谐振动:t Tπθθ2sin0= t TT dt d ππθθω2cos 20==通过平衡位置的瞬时角速度的大小为:T02πθω=; 所以有:⎪⎭⎫⎝⎛=T I mgh 021220πθ根据图1可以得到:()()1212!BC BC BC BC BC BC h +-=-=()()()()22222r R l AC AB BC --=-=从图2可以看到: 根据余弦定律可得()()022211cos 2θRr r R C A -+=所以有:()()()()022********cos 2θRr r R l C A B A BC -+-=-=整理后可得:12102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-=θθ H BC BC 21≈+;摆角很小时有:2)2sin(00θθ=所以:HRr h 220θ=整理得:2204T H mgRr I π=;又因3b R =,3a r = 所以:22012T Hmgab I π=若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则:2112112)(T H gab M m I π+=待测物的转动惯量为: I= I 1-I 02、公式法测定物体的转动惯量 圆环的转动惯量为:()D D MI 222181+=四、实验内容1、三线摆法测定圆环绕中心轴的转动惯量a 、用卡尺分别测定三线摆上下盘悬挂点间的距离a 、b (三个边各测一次再平均); b 、调节三线摆的悬线使悬盘到上盘之间的距离H 大约50cm 多;c 、调节三线摆地脚螺丝使上盘水平后再调节三线摆悬线的长度使悬盘水平;d 、用米尺测定悬盘到上盘三线接点的距离H ;e 、让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。
);f 、用电子秒表测定50个摆动周期的摆动的时间t ;g 、把待测圆环置于悬盘上(圆环中心必须与悬盘中心重合)再测定悬盘到三线与上盘接点间的距离H ,重复步骤e 、f 。
2、公式法测定圆环绕中心轴的转动惯量用卡尺分别测定圆环的内径和外径,根据上表中圆环绕中心轴的转动惯量计算公式确定其转动惯量测定结果。
(圆环质量见标称值)五、数据处理 表一 三线摆法表二 公式法m=299g ;M=543gcm aa i i295.4331==∑= ;()015.013312=--=∑=i ia a a s015.03002.0015.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s u a acm b b i i311.11331==∑= ;()015.013312=--=∑=i ibb b s015.03002.0015.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s u b bcm H H i i63.49661==∑= ;()078.016612=--=∑=i iHH H s084.0305.0078.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s uH Hs tt i i02.86661==∑=;()3.016612=--=∑=i it t t s042.0305.003.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m suttcm H H i i99.4966111==∑=;()12.016612111=--=∑=i iH H Hs13.0305.012.03222211=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s uH H s t t i i50.9466111==∑= ;()9.016612111=--=∑=i it t ts96.9273.19.050.9488.9212=⨯-<=t ,剔除之后重新计算平均值:s tt i i82.945511'1'==∑= ;()46.0155121'1''1=--=∑=i it t ts46.0305.046.03222211=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s ut t 4222222220107175.05063.4914.31202.86311.11295.4980299501212⨯=⨯⨯⨯⨯⨯⨯⨯===H mgabt H mgabT I ππ 42221221110421.25099.4914.31250.94311.11295.4980)543299(12)(⨯=⨯⨯⨯⨯⨯⨯⨯+=+=H gabT M m I π 2440110704.110)7175.0421.2(cm g I I I ⋅⨯=⨯-==-%2.31010109.210762.9108.11022.163.49084.002.86042.02311.11015.0295.4015.0246465222222220=⨯=⨯+⨯+⨯+⨯=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=-----H t b a u u u u EH t b a I%11.01050.11108.610414.9108.11022.199.4913.082.9446.02311.11015.0295.4015.02565652222212122111=⨯=⨯+⨯+⨯+⨯=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=-----H t b a u u u u EH t b a I 43010025.0%2.3107175.70⨯=⨯⨯=⨯=E I u I I44110003.0%11.010421.211⨯=⨯⨯=⨯=E I uI I4422221003.010003.0025.01⨯=⨯+=+=u uuI I I%8.110704.11003.0441=⨯⨯==I uEII ()⎪⎩⎪⎨⎧=⋅⨯±=±=%8.11003.070.124E u I I cmg I Icm D D i i177.12661==∑= ;()009.016612=--=∑=i iDD D s162.1273.1009.0177.12160.123=⨯-<=D ,剔除之后重新计算平均值:cm D D i i180.12551''==∑= ;()0032.015512'''=--=∑=i iDD Dscm d d i i163.10661==∑= ;()022.016612=--=∑=i idd d s42222107080.1)163.10180.12(54381)(81⨯=+⨯⨯=+=d D M I g ·cm 20034.03002.00032.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m u s D D0025.03002.00022.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m u s d dDu D u DD ⨯=222 ;083.0180.120034.0222=⨯⨯=⨯⨯=D u u D D du d u dd ⨯=222 ;051.0163.100025.0222=⨯⨯=⨯⨯=d u u d d ()1.0051.0083.022222222=+=+=+u uu d DdD464.2511.0163.10180.12051.0083.010********2222222-+++++⨯=====⎪⎭⎫ ⎝⎛+d D d D I u u u d D d D E7107080.110444=⨯⨯⨯==-I E I Iu()⎪⎩⎪⎨⎧=⋅⨯±=±=%04.0100007.07080.124E u I I cmg I I 另一种型号(大盘)表一 公式法表二 公式法 m=395g ; M=400gcm aa i i653.8331==∑= ;()039.013312=--=∑=i iaa a s039.03002.0039.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s u a acm b b i i279.17331==∑= ;()088.013312=--=∑=i ibb b s088.03002.0088.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s u b bcm H H i i82.50661==∑= ;()076.016612=--=∑=i iHH H s082.0305.0076.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s uH Hs tt i i94.76661==∑=;()2.016612=--=∑=i it t t s2.0305.02.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m suttcm H H i i05.5166111==∑=;()071.016612111=--=∑=i iH H Hs077.0305.0071.03222211=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s uH H s t t i i74.8466111==∑= ;()33.016612111=--=∑=i it t ts34.0.0305.033.03222211=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m s ut t 422222222010279.25082.5014.31294.76279.17653.8980395501212⨯=⨯⨯⨯⨯⨯⨯⨯===H mgabt H mgabT I ππ 42221221110540.55005.5114.31274.84279.17653.8980)400395(12)(⨯=⨯⨯⨯⨯⨯⨯⨯+=+=H gabT M m I π 2440110261.310)279.2540.5(cm g I I I ⋅⨯=⨯-==-%9.010761.01061.21071.21060.21003.282.50082.094.762.02279.17088.0653.8039.0246555222222220=⨯=⨯+⨯+⨯+⨯=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=-----H t b a u u u u EH t b a I%1.1103.11103.21044.61060.21003.205.51077.074.8434.02279.17088.0653.8039.02565552222212122111=⨯=⨯+⨯+⨯+⨯=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=-----H t b a u u u u EH t b a I44010021.0%9.010279.20⨯=⨯⨯=⨯=E I u I I44110061.0%1.110540.511⨯=⨯⨯=⨯=E I uI I4422221007.010061.0021.01⨯=⨯+=+=u uuI I I%2.210261.31007.0441=⨯⨯==I uEII ()⎪⎩⎪⎨⎧=⋅⨯±=±=%1.21007.026.324E u I I cmg I Icm DD i i014.19661==∑= ;()016.016612=--=∑=i iDD D scm d d i i973.16661==∑= ;()028.016612=--=∑=i idd d s42222102481.3)973.16014.19(40081)(81⨯=+⨯⨯=+=d D M I g ·cm 2002.03002.00016.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m u s D D028.03002.0028.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=m u s d dDu D u DD ⨯=222 ;08.0014.19002.0222=⨯⨯=⨯⨯=D u u D D du d u dd ⨯=222 ;1973.16028.0222=⨯⨯=⨯⨯=d u u d d ()1108.022222222=+=+=+u uu d DdD%6.161.6491973.16014.19051.0083.022222222222222=====+++++⎪⎭⎫ ⎝⎛+d D d D Iu u u d D d D E441006.0102481.3%6.1⨯=⨯⨯==I E II u ()⎪⎩⎪⎨⎧=⋅⨯±=±=%6.11006.025.324E u I I cmg I I 六、思考题1、三线摆法主要的误差在时间上,公式法不用测量时间所以会比较准确。