函数的性质中职数学基础模块上册32高教版
- 格式:ppt
- 大小:5.56 MB
- 文档页数:28
【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>的解集.强化思想本次课学了哪些内容?重点和难点各是什么?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.}2的子集,并且集合叫做集合AB(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果C A {1,3,5}*巩固知识典型例题例5 用适当的符号填空:⑴{1,3,5} {1,2,3,4,5,6};⑵2x x={3,-3};{|9}⑶{2} { x| |x|=2 };⑷2 N;⑸a{ a };⑹{0} ;⑺{1,1}-2x x+=.{|10}解⑴{1,3,5}{1,2,3,4,5,6};⑵{x|x2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =; ⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0};⑺ 因为2{|10}x x +==,所以{1,1}-2{|10}x x +=.【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念; (2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.引导分析归纳总结自我分析了解式启发学生思考集合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题过 程行为 行为 意图 间例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅; (3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求AB .分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.例3 设{}|12A x x =-<,{}|03B x x =<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x x x x =-<<{}|02x x =<.说明 强调 引领 讲解说明 引领 强调含义观察 思考 主动 求解 观察 思考 求解 领会通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合B.}y=,求B.23巡视}4x,求A B.指导11名,那么该班有多少名介绍={该班团员};={该班非团B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?过 程行为 行为 意图 间B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理.归纳强调 回答 理解 强化 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A . 解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明 领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3;【课题】1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4明确=,求A B,A B.B x下面我们将学习另外一种集合的运算.介绍兴趣导入过 程行为 行为 意图 间结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合.总结 归纳领会素的 关系15*动脑思考 探索新知 概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合A 是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做A 在全集U 中的补集. 表示集合A 在全集U 中的补集记作UA ,读作“A 在U 中的补集”.即{}|U A x x U x A =∈∉且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算.仔细 分析 讲解强调 引导说明思考 理解 记忆 观察 领会特别 注意 讲解 关键 词的 含义 强调 表示 方法 的书 写规 范性 充分 利用 图形 的直 观性20*巩固知识 典型例题通过过 程行为 行为 意图 间例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x =-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A :A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明讲解 引领引导 分析 讲解说明 理解观察 思考 主动 求解 观察 思考 理解 自我 总结例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳35*运用知识 强化练习 教材 练习1.3.31.设{}U =小于10的正整数,{}147A =,,,求UA .2.设U R =,{}|24A x x=-,求A .提问巡视 指导互动 求解 交流反馈 学习 效果45*理论升华 整体建构以学A U,B U ,()()ABU U ,)()UU A B,()U A B ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9UU A B=因为{}3,5AB =,所以 (){0,1,2,4,6,7,8,9U AB =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B =U A ,U B ,A B ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.解 因为全集U =R ,A ={x | x U A ={x | U B ={x | {B x =-A B =R .B ,B ,UA ,U B ,()()U U A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想【课题】1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟) 【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】}4x引导讲解过 程行为 行为 意图 间只含左端点的区间叫做右半开区间,如集合{|24}x x <表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350).强调 细节领会强调 各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15 *运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视辅导 思考 解题 交流 反馈 学习 效果20*动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点, 质疑思考过 程行为 行为 意图 间为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数.讲解 说明 强调 细节领会 记忆 理解 明确学习 各种 区间25*巩固知识 典型例题例2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写30*理论升华 整体建构B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?引导【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题2.3 一元二次不等式*回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:介绍提出问题了解思考()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3) (2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞.(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R .归纳 总结讲解 分析 强调 讲解思考 观察 理解 领会 记忆引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用2(,)x +∞0(,)x +∞0([)2,x +∞R 0<12,)x∅]12,x }0x224b ac x =-.典型例题解下列各一元二次不等式:0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得3。
高教版中职数学基础模块上册电子教案第一章:集合1.1 集合的概念教学目标:理解集合的概念,掌握集合的表示方法。
能够列举常见的集合类型,如自然数集、整数集、实数集等。
教学内容:集合的定义及表示方法集合的类型及特点教学活动:1. 引入集合的概念,通过实际例子讲解集合的表示方法。
2. 引导学生思考集合的特点,如无序性、确定性等。
3. 练习列举常见的集合类型,加深对集合概念的理解。
教学评价:课堂练习:列举五个常见的集合,并说明其表示方法。
课后作业:练习题,加深对集合概念的理解。
1.2 集合的运算教学目标:理解并掌握集合的运算规则,包括并集、交集、补集等。
能够运用集合的运算解决实际问题。
教学内容:集合的并集、交集、补集的定义及运算规则集合运算的应用教学活动:1. 引入集合的运算概念,通过实际例子讲解并集、交集、补集的运算规则。
2. 引导学生通过集合运算解决实际问题,如统计数据、几何图形等。
3. 练习集合运算,加深对集合运算的理解和应用能力。
教学评价:课堂练习:运用集合运算解决实际问题,如统计数据、几何图形等。
课后作业:练习题,加深对集合运算的理解和应用能力。
第二章:函数2.1 函数的概念教学目标:理解函数的基本概念,掌握函数的表示方法。
能够识别和理解函数的定义域、值域等基本要素。
教学内容:函数的定义及表示方法函数的定义域、值域等基本要素教学活动:1. 引入函数的概念,通过实际例子讲解函数的表示方法。
2. 引导学生思考函数的定义域、值域等基本要素,加深对函数概念的理解。
3. 练习识别和理解函数的基本要素,巩固对函数概念的认识。
教学评价:课堂练习:识别和理解给定的函数,说明其定义域、值域等基本要素。
课后作业:练习题,加深对函数概念的理解。
2.2 函数的性质教学目标:理解并掌握函数的性质,包括单调性、奇偶性、周期性等。
能够运用函数的性质解决实际问题。
教学内容:函数的单调性、奇偶性、周期性等性质函数性质的应用教学活动:1. 引入函数的性质概念,通过实际例子讲解单调性、奇偶性、周期性等性质。
高教版中职数学基础模块上册电子教案第一章:函数的概念与性质1.1 函数的定义理解函数的概念掌握函数的表示方法能够列出常见的一次函数、二次函数和反比例函数。
1.2 函数的性质理解函数的单调性、奇偶性、周期性能够判断简单函数的单调性、奇偶性、周期性第二章:三角函数2.1 三角函数的定义理解锐角三角函数的概念掌握正弦、余弦、正切、余切、半角公式2.2 三角函数的性质理解三角函数的单调性、奇偶性、周期性能够判断简单三角函数的单调性、奇偶性、周期性第三章:解三角形3.1 正弦定理和余弦定理理解正弦定理和余弦定理的公式能够运用正弦定理和余弦定理解决实际问题3.2 解三角形的应用能够运用正弦定理和余弦定理解决解三角形的问题能够运用解三角形解决实际问题第四章:数列4.1 数列的概念理解数列的定义掌握数列的通项公式、求和公式4.2 等差数列和等比数列理解等差数列和等比数列的概念掌握等差数列和等比数列的性质、求和公式第五章:不等式与不等式组5.1 不等式的概念理解不等式的定义掌握不等式的性质5.2 不等式组的解法掌握解一元一次不等式、一元二次不等式的方法能够解不等式组并求出解集第六章:平面解析几何6.1 平面直角坐标系理解平面直角坐标系的定义和组成掌握坐标轴上的点的坐标表示6.2 直线方程理解直线的点斜式和两点式方程掌握直线的一般式方程和标准式方程第七章:多项式与方程7.1 多项式的概念理解多项式的定义掌握多项式的运算规则7.2 一元二次方程理解一元二次方程的定义掌握一元二次方程的解法(因式分解、配方法、求根公式)第八章:概率与统计8.1 概率的基本概念理解随机事件、必然事件、不可能事件的概念掌握概率的计算方法(古典概型、条件概率、独立事件)8.2 统计的基本概念理解平均数、中位数、众数的概念掌握数据的收集、整理、描述(图表法、数值法)第九章:函数图像的绘制9.1 函数图像的基本概念理解函数图像的定义和作用掌握函数图像的绘制方法(描点法、直线法)9.2 常见函数图像的特点掌握一次函数、二次函数、反比例函数、三角函数图像的特点和性质第十章:数学应用10.1 数学在实际生活中的应用理解数学在实际生活中的重要性掌握运用数学知识解决实际问题的方法10.2 数学在其他领域的应用理解数学在其他领域(如科学、技术、经济)的重要性掌握运用数学知识解决其他领域问题的方法第十一章:排列组合与初等数论11.1 排列组合的概念理解排列与组合的概念掌握排列与组合的计算方法(排列数公式、组合数公式)11.2 初等数论的基本概念理解自然数、整数、有理数、无理数的概念掌握素数、合数、最大公约数、最小公倍数的概念及计算方法第十二章:复数12.1 复数的概念理解复数的基本概念和复数代数表示法掌握复数的运算规则(加法、减法、乘法、除法)12.2 复数的应用理解复数在实际问题中的应用掌握运用复数解决实际问题的方法第十三章:导数与微分13.1 导数的概念理解导数的定义和几何意义掌握基本函数的导数公式13.2 微分的概念理解微分的定义和应用掌握微分的计算方法第十四章:积分与微分方程14.1 积分concepts理解积分的方法(牛顿-莱布尼茨公式、换元积分、分部积分)掌握基本积分表和积分的应用14.2 微分方程的概念理解微分方程的定义和分类掌握一阶微分方程的解法(可分离变量法、齐次方程法、线性方程法)第十五章:数学建模与数学软件15.1 数学建模的概念理解数学建模的基本过程和方法掌握数学建模在实际问题中的应用15.2 数学软件的概念与应用了解常见的数学软件(如MATLAB、Mathematica、Excel)掌握数学软件的基本操作和应用技巧重点和难点解析本教案涵盖了中职数学基础模块上册的主要内容,包括函数与性质、三角函数、解三角形、数列、不等式与不等式组、平面解析几何、多项式与方程、概率与统计、函数图像的绘制、数学应用、排列组合与初等数论、复数、导数与微分、积分与微分方程以及数学建模与数学软件。
党的十八大以来,我国实施精准扶贫、精准脱贫方略,脱贫攻坚取得了的成就,为全面建成小康社会打下了坚实基础.我国成为世界上减贫人口最多的国家,也是世界上率先完成联合国千年发展目标的国家.2015-2019 年,全国农村贫困人口数见表这个表格建立了全国农村贫困人口数与年份之间的对应关系.在义务教育阶段,我们已经学习了利用数学表达式来表示函数,那么是否也可以用这个表格来表示函数?探究与发现:回顾学过的知识,除了表达式、列表,我们1.解析法3.1“情境与问题(1)”中,我们用数学表达式y = 30y表示销售额y与销售量y之间的对应关系,这个数学表达式称为函数解析式,简称解析式.像这样利用解析式表示函数的方法称为解析法.如义务教育阶段学习的一次函数、一元二次函数、反比例函数等都是用解析法表示的.2.列表法我们用表格表示全国农村贫困人口数与年份之间的对应关系.像这样通过列出自变量的值与对应函数值的相应表格来表示函数的方法称为列表法.3.1“情境与问题(2)”中的恩格尔系数y随着时间y的对应关系也是用列表法表示的.3.图像法在汽车的研发过程中,需要对汽车进行一系列的性能测试,图3-2 是一种新型家用小汽车在高速公路上行驶时,油箱剩余油量y(y) 随时间y(h)变化的图像.像这样利用图像表示函数的方法称为图像法.例1 文具店内出售某种签字笔,每支售价6.5元,分别用列表法和解析法表示购买4支以内的签字笔时,应付款与签字笔支数之间的函数.解设y表示购买签字笔的支数,y表示应付款数(元),则y∈ {1,2,3,4}.(1)列表法表示见表(2)解析法表示为:y= 6.5y,y∈ {1,2,3,4}.例2 现阶段,我国很多城市普遍采用“阶梯水价” 的办法计量水费,发挥市场价格作用,增强了企业和居民的节水意识,避免水资源的浪费.如某市居民用水“阶梯水价”的收费标准如下:每户每年用水不超过180m³时,水价为5 元/ m³;超过180m³不超过260m³时,超过的部分按7 元/m³收费;超过260m³时,超过的部分按9 元/m³收费.结合给出的数据(不考虑其他影响因素)(1) 求出每户每年应缴水费y (元)与用水量y (y 3)之间的函数解析式,并画出函数的图像;(2) 若某用户某年用水 200m³,试求该用 户这一年应缴水费多少元?解 (1)依题意,得到应缴水费与用水量之间的关系,见表由表得到函数的解析式:⎧ 5x ,0 x 180, y = ⎪ x - 360, 180 < x 260,⎨7 ⎪⎩ 9x - 880,x > 260. 根据这个解析式,可以画出函数的图像.(2)因为该用户用水为 200m³,即 x =200, 处于收费标准的第二阶梯水价,所以y =7×200-360=1040即该用户这一年度应缴水费为 1040 元.在现实生活中,有很多函数是分段描述的.如,阶梯电费、出租车费、个人所得税等.这类函数的特点是:当自变量在不同范围内取值时,需要用不同的解析式来表示,我们称这样的函数为分段函数.练习 3.21.已知圆的半径为y,试分别写出圆的周长y和圆的面积y关于半径y的解析式.2.已知定义在R 上的一次函数y=ax+b 可以用下表表示,写出它的解析式.3.已知函数y = y(y)的图像,如下图,则(1)函数y=y(y)的定义域为;(2)y(1.6) = ;(3)函数y=y(y)的值域为.2,— 1 ≤ y≤ 0,4.已知函数y(y) = {y + 2,0 € y€ 2,4,y≤2.则(1)函数的定义域为,(2)y(1.5) = ;。
高教版中职数学(基础模块)课时安排及目录课时安排第三版上册第1章集合与充要条件1.1 集合的概念1.2 集合之间的关系1.3 集合的运算1.4 充要条件复习题1现代信息技术应用1 如何在Word文档中录入数学公式阅读与欣赏康托尔与集合论第2章不等式2.1 不等式的基本性质2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式复习题2现代信息技术应用2 利用Excel软件解一元二次方程阅读与欣赏数学家华罗庚第3章函数3.1 函数的概念及表示法3.2 函数的性质3.3 函数的实际应用举例复习题3现代信息技术应用3 利用几何画板作函数图像(静态)阅读与欣赏个人所得税计算方法解析第4章指数函数与对数函数4.1 实数指数幂4.2 指数函数4.3 对数4.4 对数函数复习题4现代信息技术应用4 利用几何画板作函数图像(动态)阅读与欣赏声音的计量及噪音第5章三角函数5.1. 角的概念推广5.2 弧度制5.3 任意角的正弦函数、余弦函数和正切函数5.4 同角三角函数的基本关系5.5 诱导公式5.6 三角函数的图像和性质5.7 已知三角函数值求角复习题5现代信息技术应用5 利用几何画板作函数图像(从轨迹角度)阅读与欣赏光周期现象及其应用附录1 预备知识附录2 教材使用的部分数学符号下册第6 章数列6.1 数列的概念6.2 等差数列6.3 等比数列复习题6现代信息技术应用6 编制利用Excel软件进行数列相关计算的工作表阅读与欣赏堆垛中的数学计算第7章平面向量7.1 平面向量的概念及线性运算7.2 平面向量的坐标表示7.3 平面向量的内积复习题7现代信息技术应用7 利用几何画板软件绘图1阅读与欣赏牛顿第8章直线和圆的方程8.1 两点间的距离与线段中点的坐标8.2 直线的方程8.3 两条直线的位置关系8.4 圆复习题8现代信息技术应用8 利用几何画板软件绘图2阅读与欣赏解析几何的创始人———笛卡儿第9 章立体几何9.1 平面的基本性质9.2 直线与直线、直线与平面、平面与平面平行的判定与性质绪言第1章集合1.1 集合及其表示1.1.1 集合的概念1.1.2 集合的表示法1.2 集合之间的关系1.3 集合的运算1.3.1 交集1.3.2 并集1.3.3 补集趣味数学神奇的心灵魔术数学文化无限集的奥秘信息技术应用元素与集合(列表) 第2章不等式2.1 不等式的基本性质2.1.1 实数的大小2.1.2 不等式的性质数学文化从弦图看基本不等式2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式2.5 不等式应用举例数学文化等号与不等号的来历信息技术应用四个“二次”第3章函数3.1 函数的概念3.2 函数的表示方法3.3 函数的性质3.3.1 函数的单调性3.3.2 函数的奇偶性3.3.3 几种常见的函数信息技术应用“心形”曲线与函数3.4 函数的应用趣味数学百钱买百鸡数学文化中国古代数学的发展期——魏晋南北朝第4章三角函数4.1 角的概念的推广4.1.1 任意角4.1.2 终边相同的角4.2 弧度制4.3 任意角的三角函数4.3.1 任意角的三角函数定义4.3.2 单位圆与三角函数4.4 同角三角函数的基本关系4.5 诱导公式4.6 正弦函数的图像和性质4.6.1 正弦函数的图像4.6.2 正弦函数的性质4.7 余弦函数的图像和性质4.8 已知三角函数值求角趣味数学地球的周长数学文化sin 的由来信息技术应用三角函数的定义域新版下册课时安排第5章指数函数与对数函数5.1 实数指数幂5.1.1 有理数指数幂5.1.2 实数指数幂5.2 指数函数5.3对数5.3.1对数的概念5.3.2 积、商、幂的对数数学文化对数简史5.4 对数函数5.5 指数函数与对数函数的应用趣味数学神奇的对数速算信息技术应用运用指数函数比较值的大小第6章直线与圆的方程6.1 两点间距离公式和线段的中点坐标公式6.2 直线的方程6.2.1 直线的倾斜角与斜率6.2.2 直线的点斜式方程与斜截式方程6.2.3 直线的一般式方程6.3 两条直线的位置关系6.3.1 两条直线平行6.3.2 两条直线相交6.3.3 点到直线的距离6.4 圆6.4.1 圆的标准方程6.4.2 圆的一般方程6.5 直线与圆的位置关系6.6 直线与圆的方程应用举例趣味数学数形结合,相辅相成数学文化笛卡儿坐标系的产生信息技术应用用GeoGebra判断直线与圆的位置关系第7章简单几何体7.1.1 棱柱7.1.2 直观图的画法7.1.3 棱锥7.2 旋转体7.2.1 圆柱7.2.2 圆锥7.2.3 球7.3 简单几何体的三视图数学文化祖暅原理信息技术应用正方体的十一种平面展开图第8章概率与统计初步8.1 随机事件8.1.1 随机事件的概念8.1.2 频率与概率8.3 概率的简单性质8.4 抽样方法8.4.1 简单随机抽样8.4.2 系统抽样8.4.3 分层抽样8.5 统计图表8.6 样本的均值和标准差趣味数学圆周率π中各数码出现的概率相同吗?拓展延伸大数据信息技术应用数据统计分析。
中职数学基础模块上册全套教学课件一、教学内容1. 第一章《实数与函数》:第一节实数的概念及性质,第二节函数的概念及性质,第三节初等函数及其图像。
2. 第二章《指数与对数》:第一节指数的概念及运算,第二节对数的概念及运算,第三节指数函数与对数函数及其图像。
4. 第三章《三角函数》:第一节锐角三角函数的定义,第二节三角函数的图像与性质,第三节三角恒等变换。
二、教学目标1. 理解并掌握实数、函数、指数、对数、三角函数等基本概念及其性质。
2. 学会运用指数、对数、三角函数解决实际问题。
3. 培养学生的逻辑思维能力和数学运算能力。
三、教学难点与重点1. 教学难点:函数的性质、指数与对数的运算、三角恒等变换。
2. 教学重点:实数、函数、指数、对数、三角函数的概念及其性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过生活实例引入实数、函数、指数、对数等概念。
2. 例题讲解:详细讲解各章节的重点、难点,引导学生理解并掌握相关知识。
3. 随堂练习:针对每个知识点设计练习题,巩固所学内容。
(1)实数与函数:求实数的绝对值、判断函数的单调性等。
(2)指数与对数:计算指数幂、对数,求解指数方程、对数方程等。
(3)三角函数:求三角函数的值、画三角函数的图像等。
六、板书设计1. 中职数学基础模块上册2. 内容:各章节知识点、例题、练习题、解题步骤等。
七、作业设计1. 作业题目:(1)实数与函数:求函数的定义域、值域、判断奇偶性等。
(2)指数与对数:计算指数幂、对数,求解指数方程、对数方程等。
(3)三角函数:求三角函数的值、画三角函数的图像等。
2. 答案:课后提供详细答案,方便学生自查。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探索指数、对数、三角函数在实际生活中的应用,提高学生的数学素养。
重点和难点解析1. 教学内容的安排与衔接2. 教学目标的制定3. 教学难点与重点的确定4. 教学过程中的实践情景引入5. 例题讲解的深度和广度6. 随堂练习的设计与反馈7. 板书设计的逻辑性和清晰度8. 作业设计的针对性和答案的准确性9. 课后反思与拓展延伸的有效性一、教学内容的安排与衔接教学内容应遵循由浅入深、循序渐进的原则。