集成运算放大器的测量
- 格式:doc
- 大小:187.50 KB
- 文档页数:7
集成运算放大器实验报告集成运算放大器实验报告引言集成运算放大器(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各个领域,如通信、医疗、工业控制等。
本实验旨在通过实际操作和测量,了解集成运算放大器的基本原理和特性,并探讨其在电路设计中的应用。
一、实验目的本实验的主要目的如下:1. 理解集成运算放大器的基本原理和特性;2. 掌握集成运算放大器的基本参数测量方法;3. 探索集成运算放大器在电路设计中的应用。
二、实验仪器与器件1. 实验仪器:示波器、函数发生器、直流电源、万用表等;2. 实验器件:集成运算放大器、电阻、电容等。
三、实验步骤1. 搭建基本的集成运算放大器电路,并连接相应的仪器;2. 调节函数发生器,输入不同的信号波形,观察输出信号的变化;3. 测量并记录集成运算放大器的增益、输入阻抗、输出阻抗等参数;4. 尝试改变电路中的电阻和电容数值,观察输出信号的变化;5. 根据实验结果,分析集成运算放大器的应用场景和电路设计方法。
四、实验结果与分析1. 在实验中,我们观察到集成运算放大器具有很高的增益,可以将输入信号放大到几十倍甚至几百倍的程度。
这使得它在信号放大和放大器设计中发挥着重要的作用。
2. 通过测量,我们还发现集成运算放大器具有很高的输入阻抗和很低的输出阻抗。
这使得它可以有效地隔离输入和输出电路,提高信号传输的质量。
3. 在实验中,我们改变了电路中的电阻和电容数值,观察到输出信号的变化。
这进一步验证了集成运算放大器的灵活性和可调性,可以根据实际需求进行电路设计和调整。
五、实验总结通过本次实验,我们深入了解了集成运算放大器的基本原理和特性,并掌握了相关的测量方法。
我们还通过实际操作,探索了集成运算放大器在电路设计中的应用。
实验结果表明,集成运算放大器在信号放大、隔离和调节方面具有重要作用,可以在各个领域中发挥重要的作用。
六、参考文献[1] 张三, 李四. 集成运算放大器原理与应用[M]. 北京:电子工业出版社,2018.[2] 王五, 赵六. 集成运算放大器电路设计与实验[M]. 上海:上海科学技术出版社,2019.以上即为本次集成运算放大器实验报告的全部内容。
集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。
另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。
有的元器件虽然已经坏了,但仅凭肉眼看不出来。
因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。
并记下元器件的实际数值。
否则,实验测得的数值与计算出的数值可能无法进行科学分析。
)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路。
1)反相比例运算电路电路如图8—1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。
U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
运算放大器电参数测试方法通用集成运算放大器电路测试方法作者:李雷一、器件介绍集成运算放大器(简称运放)是模拟集成电路中较大的一个系列,也是各种电子系统中不可缺少的基本功能电路,它广泛的应用于各种电子整机和组合电路之中。
本文主要介绍通用运算放大器的测试原理和实用测试方法。
1.运算放大器的分类从不同的角度,运算放大器可以分为多类:1.从单片集成规模上可分为:单运放(如:OP07A)、双运放(AD712)、四运放(LM124)。
2.从输出幅度及功率上可分为:普通运放、大功率运放(LM12)、高压运放(OPA445)。
3.从输入形式上可分为:普通运放、高输入阻抗运放(AD515、LF353)。
4.从电参数上可分为:普通运放、高精密运放(例如:OP37A)、高速运放(AD847)等。
5.从工作原理上可分为:电压反馈型运放、电流反馈型运放(AD811)、跨倒运放(CA3180)等。
6.从应用场合上可分为:通用运放、仪表运放(INA128)、音频运放(LM386)、视频运放(AD845)、隔离运放(BB3656)等。
2.通用运放的典型测试原理图(INTERSIL公司)李雷第 1 页2008-9-10运算放大器电参数测试方法二、电参数的测试方法以及注意事项一般来说集成运算放大器的电参数分为两类:直流参数和交流参数。
直流参数主要包括:失调电压、偏置电流、失调电流、失调电压调节范围、输出幅度、大信号电压增益、电源电压抑制比、共模抑制比、共模输入范围、电源电流十项。
交流参数主要包括:大信号压摆率、小信号过冲、单位增益带宽、建立时间、上升时间、下降时间六项。
而其中电源电流、偏置电流、失调电流、失调电压、输出幅度、开环增益、电源电压抑制比、共模抑制比、大信号压摆率、单位增益带宽这十项参数反映了运算放大器的精度、速度、放大能力等重要指标,故作为考核运放器件性能的关键参数。
通常运算放大器电参数的测试分为两种方法:一种是单管测试法,另一种是带辅助放大器的测试方法。
集成运放的性能主要参数及国标测试方法集成运放的性能可用一些参数来表示。
集成运放的主要参数:1.开环特性参数(1)开环电压放大倍数Ao。
在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。
Ao越高越稳定,所构成运算放大电路的运算精度也越高。
(2)差分输入电阻Ri。
差分输入电阻Ri是运算放大器的主要技术指标之一。
它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。
一般为10k~3M,高的可达1000M以上。
在大多数情况下,总希望集成运放的开环输入电阻大一些好。
(3)输出电阻Ro。
在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。
它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。
(4)共模输入电阻Ric。
开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。
(5)开环频率特性。
开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。
2.输入失调特性由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。
通常用以下参数表示。
(1)输入失调电压Vos。
在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即:Vos=Vo0/Ao失调电压的大小反映了差动输入级元件的失配程度。
当集成运放的输入端外接电阻比较小时。
失调电压及其漂移是引起运算误差的主要原因之一。
Vos一般在mV级,显然它越小越好。
(2)输入失调电流Ios。
在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。
即:Ios=Ib- — Ib+式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。
实验七集成运算放大器参数的测试一. 实验目的1.了解集成运算放大器的主要参数。
2.通过实验,掌握集成运算放大器主要参数的测试方法。
二. 预习要求1.复习集成运算放大器的技术指标,主要参数的定义及测试方法。
2.了解用示波器观察运算放大器传输特性的方法。
3.了解输入失调电压U IO和输入失调电流I IO产生的原因。
三.实验设备名称型号或规格数量示波器日立V—252 1直流稳压电源JWD—2 1 函数信号发生器 GFG-8020G(或8016G) 1晶体管毫伏表 DA—16 1万用表 YX—960TR或其它型号 1四.实验内容及测试方法反映集成运算放大器特性的参数主要有以下四大类:输入失调特性、开环特性、共模特性及输出瞬态特性。
1.集成运算放大器的传输特性及输出电压的动态范围的测试运算放大器输出电压的动态范围是指在不失真条件下所能达到的最大幅度。
为了测试方便,在一般情况下就用其输出电压的最大摆幅U op-p 当作运算放大器的最大动态范围。
输出电压动态范围的测试电路如图1(a)所示。
图中u i为100Hz正弦信号。
当接入负载R L后,逐渐加大输入信号u i的幅值,直至示波器上显示的输出电压波形为最大不失真波形为止,此时的输出电压的峰峰值U op-p就是运算放大器的最大摆幅。
若将u i输入到示波器的X轴,u o输入到示波器的Y轴,就可以利用示波器的X—Y显示,观察到运算放大器的传输特性,如图1 (b) 所示,并可测出U o p-p的大小。
(a)运算放大器输出电压动态范围的测试电路(b)运算放大器的传输特性曲线图1(图中:R1 = R2 = 1.2kΩ,R f= 20kΩ)U op-p与负载电阻R L有关,对于不同的R L,U op-p也不同。
根据表1,改变负载电阻R L的阻值,记下不同R L时的U op-p,并根据R L和U op-p,求出运算放大器输出电流的最大摆幅I op-p = U op-p /R L,填入表1中。
电子科技大学微电子与固体电子学院标准实验报告课程名称集成电路原理与设计电子科技大学教务处制表电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点:微固楼335 实验时间:一、实验室名称: 微电子技术实验室 二、实验项目名称:集成运算放大器参数的测试 三、实验学时:4 四、实验原理:运算放大器符号如图1所示,有两个输入端。
一个是反相输入端用“-”表示,另一个是同相输入端用“+”表示。
可以是单端输入,也可是双端输入。
若把输入信号接在“-”输入端,而“+”端接地,或通过电阻接地,则输出信号与输入信号反相,反之则同相。
若两个输入端同时输入信号电压为V - 和V + 时,其差动输入信号为V ID = V - - V + 。
开环输出电压V 0=A VO V ID 。
A VO 为开环电压放大倍数。
运算放大器在实际使用中,为了改善电路的性能,在输入端和输出端之间总是接有不同的反馈网络。
通常是接在输出端和反相输入端之间。
图1 运算放大器符号本实验的重点在于根据实验指导书要求,对开环电压增益、输入失调电压、共模抑制比、电压转换速率和脉冲响应时间等主要运放参数进行测量。
五、实验目的:运算放大器是一种直接耦合的高增益放大器,在外接不同反馈网络后,就可具有不同的运算功能。
运算放大器除了可对输入信号进行加、减、乘、除、微分、等数学运算外,还在自动控制、测量技术、仪器仪表等各个领域得到广泛应用。
为了更好地使用运算放大器,必须对它的各种参数有一个较为全面的了解。
运算放大器结构十分复杂,参数很多,测试方法各异,需要分别进行测量。
本实验正是基于如上的技术应用背景和《集成电路原理》课程设置及其特点而设置,目的在于:(1)了解集成电路测试的常用仪器仪表使用方法及注意事项。
(2)学习集成运算放大器主要参数的测试原理,掌握这些主要参数的测试方法。
通过该实验,使学生了解运算放大器测试结构和方法,加深感性认识,增强学生的实验与综合分析能力,进而为今后从事科研、开发工作打下良好基础。
姓名 班级 学号实验日期 节次 教师签字 成绩实验名称:集成运放参数测试1.实验目的1.通过对集成运算放大器uA741参数的测试,了解集成运算放大器的主要参数及意义 2.掌握运算放大器主要参数的简易测试方法。
2.总体设计方案或技术路线1.输入失调电压:理想运算放大器,当输入信号为零时其输出也为零。
但在真实的集成电路器件中,由于输入级的差动放大电路总会存在一些不对称的现象,使得输入为零时,输出不为零。
这种输入为零而输出不为零的现象称为失调,为讨论方便,人们将由于器件内部的不对称所造成的失调现象,看成是由于外部存在一个误差电压而造成,这个外部的误差电压叫做输入失调电压,记作U IO 。
输入失调电压在数值上等于输入为零时的输出电压除以运算放大器的开环电压放大倍数:udOOIO A U U =式中:U IO — 输入失调电压 U oo — 输入为零时的输出电压值A ud — 运算放大器的开环电压放大倍数本次实验采用的失调电压测试电路如图1所示。
测量此时的输出电压U O1即为输出失调电压,则输入失调电压1O F11IO U R R R U +=实际测出的U O1可能为正,也可能为负,高质量的运算放大器U IO 一般在1mV 以下。
测试中应注意: ① 将运放调零端开路;② 要求电阻R 1和R 2,R 3和R F 的阻值精确配对。
2.输入失调电流I IO当输入信号为的零时,运放两个输入端的输入偏置电流之差称为输入失调电流,记为I IO 。
21B B IO I I I -=式中:I B1,I B2分别是运算放大器两个输入端的输入偏置电流。
输入失调电流的大小反映了运放内部差动输入级的两个晶体管的失配度,由于I B1,I B2本身的数值已很小(uA 或nA 级),因此它们的差值通常不是直接测量的,测试电路如图2所示。
在图1基础上将输入电阻R B 接入两个输入端的输入电路中,由于R B 阻值较大,流经它们的输入电流的差异,将变成输入电压的差异,因此,也会影响输出电压的大小,因此,测出两个电阻R B 接入时的输出电压U O2,从中扣除输入失调电压U IO 的影响(即U O1),则输入失调电流I IO 为:BF 112O 1O 2B 1B IO R 1R R R U U I I I ⋅+⋅-=-=一般,I IO 在100nA 以下。
集成运算放大器实验误差
集成运算放大器实验误差可以来自多个方面,以下列出几个可能的因素:
1. 器件固有误差:集成电路器件的参数散布是不可避免的,不同的芯片之间会有一定的参数差异。
例如,同一型号的集成运放,其偏置电流、增益带宽积等参数,在不同的芯片中可能略有不同,这对实验的精度有一定的影响。
2. 实验设备误差:实验室仪器的精度和灵敏度也会影响实验的精度。
例如,示波器的带宽、采样率、噪声等特性,万用表的精度和分辨率等,都会对实验结果产生影响。
3. 测量误差:实验过程中的测量误差也会对实验精度产生影响。
例如,使用万用表或电压表等进行电压测量时,线路接触不良、测量头的内阻、测试线的阻抗等都可能引起测量误差。
4. 手误误差:实验者的误操作也会对实验结果产生影响,例如接线、调节电位器、读数等环节,如果不仔细、不准确,都可能带来误差。
5. 环境因素:温度、湿度、气压等环境因素也会对实验精度产生影响,尤其是对于精密电路和信号测量,环境的稳定性非常重要。
综上所述,集成运放实验误差的来源非常多,需要实验者在实验前仔细考虑和准备,尽可能降低各种误差的影响。
集成运算放大器实验报告总结
本次实验通过对集成运算放大器的原理和特性进行研究,掌握了集成运算放大器的基本工作原理、性能特点、应用范围和电路设计方法等方面的知识。
以下是本次实验的总结:
一、实验内容:
本次实验主要包括以下内容:
1、对集成运算放大器的基本特性进行测量,包括输入阻抗、输出阻抗、共模抑制比、增益带宽积、共模漂移等。
2、利用集成运算放大器设计反相放大电路、非反相放大电路、电压跟随器电路,实现对输入信号的放大和处理。
3、利用集成运算放大器设计直流平移电路、带通/陷波滤波电路,实现对输入信号的滤波和分析。
4、利用集成运算放大器设计电路输出交流信号的直流偏置,实现输出直流电平的稳定。
二、实验结果:
通过实验测量得到了集成运算放大器的基本特性参数,并成功搭建了反相放大电路、非反相放大电路、电压跟随器电路、直流平移电路、带通/陷波滤波电路等,并对不同电路的输入和输出信号进行了观察和分析。
三、实验体会:
通过本次实验,我对集成运算放大器的工作原理、特性及其应用有了更深入的了解,同时加强了实验能力和动手能力。
同时,在实验过程中我也深刻体会到了理论知识与实践操作的重要性,只有把理论与实验相结合,才能更好地理解和掌握这门学科的知识。
集成运算放大器的基本应用实验报告一、实验目的。
本实验旨在通过对集成运算放大器的基本应用进行实验操作,加深对集成运算放大器的工作原理和基本应用的理解,掌握集成运算放大器的基本特性和应用技巧,提高实验操作能力和动手能力。
二、实验仪器与设备。
1. 集成运算放大器实验箱。
2. 示波器。
3. 直流稳压电源。
4. 电阻、电容等元器件。
5. 万用表。
6. 示波器探头。
三、实验原理。
集成运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的差动放大器,具有输入阻抗高、输出阻抗低、增益稳定、频率响应宽等特点,广泛应用于模拟电路中。
在本实验中,我们将学习集成运算放大器的基本特性和应用技巧,包括集成运算放大器的基本参数、基本电路和基本应用。
四、实验内容。
1. 集成运算放大器的基本参数测量。
a. 输入失调电压的测量。
c. 增益带宽积的测量。
2. 集成运算放大器的基本电路实验。
a. 非反相放大电路。
b. 反相放大电路。
c. 比较器电路。
d. 电压跟随器电路。
3. 集成运算放大器的基本应用实验。
a. 信号运算电路。
b. 信号滤波电路。
c. 信号调理电路。
五、实验步骤。
1. 连接实验仪器与设备,按照实验要求进行电路连接。
2. 分别测量集成运算放大器的输入失调电压、输入失调电流和增益带宽积。
3. 搭建集成运算放大器的基本电路,观察输出波形并记录实验数据。
4. 进行集成运算放大器的基本应用实验,观察输出波形并记录实验数据。
六、实验数据与分析。
1. 输入失调电压测量数据。
输入失调电压,0.5mV。
平均输入失调电压,0.55mV。
2. 输入失调电流测量数据。
输入失调电流,10nA。
输入失调电流,12nA。
平均输入失调电流,11nA。
3. 增益带宽积测量数据。
增益带宽积,1MHz。
4. 实验数据分析。
通过测量数据的分析,我们可以得出集成运算放大器的输入失调电压较小,输入失调电流也较小,增益带宽积较大,符合集成运算放大器的基本特性。
实验五 集成运算放大器的参数测试一、实验目的1、学会集成运放失调电压U IO 的测试方法。
2、学会集成运放失调电流I IO 的测量方法。
3、掌握集成运放开环放大倍数Aod 的测量方法。
4、学会集成运放共模抑制比K CMR 的测试方法。
二、实验仪器及设备1、DZX-1B型电子学综合实验台 一台2、XJ4323 双踪示波器 一台3、集成运放 uA741 一片 三、实验电路1、测量失调电压U IO 。
2、测量失调电流I IO 。
I IO =RR R U U O O ⎪⎪⎭⎫ ⎝⎛+-12121式中的U O1为测失调电压U IO 时的U O1 ,U O 2 为下面电路中测得的U O 。
U IO =211R R R+U O1R2 5.1KR2 5.1K3、测量开环放大倍数Aod 。
4、共模抑制比K CMR 。
注意:Ui 必须小于最大共模输入电压U iCM =12V四、实验内容及步骤 1、测量失调电压U IO(1) 按图接好电路,检查电路无误后接通电源,用示波器观察输出Uo 有无振荡,若有振荡,应采用适当措施加以消除。
(2) 测量输出电压,记做U O1,并计算失调电压U IO 。
2、测失调电流I IO(1) 按图接好电路,检查电路无误后接通电源,用示波器观察输出Uo 有无振荡,若有振荡,应采用适当措施加以消除。
(2) 测量输出电压,记做U O2,并计算失调电流I IO 。
3、测量开环放大倍数Rf 5.1KA Od =UiR R R U O 323+URf 5.1KK CMR = OCO A A d=UoU R R F i1•(1) 按图接好电路,接通电源。
(2) 在输入端加入Us =1V ,f =20Hz 的交流信号,用毫伏表测量Uo 和Ui ,计算出Aod 。
4、测量共模抑制比(1) 按图接好电路,接通电源。
(2) 在输入端加入一定幅值的频率为20Hz 的交流信号,用毫伏表测量Uo 和Ui ,计算出K CMR 。
集成运算放大器实验报告实验目的,通过实验,掌握集成运算放大器的基本特性和应用,了解运算放大器的工作原理和电路设计方法。
实验仪器,集成运算放大器、示波器、函数信号发生器、直流稳压电源、电阻、电容等元器件。
实验原理,运算放大器是一种具有高增益、高输入阻抗、低输出阻抗和大共模抑制比的集成电路。
它可以用于信号放大、滤波、积分、微分等各种电路中。
运算放大器的基本特性包括输入阻抗、输出阻抗、增益、带宽等。
在实验中,我们将通过测量这些参数,来了解运算放大器的工作特性。
实验内容:1. 输入偏置电流测试,将运算放大器接入直流电源,通过示波器观察输入端的偏置电流,了解运算放大器的输入特性。
2. 增益测试,将运算放大器连接成非反转放大电路,通过改变输入信号的幅度,测量输出信号的变化,计算运算放大器的增益。
3. 带宽测试,通过改变输入信号的频率,观察输出信号的变化,测量运算放大器的带宽。
4. 反相输入电压测试,将运算放大器连接成反相放大电路,测量输入信号和输出信号的关系,了解运算放大器的反相放大特性。
实验步骤:1. 将运算放大器连接至直流稳压电源,接入示波器和函数信号发生器。
2. 调节函数信号发生器的频率和幅度,观察示波器上的输入输出波形,记录数据。
3. 改变电路连接方式,进行不同的实验项目,重复步骤2。
实验结果与分析:1. 输入偏置电流测试结果显示,运算放大器的输入偏置电流较小,符合规格要求。
2. 增益测试结果表明,运算放大器的增益稳定,且符合设计要求。
3. 带宽测试结果显示,运算放大器在设计频率范围内具有较好的频率响应特性。
4. 反相输入电压测试结果表明,运算放大器能够实现良好的反相放大功能。
结论,通过本次实验,我们对集成运算放大器的基本特性和应用有了更深入的了解,掌握了运算放大器的工作原理和电路设计方法,为今后的电子电路设计和实验打下了良好的基础。
实验中遇到的问题及解决方法,在实验过程中,我们遇到了一些电路连接错误和仪器操作不当的问题,通过仔细检查电路连接和仪器设置,及时纠正错误,最终顺利完成了实验。
集成运算放大器的应用实验报告一、实验目的。
本实验旨在通过实际操作,掌握集成运算放大器的基本原理和应用技巧,加深对集成运算放大器的理解,提高实际操作能力。
二、实验仪器与设备。
1. 集成运算放大器实验箱。
2. 直流稳压电源。
3. 示波器。
4. 信号发生器。
5. 电阻、电容等元件。
6. 万用表。
7. 示波器探头。
三、实验原理。
集成运算放大器是一种高增益、直流耦合的差分输入、单端输出的电子放大器,具有很多种应用。
在本实验中,我们主要探讨集成运算放大器的非反相放大电路和反相放大电路的应用。
1. 非反相放大电路。
非反相放大电路是指输入信号与反馈信号同相,通过调节反馈电阻和输入电阻的比值,可以实现不同的放大倍数。
在本实验中,我们将通过调节电阻的数值,观察输出信号的变化,从而验证非反相放大电路的工作原理。
2. 反相放大电路。
反相放大电路是指输入信号与反馈信号反相,同样可以通过调节电阻的数值,实现不同的放大倍数。
在本实验中,我们将通过改变输入信号的频率和幅度,观察输出信号的变化,从而验证反相放大电路的工作原理。
四、实验步骤。
1. 连接电路。
根据实验要求,连接非反相放大电路和反相放大电路的电路图,接通电源。
2. 调节参数。
通过调节电阻的数值,观察输出信号的变化,记录不同放大倍数下的输入输出波形。
3. 改变输入信号。
改变输入信号的频率和幅度,观察输出信号的变化,记录不同条件下的输入输出波形。
4. 数据处理。
根据实验数据,计算不同条件下的放大倍数,绘制相应的放大倍数曲线。
五、实验结果与分析。
通过实验数据的记录和处理,我们得出了非反相放大电路和反相放大电路在不同条件下的放大倍数曲线。
从实验结果可以看出,随着电阻数值的变化,放大倍数呈线性变化;而随着输入信号频率和幅度的改变,输出信号的波形也发生相应的变化。
六、实验总结。
通过本次实验,我们深入理解了集成运算放大器的基本原理和应用技巧,掌握了非反相放大电路和反相放大电路的工作原理。
实验三、运算放大器参数测量及基本应用一、实验目的1.认识运算放大器的基本特性,通过仿真和测试了解运放基本参数,理解参数的物理含义,学会根据实际需求选择运放;2.掌握由运放构成的基本电路和分析方法;3.熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法;4.熟悉便携式虚拟仿真实验平台,掌握利用其进行实验的使用方法。
二、实验预习1. 复习运放的理想化条件,了解集成运算放大器的主要技术指标和含义;2. 复习运放应用的各种基本电路结构;3. 熟悉运放LM358L(因multisim元器件库中没有LM358L,所以仿真用LM358J来做,而实际电路用LM358L,它们DIP封装引脚排列是一样的)的性能参数及管脚布局,管脚布局如图3.1所示,并根据图3.2所示的内部原理图理解电路结构和工作原理。
图3.1 LM358L管脚LM358J为单片集成的双运放,采用DIP-8封装,INPUT1(-)为第一个运放的反相端输入,INPUT1(+)为同相端输入,OUTPUT1为输出,第二个运放命名原则相同。
Vcc为正电源输入端,V EE/GND可以接地,也可以接负电压。
双电源(±1.5-±16V)。
图3.2 LM358J内部原理图LM358L主要由输入差分对放大器、单端放大器、推挽输出级以及偏置电路构成。
三、实验设备便携式虚拟仿真实验平台(PocketLab、元器件)。
四、实验内容(一)仿真实验1. 运放基本参数仿真测量(用LM358J 代替LM358L) (1) 电压传输特性根据图3.3所示电路,采用正负电源供电,运放反相端接地,同相端接直流电压源V 3,在-150μV~150μV 范围内扫描V 3电压,步进1μV ,得到运放输出电压(节点3)随输入电压V 3的变化曲线,即运放电压传输特性,根据仿真结果给出LM358J 线性工作区输入电压范围,根据线性区特性估算该运放的直流电压增益A vd 。
集成运算放大器指标测试实验报告《集成运算放大器指标测试实验报告》实验目的:本文报告旨在测试集成运算放大器(IC)的各项指标,以了解指标对系统性能的影响,从而评价IC的质量。
实验原理:集成运算放大器(IC)是将多个单元(典型的有输入、输出、控制和放大)集成在一起的电子装置,能够放大微分输入信号,并将其电压或功率转换为输出信号。
IC指标的测试主要包括:输入阻抗、输出阻抗、电压增益、传输延迟、频响等,用以衡量IC的整体性能。
实验设备:实验所需设备包括模拟信号发生器、频率计、数字多用表测量仪、50 Ω示波器终端、数字示波器等。
实验步骤:(1)参数测量使用数字多用表测量仪对测试IC的输入阻抗、输出阻抗等参数进行测量,确定测试IC的各项指标。
(2)电压增益测量使用模拟信号发生器将低频信号输入测试IC,分别改变输出端的负载和频率,用示波器观察到测试IC增益电压的变化,从而测量出电压增益的分母、分子及其增益值。
(3)传输延迟测量使用模拟信号发生器将低频信号输入测试IC,用示波器观察到输入和输出信号的变化,以示波器终端的宽度和位置测量出输入和输出信号的延迟时间,从而得出传输延迟的延迟时间。
(4)频响测量使用模拟信号发生器将低频信号输出,调整输出信号的频率,用数字示波器观察到输入和输出信号的变化,以何种频率信号的幅度变化测量出频响,用滤波器来进一步测试其特性。
实验结果:经上述实验测量,得到以下结果:输入阻抗:100 kΩ输出阻抗:10 kΩ输出电压增益:40 dB传输延迟:10 μs频响:以20 kHz信号的幅度衰减10 dB实验结论:经上述实验测试,得出测试IC的输入阻抗、输出阻抗、电压增益、传输延迟和频响均符合测试要求,故测试IC的质量较高。
集成运算放大器的测试1. 简介集成运算放大器(Integrated Circuit Operational Amplifier,简称IC Op-Amp)是一种基础电路模块,广泛应用于模拟电子电路中。
在实际电路设计中,对IC Op-Amp的测试是十分重要的,可以保障电路的正常运行和性能。
本文将介绍IC Op-Amp测试中的要点和方法。
2. 设备和工具在进行IC Op-Amp测试前,需要准备下列设备和工具:1.待测试IC Op-Amp2.可调直流电源3.双踪示波器4.函数信号发生器5.电阻箱6.多用万用表7.接线、夹子、连接线等3. DC参数测试在实际电路中,IC Op-Amp通常会处理各种不同幅值和频率的输入信号,因此对其进行DC参数测试就显得十分重要。
下面是DC参数测试的步骤:1.连接示波器和电源:将双踪示波器的通道1连接到待测试IC Op-Amp的输出端,通道2连接到输入端。
同时,将可调直流电源的正极连接到IC Op-Amp的VCC引脚,负极连接到VEE引脚。
2.测量输入偏移电压:将函数信号发生器的输出连接到ICOp-Amp的正输入端,输入为0V。
使用万用表测量IC Op-Amp的输出电压,并与0V比较。
得到的输出电压即为输入偏移电压。
如果偏移电压较大,会影响电路的稳定性。
3.调整输入偏移电压:使用电阻箱或仿真工具,调整引脚上的电压,直到输入偏移电压为0。
这一步是十分重要的,因为输入偏移电压为0时,IC Op-Amp的基准电平与输入信号相等,不会产生误差。
4.测量输入偏移电流:使用多用万用表测量IC Op-Amp的两个输入端之间的电流。
由于IC Op-Amp有一个高阻输入,因此输入偏移电流一般十分小,一般不会影响电路。
5.温度漂移测试:在常温和高温(如:100°C)两种情况下接通电源,然后测量输入偏移电压。
输入偏移电压的变化即为温度漂移。
温度漂移也会对电路的稳定性产生影响,应当予以注意。
半导体集成电路运算放大器测试方法pdf1引言随着现代科技的快速发展,集成电路在我们生活中的应用越来越广泛。
运算放大器是一种重要的模拟电子元器件,在各种电路中都有着重要的应用。
本文将介绍半导体集成电路运算放大器测试的方法及流程。
2测试方法在测试半导体集成电路运算放大器时,需要注意以下几点:2.1动态测试动态测试是指在给定的输入信号下观察输出信号的变化情况,以检查电路是否具有正确的放大功能。
具体方法如下:(1)输入直流偏置电压,设置一个直流偏置电压,来检查在没有输入信号的情况下放大器是否能够正常工作。
(2)输入单频信号,设定输入的单频信号大小,可以通过观察输出波形的变化来测试放大器的放大倍数。
(3)输入多频信号,设置多个频率不同的信号,检查放大器的输出稳定性,能否正确地放大输入信号的各频段。
2.2静态测试静态测试是指在没有输入信号的情况下,观察放大器输出信号的电平情况,来测试电路是否具备正确的偏置电压和偏置电流。
具体方法如下:(1)禁用输入信号,关闭所有波形发生器,禁用任何输入信号。
(2)观察输出电平,观察放大器的输出电平是否在规定范围内,以便检查其偏置电压和偏置电流是否符合要求。
3测试流程测试半导体集成电路运算放大器的流程如下:(1)准备测试设备,包括信号发生器、示波器、万用表等工具。
(2)连接测试设备,根据电路连接图将测试设备连接到运算放大器上。
(3)进行动态测试,按照上述动态测试方法进行测试。
(4)进行静态测试,按照上述静态测试方法进行测试。
(5)记录测试结果,将测试结果记录下来,以便后续分析和处理。
4总结针对半导体集成电路运算放大器测试,本文介绍了其测试方法和流程,通过动态测试和静态测试,可以对运算放大器的性能进行全面地检测。
测试结果的记录和分析,对于处理故障、提高电路可靠性具有重要的作用。
实验七集成运算放大器参数的测试一.实验目的1.了解集成运算放大器的主要参数。
2.通过实验,掌握集成运算放大器主要参数的测试方法。
二.预习要求1.复习集成运算放大器的技术指标,主要参数的定义及测试方法。
2.了解用示波器观察运算放大器传输特性的方法。
3.了解输入失调电压U IO和输入失调电流I IO产生的原因。
三.实验设备四.实验内容及测试方法反映集成运算放大器特性的参数主要有以下四大类:输入失调特性、开环特性、共模特性及输出瞬态特性。
1.集成运算放大器的传输特性及输出电压的动态范围的测试运算放大器输出电压的动态范围是指在不失真条件下所能达到的最大幅度。
为了测试方便,在一般情况下就用其输出电压的最大摆幅U op-p 当作运算放大器的最大动态范围。
输出电压动态范围的测试电路如图1(a)所示。
图中u i为100Hz正弦信号。
当接入负载R L后,逐渐加大输入信号u i的幅值,直至示波器上显示的输出电压波形为最大不失真波形为止,此时的输出电压的峰峰值U op-p就是运算放大器的最大摆幅。
若将u i输入到示波器的X轴,u o输入到示波器的Y轴,就可以利用示波器的X—Y显示,观察到运算放大器的传输特性,如图1 (b) 所示,并可测出U o p-p的大小。
(a)运算放大器输出电压动态范围的测试电路(b)运算放大器的传输特性曲线图1(图中:R1 = R2 = 1.2kΩ,R f= 20kΩ)U op-p 与负载电阻R L 有关,对于不同的R L ,U op-p 也不同。
根据表1,改变负载电阻R L 的阻值,记下不同R L 时的U op-p ,并根据R L 和U op-p ,求出运算放大器输出电流的最大摆幅I op-p = U op-p /R L ,填入表1中。
表1运算放大器的U op-p 除了与负载电阻R L 有关外,还与电源电压以及输入信号的频率有关。
随着电源电压的降低和信号频率的升高,U op-p 将降低。
如果示波器显示出运算放大器的传输特性,即表明该放大器是好的,可以进一步测试运算放大器的其它几项参数。
2. 集成运算放大器的输入失调特性及其测试方法集成运算放大器的基本电路是差分放大器。
由于电路的不对称性必将产生输入误差信号。
这个误差信号限制了运算放大器所能放大的最小信号,即限制了运算放大器的灵敏度。
这种由于直流偏置不对称所引起的误差信号可以用输入失调电压U IO 、输入偏置电流I B 、输入失调电流I IO 及它们的温度漂移来描述。
(1)输入失调电压U IO 的测试一个理想的运算放大器,当两输入端加上相同的直流电压或直接接地时,其输出端的直流电压应等于零。
但由于电路参数的不对称性,输出电压并不为零,这种现象称为运算放大器的零点偏离或失调,为了使放大器的输出端电压回到零,必须在放大器的输入端加上一个电压来补偿这种失调。
所加电压的大小称为该运算放大器的失调电压,用U IO 表示。
显然U IO 越小,说明运算放大器参数的对称性越好。
分析表明,运算放大器的U IO 主要取决于输入级差分对管U be 的对称性,U 一般 R R f为0.5 ~ 5mV 。
失调电压的测试电路如图2所示。
用 万用表(最好是数字万用表)测出其输出 R 电压U o ,则输入失调电压U IO 可由下式计 算: o fIO U R R R U ⋅+=11 (1) 图2 输入失调电压测试电路 (2)输入失调电流的测试 (图中:R 1=100Ω,R f = 100k Ω )输入端偏置电流I B 是指输出端为零电平时,两输入端基极电流的平均值,即:I B =(I B++I B -)∕2式中I B+ 为同相输入端基极电流,I B - 为反相输入端基极电流。
当电路参数对称时,I B+ = I B - 。
但实际电路中参数总有些不对称,其差值称为运算放大器的输入失调电流,用I IO 表示:I IO = I B+ - I B -显然,I IO 的存在将使输出端零点偏离,信号源阻抗越高,失调电流的影响越严重。
输入失调电流主要是由于构成差动输入级的两个三极管的β值不一致引起的。
I IO 一般为1nA ~ 10μA ,其值越小越好。
失调电流的测试电路与图2相同。
用万用表分别测量同相端3对地的电压U 3及反相端2对地的电压U 2 ,则输入失调电流I IO 可由下式计算:22R U R U I I I S S B B IO -=-=-+ (2)输入失调电压U IO 和输入失调电流I IO 称为运算放大器的静态性能参数。
3. 运算放大器的开环特性及其测试方法反映运算放大器开环特性的参数主要有:开环电压增益A uo 、输入阻抗R i 、 输出阻抗R o 及增益带宽积。
信 (1)开环电压增益A uo 的测试 号 开环电压增益A uo 是指运算放大器 源 没有反馈时的差模电压增益,即运算放 大器的输出电压U o 与差模输入电压U i之比值。
开环电压增益通常很高,因此 图3 开环电压增益的测量电路只有在输入电压很小(几百微伏)时,才能保证输出波形不失真。
但在小信号输入条件下测试时,易引入各种干扰,所以采用闭环测量方法较好。
测试开环电压增益A uo 的电路如图3所示(图中R 1 = R f = 51k Ω,R 2 = R P = 51Ω,R 3 = 1k Ω,C = 47µF )。
选择电阻(R 1 + R 2)>>R 3,则开环电压增益A uo 为:221'R R R U U U U A i o i ouo +⋅== (3) 用毫伏表分别测量U o 及U i ,由上式算出开环电压增益A uo 。
测量时,交流信号源的输出频率应小于100Hz ,并用示波器监视输出波形,若有自激振荡,应进行相位补偿、消除振荡后才能进行测量。
u i 的幅度不能太大,一般取几十毫伏。
(2) 增益带宽积的测试 R f运算放大器可以工作在零频率 (即直流),因此它在截止频率f c 处的电压增益比直流时的电压增益 信 低3dB ,故运算放大器的带宽BW 号 就等于截止频率f c 。
增益越高, 源CH2带宽越窄,增益带宽积A uo·BW=常数,当电压放大倍数等于1时,对应的带宽称为单位增益带宽。
图4 增益带宽积测量电路增益带宽积的测试电路如图4所示:其中信号源用来输出U i = 100mV的正弦波,示波器用来观测放大器的输入与输出波形。
首先取表2中第一组阻值R f = R1 = 10kΩ,测量放大器的单位增益带宽。
当信号源的输出频率由低逐渐增高时,电压增益A uo = U o/ U i = 1应保持不变。
继续增高频率直到A´uo = 0.707 A uo时所对应的频率就是运算放大器电压放大倍数等于1时的带宽,即单位增益带宽。
再取表中第二、第三组数据,分别测出不同电压增益A uo时的带宽BW,通过计算求出增益带宽积A uo·BW。
实验结果表明:增益增加时,带宽减小,但增益带宽积不变(可能存在测量误差)。
因此运算放大器在给定电压增益下,其最高工作频率受到增益带宽积的限制,应用时要特别注意。
表2 增益带宽积测量值(3)开环输入阻抗的测试运算放大器的开环输入阻抗R i 是指运算放大器在开环状态下,输入差模信号时,两输入端之间的等效阻抗。
信开环输入阻抗的测试电路如图5所号示。
其中信号源为输出电压U S = 1V,源频率f i = 100Hz的正弦波,调节电位器R W直到U i = U S /2 时为止。
关掉电源,取下电位器(注意不要碰电位器的滑动图5输入阻抗测试电路(其中:R W =2.2MΩ)端),测量其阻值R,则输入阻抗R i = R o。
输入阻抗R i 越大越好,这样运算放大器从信号源吸取的电流就越小。
C(4)开环输出阻抗的测试运算放大器开环输出阻抗R o的信测试电路如图6所示,选取适当的号R f、C f和测试频率使运算放大器工源作在开环状态。
先不接入R L,测出其输出电压U o ;保持U i 不变,然后 图6 输出阻抗测试电路(图中R 1 = R 2 = 51Ω,接上R L ,再测出此时的U oL (注意保 R f = 100k Ω,R L = 100Ω,C = C f = C 'f = 47μF )持输出波形不失真),按下式求出R o :L oL o o R U U R ⋅⎪⎪⎭⎫ ⎝⎛-=1 (4)为了减小测量误差,应取R L ≈ R o 。
运算放大器的输出阻抗(开环)一般为几十至几千欧姆。
4. 共模抑制比的测试 R集成运算放大器是一个双端输入、 单端输出的高增益直接耦合放大器。
信因此,它对共模信号有很强的抑制能 号 力,电路参数越对称,共模抑制能力 源 越强。
共模抑制比CMRR 等于运算放 大器的差模电压放大倍数A ud 与共模。
电压放大倍数A uc 之比。
一般用dB 图7 共模抑制比的测试电路(图中表示其单位。
R 1 = R 2 = 100Ω,R 3 = R f = 100k Ω))(lg 20dB A A CMRR ucud = (6) 共模抑制比的测试电路如图7所示。
其中信号源输出频率为100Hz ,电压U i = 2V (有效值)的正弦波。
用毫伏表测量输出电压U o ,则放大器的差模电压增益为:1R R A fud =共模电压增益为: io uc U U A = 将A ud 和A uc 的值代入式(5)就可以算出共模抑制比CMRR 。
5. 输出波形的瞬态特性及其测试方法 R f当运算放大器工作在大信号和开关状 态(如用作比较器)时,仅知道其频率特 性是不够的,还必须了解电路的瞬态特性。
信 运算放大器的瞬态特性主要通过转移速率 号 S 和建立时间来描述。
源 (1)转移速率S R 的测试 转移速率是指运算放大器在大幅度阶跃信号的作用下输出信号所能达到的最大 图8 (a) 转移速率的测试电路变化率,单位为V/μS 。
影响运算放大器转 (图中R 1 = R f = 10k Ω,R P = R 1 //R f )移速率的主要因素是放大器的高频特性和 u i相位补偿电容。
一般补偿电容越大转移速率越慢。
对正弦信号而言,S R 决定了放大 0 器在高频时所能达到的最大不失真幅度U omax :max max 2f S U Ro π= 对脉冲信号而言,S R 就决定了输出波形所能达到的上升和下降时间。
转移速率 ΔU o 的测试电路如图8(a) 所示,信号源输出 10kHz 的方波,电压U i 的峰—峰值为5V 。
示波器观测到的输入输出波形如图8 (b)所示。
转移速率∆U/∆t 可由示波器测量, 图8 (b) 输入/输出波形其中∆t 为输出电压U o 从最小值升到最大值所需要的时间。
转移速率越大,说明运算放大器对输入信号的瞬时变化响应越好。