第8章单片机接口技术全解
- 格式:ppt
- 大小:7.80 MB
- 文档页数:101
单片机原理及接口技术
单片机(Microcontroller)是集成了微处理器核心、存储器、输入输出接口和定时器等外设功能于一芯片之中的微型计算机。
单片机的工作原理是通过中央处理器(CPU)来执行存储于存储器中的程序,根据程序中的指令进行运算和控制。
它的输入输出接口用于与外部设备连接,如传感器、执行器等,完成信号的输入、输出和控制操作。
单片机的工作流程通常包括以下几个步骤:
1. 初始化:单片机启动时对各个外设进行初始化设置。
2. 输入数据:通过输入接口从外部设备或传感器中接收数据。
3. 运算处理:CPU对接收到的数据进行运算和处理,执行程序指令。
4. 输出数据:通过输出接口将处理后的数据送给外部设备
或执行器进行控制。
单片机的接口技术包括以下几种:
1. 数字输入输出(Digital I/O):用于处理数字信号的输
入和输出,通过高低电平的变化来进行数据传输和控制。
2. 模拟输入输出(Analog I/O):用于处理模拟信号的输
入和输出,通过模数转换器(ADC)将模拟信号转换为数
字信号进行处理。
3. 串口通信(Serial Communication):通过串口接口与外部设备进行数据的收发和通信,如RS-232、RS-485等。
4. 并口通信(Parallel Communication):通过并口接口与外部设备进行数据的并行传输和通信,如打印机接口。
5. 定时器计数器(Timer/Counter):用于生成定时和计
数功能,可实现时间的测量、延时等操作。
单片机的接口技术可以根据应用需求进行选择和配置,以实现与外部设备的连接和通信,完成各种控制和数据处理任务。
单片机原理及接口技术在当今数字化时代,单片机已经成为嵌入式系统设计中不可或缺的重要组成部分。
本文将介绍单片机的工作原理以及与外部设备进行通信的接口技术。
单片机工作原理单片机是一种集成了处理器、存储器和输入输出设备等功能模块的微型计算机系统。
它通常由中央处理器(CPU)、存储器(RAM和ROM)、计时器(Timer)、串行通信接口(UART)和引脚(Port)组成。
单片机的工作原理可以简要描述为以下几个步骤:1.初始化:单片机在上电时会执行初始化程序,设置各种工作模式、配置寄存器等。
2.执行程序:单片机会根据存储器中存储的程序指令序列来执行相应的操作,包括算术逻辑运算、控制流程等。
3.输入输出操作:单片机通过输入输出接口与外部设备进行通信,如传感器、执行器等。
4.中断处理:单片机可以在特定条件下触发中断请求,暂停当前执行的程序,转而执行中断服务程序,处理相应的事件或信号。
单片机接口技术单片机与外部设备的通信主要依赖于接口技术,包括数字输入输出接口、模拟输入输出接口以及通信接口等。
数字输入输出接口数字输入输出接口用于与二进制设备进行通信,通过配置相应的引脚工作在输入或输出模式,实现信号的采集与输出。
常用的数字输入输出方式包括GPIO口、SPI接口、I2C接口等。
模拟输入输出接口模拟输入输出接口用于处理模拟信号,包括模拟输入端口和模拟输出端口。
模拟输入端口通过模数转换器将模拟信号转换为数字信号,模拟输出端口则通过数模转换器将数字信号转换为模拟信号。
通信接口通信接口是单片机与外部设备进行数据交换的重要手段,主要有串行通信接口(UART)、并行通信接口(Parallel)、CAN接口等。
通过这些通信接口,单片机可以实现与其他设备的数据交换与通信。
结语单片机原理及接口技术是嵌入式系统设计的基础知识,通过深入了解单片机的工作原理和接口技术,可以更好地应用单片机进行系统设计与开发。
希望本文对读者有所帮助,谢谢!以上是关于单片机原理及接口技术的简要介绍,希望能对读者有所启发。
单片机原理及接口技术讲解单片机(Microcontroller)是一种集成电路芯片,内含有中央处理器(CPU)、存储器、输入输出端口、定时器计数器、串行通信接口等核心模块,可用于控制、计算、存储和通信等多种功能。
单片机的工作原理是通过处理器执行存储在存储器中的指令来实现各种功能。
它的内部包含一个由晶体管、逻辑门等构成的微处理器,负责执行计算和控制指令。
单片机的芯片上还集成了存储器,用于存储程序指令和数据。
输入输出端口可以与外部设备进行数据交互,定时器计数器可以实现精确的定时和计数功能。
通过串行通信接口,单片机可以与其他设备进行数据传输和通信。
单片机的接口技术是指单片机与外部设备进行数据传输和通信的技术。
常见的接口技术包括并行接口、串行接口、模拟接口等。
并行接口是通过多个并行数据线同时传输数据的接口技术。
常见的并行接口有通用并行接口(GPIO)、地址总线、数据总线等。
通用并行接口(GPIO)是一组可编程的并行输入输出线,可以被程序员控制来进行数据的输入输出。
地址总线用于传输内存或外设的地址信息,数据总线用于传输数据信息。
串行接口是通过单个数据线按照一定的时间顺序传输数据的接口技术。
常见的串行接口有串行通信接口(UART)、串行外设接口(SPI)、I²C接口等。
串行通信接口(UART)是一种通用的串行数据通信接口,用于将数据转换为串行格式进行传输。
串行外设接口(SPI)是一种高速串行接口,用于在单片机与其他外设之间进行数据传输和通信。
I²C接口是一种双线制的串行接口,用于在多个设备之间进行数据传输和通信。
模拟接口是通过模拟信号进行数据传输和通信的接口技术。
模拟接口包括模数转换接口、数字模拟转换接口等。
模数转换接口用于将模拟信号转换为数字信号,数字模拟转换接口用于将数字信号转换为模拟信号。
单片机接口技术的选择取决于具体应用的需求。
并行接口适合需要大量数据同时进行传输的场景,串行接口适合需要高速传输的场景。
第8章思考与练习题解析【8—1】简述单片机系统扩展的基本原则和实现方法。
【答】系统扩展是单片机应用系统硬件设计中最常遇到的问题。
系统扩展是指单片机内部各功能部件不能满足应用系统要求时,在片外连接相应的外围芯片以满足应用系统要求。
80C5 1系列单片机有很强的外部扩展能力,外围扩展电路芯片大多是一些常规芯片,扩展电路及扩展方法较为典型、规范。
用户很容易通过标准扩展电路来构成较大规模的应用系统。
对于单片机系统扩展的基本方法有并行扩展法和串行扩展法两种。
并行扩展法是指利用单片机的三组总线(地址总线AB、数据总线DB和控制总线CB)进行的系统扩展;串行扩展法是指利用SPI三线总线和12C双线总线的串行系统扩展。
1.外部并行扩展单片机是通过芯片的引脚进行系统扩展的。
为了满足系统扩展要求,80C51系列单片机芯片引脚可以构成图8-1所示的三总线结构,即地址总线AB、数据总线DB和控制总线CB。
单片机所有的外部芯片都通过这三组总线进行扩展。
2.外部串行扩展80C51.系列单片机的串行扩展包括:SPI(Serial Peripheral Interface)三线总线和12C双总线两种。
在单片机内部不具有串行总线时,可利用单片机的两根或三根I/O引脚甩软件来虚拟串行总线的功能。
12C总线系统示意图如图8—2所示。
【8—2】如何构造80C51单片机并行扩展的系统总线?【答】80C51并行扩展的系统总线有三组。
①地址总线(A0~A15):由P0口提供低8位地址A0~A7,P0 口输出的低8位地址A0~A7必须用锁存器锁存,锁存器的锁存控制信号为单片机引脚ALE输出的控制信号。
由P2口提供高8位地址A8~A1 5。
②数据总线(DO~D7):由P0 口提供,其宽度为8位,数据总线要连到多个外围芯片上,而在同一时间里只能够有一个是有效的数据传送通道。
哪个芯片的数据通道有效则由地址线控制各个芯片的片选线来选择。
③控制总线(CB):包括片外系统扩展用控制线和片外信号对单片机的控制线。
单片机原理及其接口技术
单片机(Microcontroller)是一种集成了微处理器、存储器、计时器、通信接口、模拟输入输出等电子功能的小型集成电路芯片。
它具有处理器、存储器、输入输出接口等基本功能,而且可以集成控制、调节、监测等多种复杂的控制功能,因此被广泛应用于自动化控制和智能化设备中。
单片机的工作原理是:将程序代码存储在内部存储器中,通过输入接口输入控制信号,然后通过处理器进行计算,并通过输出接口输出控制信号,从而实现对外部设备的控制。
单片机的接口技术主要包括数字接口技术和模拟接口技术。
数字接口技术主要包括并行接口和串行接口。
并行接口是一种多线传输接口,可以同时传输多个数据位,速度快、数据传输量大,适用于数据量较大的数据传输。
串行接口是一种单线传输接口,可以逐位传输数据,需要较少的引脚,适用于数据量较小的数据传输。
模拟接口技术主要是模拟信号和数字信号之间的转换。
单片机内部只能处理数字信号,因此需要通过模拟接口将模拟信号转换为数字信号。
模拟接口技术包括模拟输入技术和模拟输出技术。
模拟输入技术是将模拟信号转换为数字信号输入到单片机内部。
模拟输出技术是将数字信号转换为模拟信号输出到外部设备中。
总之,单片机是现代控制技术和通信技术的核心,其接口技术在自动化控制和智
能化设备中具有重要的作用。