纵向动力学性能分析ppt.
- 格式:ppt
- 大小:2.80 MB
- 文档页数:41
第五章纵向动力学性能分析除空调等附属设备的能耗需求外,行驶过程中车辆所需的动力与能量由行驶阻力所决定。
本章将在分析动力需求与动力供应的基础上,分析车辆的纵向动力学特性,包括动力性、燃油经济性和制动性。
此外,还将讨论与路面附着条件相关的驱动和制动极限问题,最后进行制动稳定性的分析。
§5-1 动力的需求与供应本节首先介绍车辆的行驶阻力,然后分析车辆对动力的需求及供应,最后给出车辆的动力供求平衡方程。
一、车辆对动力的需求这里介绍的车辆行驶阻力,实际上代表了车辆对动力的需求。
按行驶状态的不同,车辆行驶阻力可分为稳态匀速行驶状态下的阻力和瞬态加速时的阻力两部分。
前者包括车轮滚动阻力、空气阻力和坡度阻力;后者主要是指加速阻力。
二、车辆的动力供应§5-2 动力性一、概述车辆的动力性由加速能力、爬坡能力和最高车速来衡量,也可通过对特定行驶工况下车辆动力需求与动力供应之间的比较来评定,而供求双方的平衡关系则由驱动轮轮胎与地面间的相互作用所决定。
评价车辆动力性时,通常采用“驱动力平衡图”或“驱动功率平衡图”进行分析。
三、加速能力§5-3 燃油经济性目前,大多数车辆采用内燃机作为发动机,其经济性主要以燃油消耗量表示。
一、燃油消耗量的计算根据初始的车辆设计参数,在车辆开发初期即可进行其燃油经济性理论上的估计,从而方便地在车辆设计阶段进行设计参数的修正。
二、减少油耗的途径减少燃油消耗量的途径:1)交通管理因素:包括交通管理系统、信号灯控制系统、驾驶员培训等因素,实际上均影响了车辆的行驶速度。
2)车辆行驶阻力因素:在保证汽车安全性、人机工程、经济性和舒适性的同时,尽可能降低车辆行驶阻力,如减小整车质量、轮胎滚动阻力系数、空气阻力系数和迎风面积等。
3)尽可能地降低附属设备(如空调、动力转向、动力制动等)的能耗。
4)提高传动系效率,使发动机功率要尽可能多地传递到驱动轮上。
§5-4 驱动与附着极限和驱动效率第三章中对单个轮胎与地面附着极限问题已有介绍,本节将在整车受力分析的基础上,详细讨论整车驱动与附着极限。
第一部分开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。
而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。
而这三大技术其实就是制动系统的三大难题。
下面就以制动系统来分析。
1.重载列车制动系统的关键技术制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。
众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。
我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。
1.1制动空走时间和制动距离影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。
笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。
对于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。
1.2充气作用和长大下坡道的运行安全列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。
重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。
1.3减轻列车纵向动力作用货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。
第一部分开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。
而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。
而这三大技术其实就是制动系统的三大难题。
下面就以制动系统来分析。
1.重载列车制动系统的关键技术制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。
众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。
我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。
1.1制动空走时间和制动距离影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。
笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。
对于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。
1.2充气作用和长大下坡道的运行安全列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。
重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。
1.3减轻列车纵向动力作用货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。