随机信号处理笔记之色噪声及白化滤波器
- 格式:pdf
- 大小:270.42 KB
- 文档页数:5
104 高斯色噪声中信号检测的思路(1)色噪声:噪声的功率谱密度在整个频带内的分布是非均匀的。
色噪声的自相关函数不再是δ函数,故色噪声在任意两个不同时刻的取值不再是不相关的。
(2)高斯色噪声:服从高斯分布的色噪声。
(3)高斯色噪声中信号检测的基本方法:一种是白化处理方法,另一种是卡亨南-洛维(Karhunen-Loeve )展开方法。
(4)白化处理方法:先将含有高斯色噪声的接收信号通过一个白化滤波器,使输入白化滤波器的色噪声在输出端变为白噪声,然后再按白噪声中信号检测的方法进行处理。
(5)卡亨南-洛维展开方法:把含有高斯色噪声的信号表示成正交展开的形式,将正交展开的系数作为样本,从而使样本是相互统计独立的。
通过求取卡亨南-洛维展开系数的概率密度,并将它们相乘,得到所有卡亨南-洛维展开系数的联合概率密度(即含有高斯色噪声的信号的多维概率密度);再由卡亨南-洛维展开系数的联合概率密度得到不同假设下的似然函数,从而就可以进行似然比检测。
2 卡亨南-洛维展开1.随机信号的正交展开(1)正交函数集在时间),0(T 上定义的函数集},2,1),({ =k t f k ,如果满足⎰⎩⎨⎧≠==*Ti k ik ik t t f t f 001d )()( (5.2.1) 则称此函数集是正交函数集。
(2)完备的正交函数集如果在平方可积或能量有限的函数空间中,不存在另一个函数)(t g ,使⎰==*Tk k t t g t f 0,2,10d )()( (5.2.2)则正交函数集},2,1),({ =k t f k 称为完备的正交函数集。
(3)随机信号的正交展开在时间),0(T 上的任意平方可积随机信号)(t x 的正交展开表示为∑∑∞==∞→==11)()(lim)(k k k mk k km t f x t f xt x (5.2.3)其展开系数k x 为⎰==*Tk k k t t f t x x 0,2,1d )()( (5.2.4)105对于随机信号)(t x ,展开系数k x 是随机变量,因此随机信号)(t x 的正交展开应在平均意义上满足0)()(lim 21=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-∑=∞→m k k k m t f x t x E (5.2.5) 即正交展开的均方误差等于零,或者说正交展开均方收敛于)(t x 。
图像处理之噪声---椒盐,⽩噪声,⾼斯噪声三种不同噪声的区别 ⽩噪声是指功率谱密度在整个频域内均匀分布的噪声。
所有频率具有相同能量的随机噪声称为⽩噪声。
⽩噪声或⽩杂讯,是⼀种功率频谱密度为常数的随机信号或随机过程。
换句话说,此信号在各个频段上的功率是⼀样的,由于⽩光是由各种频率(颜⾊)的单⾊光混合⽽成,因⽽此信号的这种具有平坦功率谱的性质被称作是“⽩⾊的”,此信号也因此被称作⽩噪声。
相对的,其他不具有这⼀性质的噪声信号被称为有⾊噪声。
⽽理想的⽩噪声具有⽆限带宽,因⽽其能量是⽆限⼤,这在现实世界是不可能存在的。
实际上,我们常常将有限带宽的平整讯号视为⽩噪⾳,因为这让我们在数学分析上更加⽅便。
然⽽,⽩噪声在数学处理上⽐较⽅便,因此它是系统分析的有⼒⼯具。
⼀般,只要⼀个噪声过程所具有的频谱宽度远远⼤于它所作⽤系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为⽩噪声来处理。
例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是⽩噪声。
然后介绍⼀下⾼斯噪声:顾名思义,⾼斯噪声就是n维分布都服从⾼斯分布的噪声。
然后说⼀下什么是⾼斯分布。
⾼斯分布,也称正态分布,⼜称常态分布。
对于随机变量X,其概率密度函数如图所⽰。
称其分布为⾼斯分布或正态分布,记为N(µ,σ2),其中为分布的参数,分别为⾼斯分布的期望和⽅差。
当有确定值时,p(x)也就确定了,特别当µ=0,σ2=1时,X的分布为标准正态分布。
最后说⼀下名字很有意思的椒盐噪声:椒盐噪声⼜称脉冲噪声,它随机改变⼀些像素值,是由图像传感器,传输信道,解码处理等产⽣的⿊⽩相间的亮暗点噪声。
椒盐噪声往往由图像切割引起。
在噪声中提取信号的方法引言:在现实生活中,噪声无处不在。
当我们需要从噪声中提取出有用的信号时,就需要借助一些方法和技术来实现。
本文将介绍一些常用的在噪声中提取信号的方法,希望能对读者有所帮助。
一、滤波方法滤波是一种常用的在噪声中提取信号的方法。
它通过选择合适的滤波器来抑制或消除噪声,从而提取出信号。
常用的滤波器包括低通滤波器、高通滤波器、带通滤波器等。
低通滤波器可以通过滤除高频噪声来提取出低频信号,高通滤波器则相反。
带通滤波器可以选择特定频率范围内的信号进行提取。
滤波方法在实际应用中具有较高的灵活性和可调性,可以根据具体情况选择合适的滤波器和参数来实现信号提取。
二、小波变换方法小波变换是一种时频分析方法,可以将信号分解成不同频率的小波分量。
通过对小波分量进行滤波和重构,可以在噪声中提取出目标信号。
小波变换具有较好的时频局部性,适用于非平稳信号的分析和处理。
常用的小波变换方法有离散小波变换(DWT)和连续小波变换(CWT)。
离散小波变换通过多级分解和重构来实现信号的提取,连续小波变换则是对信号进行连续的变换和逆变换。
小波变换方法在信号处理领域有着广泛的应用,可以有效地提取出噪声中的信号。
三、自适应滤波方法自适应滤波是一种根据输入信号的特点自动调整滤波器参数的方法。
它通过对输入信号进行模型建立和参数估计,来实现对噪声的自适应抑制。
自适应滤波方法适用于噪声和信号之间的统计特性不稳定或未知的情况。
常用的自适应滤波方法有最小均方误差滤波(LMS)和递归最小二乘滤波(RLS)。
最小均方误差滤波通过不断调整滤波器系数来最小化预测误差的均方误差,递归最小二乘滤波则是通过递推计算来实现滤波器参数的更新。
自适应滤波方法可以根据信号的特点进行动态调整,提取出噪声中的信号。
四、谱减法方法谱减法是一种基于频域分析的信号提取方法。
它通过计算信号的功率谱密度来抑制噪声,并将剩余的能量作为信号提取出来。
谱减法适用于噪声和信号在频域上有较大差异的情况。
随机信号分析_哈尔滨工程大学中国大学mooc课后章节答案期末考试题库2023年1.从随机过程的第二种定义出发,可以将随机过程看成()。
参考答案:随机变量族2.从随机过程的第一种定义出发,可以将随机过程看成()。
参考答案:样本函数族3.()是随机试验中的基本事件参考答案:随机试验的每一种可能结果4.若随机过程X(t),它的n维概率密度 (或n维分布函数)皆为正态分布则称之为高斯过程参考答案:正确5.正态随机过程的广义平稳与严平稳等价参考答案:正确6.平稳随机过程的相关时间,描述了平稳随机过程从完全相关到不相关所需要的时间,对吗?参考答案:正确7.两个平稳随机过程的互相关函数是偶函数,对吗?参考答案:错误8.平稳随机过程的自相关函数是一个奇函数,对吗?参考答案:错误9.对于一个遍历的噪声,可以通过均方值计算其总能量参考答案:错误10.偶函数的希尔伯特变换为参考答案:奇函数11.窄带高斯随机过程包络平方的一维概率密度为:参考答案:高斯函数12.白色随机过程中的“白色”,描述的是随机过程的()特征参考答案:频谱13.对于具有零均值的窄带高斯随机过程,以下哪个说法正确?参考答案:相位的一维概率密度为均匀分布_包络的一维概率密度为瑞利分布_包络和相位的一位概率密度是相互独立的14.一个实值函数的希尔伯特变换是将其与【图片】的卷积参考答案:正确15.对一个信号的希尔伯特变换,再做一次希尔伯特变换可以得到原信号本身。
参考答案:错误16.连续型随机变量X的概率密度函数fX(x)的最大取值是1?参考答案:错误17.随机变量数学期望值是随机变量取值的中值。
参考答案:错误18.问题:①客观世界中可以设计出理想带通滤波器,②理想白噪声也是存在的。
以上说参考答案:①②均错误19.具有平稳性和遍历性的双侧随机过程经过连续时不变线性系统后,输出随机过程参考答案:平稳、遍历20.正态随机过程具有以下那些性质?参考答案:若正态过程X(t)是宽平稳的,则它也是严平稳的_正态随机过程经过线性系统后其输出仍为正态随机过程。
1 随机信号处理笔记:白噪声1 随机信号处理笔记:白噪声1.1 关于白噪声1.1.1 白噪声的概念1.1.2 白噪声的统计学定义1.1.3 白噪声的自相关函数1.2 白噪声通过LTI系统1.2.1 限带白噪声1.2.1.1 低通白噪声1.2.1.2 带通白噪声1.3 等效噪声带宽1.3.1 等效原则1.3.2 等效公式引言在几乎所有的电子通信中,都不可避免地会有噪声干扰正常的通信质量。
因此对噪声统计特性的研究就显得很重要。
在分析通信系统的抗噪声性能时,常用高斯白噪声作为通信信道的噪声模型。
常见的电子热噪声近似为白噪声。
本文就‘白噪声’统计特性及其通过线性时不变系统的输出特性做简要总结。
1.1 关于白噪声1.1.1 白噪声的概念“白噪声”,Additive White Gaussian Noise(AWGN),符合高斯分布。
“白”的概念来自于光学,和白光的“白”是同一个意思,指的是包含所有频率分量的噪声,且这所有的频率分量是等值的。
1.1.2 白噪声的统计学定义如果白噪声的功率谱密度在所有频率上都是一个常数:其中,;,。
则称该噪声为白噪声。
白噪声的单边功率谱密度:其中,;,。
1.1.3 白噪声的自相关函数根据维纳-辛钦定理,平稳随机过程的功率谱密度函数和自相关函数是傅里叶变换对。
白噪声的自相关函数:对于所有的,都有,说明白噪声仅在时刻才是相关的,而在其他时刻()的随机变量都是不相关的。
白噪声的平均功率:因此真正“白”的噪声是不存在的。
实际工程应用中,只要噪声的功率谱密度均匀分布的频率范围远大于通信系统的工作频带(3dB带宽),就可将其视作白噪声。
1.2 白噪声通过LTI系统尽管白噪声是具有均匀功率谱的平稳随机过程,当它通过线性系统后,其输出端的噪声功率就不再均匀。
假设白噪声的功率谱密度,系统传函是,则LTI系统输出端的噪声功率谱密度函数为:由于LTI系统的传输函数,不是“白”的。
1.2.1 限带白噪声限带白噪声即,在一定的频带范围内,噪声功率谱是白的。
实验五 白化滤波器的设计⒈ 实验目的了解白化滤波器的用途,掌握白化滤波器的设计方法。
⒉ 实验原理在统计信号处理中,往往会遇到等待处理的随机信号是非白色的,这样会给问题的解决带来困难。
克服这一困难的措施之一是,对色噪声进行白化处理。
主要内容是设计一个稳定的线性滤波器,将输入的色噪声变成输出的白噪声。
在这里,我们就对一般的具有功率谱)(ωx G 的平稳随机过程X(t)白化处理问题进行讨论。
为了具体的进行分析和计算,假设)(ωx G 可以表达成有理数的形式,即))......(())......(()(112m n x Z Z a G βωβωωωω++++= m n Z β≠ 其中分子、分母为多项式。
这个假设对于通常见到的功率谱是很近似的,而且有可行的方法用有理数去逼近任意的功率谱密度。
由于)(ωx G 是功率谱,它的平稳随机过程相关函数的傅里叶变换具有非负的实函数和偶函数的性质。
这些性质必然在其有理函数的表示式中体现出来,特别是,)(ωx G 的零、极点的分布和数量会具有若干个特点。
由于)(ωx G 是实函数,因此有:)()(*ωωx x G G =,2a 是实数,)(ωx G 的零、极点是共扼成对的。
从而也可以把)(ωx G 的表示式写成如下形式: ⎥⎦⎤⎢⎣⎡+-+-+-+-⎥⎦⎤⎢⎣⎡++++=))......(())......(())......(())......(()(1111l k l k x j j j j a j j j j a G βωβωαωαωβωβωαωαωω 把ω开拓到复平面s 中去,另ωσj s +=。
用s 代替ωj 就可以把函数)(ωx G 扩大到整个复平面。
)(ωx G 的零、极点必将对称于σ轴,如下图所示:由于)(ωx G 是偶函数,因此不难判断,)(ωx G 的零、极点是象限对成的,从而对于ωj 轴也是对称的。
由于0)(≥ωx G ,因此分子的虚根必然是偶数倍数个,否则)(ωx G 会出现负值。
machine learning for signal processing 笔记:一、信号处理中的机器学习应用概述信号分类:使用监督学习技术(如SVM、决策树、随机森林、神经网络)对不同类型的信号进行识别和分类,例如在音频、图像、雷达信号等领域。
特征提取:通过无监督学习或深度学习自动从原始信号中学习并提取有意义的特征,例如使用自编码器、深度信念网络、卷积神经网络(CNN)等来学习声音或图像信号的特征表示。
预测与滤波:基于时间序列数据,利用循环神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)进行信号预测或滤波操作。
降维与可视化:利用主成分分析(PCA)、独立成分分析(ICA)或流形学习方法降低信号维度,实现高效存储和可视化。
异常检测:通过训练模型识别正常信号模式,并据此定义异常情况,适用于工业监控、医疗诊断等场景。
二、具体应用场景示例通信系统:在无线通信中,ML可用于信道估计、符号检测、干扰抑制等问题。
生物医学信号:心电图(ECG)、脑电图(EEG)等信号处理中,ML用于疾病诊断、睡眠分期、癫痫发作预测等。
图像信号:图像去噪、超分辨率重建、图像分割和目标检测中广泛应用CNN 和其他深度学习方法。
语音信号:语音识别、说话人识别、语音增强等领域利用了ML的强大功能。
三、算法与框架Keras、TensorFlow、PyTorch:这些深度学习框架常被用来构建复杂的信号处理模型。
Scikit-learn:对于传统机器学习算法,在信号处理中的预处理阶段和部分简单的分类、回归任务非常有用。
四、挑战与优化小样本学习:在信号处理中,如何在有限的数据下训练出泛化能力强的模型是一大挑战。
实时性要求:某些信号处理任务需要实时响应,因此算法的计算效率至关重要。
解释性和鲁棒性:提升模型的可解释性以及对噪声和恶意攻击的抵抗能力也是研究重点。
以上只是一个概要性的笔记提纲,实际的学习过程中应深入每个点进行详细探讨和实践。
1 随机信号处理笔记:色噪声及白化滤波器
1 随机信号处理笔记:色噪声及白化滤波器
1.1 关于色噪声
1.1.1 产生原因
1.1.2 解决办法
1.1.
2.1 卡亨南-洛维展开
1.1.
2.2 白化滤波器
1.2 matlab实例仿真分析
引言
白噪声是一种理想化的噪声模型,实际应用中遇到的噪声大多是非“白”噪声。
而信号的检测理论都是建立在白噪声背景中的,因此如何将有色噪声转化成白噪声进行信号检测,就显得至关重要。
1.1 关于色噪声
所谓“色噪声”实相对于“白噪声”而言的,当噪声的功率谱密度不再是一个分布在整个频率轴的常数。
而是在部分频率范围有分布,在其它频率范围内无分布或分布较少。
简言之,色噪声的功率谱密度不是均匀的。
1.1.1 产生原因
1. 由于天线、射频滤波器等器件的频率选通特性,白噪声经过其滤波处理
后,形成了功率谱不再均匀的色噪声。
2. 外界干扰的影响。
1.1.
2.2 白化滤波器
白化滤波器的构造:
假设,有色噪声的功率谱密度函数为,其满足佩里-维纳条件:
白化滤波器输出的噪声功率谱密度曲线:
输出噪声的自相关函数曲线:
由仿真得到的白化滤波器输出噪声功率谱密度曲线和其自相关曲线可看出滤波器的白化效果很好。