数列组合1
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
组合数列求和的一个方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
1、倒序相加法
倒序相乘法如果一个数列{an}满足用户与首末两项等“距离”的两项的和成正比(或等同于同一常数),那么谋这个数列的前n项和,需用倒序相乘法。
2、分组求和法
分组议和法一个数列的通项公式就是由几个等差或等比或可以议和的数列的通项公式共同组成,议和时需用分组议和法,分别议和而后相乘。
3、错位相减法
错位二者加法如果一个数列的各项就是由一个等差数列和一个等比数列的对应项之积形成的,那么这个数列的前n项和需用此法xi,例如等比数列的前n项和公式就是用此法推论的。
4、裂项相消法
裂项二者消法把数列的通项切割成两项之差,在议和时中间的一些项可以相互抵销,从而求出其和。
5、乘公比错项相减(等差×等比)
这种方法就是在推论等比数列的'前n项和公式时所用的方法,这种方法主要用作谋数列{an×bn}的前n项和,其中{an},{bn}分别就是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和sn可以轻易用等差、等比数列的前n项和公式展开解。
运用公式解的注意事项:首先必须特别注意公式的应用领域范围,确认公式适用于于这个数列之后,再排序。
7、迭加法
主要应用于数列{an}满足用户an+1=an+f(n),其中f(n)就是等差数列或等比数列的条件下,可以把这个式子变为an+1-an=f(n),代入各项,获得一系列式子,把所有的式子提至一起,经过整理,纡出来an,从而算出sn。
以1为极限的两个数列的应用
数列是数学中的一个重要概念,它把一组满足一定规则排列的数字组成一个序列。
而以1为极限的数列则是指序列的和接近1,但不会等于1的类型。
这种类型的数列在实际应用中有很多种,其中最常见的是等比数列。
该类型的数列可以表示一种持续不断的发展过程,其中每一项代表增加过程中发生的一段时间,也就是说,每一项都增加了少量金钱,而且最终会收敛到1。
例如,如果按照以10%的利息计算投资的回报,投资的收益率将以等比数列的方式不断增长,收益率最终会收敛到1,但是不会超过1。
另一种以1为极限的数列是几何级数,例如,1/2 + 1/4 + 1/8 +... + 1/2 n,它表示一种等比复利累加的过程,也就是说,每次累加前一次的数值,最终会收敛到1,但也不会超过1。
例如,如果一个人每月在存款中赚取利息,则这种利息收入会随着时间的推移以几何级数的方式递增,收益最终将收敛到1,但也不会超过1。
以1为极限的数列可以应用于财务领域,为投资组合中的各项投资提供必要的定价参考;与此同时,它也可以用于教育、社会以及其他关键领域,通过对某一任务的分段完成历程来衡量参与者的表现绩效。
总之,以1为极限的数列在实际应用中有很多,它可以用来展示一个收敛到某一数值,但不会超过1的发展过程,可用于财务领域也可应用于其他领域,起重要作用。
第1讲数列的概念及简单表示法最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为定义域的函数a n=f(n).当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类3.数列的两种常用的表示方法(1)通项公式:如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.4.已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( )2.(2016·保定调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( ) A.2n -1B.2n -1+1C.2n -1D.2(n -1)3.(2016·山西四校联考)已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =( ) A.2n -1-1B.2n -1C.2n -1D.2n +14.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.5.(人教A 必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…;(4)5,55,555,5 555,….【训练1】 (1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________. (2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式a n =________. 考点二 由S n 与a n 的关系求a n【例2】 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式.【训练2】 (1)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A.2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -1(2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. 考点三 由数列的递推关系求通项公式【例3】 (1)在数列{a n }中,a 1=1,a n +1=2a n +3,求它的一个通项公式为a n . (2)在数列{a n }中,a 1=2,a n +1=a n +n +1,求a n . (3)已知数列{a n }满足a 1=1,a n =n -1n a n -1(n ≥2),求a n .【训练3】 (1)(2016·合肥一模)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =________.(2)在数列{a n }中,a 1=1,S n =n +23a n ,则a n =________. 考点四 数列的单调性及应用【例4】 已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n . (1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n .【训练4】 已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路: (1)算出前几项,再归纳、猜想; (2)利用累加或累乘法求数列的通项公式. [易错防范]1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的.2.数列的通项公式不一定唯一.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.基础巩固题组 (建议用时:40分钟)一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B.cos n π2C.cos n +12π D.cos n +22π2.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( )A.163B.133C.4D.03.(2016·黄冈模拟)已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A.a n =2n -3B.a n =2n +3C.a n =⎩⎨⎧1,n =1,2n -3,n ≥2D.a n =⎩⎨⎧1,n =1,2n +3,n ≥24.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A.7B.6C.5D.45.(2015·石家庄二模)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A.8 B.6 C.4 D.2二、填空题6.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.7.(2016·潍坊一模)已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________. 8.(2015·太原二模)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =________. 三、解答题9.根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n +1=(n +1)a n ; (3)a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n .10.设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围.能力提升题组 (建议用时:20分钟)11.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A.a 2 014=-1,S 2 014=2B.a 2 014=-3,S 2 014=5C.a 2 014=-3,S 2 014=2D.a 2 014=-1,S 2 014=512.(2016·贵阳监测)已知数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 015项的乘积a 1·a 2·a 3·…·a 2 015=________.13.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.14.在数列{a n }中,a 1=1,a n a n +1=⎝ ⎛⎭⎪⎫12n(n ∈N *).(1)求证:数列{a 2n }与{a 2n -1}(n ∈N *)都是等比数列;(2)若数列{a n }的前2n 项和为T 2n ,令b n =(3-T 2n )·n ·(n +1),求数列{b n }的最大项.。
观察下面几个式子:13 = 1; (1)2 = 113 + 23 = 9; (1 + 2)2 = 913 + 23 + 33 = 36; (1 + 2 + 3)2 = 3613 + 23 + 33 + 43 = 100; (1 + 2 + 3 + 4)2 = 100…… ……大家应该可以猜到,事实上,对于任意正整数 n ,下述等式永远成立:13 + 23 + … + n3 = (1 + 2 + … + n)2这个恒等式的证明方法有很多很多,今天我看到了一种有趣的组合证明方法,来源于《Proofs that Really Count》的第 8 章。
首先,让我们考虑所有这样的数列:它由 0 到 n 之间的整数组成,长度为 4 ,并且最后一个数严格大于前面所有的数。
我们把所有满足要求的数列所组成的集合叫做集合 A 。
也就是说:A = {(a, b, c, d) | 0 ≤ a, b, c < d ≤ n}集合 A 里面有多少元素呢?我们可以这样来计算:最后一个数 d 的值可以从 1 到 n 当中选择,只要 d 选定了,前面的数都可以从 0 到 d -1 之间任意选择,这一共会产生 d3种选法。
于是,集合 A 的元素个数就是 13 + 23 + … + n3。
接下来,让我们考虑所有这样的数列:它由 0 到 n 之间的整数组成,长度为 4 ,并且第 2 个数严格大于第 1 个数,第 4 个数严格大于第 3 个数。
我们把所有满足要求的数列所组成的集合叫做集合 B 。
也就是说:B = {(x, y, z, w) | 0 ≤ x < y ≤ n 并且 0 ≤ z < w ≤ n}集合 B 里面有多少元素呢?我们可以按照下面这种方式来计算。
如果 x 选的是 n - 1,那么 y 有 1 种选法;如果 x 选的是 n - 2,那么 y 有2 种选法……如果 x 选的是 0,那么 y 有 n 种选法。
分母裂项技巧公式
分母裂项技巧公式是一种常用的数学技巧,用于将分母分解为两项,并通过组合重新组合以达到消去分母的目的。
通常用于代数、分数和整数等领域。
下面是三种常见的分母裂项技巧公式:
1. 分母裂项拆分万能公式:1/[n(n1)](1/n)-[1/(n1)]
该公式可以将分母分解为两项,并通过组合重新组合以达到消去分母的目的。
它的应用范围非常广泛,可以用于各种分母为 n 和 n1 的数列求和中。
具体来说,该公式可以用于等差数列、等比数列、斐波那契数列等各种类型的数列求和。
2. 分母裂项拆分万能公式:1/[(2n-1)(2n1)]1/2[1/(2n-1)-1/(2n1)]
该公式可以将分母分解为两项,并通过组合重新组合以达到消去分母的目的。
它的应用范围比第一种公式稍窄,只适用于分母为 (2n-1) 和 (2n1) 的数列求和。
3. 分母裂项拆分万能公式:1/[n(n1)(n2)]1/21/[n(n1)]-1/[(n1)(n2)]
该公式可以将分母分解为三项,并通过组合重新组合以达到消去分母的目的。
它的应用范围比前两种公式更窄,只适用于分母为 n、n1 和 n2 的数列求和。
除了上述三种公式外,还有许多其他的分母裂项技巧公式,但一般来说,其中最常见的就是上述三种。
在实际应用中,人们可以根据具体情况选择最合适的公式来进行计算。
斐波那契数列斐波那契的发明者,是数学家Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是;他被人称作“比萨的列昂纳多”;1202年,他了珠算原理Liber Abacci一书;他是第一个研究了和数学理论的人;他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学;他还曾在、、、和研究;斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和;斐波那契数列通项公式通项公式见图又叫“比内公式”,是用表示的一个范例;注:此时a1=1,a2=1,an=an-1+an-2n>=3,n∈N通项公式的推导斐波那契数列:1、1、2、3、5、8、13、21、……如果设Fn为该数列的第n项n∈N+;那么这句话可以写成如下形式:F0 = 0,F1=1,Fn=Fn-1+Fn-2 n≥2,显然这是一个递推数列;方法一:利用特征方程线性代数解法线性递推数列的特征方程为:X^2=X+1解得X1=1+√5/2,,X2=1-√5/2;则Fn=C1X1^n + C2X2^n;∵F1=F2=1;∴C1X1 + C2X2;C1X1^2 + C2X2^2;解得C1=1/√5,C2=-1/√5;∴Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1}√5表示5;方法二:待定系数法构造等比数列1初等待数解法设常数r,s;使得Fn-rFn-1=sFn-1-rFn-2;则r+s=1, -rs=1;n≥3时,有;Fn-rFn-1=sFn-1-rFn-2;Fn-1-rFn-2=sFn-2-rFn-3;Fn-2-rFn-3=sFn-3-rFn-4;……F3-rF2=sF2-rF1;联立以上n-2个式子,得:Fn-rFn-1=s^n-2F2-rF1;∵s=1-r,F1=F2=1;上式可化简得:Fn=s^n-1+rFn-1 ;那么:Fn=s^n-1+rFn-1;= s^n-1 + rs^n-2 + r^2Fn-2;= s^n-1 + rs^n-2 + r^2s^n-3 + r^3Fn-3;……= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1F1;= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1;这是一个以s^n-1为首项、以r^n-1为末项、r/s为公比的的各项的和;=s^n-1-r^n-1r/s/1-r/s;=s^n - r^n/s-r;r+s=1, -rs=1的一解为s=1+√5/2,r=1-√5/2;则Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1};方法三:待定系数法构造等比数列2初等待数解法已知a1=1,a2=1,an=an-1+an-2n>=3,求数列{an}的通项公式;解:设an-αan-1=βan-1-αan-2;得α+β=1;αβ=-1;构造方程x^2-x-1=0,解得α=1-√5/2,β=1+√5/2或α=1+√5/2,β=1-√5/2;所以;an-1-√5/2an-1=1+√5/2an-1-1-√5/2an-2=1+√5/2^n-2a2-1-√5/2a1`````````1;an-1+√5/2an-1=1-√5/2an-1-1+√5/2an-2=1-√5/2^n-2a2-1+√5/2a1`````````2;由式1,式2,可得;an=1+√5/2^n-2a2-1-√5/2a1``````````````3;an=1-√5/2^n-2a2-1+√5/2a1``````````````4;将式31+√5/2-式41-√5/2,化简得an=1/√5{1+√5/2^n - 1-√5/2^n};与黄金分割的关系有趣的是:这样一个完全是的数列,通项公式却是用无理数来表达的;而且当n时an-1/an越来越逼近数;1÷1=1,2÷1=2,3÷2=,5÷3=...,8÷5=,…………,89÷55=…,…………233÷144=…75025÷46368=…;..越到后面,这些比值越接近黄金比.证明:an+2=an+1+an;两边同时除以an+1得到:an+2/an+1=1+an/an+1;若an+1/an的极限存在,设其极限为x,则limn->∞an+2/an+1=limn->∞an+1/an=x;所以x=1+1/x;即x²=x+1;所以极限是黄金分割比;奇妙的属性斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数、黄金矩形、黄金分割、等角螺线等,有时也可能是我们对斐波那契额数过于热衷,把原来只是巧合的东西强行划分为斐波那契数;比如钢琴上白键的8,黑键上的5都是斐波那契数,因该把它看做巧合还是规律呢随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值……从第二项开始,每个奇数项的都比前后两项之积多1,每个项的平方都比前后两项之积少1;注:奇数项和偶数项是指项数的奇偶,而并不是列的本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通多了的一在哪如果你看到有这样一个题目:某人把一个88的方格切成四块,拼成一个513的,故作惊讶地问你:为什么64=65其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到;斐波那契数列的第n项同时也代表了{1,2,...,n}中所有不相邻正的个数;斐波那契数列fn,f0=0,f1=1,f2=1,f3=2……的其他性质:0+f1+f2+…+fn=fn+2-1;1+f3+f5+…+f2n-1=f2n;2+f4+f6+…+f2n =f2n+1-1;4.f0^2+f1^2+…+fn^2=fn·fn+1;0-f1+f2-…+-1^n·fn=-1^n·fn+1-fn+1;m+n-1=fm-1·fn-1+fm·fn;利用这一点,可以用程序编出时间复杂度仅为Olog n的程序;怎样实现呢伪代码描述一下7.fn^2=-1^n-1+fn-1·fn+1;2n-1=fn^2-fn-2^2;n=fn+2+fn-2;2n-2m-2f2n+f2n+2=f2m+2+f4n-2m n〉m≥-1,且n≥1斐波那契数列2n+1=fn^2+fn+1^2.在杨辉三角中隐藏着斐波那契数列将杨辉三角依次下降,成如图所示排列,将同一行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f1=C0,0=1 ;f2=C1,0=1 ;f3=C2,0+C1,1=1+1=2 ;f4=C3,0+C2,1=1+2=3 ;f5=C4,0+C3,1+C2,2=1+3+1=5 ;f6=C5,0+C4,1+C3,2=1+4+3=8 ;F7=C6,0+C5,1+C4,2+C3,3=1+5+6+1=13 ;……Fn=Cn-1,0+Cn-2,1+…+Cn-1-m,m m<=n-1-m斐波那契数列的整除性与素数生成性每3个数有且只有一个被2整除,每4个数有且只有一个被3整除,每5个数有且只有一个被5整除,每6个数有且只有一个被8整除,每7个数有且只有一个被13整除,每8个数有且只有一个被21整除,每9个数有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657第19位不是斐波那契数列的素数无限多吗斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,,99875,27965,16730,33695,49325,72910…斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现;例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子假定没有折损,直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数;叶子从一个位置到达下一个正对的位置称为一个循回;叶子在一个循回中的圈数也是斐波那契数;在一个循回中叶子数与叶子旋转圈数的比称为源自希腊词,意即叶子的排列比;多数的叶序比呈现为斐波那契数的比;斐波那契—卢卡斯数列与广义斐波那契数列黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的是一个恒值,斐波那契数列:|11-12|=|22-13|=|33-25|=|55-38|=|88-513|=…=1卢卡斯数列:|33-14|=|44-37|=…=5F1,4数列:|44-15|=11F2,5数列:|55-27|=11F2,7数列:|77-29|=31斐波那契数列这个值是1最小,也就是前后项之比接近最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列;卢卡斯数列的黄金特征是5,也是独生数列;前两项的独生数列只有斐波那契数列和卢卡斯数列这两个数列;而F1,4与F2,5的黄金特征都是11,是孪生数列;F2,7也有孪生数列:F3,8;其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列; 广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩儿数列:1,2,5,12,29,…,也有|22-15|=|55-212|=…=1该类数列的这种称为勾股特征;数列Pn的递推规则:P1=1,P2=2,Pn=Pn-2+2Pn-1.据此类推到所有根据前两项导出第三项的通用规则:fn = fn-1 p + fn-2 q,称为广义斐波那契数列;当p=1,q=1时,我们得到斐波那契—卢卡斯数列;当p=1,q=2时,我们得到佩尔—勾股弦数跟边长为整数的有关的数列集合;当p=-1,q=2时,我们得到等差数列;其中f1=1,f2=2时,我们得到自然数列1,2,3,4…;自然数列的特征就是每个数的平方与前后两数之积的差为1等差数列的这种差值称为;具有类似黄金特征、勾股特征、自然特征的广义斐波那契数列p=±1;当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……相关的数学问题1.排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法;类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种答案是1/√5{1+√5/2^10+2 - 1-√5/2^10+2}=144种;2.数列中相邻两项的前项比后项的极限当n趋于无穷大时,Fn/Fn+1的极限是多少这个可由它的通项公式直接得到,极限是-1+√5/2,这个就是黄金分割的数值,也是代表的和谐的一个数字;3.求递推数列a1=1,an+1=1+1/an的通项公式由可以得到:an=Fn+1/Fn,将斐波那契数列的通项式代入,化简就得结果;3.兔子繁殖问题关于斐波那契数列的别名斐波那契数列又学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“”;一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来;如果所有兔都不死,那么一年以后可以繁殖多少对兔子我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔民数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:经过月数0 1 2 3 4 5 6 7 8 9 10 11 12幼仔0 0 1 1 2 3 5 8 13 21 34 55 89成兔对数0 1 1 2 3 5 8 13 21 34 55 89 144 总体对数 1 1 2 3 5 8 13 21 34 55 89 144 233 幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列;这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项;这个数列是意大利数学家斐波那契在<算盘全书>中提出的,这个的通项公式,除了具有an+2=an+an+1的性质外,还可以证明通项公式为:an=1/√5{1+√5/2^n-1-√5/2^n}n=1,2,3.....数学游戏一位拿着一块边长为8英尺的地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯;”这位匠师对魔术师之差深感惊异,因为两者之间面积相差达一平方英尺呢可是魔术师竟让匠师用图2和图3的办法达到了他的目的这真是不可思议的事亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢实际上后来缝成的地毯有条细缝,面积刚好就是一平方英尺;自然界中的巧合斐波那契数列在自然科学的其他分支,也有许多应用;例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝;所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”;这样,一株树木各个年份的枝桠数,便构成斐波那契数列;这个规律,就是生物学上着名的“鲁德维格定律”;另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的的头部这些植物懂得斐波那契数列吗应该并非如此,它们只是按照自然的规律才进化成这样;这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉;叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的,每片叶子和前一片叶子之间的角度应该是度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是……的,而这种生长方式就决定了斐波那契螺旋的产生;向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条;数字谜题三角形的三边关系和斐波那契数列的一个联系:现有长为144cm的铁丝,要截成n小段n>2,每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少分析:由于形成三角形的是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边;截成的铁丝最小为1,因此可以放2个1,第三条就是2为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和,依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10;我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了;这里,三角形的三边关系定理和斐波那契数列发生了一个联系;在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了;影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的里它就作为一个重要的符号和情节线索出现,在魔法玩具城里又是在店主招聘会计时随口问的问题;可见此数列就像黄金分割一样流行;可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究;在电视剧中也出现斐波那契数列,比如:日剧考试之神第五回,义嗣做全国模拟考试题中的最后一道~社会文明中的斐波那契数列艾略特波浪理论1946年,艾略特完成了关于波浪理论的集大成之作,自然法则——宇宙的秘密;艾略特坚信,他的波浪理论是制约人类一切活动的普遍自然法则的一部分;波浪理论的优点是,对即将出现的顶部或底部能提前发出警示信号,而传统的技术分析方法只有事后才能验证;艾略特波浪理论对市场运作具备了全方位的透视能力,从而有助于解释特定的形态为什么要出现,在何处出现,以及它们为什么具备如此这般的预测意义等等问题;另外,它也有助于我们判明当前的市场在其总体周期结构中所处的地位;波浪理论的数学基础,就是在13世纪发现的费氏数列;波浪理论数学结构8浪循环图·8浪循环图说明·波浪理论的推动浪,浪数为51、2、3、4、5,调整浪的浪数为3a\b\c,合起来为8;·8浪循环中,前5段波浪构成一段明显的上升浪,其中包括3个向上的冲击波及两个下降的调整波;在3个冲击波之后,是由3个波浪组成的一段下跌的趋势,是对前一段5浪升势的总调整;这是艾略特对波浪理论的基本描述;而在这8个波浪中,上升的浪与下跌的浪各占4个,可以理解为艾略特对于股价走势对称性的隐喻;·在波浪理论中,最困难的地方是:波浪等级的划分;如果要在特定的周期中正确地指认某一段波浪的特定属性,不仅需要形态上的支持,而且需要对波浪运行的时间作出正确的判断;·换句话说,波浪理论易学难精,易在形态上的归纳、总结,难在价位及时间周期的判定;波浪理论的数字基础:斐波那契数列波浪理论数学结构——斐波那契数列与黄金分割率·这个数列就是斐波那契数列;它满足如下特性:每两个相连数字相加等于其后第一个数字;前一个数字大约是后一个数字的倍;前一个数字约是其后第二个数字的倍;后一个数字约是前一个数字的倍;后一个数字约是前面第二个数字的倍;·由此计算出常见的黄金分割率为和外:、、、、、、、、、·黄金分割比率对于股票市场运行的时间周期和价格幅度模型具有重要启示及应用价值;黄金分割比率在时间周期模型上的应用·未来市场转折点=已知时间周期×分割比率·已知时间周期有两种:1循环周期:最近两个顶之间的运行时间或两个底之间的运行时间2趋势周期:最近一段升势的运行时间或一段跌势的运行时间·一般来讲,用循环周期可以计算出下一个反向趋势的终点,即用底部循环计算下一个升势的顶,或用顶部循环计算下一个跌势的底;而用趋势周期可以计算下一个同方向趋势的终点或是下一个反方向趋势的终点;时间循环周期模型预测图时间趋势周期模型预测图时间周期与波浪数浪的数学关系·一个完整的趋势推动浪3波或调整浪3波,运行时间最短为第一波1浪或A浪的倍,最长为第一波的倍;如果第一波太过短促,则以第一个循环计算A浪与B浪或1浪与2浪;·及的周期一旦成立,则出现的行情大多属次级趋势,但行情发展迅速;·同级次两波反向趋势组成的循环,运行时间至少为第一波运行时间的倍;·一个很长的跌势或升势结束后,其右底或右顶通常在前趋势的或倍时间出现;黄金分割比率在价格幅度模型上的应用·如果推动浪中的一个子浪成为延伸浪的话,则其他两个推动浪不管其运行的幅度还是运行的时间,都将会趋向于一致;也就是说,当推动浪中的浪3在走势中成为延伸浪时,则浪1与浪5的升幅和运行时间将会大致趋同;假如并非完全相等,则极有可能以的关系相互维系;·浪5最终目标,可以根据浪1浪底至浪2浪顶距离来进行预估,他们之间的关系,通常亦包含有神奇数字组合比率的关系;·对于ABC调整浪来说,浪C的最终目标值可能根据浪A的幅度来预估;浪C的长度会经常是浪A的倍;当然我们也可以用下列公式预测浪C的下跌目标:浪A浪底减浪A乘;·在对称三角形内,每个浪的升跌幅度与其他浪的比率,通常以的神奇比例互相维系;黄金分割比率在价格幅度模型上的应用·:浪4常见的回吐比率、部份浪2的回吐比率、浪B的回吐比率;·:大部份浪2的调整幅度、浪5的预期目标、浪B的调整比率、三角形内浪浪之间比率;·:常见是浪B的调整幅度;·:浪3或浪4的回吐比率,但不多见;·与:·:浪3与浪1、浪C与浪A的比率关系;推动浪形态·推动浪有五浪构成;第一浪通常只是由一小部分交易者参与的微弱的波动;一旦浪1结束,交易者们将在浪2卖出;浪2的卖出是十分凶恶的,最后浪2在不创新低的情况下,市场开始转向启动下一浪波动;浪3波动的初始阶段是缓慢的,并且它将到达前一次波动的顶部浪1的顶部;推动浪浪5未能创新高低,市场将会出现大逆转推动浪的变异形态——倾斜三角形·倾斜三角形为推动浪中的一种特殊型态比较少见,主要出现在第5浪的位置;艾略特指出,在股市中,一旦出现一段走势呈现快速上升或赶底的状况,其后经常会出现倾斜三角形型态调整浪形态·调整是十分难以掌握的,许多艾略特交易者在推动模式阶段上赚钱而在调整阶段再输钱;一个推动阶段包括五浪;调整阶段由三浪组成,但有一个三角形的例外;一个推动经常伴随着一个调整的模式;·调整模式可以被分成两类:·简单的调整:之字型调整N字型调整·复杂的调整:平坦型、不规则型、三角形型调整浪的简单与复杂调整的交替准则调整浪的变异形态:强势三角形调整浪的变异形态:前置三角形各段波浪的特性·在8浪循环中,每段波浪都有不同的特点,熟知这些特点,对波浪属性的判断极有帮助,·第1浪:大部分第1浪属于营造底部形态的一部份,相当于形态分析中头肩底的底部或双底的右底,对这种类型的第1浪的调整第2浪幅度通常较大,理论上可以回到第1浪的起点;小部份第1浪在大型调整形态之后出现,形态上呈V形反转,这类第1浪升幅较为可观;在K线图上,经常出现带长下影线的大阳线;从波浪的划分来说,在5-3-5的调整浪当中,第1浪也可以向下运行,通常第1浪在分时图上应该显示明确的5浪形态;·第2浪:在强势调整的第2浪中,其回调幅度可能达到第1浪幅度的或,在更多的情况下,第2浪的回调幅度会达到100%,形态上经常表现为头肩底的右底,使人误以为跌势尚未结束;在第2浪回调结束时,指标系统经常出现超卖、背离等现象;第2浪成交量逐渐缩小,波幅较细,这是卖力衰竭的表现;出现传统系统的转向信号,如头肩底、双底等;·第3浪:如果运行时间较短,则升速通常较快;在一般情况下为第1浪升幅的倍;如果第3浪升幅与第1浪等长,则第5浪通常出现扩延的情况;在第3浪当中,唯一的操作原则是顺势而为;因为第3浪的升幅及时间经常会超出分析者的预测;通常第3浪运行幅度及时间最长;属于最具爆发性的一浪;大部分第3浪成为扩延浪;第3浪成交量最大;出现传统图表的突破信号,如跳空缺口等;·第4浪:如果第4浪以平坦型或N字型出现,a小浪与c小浪的长度将会相同;第4浪与第2浪经常是交替形态的关系,即单复式交替或平坦型、曲折型或三角形的交替;第4浪的低点经常是其后更大级数调整浪中A浪的低点;经常以较为复杂的形态出现,尤其以三角形较为多见;通常在第3浪中所衍生出来的较低一级的第4浪底部范围内结束;第4浪的底不会低于第1浪的顶;·第5浪:除非发生扩延的情况,第5浪的成交量及升幅均小于第3浪;第5浪的上升经常是在指标出现顶背离或钝化的过程中完成;在第5浪出现衰竭性上升的情况下,经常出现上升楔形形态;这时,成交量与升幅也会出现背离的情况;如果第1、3浪等长,则第5浪经常出现扩延;如果第3浪出现扩延浪,则第5浪幅度与第1浪大致等长;市场处于狂热状态;·第6浪A浪:A浪可以为3波或者5波的形态;在A浪以3波调整时,在A浪结束时,市场经常会认为整个调整已经结束;在多数情况下,A浪可以分割为5小浪;市场人士多认为市场并未逆转,只视为一个较短暂的调整;图表上,阴线出现的频率增大;·第7浪B浪:在A浪以3波形态出现的时候,B浪的走势通常很强,甚至可以超越A浪的起点,形态上出现平坦型或三角形的概率很大;而A浪以5波运行的时候,B浪通常回调至A浪幅度的至;升势较为情绪化,维持时间较短;成交量较小;·第8浪C浪:除三角形之外,在多数情况下,C浪的幅度至少与A浪等长;杀伤力最强;与第3浪特性相似,以5浪下跌;股价全线下挫;人类文明的斐波那契演进古老的<马尔萨斯理论>已经显灵马尔萨斯认为:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口;2000年科技泡沫达到繁荣的极限,到处都是财富神话然后盛极而衰,全球经济急转直下转入衰退、长期萧条;于是:911、阿富汗战争、伊拉克战争、SARS、印度洋海啸、飓风袭击美利坚、禽流感、寒流袭击欧罗巴;这一切集中在一起接二连三地发生2000年是自上世纪30年代全球经济大萧条后,一个长达约70年的经济增长周期的结束点,后面将是一个长期萧条周期;上世纪30年代全球经济大萧条导致了二次世界大战,被艾略特称之为:底部战争;现在又是一个与上世纪30年代全球经济大萧条同级别的经济萧条周期,2000年来的经济萧条将持续至2021年才会结束预测附在下面;后面是否又会发生被艾略特称之为的:底部战争至少有不良苗头:哈马斯执政、伊朗核问题纠缠,世界将走向何方是否还记得那个着名的:1999年7月之上误差了2年恐怖大王从天而降911使安哥鲁摩阿大王为之复活美国发动反恐战争这期间由马尔斯借幸福之名统治四方唯一待验证社会群体心理、群体行为、群体价值观,乃至国际政治、经济、军事,一切皆是自相似系统分形几何运行阶段的反映和结果;1、自2000年来的全球经济萧条将持续至2021年,说明未来将是长期萧条;2、之前会有若干次小级别、温和的经济扩张和收缩,2010、2011、2018年是拐点;3、2021年是一个黑暗的年份,人们悲观、恐惧、绝望的情绪会达到一个极点;到时绝大多数经济学家会一致悲观接着柳岸花明经济开始复苏,经济学家们又挨了一记大耳光;首先,列出一组计算公式:公元1937年–公元1932年X + 公元1982年= 公元2000年公元1966年–公元1942年/ + 公元1982年= 公元1999年公元1837年–公元1789年X + 公元1932年= 公元1998年公元1325年–公元950年X –公元1650年–公元1490年+ 公元1789年–公元1650年+ 公元1789年= 公元2000年其中:公元950年商业革命的起点公元1325年商业革命的结束点公元1490年资本主义革命的起点公元1650年资本主义革命的结束点公元1789年工业革命的起点公元1837年公元1789年后第一轮经济扩张的结束点公元1932年自公元1929年资本主义世界股灾的结束点公元1937 年公元1929年股灾后第一轮经济扩张的结束点公元1942年公元1929年股灾后第二轮经济扩张的起点公元1966年公元1929年股灾后第二轮经济扩张的结束点公元1982年70年代全球经济滞胀的结束点、、是斐波那契比率,来源于斐波那契数列前2个计算公式的含义:自上世纪30年代资本主义世界经济大萧条以来,新的一个自公元1932年开始的上升5浪的经济扩张周期已经结束,结束点为公元2000年;那么接着是一个调整期经济。
数列求解通项的方法总结方法一、公式法当已知数列的类型(如已知数列为等差或等比数列)时,可以设出首项和公差(公比),列式计算。
1、等差数列通项公式: dn a a n )1(1-+=2、等比数列通项公式:例1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式 (2)当d >1时,记c n =,求数列{c n }的前n 项和T n .变式1、已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5﹣3b 2=7.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.11-=n n q a a方法二、利用前n 项和与通项的关系已知数列{ a n }前n 项和S n ,求通项公式,利用 a n ={)1()2(11=≥--n S n S S n n 特别地,当n=1的值与S 1的值相同时,合并为一个通项公式,否则写成分段的形式。
例2、(1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.求{a n }的通项公式;(2)S n 为数列{a n }的前n 项和,己知a n >0,a n 2+2a n =4S n +3 (I )求{a n }的通项公式.(Ⅱ)设b n =,求数列{b n }的前n 项和.变式2、(2015·四川)数列{a n }(n=1,2,3…)的前n 项和S n ,满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列的前n 项和为T n ,求T n .方法三、利用递推关系式与通项的关系类型1、累加法 形如)(1n f a a n n +=+例3、(2014·全国卷)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.变式3、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
题目:揭秘1 3 7 13 21 31的规律公式在数学这个神奇的领域里,有许多隐藏的规律和公式,它们仿佛是大自然的密码,蕴藏着无穷的智慧和奥秘。
其中,1 3 7 13 21 31这个数列就是其中之一,它看似杂乱无章,但背后却隐藏着神秘的规律和公式。
接下来,让我们一起来揭秘这个神奇数列背后的精彩故事。
1. 数列的起源我们首先从数列的起源开始讲起。
1 3 7 13 21 31这个数列最早由意大利数学家克里斯托弗·佩斯卡尔在17世纪发现,他将这个数列命名为佩斯卡尔数列。
这个数列的形式看似杂乱且不规则,让人摸不着头脑,但实际上它蕴含着极其深刻的数学规律。
2. 规律的发现要想揭示1 3 7 13 21 31这个数列的规律,我们必须仔细观察其中的数字。
在仔细观察之后,我们发现每个数都比前一个数大两倍再减一。
这就是佩斯卡尔数列的规律公式,即:an = an-1 * 2 - 1,其中a1=1。
3. 规律的解释为了更好地理解这个规律公式,让我们来解释一下每个数是如何得到的。
第一个数是1,那么第二个数就是1*2-1=1,第三个数是3*2-1=5,第四个数是7*2-1=13,以此类推。
通过这个规律公式,我们可以轻松地计算出数列中任意位置的数字,这种规律的发现无疑是数学的一大胜利。
4. 数学应用佩斯卡尔数列虽然看似简单,却有着广泛的数学应用。
在组合数学中,这个数列可以被用来表示二项式系数,并在概率论、统计学以及组合优化等领域有着重要的应用。
在图像处理、密码学和通信工程中,佩斯卡尔数列也能够发挥重要作用。
5. 个人观点对于佩斯卡尔数列,我深深地被它神秘的规律和广泛的应用所吸引。
它仿佛是数学领域中的一颗珍珠,蕴含着无穷的智慧和奥秘。
而且,通过揭示这个数列背后的规律公式,我深刻地感受到了数学之美,它让人感叹自然的鬼斧神工。
总结通过对1 3 7 13 21 31这个数列的深入探索,我们不仅揭示了它背后的神秘规律公式,还了解了它在数学领域和其他领域中的广泛应用。
数列求和的基本方法和技巧关键词:数列求和 通项分式法 错位相减法 反序相加法 分组法 分组法合并法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0)解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项当x 2=1 即x =±1时 和为n+3评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为n s ,则n s 的值。
错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
[例] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况2 错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
1七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .
2有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同
的取法
3 由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?
4用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是
525人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?
6一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为
例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法
练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
练习题:
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法
的种数为
2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法
例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1
人参加,则不同的选法有种
例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?
练习题:
1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为
2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有
种。